

H2020 5G-TRANSFORMER Project

Grant No. 761536

Final design and implementation
report on service orchestration,

federation and monitoring
platform (report)

Abstract

This deliverable provides the final specification of the Service Orchestrator architecture.

In particular, it describes its key features and functional components, workflows, and

specification of interfaces including the northbound interface towards the vertical slicer,

southbound interface towards the mobile transport and computing platform, and

east/westbound interface to the federated service orchestrators. Moreover, this

deliverable describes the software design and the implementations of the Service

Orchestrator along with the Service Monitoring Platform prototypes.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 2

H2020-761536

Document properties
Document number D4.3

Document title Final design and implementation report on service
orchestration, federation and monitoring platform

Document responsible Oleksii Kolodiazhnyi (MIRANTIS)

Document editor Oleksii Kolodiazhnyi (MIRANTIS)

Editorial team Arturo Zurita (ATOS), José Enrique Gonzalez (ATOS),
Barbara Martini (SSSA), Kiril Antevski (UC3M), Samer
Talat (ITRI), Josep Mangues (CTTC) Jorge Baranda
(CTTC), Marco Capitani (NXW), Giada Landi (NXW),
Oleksii Kolodiazhnyi (MIRANTIS), Xi Li (NECLE), Carla
Fabiana Chiasserini (POLITO), Pantelis Frangoudis
(EURECOM)

Target dissemination level Public

Status of the document Final

Version 1.0

Production properties
Reviewers Li Xi (NEC), Barbara Martini (SSSA), Thomas Deiss

(NOK-N), Carlos J. Bernardos (UC3M)

Disclaimer
This document has been produced in the context of the 5G-TRANSFORMER Project.
The research leading to these results has received funding from the European
Community's H2020 Programme under grant agreement Nº H2020-761536.

All information in this document is provided “as is" and no guarantee or warranty is
given that the information is fit for any particular purpose. The user thereof uses the
information at its sole risk and liability.

For the avoidance of all doubts, the European Commission has no liability in respect of
this document, which is merely representing the authors view.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 3

H2020-761536

Table of Contents
List of Contributors 7

List of Figures 8

List of Tables 9

List of Acronyms 10

Executive Summary and Key Contributions 13

1 Introduction 15

2 Final 5GT-SO Architecture 17

2.1 Final architecture overview 17

2.2 5GT-SO features 19

2.3 5GT-SO functional components 19

2.4 5GT-SO Interfaces 21

2.4.1 NBI 21

2.4.2 SBI 21

2.4.3 E/WBI 21

2.5 Service Monitoring 22

3 5GT-SO workflows 23

4 Conclusions 24

5 References 25

6 Annex I – 5GT-SO Design and Implementation 27

6.1 Requirements to the 5GT-SO 27

6.1.1 Business Requirements 27

6.1.2 Functional Requirements 28

6.1.2.1 Discovery 28

6.1.2.2 Fulfilment 29

6.1.2.3 Assurance 29

6.1.2.4 Decommissioning 30

6.2 5GT-SO Architecture 30

6.3 5GT-SO key operations 34

6.4 5GT-SO building blocks detailed overview 36

6.4.1 NBI Exposure Layer 36

6.4.2 NFV-NS/VNF/VA Catalogue DB/Manager 36

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 4

H2020-761536

6.4.3 NFVO-NSO 36

6.4.3.1 Composite NSO 37

6.4.3.2 NS decomposition algorithms 38

6.4.3.3 Constituent NSO 38

6.4.4 VNF Manager (VNFM) 39

6.4.5 NFVO-RO 39

6.4.5.1 Composite Resource Orchestration (Composite RO) 39

6.4.5.2 Resource Orchestration Engine (RO-OE) 39

6.4.5.3 RO Execution Entity (RO-EE) 40

6.4.6 SO-SO Resource Management & Advertising 40

6.4.7 NFVI Resource Repository 41

6.4.8 NFV-NS/VNF/VA Instance Repository 41

6.4.9 SO Monitoring Manager 41

6.4.10 SLA Manager 42

6.5 5GT-SO Interfaces and reference points 42

6.5.1 5GT-SO NBI 42

6.5.2 5GT-SO SBI 45

6.5.3 5GT-SO EBI/WBI 49

6.6 Service Orchestrator Features 51

6.6.1 Placement algorithms: framework, description, and evaluation 51

6.6.1.1 Framework and system model 52

6.6.1.2 Placement Algorithm A 55

6.6.1.2.1 Description 55

6.6.1.2.2 Performance evaluation 57

6.6.1.3 Placement Algorithm B 58

6.6.1.3.1 Description 58

6.6.1.3.2 Performance evaluation 63

6.6.1.4 Placement Algorithm C 66

6.6.1.4.1 Description 66

6.6.1.4.2 Performance evaluation 67

6.6.1.5 Placement Algorithm D 68

6.6.1.5.1 Description 68

6.6.1.5.2 Performance evaluation 69

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 5

H2020-761536

6.6.2 Service Scaling 69

6.6.2.1 Motivation 69

6.6.2.2 Vertical-driven VSI Scaling 70

6.6.2.3 Automated VSI Scaling 70

6.6.2.4 Automated NFV-NS Scaling 70

6.6.3 Service Composition 70

6.6.4 Service Assurance and SLA Management 71

6.6.5 Service Federation 71

6.6.5.1 Federation Assumptions: Service delegation & Service federation 71

6.6.5.2 NFV-NS decomposition and NFVO Multi-domain orchestration 73

6.6.5.3 Catalogue of services 73

6.6.6 Resource Federation 74

6.6.6.1 Advertisement phase 75

6.6.6.2 Allocation & management phase 75

6.7 5GT-SO Workflows 76

6.7.1 Service Onboarding 76

6.7.2 Service instantiation 79

6.7.3 Service instantiation including MEC applications 82

6.7.4 Service termination 85

6.7.5 Service monitoring 86

6.7.6 Service scaling 89

6.7.6.1 Vertical-driven scaling 89

6.7.6.2 Auto-scaling 93

6.7.7 Service Federation 95

6.8 Details of the 5GT-SO software implementation 101

6.8.1 Mapping of functional architecture to software architecture 101

6.8.2 Software architecture 101

6.8.3 5GT-SO components software implementation 102

6.8.3.1 SM 102

6.8.3.2 SOE 103

6.8.3.3 Composite RO-OE (CROOE) 104

6.8.3.4 RO-OE 104

6.8.3.4.1 Placement Algorithms (PA) Module and PA APIs 105

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 6

H2020-761536

6.8.3.5 CoreMANO wrappers 106

6.8.3.6 SLA Manager 106

6.8.3.7 Monitoring Manager 107

6.8.4 5GT-SO Interfaces and reference points implementation 107

6.8.4.1 5GT SO NBI/SBI 107

6.8.5 5GT-SO user guide 108

6.8.6 How to extend the 5GT-SO 108

6.9 Service Monitoring Platform design and implementation 108

6.9.1 Service Monitoring Platform design 108

6.9.2 Service Monitoring Platform implementation 111

7 Annex II – 5GT-SO SST Implementation 113

7.1 RMM 114

7.2 PAM 114

7.3 Monitoring Platform 114

7.4 Two-tier resource allocation scenario 114

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 7

H2020-761536

List of Contributors
Partner Short Name Contributors

ATOS Arturo Zurita, José Enrique Gonzalez

CTTC Jorge Baranda, Josep Mangues, Ricardo Martínez, Luca
Vettori, Manuel Requena, Javier Vílchez, Engin Zeydan

Eurocom Adlen Ksentini, Pantelis Frangoudis

ITRI Samer Talat

Mirantis Oleksii Kolodiazhnyi, Konstantin Tomakh

NEC Xi Li, Andres Garcia-Saavedra, Josep Xavier Salvat
Lozano

NXW Giada Landi, Marco Capitani, Francesca Moscatelli

Polito Carla Fabiana Chiasserini

SSSA Luca Valcarenghi, Barbara Martini, Silvia Fichera

UC3M Kiril Antevski, Carlos J. Bernardos, Antonio de la Oliva,
Jaime Garcia, Jorge Martin, Borja Nogales

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 8

H2020-761536

List of Figures
Figure 1: 5GT-SO ARCHITECTURE – BUILDING BLOCKS AND INTERACTIONS 17

Figure 2: 5GT-SO implemented components .. 20

Figure 3: Functional Architecture of the Service Monitoring Framework 22

Figure 4: 5GT-SO Architecture – Building Blocks and interactions 32

Figure 5: Decomposition of Single and Composite NFV-NSs 37

Figure 6: Reference Points Between 5GT-VS and 5GT-SO .. 43

Figure 7: NSD extended with AppD references schema 1 ... 44

Figure 8: NSD extended with AppD references schema 2 ... 45

Figure 9: Reference points for 5GT-SO SBI (i.e., So-Mtp Interface) 45

Figure 10: 5GT-SO EBI/WBI reference points ... 50

Figure 11: Cost-minimizing genetic algorithm convergence behavior 58

Figure 12: Latency-minimizing genetic algorithm convergence behavior 58

Figure 13: ADRENALINE testbed setup .. 64

Figure 14: Accepted requests ... 64

Figure 15: End-to-end delay .. 65

Figure 16: Propagation delay .. 65

Figure 17: Setup time .. 66

Figure 18: Performance of algorithm C ... 67

Figure 19: Performance of algorithm D and of algorithm A .. 69

Figure 20: Service onboarding workflow ... 78

Figure 21: Service instantiation workflow .. 81

Figure 22: MEC Service instantiation workflow ... 84

Figure 23: Service termination workflow .. 86

Figure 24: Service Monitoring Workflow .. 88

Figure 25: Vertical-driven scaling - request phase ... 90

Figure 26: Vertical-driven scaling – scaling execution phase 91

Figure 27: Vertical-driven scaling – Monitoring update phase 92

Figure 28: Vertical-driven scaling – 5GT-VS notification phase 93

Figure 29: NFV-NS autoscaling workflow .. 95

Figure 30: Service Federation Workflow ... 100

Figure 31: 5GT-SO implemented components .. 102

Figure 32: Interactions between the RO-OE and a placement algorithm module. 105

Figure 33: Available function calls of the placement algorithm REST API 105

Figure 34: 5GT-SO and Monitoring Platform ... 106

Figure 35: Functional architecture of the 5GT-SO monitoring platform 110

Figure 36: Monitoring platform architecture ... 111

Figure 37: 5GT-SO SST Architecture .. 113

Figure 38: Overview of 2-tier MEC infrastructure. .. 116

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 9

H2020-761536

List of Tables
Table 1: Business requirements .. 27

Table 2: Requirements on the Discovery phase .. 28

Table 3: Requirements on the Fulfilment phase .. 29

Table 4: Requirements on the Assurance phase ... 29

Table 5: Requirements on the Decommissioning phase.. 30

Table 6: 5GT-SO placement algorithm features .. 52

Table 7: Summary of the notation used in our placement algorithm framework 52

Table 8: Average performance of Placement Algorithm A (Genetic Algorithm) 57

Table 9: SO system communication operations description 107

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 10

H2020-761536

List of Acronyms
Acronym Description

5GC 5G Core

5GT-MTP Mobile Transport and Computing Platform

5GT-SO Service Orchestrator

5GT-VS Vertical Slicer

AAA Authentication, Authorization, Accounting

AN Access Network

API Application Programming Interface

AppD Application Descriptor

BSS Business Support System

CAT Catalogue

CN Core Network
CSMF Communication Service Management Function

DB Database

DF Deployment Flavor

E2E End to end

EBI Eastbound Interface

EM Element Management

EPC Evolved Packet Core

EPCaaS EPC as a Service

ETSI European Telecommunication Standardization Institute

GRE Generic Routing Encapsulation

GS Group Specification

HSS Home Subscriber Server
IaaS Infrastructure as a Service

IFA Interfaces and Architecture

KPI Key Performance Indicator

LC Lifecycle

LCid Lifecycle Operation Occurrence Id

LCM Lifecycle Management

M&E Media and Entertainment

M(V)NO Mobile (Virtual) Network Operator

MANO Management and Orchestration

MEC Multi-access Edge Computing

MEO Multi-access Edge Orchestrator

MEP Multi-access Edge Platform

MILP Mixed Integer-Linear Programming
MIoT Massive Internet of Things

MLPOC Multiple Logical Point of Contact

MME Mobility Management Entity

MNO Mobile Network Operator

MON Monitoring

MVNE Mobile Network Enabler

NaaS Network as a Service

NBI Northbound Interface

NF Network Function

NFP Network Forwarding Path

NFV Network Function Virtualization

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 11

H2020-761536

NFVI Network Functions Virtualisation Infrastructure

NFVIaaS NFVI as a Service

NFV-NS NFV Network Service
NFV-NSaaS Network Service as a Service

NFV-NSO Network Service Orchestrator

NFVO NFV Orchestrator

NFVO-RO Resource Orchestrator

NS Network Slice

NSD Network Service Descriptor

NS-DF Network Service Deployment Flavor

NSI Network Slice Instance

NSMF Network Slice Management Function

NS-OE NFV-NS Orchestration Engine

NSSI Network Slice Subnet Instance

NSSMF Network Slice Subnet Management Function
NST Network Slice Template

ONAP Open Network Automation Platform

OSM Open Source MANO

OSS Operating Support System

PM Performance Management

PMON Performance Monitoring

PNF Physical Network Function

PNFD PNF Descriptor

PoP Point of Presence

QoS Quality of Service

RAM Resource Advertisement Management

RAN Radio Access Network
REST Representational State Transfer

RM Resource Management

RMM Resource Monitoring Management

RO Resource Orchestration

RO-EE RO Execution Entity

RO-OE RO Orchestration Engine

SAP Service Access Point

SBI Southbound Interface

SDK Software Development Kit

SDO Standard Developing Organization

SLA Service Level Agreement

SLPOC Single Logical Point of Contact
SLPOC-F Single Logical Point of Contact for Federation

SO Service Orchestrator

SPGW-C Serving/Packet Data Network Gateway Control Plane

SPGW-U Serving/Packet Data Network Gateway User Plane

SST Slice/Service Type

TD Technology Domain

TETRA Terrestrial Trunked Radio

TN Transport Network

TOSCA Topology and Orchestration Specification for Cloud Applications

TSP 5G-TRANSFORMER Service Provider

UC Use Case

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 12

H2020-761536

UE User Equipment

UPF User Plane Function

VA Virtual Application
vEPC virtual Evolved Packet Core

VIM Virtual Infrastructure Manager

VL Virtual Link

VLAN Virtual Local Area Network

VM Virtual Machine

VNF Virtual Network Function

VNFD VNF Descriptor

VNFFG VNF Forwarding Graph

VNFFGD VNFFG Descriptor

VSD Vertical Service Descriptor

VSI Vertical Service Instance

WBI Westbound Interface
WIM Wide area network Infrastructure Manager

YAML YAML Ain't Markup Language

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 13

H2020-761536

Executive Summary and Key Contributions
This deliverable provides the final specification of the 5G-TRANSFORMER Service

Orchestrator (5GT-SO) architecture, key features and functional components, and

workflows, extending from the initial design provided in D4.1 [13]. The 5GT-SO related

interfaces also have been extended to support these new features and interaction

between the 5GT-SO and the Vertical Slicer (5GT-VS), and the Mobile Transport and

Computing Platform (5GT-MTP). These new features and extension of interfaces along

with the information models have been implemented and included to the new 5GT-SO

release (R2) along with D4.4 [14].

