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New requirements from the network management

|The introduction of novel networking paradigms such as Network
Slicing mandates a thorough revision of the network design with
respect to the legacy approach

| Sliced networks set up a number of different network instances
to run on the same infrastructure

| This makes the network management a much more complex
task:

® Resources shall dynamically be assigned to different network services
® Their possible different QoS requirements have to be monitored in real time

| Traditionally such tasks were heavily human based, with manual
configuration of the different network elements.

|This traditional way of closed loop management is not feasible
anymore with novel 5G networks and beyond




Achieving closed loop automation through Al

| A 5G and beyond network service management system shall

| Take advantage of the large volume of data flowing through
the network and carrying information potentially relevant to a
knowledgeable resource allocation

| Be proactive, by forecasting and exploiting the upcoming
behaviour of a system involving many different players

] All the aforementioned tasks are among the characteristics of
Artificial Intelligence:

| Supervised learning solutions can be used to perform forecasts
when sufficient ground truth data can be gathered from the
network

| Unsupervised learning solutions are fundamental when the
complexity of the problem is unsuitable for traditional approaches

| Reinforcement learning tools are very well suited when
subsequent actions are taken to maximize a certain reward



Al for network management in action:

VvrAIn
A Deep Learning Approach to Virtualized Radio Access

Networks (VRAN)
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Why VRAN? vr

| Virtualized RAN (VRAN) centralizes softwarized radio access points
(RAPs!) into commodity general-purpose computing infrastructure.
® Advantage 1: Statistical multiplexing gains from resource pooling (via centralization)
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The resource orchestration problem vrAin
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The problem is far from trivial vrAin
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The problem is far from trivial vrAin
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The problem is far from trivial vrAin

Performance Is a very complex function of
the contexts and the resource assignment
-> Deep Learning




ald SCROWTH

vrAIn: Al based VRAN resource controller vrAin
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The resource orchestration problem vrAin
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Integration of vrAln into O-RAN vrAin
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Reward function vrAin
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vrAln: Challenges and Solutions vrAin
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vrAln: Challenges and Solutions vrAin
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vrAln: Challenges and Solutions vrAin
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Evaluation results: Unlimited Resources VvrAin

Scenario 1

« Unlimited CPU resources
 One virtual Base Station

Objective:
* Minimize the costs while satisfying the QoS
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Evaluation results: Unlimited Resources VvrAin
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Evaluation results: Limited Resources VvrAin

Scenario 2

« Limited CPU resources (one core)
« Two virtual Base Station

Objective:
« Maximize the performance of both virtual BSs
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Evaluation results: Limited Resources VvrAin
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Conclusions VvrAin

 The performance of a virtual BS is a very complex function of the
contexts and the resource assignment, motivating the use of Deep
Learning.

 We solve the problem using a novel combination of Sparse
Autoencoders, a Reinforcement Learning algorithm and a Neural
Network Classifier.

« Our solution minimizes the costs with unlimited resources and
maximizes the performance with limited resources. With respect to
state-of-the-art solutions, vrAln achieves...

« CPU savings ~30% with unlimited resources.
« Throughput increase ~25% per virtual Base Station.

* We trained our models with real data and implemented a proof-of-

concept of the solution.
« Dataset in https://github.com/agsaaved/vrain