To summarize, the main contributions in this deliverable include the following:

• The final 5GT-SO architecture (Section 2.1), in terms of key features,

functional components, management and operational interfaces, internal

procedures for modelling. The final design is refined based on the initial

design from D4.1. The major refinements include: (i) use of monitoring

services from the developed monitoring platform in WP4 to support service

scaling and SLA management; (ii) service and resource federation

capabilities; and (iii) interface specification towards end-to-end service SLA

management.

• The specification of novel or new extended features introduced in the 5GT-

SO system (Section 2.2), including service scaling, network service

composition, service federation, enhanced placement algorithms considering

location constraint and MEC support, and enhanced service monitoring

platform which provides monitoring data to the 5GT-SO for automated

service scaling and SLA management.

• The introduction of main functional components in the implemented

architecture of the 5GT-SO system (Section 2.3), based on the 5GT-SO

functional architecture shown in Section 2.2, but presenting the software

implementation of the system. The 5GT-SO software development follows a

modular design, where the service orchestrator platform is structured in

functional module components that interact with each other internally via

REST APIs. The 5GT-SO consists of a “Service Manager (SM)” module

connecting to two MANO platforms as orchestration engines for managing

compute resources，Open Source MANO (OSM) and Cloudify. The SM is

the “brain” of the 5GT-SO to integrate the different MANO platforms with

individual wrappers tailored to each MANO platform providing translation of

formats and workflows, in this way allowing multi-MANO platform

compatibility. The implementation of the 5GT-SO prototypes is reported in

Section 6.8, highlighting the detailed functionalities developed in its second

release (R2) and the full implementation is available for download at:

https://github.com/5g-transformer/5gt-so.

• The description of updated 5GT-SO workflows (Section 3 and Section 6.7)

for describing the basic service management operations: service on-

boarding, service instantiation and termination, service scaling, service

federation, and service monitoring, based on the ones reported in D4.1 [13].

https://github.com/5g-transformer/5gt-so

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 14

H2020-761536

These workflows illustrate the interaction among the different components

inside the 5GT-SO internally, and also between them and 5GT-VS, 5GT-

MTP or external 5GT-SOs.The changes reflect both the architectural concept

updates and feedback from the implementation phase.

• The introduction of the developed 5GT-SO monitoring platform design

(Section 2.5) and prototype implementation (Section 4). The overall

architecture of the service monitoring framework is still aligned with the major

design principles and functional components defined in D4.1 [13]. The

monitoring platform prototype has been implemented by integrating a

Prometheus backend with the 5GT-SO through the development of an

adapter called Monitoring Configuration Manager, which acts as a unified

entry point for all the configuration functionalities offered by the monitoring

platform. The full implementation is available for download at:

https://github.com/5g-transformer/5gt-mon.

It should be noted that Section 2 provides an overview of the new functionalities

introduced in the 5GT-SO R2. However, in order to provide also a complete and self-

contained document that does not require the previous knowledge of D4.1, in appendix

(Section 6) we also provide the final specification of the 5GT-SO that integrates all the

updates from D4.1 and refinements defined after the first release of the Service

Orchestrator. Thus, this appendix can be considered as an independent document that

defines the full architecture of the 5GT-SO.

The 5GT-SO reference implementation will be adopted in the public demonstrations of

the 5G-TRANSFORMER use cases in WP5. The SO prototype has already been

showcased in several public events (EuCNC 2018, MWC 2018, and ICT 2018), with

ongoing preparation for demonstrations at EuCNC 2019 and it will be also taken as the

baseline service orchestration platform to be extended and integrated into the platform

for the upcoming 5G-PPP phase 3 5GROWTH project.

https://github.com/5g-transformer/5gt-mon

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 15

H2020-761536

1 Introduction
The 5GT Service Orchestrator (5GT-SO) is one of the key components of the 5G-
TRANSFORMER (5GT) system, in charge of instantiation and management of vertical
services in terms of deploying NFV-Network Services (NFV-NS) and managing its
service life-cycle. Depending on the service requests received from the Vertical Slicer
(5GT-VS), the 5GT-SO offers service and resource orchestration and federation across
one or multiple administrative domains. These functions include all tasks related to
coordinating and providing the vertical with an integrated view of services and
resources from one or multiple administrative domains. In particular, service
orchestration entails managing end-to-end services that may split into various network
domains (RAN, transport, and mobile core) or technology domains (of various wireless
and wired technologies, data centers, MEC domains) based on requirements and
availability. Federation entails managing relations at the interfaces between the 5GT-
SOs belonging to different administrative domains, which are owned by different 5GT-
Service Providers.

The main function of the 5GT-SO is based on the NFV Orchestrator (NFVO) as defined
in ETSI NFV. Depending on the requests from verticals, both network service (NFVO-
NSO) and resource (NFVO-RO) orchestration may be used for both single and multiple
domains. The NFV-NSO functionality of the 5GT-SO is responsible of deploying and
managing the NFV network services (NFV-NS) requested by 5GT-VS, possibly across
multiple domains, and it is also responsible for the network service lifecycle
management including operations such as service on-boarding, instantiation, scaling,
termination, and management of the VNF forwarding graphs associated to the network
services. Moreover, it also decomposes the end-to-end network services into
constituent network service segments and decides to deploy them either in the local
administrative domain or federating with the peering administrative domain. On the
other hand, the NFVO-RO functionality of the 5GT-SO orchestrates the infrastructure
resources (physical or virtual) provided in the local domain. More specifically, it decides
the optimum placement of Virtual Network Functions (VNFs) and/or Virtual Applications
(VAs) and the required resources to be allocated, based on the abstracted resource
view of the local domain as well as of the ones from peering administrative domains.

The initial specification of the 5GT-SO has been reported in D4.1 [13], which introduced
the 5GT-SO internal design and main functionalities, its related Northbound and
Southbound Interface (NBI and SBI) as well as the Eastbound and Westbound
Interface(EBI and WBI), and its workflows for basic service life cycle management
operations such as service instantiation and termination. This D4.3 deliverable reports
the final design and implementation of 5GT-SO which was extended from the initial
design presented in D4.1 [13] and D4.2 [15] with a number of added new features for
SLA and service management. The main extended features of the 5GT-SO are service
scaling, network service composition, service federation, enhanced placement
algorithms considering location constraint and MEC support, and enhanced service
monitoring platform which provides monitoring data to the 5GT-SO for service
monitoring and SLA management. In addition, the 5GT-SO interfaces also have been
enhanced to support these new features and interaction at the 5GT-SO NBI towards
the Vertical Slicer (5GT-VS), and at the SBI towards the Mobile Transport and
Computing Platform (5GT-MTP). These new features and extension of interfaces along
with the information models have been implemented and included to the new 5GT-SO
release (R2), see D4.4 [14], on top of the first 5GT-SO release (R1). The evolution of
the 5GT-SO architecture is reported in Section 2.1. The new 5GT-SO features and
summarized in Section 2.2, and Section 2.3 describes the implemented functional

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 16

H2020-761536

components and information models in the 5GT-SO. Section 2.4 reports the updates on
the interfaces of 5GT-SO on its NBI, SBI and E/WBI, and Section 2.5 reports the
updated monitoring platform design. Section 3 summarizes the updates on the basic
workflows focusing on the ones being implemented. Section.4 . reports the final 5GT-
SO monitoring platform prototype implementation.

The Annex in Section 6.8 provides the details on the reference implementation of the
5GT-SO software prototypes developed in WP4 and released in D4.4 [14]. The
reference implementation of the 5GT-SO software prototype will be further integrated in
the demonstration of the use cases in the context of WP5 activities and the related
5GT-SO performance KPIs will be also evaluated in different vertical use cases within
WP5.

In addition to the reference implementation, one additional 5GT-SO implementation has
been developed by ITRI, which is also aligned with the 5GT-SO functional architecture
while the implementation focusing on only basic operations for deployment of
communication services based on standardized Slice/Service Types (SSTs) defined in
3GPP specifications. It is described in the Annex Section 7.

In this deliverable, the main body of the document is mainly focused on providing a

summary of the updates introduced in the second release of the 5GT-SO design and

implementation. However, in appendix (Section 6) we include a completed and detailed

updated version of D4.1 that integrates and extensively discusses these modifications

within the overall architecture specification and prototype implementations. This annex

can be considered as a self-contained document that provides the full specification of

5GT-SO architecture and software prototypes.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 17

H2020-761536

2 Final 5GT-SO Architecture

2.1 Final architecture overview

The final 5GT-SO architecture is aligned with the overall design principles and
subsystems specified in R1 and described in D4.1 [13]. Some refinements have been
applied to the new 5GT-SO release R2 according to an incremental approach in order
to specify more details to the supported mechanisms, foreseen features and
functionalities, and to show the evolution of some building blocks and interactions as
result of lesson learnt from the implementation. The revised high-level 5GT-SO R2
architecture is shown in Figure 1.

More specifically, major refinements of the 5GT-SO R2 architecture regard the (i) use
of monitoring services from the monitoring platform for service scaling and SLA
assurance; (ii) service and resource federation capabilities; and (iii) interface
specification toward SLA management. Each of these points is elaborated in the
follows.

FIGURE 1: 5GT-SO ARCHITECTURE – BUILDING BLOCKS AND INTERACTIONS

• Use of monitoring services toward SLA assurance

Concerning the way the 5GT-SO uses the monitoring reports to support SLA operations
(i.e., scaling) also based on the collected monitoring data provided by MTP, the
following architectural refinements have been introduced:

Firstly, the Monitoring Platform is explicitly shown as a separated platform providing
monitoring services to the 5GT-SO as well as to the 5GT-MTP and 5GT-VS. More
specifically, the Monitoring Platform has been reported as three different functional
blocks to indicate also that three different level of monitoring data are provided to 5G-T
systems, i.e., at the (virtual) network service level to the 5GT-SO, at the infrastructural
level to the 5GT-MTP, at the vertical slice level to the 5GT-VS.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 18

H2020-761536

Secondly, the interactions between the 5GT-SO and the Monitoring Platform have been
refined to reflect the actual use of monitoring reports from the 5GT-SO itself. Indeed,
the Monitoring Manager is not the only functional entity acting as monitoring data
consumer (to carry out required monitoring configuration operations). Also, the SLA
Manager exploits relevant information from the Monitoring Platform (i.e., alerts) to
detect SLA breaches and/or anomalous behaviors.

Thirdly, the So-Mtp-(RMM) and Vs-So-MON have been specified more precisely
considering the functional split of the Monitoring Platform in three parts. As result, the
So-Mtp-(RMM) indicates the reference point for monitoring data exchanges between
the 5GT-MTP Monitoring Platform and 5GT-SO Monitoring Platform. Similarly, the Vs-
So-MON indicates the reference point for monitoring data exchanges between the 5GT-
SO Monitoring Platform and 5GT-VS Monitoring Platform.

• Service and Resource federation

In terms of federation capabilities supported by the 5GT-SO the following updates have
been applied:

At service federation level, the functional block in charge of decomposing the Network
Service according to specified algorithms has been more clearly specified, both in
terms of naming (i.e., NS decomposition algorithm) and in terms of functional scope.
Indeed, within the Composite NSO more extended features are supported through the
handling and decomposition of multiple nested NFV-NSs and by deciding where to
deploy each of them, either locally or in a federated domain.

At the resource federation level, the functional blocks and interactions involved in the
resource advertisement, allocation and release operations across federated domains
have been better specified. SO-SO Resource Management & Advertisement has been
extended to also include resource management (i.e., allocation and release)
operations, in addition to advertisement operations to/from federated domains.
Therefore, the RO-EE is now able to exploit the extended SO-SO Resource
Management & Advertisement block to trigger resource provisioning operations and to
coordinate any correlated operations. Moreover, the SO-SO Resource Management &
Advertisement also consolidates abstract resources views from other domains and
stores it in the NFVI Resource Repository. As result of this extension, the former block
involved in the resource federation (i.e., SO-SO Resource Federation) has been re-
focused to deal with nested NFV-NSs and re-named as Composite RO, accordingly.
Indeed, in case of nested NFV-NSs it supports the Composite NSO to implement them
into other federated domains. In particular, the LSA block is added to select and trigger
the creation of links/paths between the deployed nested NFV-NSs across federated
domains.

• Interface specification toward SLA management

In terms of interface specification to support SLA management across domains,
interactions have been foreseen at the inter-SLA Manager level to exchange monitoring
data and support the SLA assurance end to end when federated services are deployed.
Thus, the existing reference points, So-So-MON and So-So-RMM, supporting the
exchange of network service and resource monitoring data, respectively, have now
been moved to the SLA Manager block.

A detailed description of the 5GT-SO high–level architecture is presented in the Annex
(Section 6.2)

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 19

H2020-761536

2.2 5GT-SO features

The second release (R2) of the 5GT-SO introduces new features with respect to the
initial architecture functional specifications, reported in D4.1 [13], and the first release
(R1) of the prototype, delivered in D4.2 [15].

In particular, the following features have been introduced:

- Placement algorithms: this feature allows evaluating the most suitable and

efficient way to place the services.

- Service scaling: this feature describes the scaling of the Vertical Services to

meet all the requirements for the services work and to avoid issues caused by

network issues, resource shortage etc.

- Service composition: enables a feature of joining already instantiated NFV-NS

instances with new ones that need to be instantiated, providing the connectivity

for the NSs.

- Service federation: this feature provides the overall process of establishing,

consuming or providing NFV-NS by an administrative domain from/to other

(peering/partner) administrative domain.

- Resource federation: is the overall process of consuming or providing NFVI

resources from or to external federated domains.

More details of the mentioned features are provided in Annex I, i.e., Section 6.6.

2.3 5GT-SO functional components

D4.1 introduced the high level architecture of the 5GT-SO in which the presented
building blocks were defined considering their core functionalities. This high-level
architecture is updated in section 6.2 not only based on high-level architectural
decisions, but also on the feedback received during the implementation period of the
5GT-SO. Figure 2 presents the implemented architecture. As for the former, a key
design decision that determines the architecture of the 5GT-SO functional components
is the aim of integrating widely used available MANO platforms (e.g., OSM or Cloudify)
to be able to exploit their features and also making the 5GT-SO platform independent
of which MANO platform selected or deployed. At the same time, the 5GT-SO embeds
additional advanced functionality (e.g., service composition, service federation) not
currently offered by these platforms, inside a building block of the 5GT-SO called
Service Manager (SM). In this sense, the SM is the brain of the 5GT-SO and is in
charge of handling service and resource orchestration, by exploiting the OSM/Cloudify
functionalities when needed for the cloud part. Setting up of network paths between
datacenters through Wide Area Networks (WANs) for the interconnection of VNFs
involved in NFV-NSs is carried out by the SM.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 20

H2020-761536

FIGURE 2: 5GT-SO IMPLEMENTED COMPONENTS

As for implementation, the high-level functionality of Figure 1 translates into the building
blocks in Figure 2 which are the ones implemented. In the following paragraphs, we
explain the mapping between high-level functionality and the building blocks that
implement it, which are described in detail in Section 6.8. The full implementation is
available for download at: https://github.com/5g-transformer/5gt-so.

Both network service lifecycle management and resource management are handled by
the service manager with the help of OSM/Cloudify (for the cloud part). The SM
interacts with OSM/Cloudify through a wrapper, which is generalized for any MANO in
the form of the core MANO building block that adapts the lifecycle management
processing done at the SM to the specific calls of each of these platforms. The
composite NSO functionality is carried out by the Service Orchestration Engine parent
(SOEp). The constituent NSO functionality is carried out by the Service Orchestration
Engine child (SOEc).

As for resource management, the RO-OE functionality is carried out by the building
block of the same name. The RO-EE functionality is split into RO-EE-WIM (for
networking) inside the SM and RO-EE-VIM (for cloud), as part of Cloudify or OSM. The
composite RO functionality is implemented in the composite ROOE (CROOE) building
block, which directly interacts with its peer CROOE in another administrative domain,
which is needed for service federation. That is, the SO-SO resource Management &
Advertisement functionality in the high-level architecture would apply to the
implementation of resource federation.

Finally, the interaction with the monitoring platform is carried out through the monitoring
manager and the SLA manager, which also have the same name in the
implementation, and the VNFM is that of Cloudify and OSM.

Additionally, underlying all the above processes, there are a series of databases for
storing service- and resource-related information (e.g., catalogues, instance repository,
per-instance resource repository, operations), which are fundamental for the
maintenance of state information of the 5GT-SO, hence for its correct operation.

SOEp

NS/VNF
CATALOGUE
MANAGER

PA
SERVICE

ORCHESTRATION
ENGINE

VNFM

RO-EE-VIM

NS/VNF
CATALOGUE

NS/VNF
INSTANCES

VIM
ACCOUNTS

CLOUDIFY/OSM

TRANSLATOR

PARAMETER
MANAGEMENT

DRIVER

CLOUDIFY WRAPPER

TRANSLATOR

PARAMETER
MANAGEMENT

DRIVER

OSM WRAPPER

CORE MANO

RO-EE-WIM

ROOE

NSD
CATALOGUE

VNFD/AppD
CATALOGUE

OPERATIONS

NS
INSTANCES

NS INSTANCE
RESOURCES

NFVI
RESOURCES

SERVICE MANAGER

NSD
CATALOGUE

VNFD/AppD
CATALOGUE

NS
INSTANCES

NS
INSTANCE

RESOURCES

OPERATIONS

NFVI
RESOURCES

NBI 5GT SERVICE ORCHESTRATOR

5GT-VS

5GT-MTP

Vs-So

SBI

SLA
MANAGER

MONITORING
MANAGER

5
G

T
M

O
N

IT
O

R
IN

G
 P

LA
TF

O
R

M

So-Mtp

So-Mtp

So-So

SOEc
CROOE

https://github.com/5g-transformer/5gt-so

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 21

H2020-761536

2.4 5GT-SO Interfaces

The interfaces defined in D4.1 [13] remain as the main interfaces where the 5GT-SO
communicates with the 5GT-VS on the North-Bound Interface (NBI), with the 5GT-MTP
on the Southbound Interface (SBI) and with peering/federated 5GT-SOs on the
East/West-Bound Interface.

2.4.1 NBI

The NBI defined in D4.1 consists of the three reference points:

• Vs-So (-LCM)

• Vs-So (-MON)

• Vs-So (-CAT)

An additional reference point is added:

• Vs-So (-POL) is used for the management of policies. It offers primitives to

transfer, delete, activate, deactivate, associate, disassociate policies and

receive notifications about policy conflicts.

By adding the additional reference point, the NBI additionally supports the policy

management based on the ETSI NFV IFA 013 policy management.

The proposed extension of the NFV-NSDs according ETSI NFV IFA 014 in D4.1., has

been defined to extend or modify the ETSI NSD such that the 5GT-SO supports

deployment of NFV-NS that contain AppDs and define information elements within the

ETSI NSD for expressing location constraints.

More detailed information on the changes of the NBI is covered in Section 6.4.1.

2.4.2 SBI

In R2, the MTP interfaces have been updated considering the new features and the use
cases requirements.

The SBI defined in D4.1 consists of the three reference points:

• So-Mtp(-Resource Advertising Management).

• So-Mtp(-Resource Management).

• So-Mtp(-Resource Monitoring Management).

• So-Mtp(-VNF).

The following update has been introduced:

- MTP NBI to include the instantiation of MEC App and Radio functions (e.g.,

gNB), to trigger monitoring jobs, to allocate/terminate intra-PoP connectivity in

DC as well inter-PoP connectivity across DCs and to explicitly start/stop the

allocated VNF resources;

More information regarding the SBI can be found in Section 6.5.2.

2.4.3 E/WBI

The E/WBI remains aligned with the proposed reference points as in D4.1 [13]. In R2,
the end-points for the defined six reference points are already defined. The Composite
NSO (Section 6.4.3.1) uses the reference points (1) So-So-LCM and (2) So-So-CAT.
The SLA Manager extracts monitoring information with a peering/federated SLA

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 22

H2020-761536

Manager using the (3) So-So-MON and (4) So-So-RMM. The SO-SO Resource
Management & Advertising block is operating over the (5) So-So-RM and (6) So-So-
RAM.

More information regarding the E/WBI can be found in Section 6.5.3.

2.5 Service Monitoring

The overall architecture of the 5G-TRANSFORMER monitoring framework is still
aligned with the major design principles and functional components defined in R1 and
reported in D4.1. The evolution in R2 is based on an incremental approach that allows
to support an additional feature, driven by verticals’ requirements, to enable the
visualization of monitoring data on a vertical service basis directly from the main
dashboard of the 5G-TRANSFORMER system.

In particular, in order to increase the vertical’s awareness of service status and
performance, the service monitoring architecture has been enriched with respect to
what has been reported in D4.1 [13] with the addition of a Reporting component, as
shown in Figure 3. This component automatically generates a dashboard concisely
reporting the service’s monitored data to be provided to the vertical.

FIGURE 3: FUNCTIONAL ARCHITECTURE OF THE SERVICE MONITORING FRAMEWORK

As depicted in Figure 3, the reporting component is configured via REST API through
the unified Monitoring Platform Front-End, providing the description of the “per-service”
dashboard(s) to be made available to the users (e.g. in terms of type and format of
monitoring parameters to be visualized). When the vertical connects to the URL of a
generated dashboard, the reporting component then generates the graphs on-demand
by querying the monitoring timeseries DB.

The prototype of the Monitoring Platform developed in R2 extends the R1 version,
implementing the mechanisms for alerts management in support of SLA verification
and automated scaling. The details about the design and implementation of the
Monitoring Platform prototype are provided in section 6.9.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 23

H2020-761536

3 5GT-SO workflows
The 5GT-SO workflows have been incrementally revised for R2 to reflect both the
architectural upgrades and the lessons learnt from the implementation. Indeed, in this
deliverable the workflows specify more details on the supported orchestration
mechanisms in terms of service composition and federation and in terms of service
scaling (for service assurance) as well as in terms of NFV-NS instantiation with the
support of MEC applications.

In terms of service composition and federation workflow, the 5GT-SO through the
revised Composite NSO component is able to differentiate requests for single/regular
NFV-NSs and composite NFV-NSs and to perform dynamic decomposition on regular
NFV-NSs. Moreover, the added component Composite RO is able to take care of inter-
nesting composite NFV-NS in the process of service federation.

In terms of service assurance, we better specify the workflows for service monitoring
and for scaling by (i) including revised architectural blocks, namely Monitoring Manager
and SLA Manager; (ii) considering both the case of NFV-NS scaling triggered by the
5GT-VS and the case of scaling triggered internally at the 5GT-SO (i.e., SLA Manager)
when the monitoring data collected for that NFV-NS instance exceed a given threshold
specified in the autoscaling rules.

In terms of providing MEC support, the NFV-NS instantiation workflow has been
extended to orchestrate the MEC applications in the 5GT-SO R2 in terms of deciding
the optimum placement of the MEC applications into the NFVI in the 5GT-MTP (e.g.,
based on MEC hosting constraints).

The selected set of 5GT-SO workflows are presented in the Annex (Section 6.7).

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 24

H2020-761536

4 Conclusions
This deliverable provides the final specification of the 5GT-SO architectural design,
which has been revised and updated from the initial design reported in D4.1, according
to an incremental approach to cope with new and more specific requirements and to
specify with more details the supported orchestration mechanisms and functionalities
as result of lesson learnt from the implementation. More specifically, orchestration
capabilities have been enhanced in terms of dynamicity thanks to enhanced service
composition and federation features, enhanced placement decisions to consider
location constraints, enhanced service monitoring platform, auto-scaling capabilities,
and support of MEC applications.

This deliverable has also documented the detailed implementation of the 5GT-SO
software prototype and service monitoring prototype. In particular, the 5GT-SO
reference implementation will be adopted in the public demonstrations of the 5G-
TRANSFORMER use cases in WP5. The SO prototype has already been showcased in
several public events (EuCNC 2018, MWC 2018, and ICT 2018), with ongoing
preparation for demonstrations at EuCNC 2019 and it will be also taken as the baseline
service orchestration platform to be extended and integrated into the platform for the
upcoming 5G-PPP phase 3 5GROWTH project. This guarantees the continuous
evolution and enhancement of the 5GT-SO component itself and, as a consequence, of
5G-TRANSFORMER concepts about vertical services and network slices as a whole.

To conclude, in the main body of this deliverable, namely from the section 2 to the
section 4, the major changes regarding the main functional and software building
blocks, monitoring capabilities and workflows supported by the 5GT-SO have been
identified and described, also providing a brief rationale of each change. Finally, in the
Annex a full self-contained description of the updated 5GT-SO system is provided. This
organization prevents that readers have to cross-check the previous deliverable to get
a comprehensive view of the current design and implementation as well as the whole
perception of the refinements of the 5GT-SO system.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 25

H2020-761536

5 References
[1] 5G-TRANSFORMER project code repository, available at: http://github.com/5g-

transformer

[2] ETSI ISG NFV-IFA 005, “Network Function Virtualisation (NFV), Management

and Orchestration; OR-VI reference point- Interface and Information Model

Specification”, v2.1.1, Apr. 2016

[3] ETSI ISG NFV-IFA 014, Network Functions Virtualisation (NFV); Management

and Orchestration; Network Service Templates Specification, August 2017.

[4] ETSI ISG NFV-IFA 011, Network Functions Virtualisation (NFV); Management

and Orchestration; VNF Packaging Specification, Oct. 2016.

[5] ETSI ISG NFV-IFA 013, Network Functions Virtualisation (NFV); Management

and Orchestration; OS-MA-NFVO reference point - Interface and Information

Model Specification, Aug. 2018.

[6] ESTI ISG NFV-IFA 009, Network Functions Virtualisation (NFV); Management

and Orchestration; Report on Architectural Options, Jul. 2016.

[7] Canonical, Juju. [Online]. Available: https://docs.jujucharms.com/2.4/en/about-

juju

[8] Haversine formula. [Online]. Available:

https://en.wikipedia.org/wiki/Haversine_formula

[9] M. Mitchel, An Introduction to Genetic Algorithms, 5th ed. Cambridge, MA, USA:

MIT Press, 1999.

[10] F. Murtagh, "A Survey of Recent Advances in Hierarchical Clustering

Algorithms," The Computer Journal, 1983.

[11] S. Fichera et al., "Latency-aware resource orchestration in SDN-based packet

over optical flexi-grid transport networks," in IEEE/OSA Journal of Optical

Communications and Networking, vol. 11, no. 4, pp. B83-B96, April 2019.

[12] 5G-TRANSFORMER, D3.1, Definition of vertical service descriptors and SO

NBI, March 2018.

[13] 5G-TRANSFORMER, D4.1, Definition of service orchestration and federation
algorithms, service monitoring algorithms, March 2018.

[14] 5G-TRANSFORMER, D4.4, Final design and implementation report on service
orchestration, federation and monitoring platform (reference implementation),
May 2019.

[15] 5G-TRANSFORMER, D4.2, Initial Service Orchestrator Reference
Implementation, November 2018.

[16] ETSI GS NFV-MAN 001, “Network Functions Virtualisation (NFV); Management
and Orchestration”, v1.1.1, 2014.

[17] 5GEx deliverable D2.1, public version “Initial System Requirements and
Architecture, available at
https://drive.google.com/file/d/0B4O_JVjsvab9VXItUDJqMUR6d28/view

[18] Costa-Pérez, Xavier; García-Saavedra, Andrés; Li, Xi; Deiss, Thomas; Oliva,
Antonio de la; Di Giglio, Andrea; Iovanna, Paola, and Mourad, Alain. 5G-
Crosshaul: An SDN/NFV Integrated Fronthaul/Backhaul Transport Network
Architecture. IEEE Wireless Communications, 24(1), pp. 38-45, February 2017

[19] 3GPP Specifications official site: https://www.3gpp.org/specifications
[20] 5G-TRANSFORMER, D1.1, Report on vertical requirements and use cases,

November 2017.

https://docs.jujucharms.com/2.4/en/about-juju
https://docs.jujucharms.com/2.4/en/about-juju
https://drive.google.com/file/d/0B4O_JVjsvab9VXItUDJqMUR6d28/view
https://www.3gpp.org/specifications

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 26

H2020-761536

[21] 5G-TRANSFORMER, D1.2, 5G-TRANSFORMER initial system design, May
2017.

[22] 5G-TRANSFORMER, D3.3, Final design and implementation report on the
Vertical Slicer (report), May 2019.

[23] ETSI GS MEC 010-2, “Mobile Edge Computing (MEC); Mobile Edge
Management; Part 2: Application lifecycle, rules and requirements
management”, v1.1.1, July 2017.

[24] 5G-TRANSFORMER, D2.1, Definition of the Mobile Transport and Computing
Platform, March 2018.

[25] ETSI GS NFV-IFA 006, “Network Function Virtualisation (NFV); Management
and Orchestration; Vi-Vnfm reference point – Interface and Information Model
Specification”, v2.1.1, 2016.

[26] ETSI GS NFV-IFA 008, “Network Functions Virtualisation (NFV); Management
and Orchestration; Ve-Vnfm reference point - Interface and Information Model
Specification”, v2.1.1, 2016.

[27] 5G-TRANSFORMER, D2.3, Final design and implementation report on the
MTP, May 2019.

[28] ETSI GS NFV-IFA 028, Management and Orchestration; Report on architecture
options to support multiple administrative domains”, v3.1.1, 2018

[29] Prometheus website: https://prometheus.io/
[30] 5G-TRANSFORMER, D3.4, Final design and implementation report on the

Vertical Slicer (reference implementation), May 2019.
[31] OpenStack Tracker project webpage: https://wiki.openstack.org/wiki/Tacker
[32] OpenStack Heat project: https://wiki.openstack.org/wiki/Heat
[33] OpenStack Neutron project: https://wiki.openstack.org/wiki/Neutron
[34] OpenVswitch project: https://www.openvswitch.org/
[35] OASIS Topology and Orchestration Specification for Cloud Applications

(TOSCA): https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=tosca

[36] 5G-TRANSFORMER, D1.3, 5G-TRANSFORMER Refined Architecture, May
2019.

[37] https://specs.openstack.org/openstack/tacker-
specs/specs/newton/event_logging.html.

https://prometheus.io/
https://wiki.openstack.org/wiki/Tacker
https://wiki.openstack.org/wiki/Heat
https://wiki.openstack.org/wiki/Neutron
https://www.openvswitch.org/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://specs.openstack.org/openstack/tacker-specs/specs/newton/event_logging.html
https://specs.openstack.org/openstack/tacker-specs/specs/newton/event_logging.html

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 27

H2020-761536

6 Annex I – 5GT-SO Design and Implementation

6.1 Requirements to the 5GT-SO

Technical requirements on the overall 5G-TRANSFORMER system have been defined
in D1.1 [20]. The requirements covered in D1.1 [20] focus on properties related to
vertical services and relevant use cases. General requirements related to the overall
system are described in D1.3 [21]. In this section, we define business (Section 6.1.1)
and functional (Section 6.1.2) requirements specific to 5GT-SO. The notation used to
refer to the different requirements is described in Annex III D4.1 [13].

6.1.1 Business Requirements

5G-TRANSFORMER platform is designed to foster business relationships with other
administrative domains via service and/or resource federation. The 5GT-SO is the
entity responsible to manage these business relationships and to achieve so, the
following table enumerates the business requirements we consider to be fulfilled by the
5GT-SO within the 5G-TRANSFORMER architecture.

TABLE 1: BUSINESS REQUIREMENTS

ID Requirement F/NF

ReqSO.B01 The 5GT-SO shall include a REST interface with the 5GT-
VS.

F

ReqSO.B02 The 5GT-SO should be able to accept a network service
specification from the 5GT-VS including both functional and
non-functional requirements expected for the requested
service.

F

ReqSO.B03 The 5GT-SO should manage the collaboration of federated
5G-TRANSFORMER administrative domains for the
completion of the NFV NS

F

ReqSO.B04 The 5GT-SO shall expose appropriate interfaces to
federated 5GT administrative domains and to the 5GT-MTP.

F

ReqSO.B05 The 5GT-SO shall orchestrate the services requested by the
5GT-VS using the resources exposed by the 5GT-MTP
and/or the resources exposed by federated 5GT
administrative domains.

F

ReqSO.B06 The 5GT-SO shall expose a subset of the resources coming
from the 5GT-MTP to federated 5GT administrative
domains.

F

ReqSO.B07 The 5GT-SO shall expose a subset of its own network
services to federated 5G-TRANSFORMER administrative
domains

F

ReqSO.B08 The 5GT-SO shall use the PNFs exposed by the 5GT-MTP
for service completion.

F

ReqSO.B09 The 5GT-SO must adhere to industry multi-tenancy
requirements including isolation, scalability, elasticity and
security.

NF

ReqSO.B10 The 5GT-SO shall allow monitoring with an appropriate
granularity according to the network service characteristics.

F

ReqSO.B11 The 5GT-SO must provide the 5GT-VS with a network
service catalogue with information about available service

F

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 28

H2020-761536

offers and capabilities, in order to facilitate the automated
provision of services.

ReqSO.B12 The 5GT-SO must provide a mechanism to perform network
service accounting and charging. This information should be
available internally and externally (for the 5GT-VS).

F

ReqSO.B13 The 5GT-SO should be able to support long-live and short-
lived services.

F

ReqSO.B14 The 5GT-SO should be reliable. NF

ReqSO.B15 The 5GT-SO should be available (as carrier class
component).

NF

ReqSO.B16 The 5GT-SO should keep responsiveness for the 5GT-VS
and federated 5GT domains.

NF

ReqSO.B17 The 5GT-SO shall allow defining composed network
services.

F

ReqSO.B18 The 5GT-SO shall support the selection of preferred, non-
preferred, and prohibited virtual infrastructure providers for
the network service instantiation.

F

ReqSO.B19 The 5GT-SO shall support to select the deployment area
based on KPIs1 of another service.

F

6.1.2 Functional Requirements

The 5GT-SO is involved in the service lifecycle at different stages. Thus, different
requirements can be considered according to each stage, namely (1) Discovery, (2)
Fulfilment, (3) Assurance, and (4) Decommissioning.

6.1.2.1 Discovery

The discovery phase facilitates the 5GT-SO to understand which capabilities and
services (in terms of descriptors) are supported by 5GT-SO. That information will be
exposed to the 5GT-VS and to federated 5GT domains for 5G-TRANSFORMER
service offering.

The following requirements are identified:

TABLE 2: REQUIREMENTS ON THE DISCOVERY PHASE

ID Requirement F/NF

ReqSO.Di.01 The 5GT-SO must provide the 5GT-VS with the means to
send detailed requests including information regarding the
placement of resources, the location of service points, QoS,
charging options.

F

ReqSO.Di.02 The NFV-NS/VNF catalogue entries may contain a service
manifest and a price tag (or an indicative price range from
which the exact price can be extracted at run-time).

F

ReqSO.Di.03 The 5GT-SO shall keep an up-to-date network service
catalogue with the network services and VNFs received from
other federated 5GT administrative domains.

F

1 As an example, Extended Virtual Sensing should cover critical intersections, where ‘critical’ is
defined in terms of occurrence of abrupt braking manoeuvres in the past.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 29

H2020-761536

ReqSO.Di.04 The 5GT-SO should provide a mechanism to set-up, re-size
and terminate network services.

F

ReqSO.Di.05 The 5GT-SO shall allow a 5G-TRANSFORMER service
providers (TSP) to store network service descriptors
persistently and to: retrieve, update, and delete them.

F

ReqSO.Di.06 The 5GT-SO shall keep an up-to-date catalogue with the
resources, links, connection points and PNFs as exposed by
the 5GT-MTP abstraction.

NF

ReqSO.Di.07 The 5GT-SO shall keep an up-to-date catalogue with the
resources exposed by other federated 5GT administrative
domains.

NF

6.1.2.2 Fulfilment

During the service fulfilment phase, the 5GT-SO orchestrates (namely, creates and
instantiates) network services requested by 5GT-VS.

The following requirements are identified:

TABLE 3: REQUIREMENTS ON THE FULFILMENT PHASE

ID Requirement F/NF

ReqSO.Fu.01 The 5GT-SO should allow scaling (up / down) as part of the
lifecycle management

F

ReqSO.Fu.02 The 5GT-SO shall support to manage the lifecycle of each
of the service instances separately.

F

ReqSO.Fu.03 The 5GT-SO shall support the management of NSDs F

ReqSO.Fu.04 The 5GT-SO shall support the management of VNFDs. F

ReqSO.Fu.05 The 5GT-SO shall allow connecting network service
instances.

F

ReqSO.Fu.06 The 5GT-SO shall be able to translate the network service
request to one or more resource allocation or lifecycle
actions reflecting the agreed service levels in each case.

F

ReqSO.Fu.07 The 5GT-SO shall allow creating several instances of the
same network service.

F

6.1.2.3 Assurance

5GT-SO is responsible to guarantee the service level performance agreements made
with 5GT-VS for orchestrated NFV network services and to provide 5GT-VS with
sufficient monitoring information of said network services.

The following requirements are identified:

TABLE 4: REQUIREMENTS ON THE ASSURANCE PHASE

ID Requirement F/NF

ReqSO.As.01 The 5GT-SO must provide the vertical slicer with APIs to
monitor the QoS attained for the requested service.

F

ReqSO.As.02 The 5GT-SO should provide isolation among service
requests.

NF

ReqSO.As.03 The 5GT-SO could provide resources from other 5GT-SO
using federation.

F

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 30

H2020-761536

ReqSO.As.04 The 5GT-SO shall be able to collect and provide performance
information related with the NSs through the monitoring
platform.

F

ReqSO.As.05 The 5GT-SO shall manage fault information, reacting when
necessary and generating alarms to the 5GT-VS when the
fault cannot be solved at the 5GT-SO level.

F

6.1.2.4 Decommissioning

Once a network service is decommissioned, 5GT-SO shall properly release the used
resources and terminate the required VNFs.

The following requirements are identified:

TABLE 5: REQUIREMENTS ON THE DECOMMISSIONING PHASE

ID Requirement F/NF
ReqSO.De.01 The 5GT-SO should be able to identify the monitoring

mechanisms to be de-activated as a result of a service
termination.

F

ReqSO.De.02 The 5GT-SO should have means for receiving
acknowledgement of successful actions of resources release.

F

ReqSO.De.03 The 5GT-SO should be able to notify the vertical slicer about
a service termination.

F

6.2 5GT-SO Architecture

The 5GT-SO is in charge of end-to-end (E2E) orchestration of the NFV-NS across

single or multiple administrative domains by interacting with the local 5GT-MTP and/or

with other 5GT-SOs of neighbour administrative domains, respectively. 5GT-SO

receives the service requirements from 5GT-VS via the Vs-So interface in the shape of

a Network Service Descriptors (NSD). A NSD describes a Network Service (NFV-NS)

that 5GT-SO should provide (either on its own or by leveraging neighboring SOs); it is

expressed in terms of chaining of VNF components (i.e., constituent VNFs) described

by VNF Descriptors (VNFD). A VNFD describes a VNF in terms of its deployment and

operational behavior as well as specifies the resource and the connectivity (i.e., virtual

links) requirements.

The 5GT-SO processes the NSD in order to decide the optimum placement of the

VNFs/VAs and assign virtual networking, computing and storage resources across a

single or multiple local/remote domains while meeting the service requirements

specified in the NSD. To this purpose, the 5GT-SO embeds a series of modules, most

notably, the Network Service Orchestrator (NFV-NSO) and the Resource Orchestrator

(NFV-RO) with functionalities equivalent to those of ETSI NFV Orchestrator [2]. The

NFV-NSO has the responsibility of coordinating the deployment of NFV-NSs along with

their lifecycle management. The NFV-RO is in charge of deciding function placement

and orchestrating virtual resources under the control of the underlying 5GT-MTP(s).

Additionally, the 5GT-SO provides multi-domain network service orchestration through

service and/or resource federation. In this direction, the 5GT-SO interacts with 5GT-

SOs of other administrative domains through the So-So interface (federation) on the

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 31

H2020-761536

end-to-end deployment of network services and placing them in most suitable

execution environment based on the offered services and/or available resources in

each administrative domain.

Service orchestration involves the management and instantiation of VNFs and/or VAs

at local, edge and cloud NFVIs. The problem of mapping VNFs to (virtual) computing

entities (nodes, NFVI-PoPs) and the mapping of virtual links between VNFs into

(virtual) paths, depending on the granularity of abstraction offered by the 5GT-MTP,

can be tackled by different optimization strategies, e.g., heuristics or mixed-integer

linear programming. Moreover, automatic network service management and self-

configuration algorithms (e.g., NFV-NS auto-scaling) are also required to adapt service

deployments to network changes and/or the infrastructure resource utilization (e.g.,

virtual machine CPU load) in order to prevent service degradations or SLA violations

due to concurrent usage of resources. To this purpose, the collection and aggregation

of monitoring data is foreseen to trigger self-adaption actions.

Summarizing, the 5GT-SO key functionalities are the following. The 5GT-SO:

• decides the optimal service (de)composition for the whole NFV-NS based on

service availability as well as the resource capabilities exposed by local 5GT-MTP

and by the other administrative domains;

• performs the lifecycle management of the whole NFV-NS as well as of each VNF

composing the NFV-NS through the VNFM, including service catalogue

management;

• decides the optimal placement of VNFs/VAs2 along with the optimal deployment of

virtual links connecting VNFs through mapping operations, thereby enabling the

execution of the NFV-NS or a portion of NFV-NS on the local 5GT-MTP;

• requests the needed services to federated 5GT-SOs to address the execution of

portions of the NFV-NS in other administrative domains;

• performs monitoring tasks and SLA management functions to enable the triggering

of self-adaptation actions (e.g., healing and scaling operations) thereby preventing

service performance degradations or SLA violations.

Figure 4 presents the functional architecture of 5GT-SO building blocks and their

interactions designed to achieve the essential 5GT-SO operation described before. The

described 5GT-SO architecture follows ETSI guidelines [16] and is in line with

orchestration system designs developed in related EU projects (i.e., 5GEx [17] and 5G-

Crosshaul [18]). It results from refinements performed to the 5GT-SO architecture

shown in D4.1 to cope with new requirements on the service management and to

consider more functionalities emerged by vertical use case discussions and after 5GT-

SO implementation started.

2 The granularity that 5GT-SO has when placing functions (NFVI-PoPs, servers, etc.) depends
on the level of abstraction offered by the 5GT-MTP.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 32

H2020-761536

FIGURE 4: 5GT-SO Architecture – Building Blocks and interactions

The main building blocks comprising 5GT-SO are the following:

– NBI Exposure Layer: This layer offers a Northbound API towards the 5GT-VS to

support requests for service on-boarding, service instantiation, service modification

(e.g., scaling), and service termination. Details on the supported API are given in

subsection 6.8.4.1.

– NFV-NS/VNF/VA Catalogue DB/Manager: Catalogue DB is the repository of all

usable NFV Network Service (NFV-NS), Virtual Network Function (VNF) and VA

descriptors that can be accessed through the Catalogue Manager. Such descriptors

are used by the 5GT-SO in the process of NFV-NS/VNF/VA instantiation and its

lifecycle management to obtain relevant information, e.g., deployment flavors or

auto-scaling rules. The Catalogue Manager also contains the aggregated

information on the available NFV-NSs/VNFs/VAs offered to the external/federated

domains for federation. The aggregated information is stored by the Composite

NSO.

– Multi-Domain NFV Orchestrator (NFVO): NFVO has the responsibility of

orchestrating virtual resources across multiple domains, fulfilling the Resource

Orchestration (NFVO-RO) functions, as well as of coordinating the deployment of

NFV-NSs along with their lifecycle management, thus fulfilling the Network Service

Orchestration (NFVO-NSO) functions. More specifically:

o Multi-Domain NFVO-NSO coordinates all the NFV-NS deployment

operations as well as formal checks of service requests based on attributes

retrieved from NSDs and VNFDs. In particular, the Composite NSO, using

the NS decomposition algorithms decomposes the NSDs into several

nested NFV-NSs or does not decompose the NFV-NS (keeping it as a single

compact NFV-NS). Note that this is the case when the received NSD is not

explicitly a composite NSD. In case of explicit composite NSD, the

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 33

H2020-761536

decomposition is executed by default as it is configured in the NSD. Then

the Composite NSO decides where to deploy each nested NFV-NS either

locally or in a federated domain, i.e., whether using a local 5GT-MTP or

leveraging neighbor 5GT-SOs. Accordingly, the Composite NSO requests (i)

the Constituent NSO and then the local NFVO-RO to deploy a local nested

NFV-NS into its local administrative domain; and/or (ii) the federated NFVO-

NSO to deploy a nested NFV-NS into other federated administrative

domains. In the latter case, the Composite Resource Orchestration

(Composite RO) within the Multi-Domain NFVO-RO, which includes a LSA

(Link Selection Algorithm/Entity), is in charge of selecting and triggering the

creation of the links/paths between the deployed nested NFV-NSs either

locally or across the federated domains. Finally, the NFVO-NSO is

responsible for the network service lifecycle management including

operations such as service on-boarding, instantiation, scaling, termination,

and management of the network services according to their associated VNF

forwarding graphs.

o Multi-Domain NFVO-RO maps the nested NFV-NS onto a set of virtual

resources through the RO Orchestration Engine (RO-OE) by deciding the

placement of each VNF within the virtual infrastructure, based on specified

computational, storage and networking (e.g., bandwidth) requirements. The

decision is made by the RO-OE element leveraging specified Placement

Algorithms (PAs) and it is based on the available virtual resources that are

exposed by the 5GT-MTP via the So-Mtp Southbound Interface (SBI) or

from other domains via the So-So/East-Westbound Interface (EBI/WBI) and

stored into the NFVI Resource Repository. In the latter case, the sharing of

abstract views is needed to build-up a comprehensive view of resources

available from different domains which is carried out and stored by the SO-

SO Resource Management & Advertisement element. Then, the RO

Execution Entity (RO-EE) takes care of resource provisioning by managing

the coordination of correlated actions to execute/forward the

allocation/release requests to either local 5GT-MTP or to the 5GT-SO

NFVO-RO of other domains, in the latter case leveraging the SO-SO

Resource Advertisement & Management building block.

– VNF Manager (VNFM): the VNFM is in charge of the lifecycle management of the

VNFs deployed by the 5GT-SO. It receives relevant VNF lifecycle events from the

local NFVO and provides reconfiguration according to specified counteractions

decided by the NFVO based on VNFDs (e.g., auto-scaling).

– SO-SO Resource Management & Advertisement: in resource federation, this block

is in charge of exchanging abstract resource views (e.g., abstract topologies,

computing and storage capabilities) with other domains consolidating inputs and

storing federated resources into the NFVI Resource Repository. Either static or

dynamic approach can be used to this purpose, e.g., static views with topological

information only or dynamic views with also operational information (like current

virtual resource load) that is updated periodically. This block is also in charge of

issuing virtual resource allocation/release requests commands to/from federated

domains that are triggered by the RO-EE within a resource federation process. For

service federation, it simply acts as a proxy for the inter-connection of Composite

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 34

H2020-761536

RO, to exchange resource-related information for inter-domain inter-nested path

setup (i.e., set-up of paths between two nested NFV-NSs that are deployed in

different domains).

– NFVI Resource Repository: This repository stores consolidated abstract resource

views received from the underlying 5GT-MTPs, either from the So-Mtp Southbound

Interface (SBI) or from the SO-SO Resource Management & Advertisement block in

case of abstract resource views received from other 5GT-SOs/domains through the

So-So/East-Westbound Interface (EBI/WBI).

– NS/VNF/VA Instance Repository: This repository stores the instances of VNFs,

NFV-NSs, and VAs that have previously been instantiated.

– SO Monitoring Manager: This block is the one responsible for translating the high-

level, service-centric monitoring requirements of instantiated NFV-NSs into low-

level, resource-centric jobs to be activated within the Monitoring Platform to retrieve

the necessary information from the virtual infrastructure elements (e.g., CPU usage

of the caches” requires the “average CPU usage” of every cache VM). After

activating the required jobs, this block is also in charge of configuring and managing

the monitoring jobs lifecycle by interacting with the Monitoring Platform. It makes

the details of these jobs available to the SLA Manager for threshold configuration

and, finally, it is also notified whenever a service is scaled or terminated in order to

update or remove the monitoring jobs related to the service.

– SLA Manager: This block assures that the agreed SLAs between the 5GT-VS and

the 5GT-SO on the network service deployed are continuously satisfied through on-

line SLA verification. To this purpose, this block leverages information about trends

of relevant monitoring data that may indicate potential SLA breaches or anomalous

behaviours that may lead to system under-performance. For this reason, the SLA

Manager interacts with the Monitoring Platform following a subscription-notification

paradigm, in order to promptly react to any alert associated to the target monitoring

data. In particular, the SLA Manager subscribes with the Monitoring Platform

(Config Manager), registering monitoring parameter queries (which may include

arbitrarily complex expressions on many different time series) and setting threshold

values for notifications, such that whenever the given threshold is passed, a

notification is sent to the SLA Manager, which will then trigger the needed reactions

at the 5GT-SO. One such potential action could be scaling. This scaling action is

referred to as “Automated NFV-NS scaling” detailed in Section 6.6.2.4.

6.3 5GT-SO key operations

The functionalities described in Section 6.2 cooperate to support a number of

operations including the ETSI defined operations of managing a NFV-NS. Such

operations are described below.

1. Interconnection to other 5GT-SOs for federation

This operation is a prerequisite to achieve federation; that is, 5GT-SO shall be made

aware of the existence of other 5GT-SOs, and thus become part of the service

ecosystem. To this purpose, the 5GT-SO (i) exchanges resource/service capabilities

with neighbouring SOs, and (ii) cooperates with other 5GT-SOs to accomplish service

deployments across multiple administrative domains. The interconnection to

neighboring SOs can be the result of either a static (i.e., manual pre-configuration of

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 35

H2020-761536

inter-links) or automatic mechanisms (i.e., auto-discovery and interconnection). Without

loss of generality, the static case is followed in 5G-TRANSFORMER. The automatic

mechanisms are left for future work to explore.

2. Resource/Service capabilities advertisement

With this operation, 5GT-SO becomes aware of the resource and service capabilities of

SOs in other administrative domains in order to make resource and service

orchestration decisions. The exchanged capabilities are related both to supported

VNFs and services (i.e., catalogues) and to topology and other resource-related

information (e.g., abstract network topology, cloud resource capabilities). The service

capabilities are more static and less frequent, therefore, by default the information is

exchanged offline on a business-level communication. The resources for federation are

not permanently available or time-constant which defines the dynamic advertisement

mechanism as a requirement.

3. Deployment

This operation is triggered as a request for a NFV-NS arrives either from the Vertical

Slicer or from neighbor SOs. The deployment operation is carried out by the

orchestration engine (i.e., NFV Orchestrator (NFVO)) both at the Network Service level,

handled by the Network Service Orchestrator (NFVO-NSO), and at the Resource level,

handled by the Resource Orchestrator (NFVO-RO), according to the ETSI MANO

guidelines [16]. At the service level, composite NSDs are decomposed according to

specified NS decomposition algorithms. At the resource level, the decision where to

allocate resources is made by leveraging specified Placement Algorithms (PAs) and it

is based on the available virtual resources exposed by the 5GT-MTP. Different PAs

make different level of decisions depending on the objective to address (e.g.,

minimization of end-to-end latency). The deployment operation may involve either the

5GT-MTP(s) in the local administrative domain of the 5GT-SO (single-domain case) or

other SOs in different administrative domains (federation case).

4. SLA assurance and scaling

Once a network service is deployed, its assurance phase begins. This phase consists

of collecting and processing monitoring data during the service lifecycle in order to

check if the agreed SLAs between the 5GT-VS and 5GT-SO are continuously met (i.e.,

on-line SLA verification). The assurance phase is carried out by an SLA manager

supported by the Monitoring Manager and by the Monitoring Platform that collects

performance metrics from virtual resources. In case SLA parameters are not satisfied

the 5GT-SO trigger either scaling actions by means of proper resource/service

reconfigurations.

5. Service composition

In case complex services need to be deployed, which are based on the composition of

multiple simpler ones, the 5GT-SO, through the composite NSO will manage the

lifecycle of the composite NFV-NS by commanding the constituent NSOs (and

underlying RO-OEs) for the individual nested NFV-NSs. Once all nested NFV-NSs are

deployed, together with the Composite RO-OE, the composite NSO will set up the

interconnection of nested NFV-NSs (through inter-nested paths) by triggering the

corresponding actions towards the local entities in coordination with the equivalent

ones in other domains.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 36

H2020-761536

The interfaces to other SOs, 5GT-MTPs and 5GT-VS are described in Section 6.5.

6.4 5GT-SO building blocks detailed overview
This section focuses on a more detailed explanation of the functional architecture

explained in Section 6.2, introducing the 5GT-SO main building blocks.

6.4.1 NBI Exposure Layer

The northbound APIs exposed by the 5GT-SO follow the ETSI NFV IFA 013

specification [25] and they are specified in D3.3 [26], section 5.3.5.

6.4.2 NFV-NS/VNF/VA Catalogue DB/Manager

Catalogue DB is the repository of all usable Network Service Descriptors (NSDs) and

VNF Descriptors (VNFDs) that can be accessed through the Catalogue Manager. The

NSD/VNFD is used by the 5GT-SO in the process of NFV-NS/VNF instantiation and its

lifecycle management to obtain relevant information, e.g., deployment flavors or auto-

scaling rules. The Catalogue Manager also takes care of the advertising of NFV-NSs

for federation purpose.

6.4.3 NFVO-NSO

The NFVO-NSO is in charge of coordinating all the NFV-NS deployment, orchestration

and (service) federation operations. The NFVO-NSO can receive service requests on

the NBI and E/WBI interfaces and based on each request proceeds with triggering

certain operations (e.g., NFV-NS instantiation).

The NFVO-NSO orchestrates incoming requests for a single NFV-NSs and composite

NFV-NSs (see Figure 5) A single NFV-NS can be instantiated as it is compact, without

any change similar to a nested NFV-NS or it can be further decomposed in a set of

nested NFV-NSs using a NS decomposition algorithm. The decomposition may be

already done at the 5GT-VS, in which case the 5GT-SO receives a composite NFV-NS

request with an NSD that explicitly defines the decomposition into several nested NFV-

NSs and there is no need to run the NS decomposition algorithm.. The difference

between the nested NFV-NS and the single NFV-NS is that the nested NFV-NS cannot

be additionally decomposed and it must be instantiated as it is, as a compact NFV-NS

in a specific domain (local or federated). The composite NFV-NSs are explicitly

composed of several nested NFV-NSs (defined in their NSDs) and they can contain

already active (up-and-running) nested NFV-NS that are referenced at instantiation

time. For orchestrating NFV-NSs in external domains, the NFVO-NSO can only

provide/consume nested NFV-NS to/from external federated domains.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 37

H2020-761536

FIGURE 5: DECOMPOSITION OF SINGLE AND COMPOSITE NFV-NSS

The service requests that the NFVO-NSO can receive on both interfaces are:

• On-boarding of NFV-NS

• Instantiation of a single NFV-NS

• Instantiation of a composite NFV-NS (with no active nested NFV-NSs)

• Instantiation of a composite NFV-NS (with referenced active nested NFV-NSs)

• Modification of a single/composite NFV-NS

• Termination of a single/composite NFV-NS

The NFVO-NSO is composed of two modules: the Composite NSO and the Constituent

NSO. The Composite NSO is the first module to process all received requests.

Hierarchically, the Constituent NSO acts as a child module to the parent – Composite

NSO.

6.4.3.1 Composite NSO

The Composite NSO is the module in charge of receiving requests, processing them

(e.g., decomposition) and making orchestration/federation decisions for NFV-NSs.

In particular, upon reception of an instantiation request for an NFV-NS, the Composite

NSO checks if the request is for a single or composite NFV-NS. If the request is a

single NFV-NS, based on the internal policies of the Composite NSO it may be

decomposed using the NS decomposition algorithms (and the result would be a set of

decomposed nested NFV-NS) or it may pass it to the constituent NSO. In the former

case, a new NSD is generated for each decomposed nested NFV-NS. For example, if a

single NFV-NS is decomposed into four nested NFV-NSs, the Composite NSO will

automatically generate a set of four new nested NSDs. In case the NS decomposition

algorithms are not used, the NFV-NS is not decomposed (the NSD remains compact).

Requests received from external/federated domain can be only be a deployment of

single/nested NFV-NSs, the Composite NSO does not apply decomposition to

requested NFV-NS of external/federated domains (decomposition is already done in

the consumer external/federated domain).

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 38

H2020-761536

In case of reception of an instantiation request for a composite NFV-NS, the

decomposition is already done and the Composite NSO checks if the set of nested

NFV-NS contain referenced active NFV-NS instances. The composite NFV-NS can be

received only on the NBI from a 5GT-VS.

Based on the processing of the request (in this case instantiation request), the

Composite NSO makes orchestration/federation decisions for each single or nested

NFV-NS. The decision is whether each nested NFV-NS is to be deployed locally or in a

federated domain. The decision may be based on service or resource availability,

deployment cost/benefit, etc. For local deployment, the Composite NSO issues

instantiation requests towards the Constituent NSO. For federated deployment, the

request is sent to a federated 5GT-SO on the E/WBI. During the deployment process,

the Composite NSO orchestrates the instantiation of each nested NFV-NS that

composes the full end-to-end composite NFV-NS (in the case of a single compact NFV-

NS it is similar to a single nested NFV-NS). Once the deployment of the set of nested

NFV-NSs is finished, the Composite NSO orchestrates the interconnection between the

nested NFV-NSs through the Composite RO for both local and federated domains.

6.4.3.2 NS decomposition algorithms

NS decomposition algorithms are capable to transform/decompose a single NFV-NS

into several components or several nested NFV-NSs. By decomposing the NFV-NS,

the deployment and orchestration of the smaller nested NFV-NSs aims to produce

more optimal usage of the underlying infrastructure, while the nested NFV-NSs joined

together (stitched) maintain the end-to-end functionalities and performance of the

single/requested NFV-NS.

6.4.3.3 Constituent NSO

The constituent NSO is in charge of orchestrating and deploying a single or nested

NFV-NS in the local domain. That is, in case the 5GT-VS requests a single/regular

NFV-NS, the composite NSO just forwards the request to the constituent NSO, which

handles all the required service orchestration. Therefore, the instantiation of a

single/nested NFV-NS starts with receiving the requests from the Composite NSO.

Then, the Constituent NSO obtains (queries) information from the NFV-NS/VNF

Catalogue DB, such as the NSD and VNFDs contained in the NSD. Then, the

information is processed (e.g., associating the NFV-NS instance ID, etc.) and

redirected to the ROOE to follow with a the regular instantiation workflow.

If the 5GT-VS requests the instantiation of a composite NFV-NS, the composite NSO

will parse the NSD and send one by one each of the nested NSs (which become

single/regular NFV-NSs) to the constituent NSO, which will handle them as described

in the previous paragraph. Once a nested NFV-NS is instantiated, the Constituent NSO

confirms the deployment to the Composite NSO, which can proceed with the following

one.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 39

H2020-761536

6.4.4 VNF Manager (VNFM)

The VNFM is in charge of the lifecycle management of the VNFs deployed by the 5GT-

SO. It receives relevant VNF lifecycle events from the local NFVO and provides

reconfiguration according to specified counteractions decided by the NFVO based on

VNFDs (e.g., auto-scaling). The VNFM in the 5GT architecture is that of the MANO

platform integrated in the 5GT-SO.

6.4.5 NFVO-RO

The NFVO-RO orchestrates the deployment of NFV-NSs over the 5GT-MTP resources

and handles resource-related operations in the local 5GT-MTP and in a federated

domain (the latter only for resource federation). The NFVO-RO is composed of several

modules: Resource Orchestration Engine (RO-OE) including Placement Algorithm

module (PA), Composite Resource Orchestration (Composite RO) and Resource

Orchestration Execution Engine (RO-EE).

The NFVO-RO receives NFV-NS requests from the NFVO-NSO, processes the

requests and issues new resource related requests towards the 5GT-MTP on the SBI

or towards another federated NFVO-RO on the E/WBI.

6.4.5.1 Composite Resource Orchestration (Composite RO)

The Composite Resource Orchestration module is in charge of inter-connecting

(stitching) several nested NFV-NSs to form/compose the full end-to-end (composite)

NFV-NS. It is the main module of setting the inter-nested paths, the inter-connection

between two nested NFV-NS instances. The Composite RO contains the Link Selection

Algorithm/Entity (LSA) module, which is provisioning the inter-PoP links and inter-

domain links so that the stitching procedure between all nested NFV-NSs is executed

successfully.

The module receives requests for setting up the inter-nested paths directly from the

Composite NSO once all nested NFV-NS are instantiated (locally or in a federated

domain (for service federation)). First, the Composite NSO establishes the inter-PoP

connectivity and stitching of local NFV-NSs in the local domain. Sequentially, the

Composite RO communicates with the provider/federated domain on the E/WBI (via the

SO-SO Management & Advertisement module) to establish all the tunneling

connections between the domains with the aim to inter-connect federated nested NFV-

NS (More details in the federation workflow – Section 6.7.7). The communication is

between consumer Composite RO and provider Composite RO in the federated

domain.

6.4.5.2 Resource Orchestration Engine (RO-OE)

The Resource Orchestration Engine (RO-OE) handles the requests that are related to

5GT-MTP resources management, i.e., NFV-NS instantiation and termination, for

regular NFV-NSs (i.e., non-composite). It interacts with the Placement Algorithm (PA)

submodule and the Resource Orchestration Execution Engine (RO-EE) submodule to

accomplish the requests.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 40

H2020-761536

Upon receiving an instantiation request, the RO-OE extracts information from the

referenced NSD and VNFDs and information on available resources from the NFVI

Resource Repository or by requesting the 5GT-MTP. Based on the obtained

information and their required allocation of resources, the Placement Algorithm (PA)

determines the placement of the VNFs and selects the inter-PoP logical links over the

available 5GT-MTP resources. Once the placement is determined, the RO-OE passes

the information towards the RO-EE in order to execute the deployment of the VNFs that

form a single NFV-NS over the 5GT-MTP resources. Note that the available resources

are a combined view of the local 5GT-MTP resources and federated domain resources

(when doing resource federation). In case the PA calculates the deployment over

external (federated) resources, the RO-EE executes resource federation.

6.4.5.3 RO Execution Entity (RO-EE)

The Resource Orchestration Execution Engine (RO-EE) is the NFVO-RO module in

charge of communicating with the SBI to handle network resources management

operations that involve the 5GT-MTP and the module that enables resource federation

via the SO-SO Resource Management & Advertisement module. Based on the

decisions made by the RO-OE, the RO-EE module issues requests for computing

resources & networking allocations on the local 5GT-MTP via the SBI. In case the

allocation of the resources needs to be executed in a federated external domain, the

request is redirected towards the SO-SO Resource Management & Advertisement

module. The Composite RO orchestrates the set-up of inter-nested paths by directing

the requests towards the RO-EE once the decision on what logical links to use is taken

by the LSA. The RO-EE adds additional network-related information needed to set up

the links at the MTP and redirects the requests towards the SBI, and the MTP.

6.4.6 SO-SO Resource Management & Advertising

This module oversees two operations: (i) advertising/accumulating available resources

(resource abstractions, topologies, etc.) to/from other federated domains and (ii)

resource management in the federation procedures (both for service and resource

federation). The SO-SO Resource Management is connected to the Composite RO, the

RO-EE, NFVI Resource Repository and to the external federated NFVO-ROs on the

E/WBI (So-So-RAM, So-So-RM).

In the advertisement case, the SO-SO Resource Management & Advertisement shares

information regarding the available resources from the local 5GT-MTP. The information

is obtained from the NFVI Resource Repository and shared among the interconnected

federated NFVO-ROs. Note that depending on what will be exposed towards the

external domains according to the agreed SLAs among federated domains, additional

abstractions may be applied prior to sharing the information for security reasons. The

advertising procedure can be static, without changes on the available resource for

federation, and dynamic, where the availability of the resources changes over time.

More details regarding advertising procedure can be found in the Section 6.6.6. All

accumulated information regarding the resources from external domains, are stored by

the SO-SO Management & Advertisement module in the NFVI Resource Repository.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 41

H2020-761536

In case of service federation, the Composite RO orchestrates the interconnection of the

federated nested NFV-NS. The SO-SO Resource Management & Advertisement

module acts as a proxy module by receiving requests from the Composite RO and

redirects them towards the federated provider domain for establishing the tunneling

interconnection to the federated NFV-NSs. On the provider side, the module passively

redirects the messages towards the Composite RO.

In the resource federation case, the SO-SO Resource Management & Advertisement

block has the translation role as:

• Provider - translating incoming requests on the E/WBI for providing available

resources and issue the translated request towards the RO-EE;

• Consumer – redirect the requests for federation of resources from the local RO-

EE towards the specific federated domain on the E/WBI.

6.4.7 NFVI Resource Repository

NFVI Resource Repository is a database updated by the 5GT-MTP and the SO-SO

Resource Management & Advertisement modules. It contains the global view of

available resources both from the local and external federated domains. Based on the

information contained in the database, the RO-OE decides where to place the VNFs

that form a NFV-NS.

6.4.8 NFV-NS/VNF/VA Instance Repository

A database for containing information on NFV-NS instances, VNF instances that are

part of the NFV-NSs as well as the VA instances.

6.4.9 SO Monitoring Manager

The Monitoring Manager component is the functional module responsible for translating

the high-level, service-centric monitoring requirements managed at the 5GT-SO into

the low-level, resource-centric monitoring jobs managed at the Monitoring Platform.

The Monitoring Manager is thus responsible to handle the lifecycle of such monitoring

jobs, interacting with the Monitoring Platform through the mediation of its Config

Manager, according to the lifecycle of the associated NFV-NS instances.

Whenever an NFV-NS is instantiated through the NFV-NSO, the Monitoring Manager

inspects the NSD, looking for any data that the service might require to be monitored.

For each of these monitoring data (expressed at the service level), the Monitoring

Manager determines the corresponding, elementary, resource-related monitoring data

and how they need to be combined. For example, the “average CPU usage of the

caches” for a virtual Content Delivery Network (vCDN) service requires the “average

CPU usage” of every cache VM allocated for that specific service instance, combined

together with an “average” operation.

After having determined which low level time series should be collected, the Monitoring

Manager sends a request to the Monitoring Platform to create the jobs for retrieving the

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 42

H2020-761536

necessary information from the virtual infrastructure elements. It then makes the details

of these jobs available to the SLA Manager for threshold configuration.

After the configuration of this job, the Monitoring Manager requests the creation of a

monitoring dashboard for data reporting, by specifying appropriate aggregation

functions composing the metrics to be visualized. The dashboard is provided in the

form of a web page containing several plots and charts which report the value of the

monitoring time series for the target NFV-NS instance. The URL of the dashboard is

also stored in the record of the NFV-NS instance (within the NFV-NS Instance

Repository – see section 6.4.8) and they are made available at the 5GT-SO NBI for

hands-on monitoring and management of the service, or to use as a diagnostic tool. In

particular, the 5GT-VS will use that URL to visualize the monitoring data of the vertical

service associated to the network slice realized through the given NFV-NS instance.

The Monitoring Manager is also notified whenever a service is scaled or terminated, in

order to update or remove the monitoring jobs related to the service, following a similar

workflow.

6.4.10 SLA Manager

The SLA Manager component is a functional module of the 5GT-SO responsible for

alerts configuration and analysis of the monitoring notifications received from the

Monitoring Platform in search of potential SLA breaches. The SLA Manager interacts

with the NFVO-NSO, through the NBI, to trigger automated scaling actions according to

the scaling rules encoded in the NSD of the NFV-NS instance.

During the instantiation of an NFV-NS with active autoscaling rules, the SLA Manager

configures the alerts on the Monitoring Platform, interacting with its Config Manager.

This configuration allows the SLA Manager to receive notifications from the Monitoring

Platform (in particular from its Alert Manager) during the service runtime, whenever one

of the target monitoring parameters exceeds the given thresholds. Once an Alert is

raised, the SLA Manager analyzes it considering the active autoscaling rules and the

current status of the NFV-NS instance. If needed, it sends a ScaleNS request to the

NFVO-NSO, through the NBI, to request the scaling of the NFV-NS instance to the

target instantiation level.

6.5 5GT-SO Interfaces and reference points

This section introduces the 5GT-SO interfaces and references points towards other
building blocks of the 5G-TRANSFORMER system, including the northbound interface
towards the 5GT-VS, southbound interface towards the 5GT-MTP, and east/westbound
interface to the federated 5GT-SOs.

6.5.1 5GT-SO NBI

The sequel briefly introduces the design of the 5GT-SO’s northbound interface (NBI); it
is solely based on the content found in D3.3 [22]. The NBI enables the interaction
between the 5GT-VS and the local 5GT-SO, which is based on the following four
reference points (see Figure 6).

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 43

H2020-761536

• Vs-So(-Life Cycle Management) is used for the operation of NFV network

services. It offers primitives to instantiate, terminate, query, update or re-

configure network services or receive notifications about their lifecycle;

• Vs-So(-MONitoring) is used for the monitoring of network services and VNFs

through queries or subscriptions/notifications about performance metrics, VNF

indicators and network services or VNFs failures;

• Vs-So(-Catalogue) is used for the management of Network Service Descriptors

(NSDs), VNF packages, including their VNF Descriptors (VNFDs), and MEC

Application Packages, including their Application Descriptors (AppDs). This

reference point offers primitives for on-boarding, removal, updates, queries and

enabling/disabling of descriptors and packages.

• Vs-So(-POLicy) is used for the management of policies providing a series of

operations such as activation, deactivation, association, disassociation, transfer

and deletion of policies and it allows notifications about policy conflicts.

FIGURE 6: REFERENCE POINTS BETWEEN 5GT-VS AND 5GT-SO

The implementation of the 5GT-SO NBI is mostly based on ETSI GS NFV-IFA 013
specification [5], which defines the NBI of an NFVO. However, the 5GT-SO NBI
implements further methods to allow the 5GT-SO to handle Network Services extended
to include also MEC Applications. In terms of interfaces, this has an impact mostly on
the management of the catalogues and on the queries of the NFV-NS instances, where
both of them should support the information related to the MEC applications. In
particular:

• The Vs-So(-LCM) reference point is implemented through the ETSI GS NFV-

IFA 013 [5] NFV-NS Lifecycle Management Interface. This interface provides

messages for creation and deletion of network service identifiers as well as

instantiation, scaling, update, querying and termination of a network service

instance;

• The Vs-So(-MON) reference point is implemented through the ETSI GS NFV-

IFA 013 [5] NFV-NS Performance Management Interface and the ETSI GS

NFV-IFA 013 [5] NFV-NS Fault Management Interface. The Performance

Management Interface provides messages for creating, deleting and querying

Performance Monitoring jobs (PMON jobs) as well as subscriptions and

notifications to receive monitoring reports. The Fault Management Interface

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 44

H2020-761536

provides subscriptions, notifications and queries about alarms related to

network services and VNFs;

• The Vs-So(-CAT) reference point is implemented through the ETSI GS NFV-IFA

013 [5] NSD Management Interface, the ETSI GS NFV-IFA 013 [5] VNF

Package Management Interface and the ETSI MEC 10-2 Application Package

Management Interface [23], where the 5GT-SO implements the role of the

Mobile Edge Orchestrator (MEO). Each of them provides mechanisms to on-

board, enable, disable, update, delete and query NSDs (ETSI GS NFV-IFA 013

[5]), PNFDs (ETSI GS NFV-IFA 013 [5]), VNF Packages (ETSI GS NFV-IFA 013

[5]) and MEC Application Packages (MEC 10-2), as well as subscriptions and

notifications to notify new on-boarding actions or changes in existing

descriptors.

NSD and VNF packages follow the information models defined in the ETSI GS NFV-
IFA 014 [3] and ETSI GS NFV-IFA 011 [4] respectively, while the AppD follows the
information model defined in ETSI MEC 10-2. However, in 5G-TRANSFORMER, the
NSD is extended to include references to the AppDs, as shown in Figure 7 and Figure
8. Moreover, in order to specify the geographical location where the NFV network
service should be placed, the instantiation request in the ETSI GS NFV-IFA 013 is
extended with an additional “location constraint” attribute in the definition of the Service
Access Points that connects the network service instance to the external networks.

FIGURE 7: NSD EXTENDED WITH APPD REFERENCES SCHEMA 1

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 45

H2020-761536

FIGURE 8: NSD EXTENDED WITH APPD REFERENCES SCHEMA 2

6.5.2 5GT-SO SBI

We next summarize the design of the 5GT-SO’s southbound interface (SBI); additional
details can be found in D2.1 [24]. The SBI addresses the interworking between the
5GT-SO and 5GT-MTP building blocks of the 5G-TRANSFORMER architecture [24]. It
is worth mentioning that 5GT-SO and 5GT-MTP may follow a 1:1 relationship. The
5GT-MTP, which handle the configuration and programmability of a number of
technological domains including heterogeneous virtualized resources for compute,
storage and networking. In the following we are also assuming that a 5GT-MTP is
managed by a single 5GT-SO. Besides managing the utilization (i.e., de/allocation) of
the virtualized resources, the 5GT-SO SBI also encompasses the required
functionalities for deploying (updating and terminating) demanded VNFs by a given
NFV-NS. In the 5G-TRANFORMER project all these operations are supported at So-
Mtp interface.

FIGURE 9: REFERENCE POINTS FOR 5GT-SO SBI (I.E., SO-MTP INTERFACE)

Figure 9 illustrates the targeted 5GT-SO SBI and its key reference points. Similar to the
5GT-SO NBI, the 5GT-SO SBI is mostly based on a set of standard documents being
produced within the ETSI NFV framework, namely ETSI GS NFV-IFA 005 [2], ETSI GS
NFV-IFA 006 [25] and ETSI GS NFV-IFA 008 [26]. In a nutshell, the 5GT-SO SBI shall

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 46

H2020-761536

provide the operations and functions for: (i), providing abstracted information (e.g.,
capacities, availability, connectivity, etc.) of the virtualized resources managed by each
5GT-MTP; (ii) managing (i.e., instantiation, reservation, allocation, scaling up/down and
release) of the virtualized resources required to support an NFV-NS; (iii) enabling the
fault management and performance monitoring aiming at recovering interrupted
services or ensuring the targeted SLAs demanded by each NFV-NS; and (iv)
supporting the lifecycle management (i.e., creation, configuration, modification and
termination) along with related performance and fault management of the VNFs
instantiated over the virtualized (radio, compute and storage) resources. As shown in
the figure, the So-Mtp interface enables the specific entities of the 5GT-SO (VNFM and
NFVO-RO) to communicate with a single logical point of contact (SLPOC) at each 5GT-
MTP entity. Accordingly, four reference points for the 5GT-SO SBI are conceived:

• So-Mtp(-Resource Advertising Management). It provides the Resource

Advertisement Management functions. That is, it allows feeding the 5GT-SO’s

NFVI repository with information regarding the virtualized resources that will

accommodate requested NFV-NSs. Such information, modelled in 5G-

TRANSFORMER D2.3 [27], can be delivered using different levels of

details/abstraction. Thus, the adopted abstraction, and view of the resources,

will notably impact on the 5GT-SO NFVO-RO algorithms used for the VNF

placement and/or networking computation. The mechanism used by the 5GT-

MTP(s) to update the 5GT-SO’s NFVI could be achieved also via different

mechanisms such as immediate update when a change in any (abstracted)

virtualized resource occurs (e.g., allocation or reservation), upon an explicitly

demand sent by the 5GT-SO, or even periodically.

• So-Mtp(-Resource Management). This encompasses the Resource

Management operations over the virtualized resources. Basically, it contains the

set of operations used for reserving, allocating, updating (in terms of scaling up

or down) and terminating (i.e., release) the resources handled by each 5GT-

MTP. In short, and according to the abstracted information managed by the

5GT-SO, the So-Mtp(-RM) interface allows to coordinate the involved 5GT-

MTPs to manage the utilization of a selected set of virtualized resources. This

entails the VNF placement and triggering the reservation / allocation of the

network resources constituting the demanded NFV-NS.

• So-Mtp(-Resource Monitoring Management). This provides the Resource

Monitoring Management operations. Basically, it provides the required

interworking procedures including the primitives and parameters for supporting

the 5GT-SO Monitoring Service capability. This entails a twofold functionality: i)

fault management to recover / restore the interrupted NFV-NS by a failure (e.g.,

link failure, VNF host crashes, etc.); ii) permanent performance monitoring

crucial to ensure the demanded SLA for the existing NFV-NS. Obviously, the

involved information needed to such Monitoring Service functions are also

related with the adopted granularity and abstracted information (i.e., level of

detail) within the 5GT-SO.

• So-Mtp(-VNF). This provides the general VNF lifecycle management (e.g.,

scaling up/down a particular VNF instance, fixing VNF malfunctions, etc.)

commanded by the 5GT-SO VNFM. Moreover, the VNF configuration (i.e.,

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 47

H2020-761536

specifying targeted parameters defining the targeted VNF behaviour) is also

supported over this reference point. Last but not least, the So-Mtp-VNF

reference point supports performance and fault management functionalities to

monitor the VNF operations and adopt/apply (if needed) necessary actions to

revert/solve VNF failures and performance degradations.

As anticipated above, the implementation of the 5GT-SO SBI operations and,
particularly, those driven into the four reference points, leverage the procedures (i.e.,
interworking between entities, messages and basic contents) described in ETSI GS
NFV-IFA 005 [2], 006 [25] and 008 [26] resp., as much as possible. Nonetheless,
focusing exclusively on the operations currently supported in [2], [25], and [26], the
following operations are identified as essential for encompassing the implementation of
the 5GT-SO SBI reference points:

• For the So-Mtp(-RAM), a set of pairs of request/response messages is

considered. This is divided into two main sets/groups, namely, Virtualized

Resources Information Management and Virtualized Resources Capacity

Management. These two subsets of messages (see [2] and [25]) grant 5GT-SO

with multiple functionalities such as subscription to specific (filtered) resource

information, query of and update (for changes) resource information, specific

resource capacity, etc. Specifically, the resource capacity can be provided with

respect to its current status (i.e., available, allocated or reserved) as well as

specifying the amount of resources. Moreover, the resource information can be

retrieved for a particular 5GT-MTP governing a certain Resource Zone (e.g.,

geographic NFVI-PoP specifying the reachable endpoints). With respect to the

amount of resources, this clearly depends not only on the type of virtualized

resource but also on the abstraction policy. An abstraction model is planned (for

the sake of scalability and/or confidentiality purposes) to keep track of selected

and relevant information about the virtualized resources (i.e., compute, storage

and networking) without having a complete awareness of all the features and

capabilities intrinsic to such resources. As described in D2.3 [27], this

abstraction may rely on basically knowing the maximum, available and allocated

amount of each resource type, or having a summarized topology view enabling

basic connectivity between remote network elements hiding details of the

underlying transport infrastructure supporting such connectivity. In this regard,

for instance, for the compute resources, it can be delivered the total amount of

available or allocated virtual memory and virtual CPU; for storage, the

information is related to the size of storage and type (e.g., volume, object) or the

support of remote direct memory access; for networking resources, the provided

attributes regarding the link type (e.g., VLAN or GRE), the supported link QoS

parameters (e.g., latency), the total link bandwidth, the IP addressing for a

specific (sub-)network, the port types connected to specific network elements

(e.g., Layer 1, 2 or 3), etc.

• For the So-Mtp(-RM), in ETSI GS NFV-IFA 005 [2], sets of request/response

messages to allocate, query, update, migrate, and terminate virtualized

resources are specified. For instance, for compute resources the set named

Virtualized Compute Management Interface is defined. This provides the

specific allocation of compute resources over a particular Resource Zone, with a

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 48

H2020-761536

determined set of virtual CPUs and memory, as well as informing about the

software image to be set on the Virtual Machine. For network resources, the set

Virtualized Network Resource Management Interface takes over of all the

operations to be made over the network resources. Non-exhaustively, this

includes the allocation of selected bandwidth over a network entity (e.g., link) or

the utilization of an entire data port. In addition, the operations to create

Network Forwarding Paths (NFPs) to deploy VNFFG are supported. The

request messages should include the list of virtual networks and ports forming

the NFP. In addition, the Virtualized Storage Resource Management Interface

entails the set of operations (mapped to pair of messages) handling the storage

resources. Similar to the compute and networking resources, these operations

enable the selection of an amount of storage to be allocated over, e.g., a

particular Resource Zone. Finally, ETSI GS NFV-IFA 005 [2] also defines a

interface to reserve virtualized resources referred to as Virtualized Resource

Reservation Interfaces. This interface is used to (pre-)book virtualized

resources which eventually may be needed and used.

• For the So-Mtp(-RMM), ETSI GS NFV-IFA 005 [2] also specifies the interfaces

supporting fault management and performance monitoring. Specifically, the

Virtualized Resource Fault Management Interface defines the messages

enabling the 5GT-SO to subscribe for notifications from 5GT-MTP about

containers or virtual machines crashes, virtual network port errors or reserved

resources unavailable or exhausted. To this end, such interface supports

detailed alarms. The Virtualized Resources Performance Management Interface

describes a set of messages used for collecting measurements within

notifications that will feed the 5GT-SO’s Monitoring Service. These messages

include resource consumption, memory oversubscription, disk latency, etc. In

general, the collection of such information is controlled by a Performance

Monitoring (PMON) job. The interface is oriented towards handling the

management of PMON jobs (creation, subscribe, update, query, etc.). For a

given PMON job, it can be specified the object to be monitored (e.g., CPU

power consumption in VM), the performance metric, the frequency for capturing

the measurements, threshold to send notifications, etc.

• For the So-Mtp(-VNF), ETSI GS NFV-IFA 008 [26] describes the messages and

contents supporting the operations for the creation / configuration / termination,

scaling (up / down), monitoring and fault management of VNFs. In this context,

[26] firstly addresses the necessary set of messages (as request/respond pairs)

used for both initially configuring and modifying (e.g., deleting) a VNF (or

Component). In general, the messages providing a VNF operation must carry a

unique identifier to unambiguously determine over which particular VNF (or

Component) the action will be conducted. Moreover, configuration data or

parameters are also included specifying the amount of required memory, CPU

capacity, storage size, connection points (address and ports), software image of

the VNF container, etc. Another interworking operation supported by So-Mtp(-

VNF) is the VNFM Indication action. These indicators are used to notify the

5GT-SO VNFM about a VNF behaviour which can be eventually used by the

VNFM to trigger auto-scaling operations. Finally, the performance and fault

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 49

H2020-761536

management interworking enable creating PMON jobs to impose the generation

of notifications sending specific VNF parameters status (e.g. CPU) which are

then gathered and processed. To this end, the interface entails the creation of

thresholds to manage the notification message creation or the periodicity when

such notifications are actually composed and sent. Last but not least, for the

fault management purposes, the 5GT-SO VNFM is able to indicate the

subscription demanding for specific alarms generated by the VNFs when, for

instance, to react when a fault occurs.

6.5.3 5GT-SO EBI/WBI

The 5GT-SO eastbound/westbound interface (EBI/WBI) provides federation of services
and federation of resources. 5GT-SO EBI/WBI enables interaction between a local
5GT-SO and other SOs that are part of other administrative domains. The approach of
the So-So interface is adopted from the SLPOC for federation (SLPOC-F) solution of
the ETSI GS NFV-IFA 028 [28]. The SLPOC-F solution offers two modes of operation:
direct and indirect. The difference is on the NFVIaaS (resource federation) use case. In
the SLPOC-F direct mode the consumer VNFM can directly invoke resource
management operations on the provider 5GT-SO NFVO-RO. In SLPOC-F indirect
mode, the consumer VNFM uses the consumer 5GT-SO NFVO-RO as a proxy (or
forwarding point) to invoke resource management operations on the provider 5GT-SO
NFVO-RO. Both approaches are suitable for the 5GT architecture, where the indirect
mode was finally selected. In that sense, the 5GT-SO EBI/WBI is based on six
reference points (see Figure 10

• So-So(-Life Cycle Management), used for the operation of federated nested
NFV-NSs. The reference point is used to instantiate, terminate, query, update or
re-configure or receive notifications for federated nested NFV-NSs in both
directions as provider or consumer role. 5GT-SO’s Composite NSO is using this
reference point;

• So-So(-Catalogue), used for the management of Network Service Descriptors
(NSDs) flavors and MEC Application Packages, including their Application
Descriptors (AppDs). This reference point offers primitives for on-boarding,
removal, updates, queries and enabling/disabling of descriptors and packages.
5GT- SO’s Composite NSO is using this reference point;

• So-So(-MONitoring), used for the monitoring of network services through
queries or subscriptions/notifications about performance metrics, VNF indicators
and network service failures. SLA Manager is using this reference point;

• So-So(-Resource Monitoring Management), used for monitoring of different
resources, computing power, network bandwidth or latency, storage capacity,
VMs, MEC hosts provided by the peering administrative domain. The details
level depends on the agreed abstraction level. SLA Manager is using this
reference point.

• So-So(-Resource Management), used for the operation of performing allocation,
configuration, updates and release of resources. The Resource Management
reference point offers operations such as configuration of the resources,
configuration of the network paths for connectivity of VNFs. These operations
mainly depend of the level of abstraction applied to the actual resources. 5GT-
SO’s SO-SO Resource Management & Advertising is using this reference point;

• So-So(-Resource Advertising Management), used for advertising available
resource abstractions to/from other SOs. Broadcast of available resources or
resource abstractions upon capability calculation and periodic updates for near

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 50

H2020-761536

real-time availability of resources. The SO-SO Resource Management &
Advertising is using this reference point.

SO SO

So-So-LCM

So-So-MON

So-So-RM

So-So-RMM

So-So-RAM

SO
NFVO-
NSO

SO
NFVO-
NSO

SO-SO
Mgmt

&
Adv

SO-SO
Mgmt

&
Adv

So-So-CAT

SLA
Manager

SLA
Manager

FIGURE 10: 5GT-SO EBI/WBI reference points

The 5GT-SO EBI/WBI implementation is based on ETSI GS NFV-IFA 013 [5], ETSI GS
NFV-IFA 005 [2], ETSI GS NFV-IFA 006 [25] and ETSI GS NFV-IFA 008 [26]. Service
federation provides nested NFV-NSs through the reference points of the 5GT-SO
NFVO-NSO and the SLA Manager, mainly by implementing and extending interfaces of
ETSI GS NFV-IFA 013 [5]. In particular:

• The So-So-LCM (Lifecycle Management) is implemented through the ETSI GS
NFV-IFA 013 [5] NFV-NS Lifecycle Management Interface. The interface
provides request messages for instantiation, creation, scaling, update, querying,
termination and deletion of network services;

• The So-So-CAT (Service Catalogue) is implemented through the ETSI GS NFV-
IFA 013 [5] NSD Management Interface and the ETSI MEC 10-2 Application
Package Management Interface. The reference point implements mechanisms
for providing updates of flavors and querying NSDs (ETSI GS NFV-IFA 013 [5])
as well as on-boarding or applying changes of MEC Application Packages
(MEC 10-2).

• The So-So-MON (Service Monitoring) is implemented through the ETSI GS
NFV-IFA 013 [5] NFV-NS Performance Management Interface and the ETSI GS
NFV-IFA 013 NFV-NS Fault Management Interface. They provide messages for
monitoring of performances as well as notifications for alarms related to NFV-
NSs;

NFVIaaS or resource federation provides resources or resource abstractions through
the reference points of 5GT-SO NFVO-RO or the SO-SO Resource Management &
Advertising module and the SLA Manager, generally by implementing interfaces of
ETSI GS NFV-IFA 005/006/008 [2][25][26]. In particular:

• The So-So-RMM (Resource Monitoring Management) implementation is based
on ETSI GS NFV-IFA 005/006 [2][25] Virtualized Resource Performance
Management Interface, ETSI GS NFV-IFA 005/006 [2][25] Virtualized Resource
Fault Management Interface, ETSI GS NFV-IFA 008 [26] VNF Lifecycle Change

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 51

H2020-761536

Notification and ETSI GS NFV-IFA 008 [26] VNF Performance & Fault
Management. The limited implementation provides information about the
performance metrics and monitoring reports of the allocated federated
resources or abstractions as well as alarms or notifications of resource failures
or VNFs;

• The So-So-RM (Resource Management) implementation is based on the ETSI
GS NFV-IFA 005/006 [2][25] Software Image Management Interface, ETSI GS
NFV-IFA 005/006 [2][25] Virtualized Compute/ Network/Storage Management
Interface, ETSI GS NFV-IFA 008 [26] VNF Lifecycle Management, ETSI GS
NFV-IFA 008 [26] VNF Configuration Management. The implementation is
limited and directly dependable of the abstraction level and federation level.
Operations for managing VNFs or VMs, software images as well as basic
operation and management of allocated compute/network/storage resources;

• The So-So-RAM (Resource Advertising Management) implementation is based
on ETSI GS NFV-IFA 005/006 [2][25] Virtualized Resource Quota Interfaces.
The implementation is limited to the query requests and broadcasting updates
with purpose of advertising available resources or resource abstractions.

It is important to note that each relation on the 5GT-SO EBI/WBI (between two peering
SOs) has different limitations (e.g. advertising and/or monitoring storage capacity,
without vendor indicator or type of storage parameters, etc.) on each reference point
due to hiding details of the NFV-NSs or abstractions of federated NFVI resources.
These limitations depend of the business agreement levels and policies applied by
each administrative domain. 5GT-SO EBI/WBI contains similar functionalities enabled
through NBI and SBI with expected limitations.

6.6 Service Orchestrator Features

In this section, we provide a detailed presentation of core features of the 5GT-SO. We
begin by presenting a common framework for modeling 5GT-SO-level VNF placement
algorithms, as well as four such algorithms optimizing for different criteria, which we
have designed, implemented, and evaluated. We then present the runtime service
scaling capabilities of 5GT-SO: scaling can be triggered by the vertical, by the 5GT-VS,
or automatically by the 5GT-SO via auto-scaling rules. Service composition, assurance
and SLA management are also discussed. The rest of the section focuses on the
federation features of the 5GT-SO, and in particular service (cross-domain NFV-NS
establishment) and resource (NFVIaaS) federation.

6.6.1 Placement algorithms: framework, description, and evaluation

In this section, we provide four different VNF placement algorithms that operate at the
SO level. These algorithms build on a common framework that defines a set of
optimization goals and constraints. Each algorithm has different features and
capabilities, optimizes for potentially different criteria, and may support different
constraints.

Table 6 presents a qualitative comparison of these algorithms, focusing on their
distinctive characteristics. A detailed description of each algorithm follows.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 52

H2020-761536

TABLE 6: 5GT-SO PLACEMENT ALGORITHM FEATURES

PA Features Optimization criteria

A Genetic algorithm. Can be configured to optimize for one
of three different objectives.

Either cost, latency,
or service availability

B Minimizes latency between VNFs placed at remote NFVI-
PoPs. Also considers inter-PoP link physical distance.

Latency

C Considers penalties associated with SLAs. Uses traffic
forecasting. Reconfigures resource (re)allocation

dynamically in timeslots.

Cost/revenue,
resource utilization

D Clustering techniques to group VNFs and NFVI-PoPs
according to VNF link requirements and inter-PoP link

capacity, respectively. Heuristic to minimize cost and delay
in two separate steps.

Cost vs. latency
tradeoff

6.6.1.1 Framework and system model

The different placement algorithms that have been designed inside the 5GT-SO follow
(unless otherwise noted) a common system model, which is presented in this section.
Table 7 summarizes the notation used in our model.

TABLE 7: SUMMARY OF THE NOTATION USED IN OUR PLACEMENT ALGORITHM FRAMEWORK

Symbol Definition
𝑉 Set of VNFs.

𝑅 Set of resource types.

𝐻 Set of physical points where a VNF can be placed. Can be physical hosts or
their aggregation, e.g., NFVI-PoPs or data centers (depending on the

abstraction provided by the 5GT-MTP). We use the terms host and NFVI-
PoP interchangeably.

𝑆 Set of services to deploy in a single PA request.

𝑟(𝑣, 𝜌) Amount of resource type 𝜌 requested by VNF 𝑣.

𝑑(𝑣) Delay incurred by VNF 𝑣 to process a request.

𝑓(𝑣1, 𝑣2) Capacity (traffic volume) requirements for VNFFG edge 𝑣1→ 𝑣2.

𝑛(𝑠, 𝑣) Number of times a requests of service 𝑠 visits VNF 𝑣.

𝑃(𝑣2|𝑣1, 𝑠) Probability that a request of service 𝑠 visits VNF 𝑣2 immediately after 𝑣1.

𝐷𝑚𝑎𝑥(𝑠) Maximum acceptable delay for service 𝑠, it corresponds to the end-to-end
delay requirement encoded in the NSD.

𝑇(ℎ1, ℎ2) Capacity of the virtual link from host ℎ1 to host ℎ2.

𝛿(ℎ1, ℎ2) Latency of the virtual link from host ℎ1 to host ℎ2.
𝐶(ℎ, 𝜌) Capacity of host ℎ in terms of resource type 𝜌.

𝑚(𝑣) Binary parameter indicating that 𝑣 is a MEC application.

𝑀(ℎ) Binary parameter indicating that ℎ is a MEC-capable host.

𝜅𝑚𝑎𝑥(𝑠) Maximum deployment cost allowed for service 𝑠.

𝑥(ℎ, 𝑣) Binary decision variable indicating that VNF 𝑣 is placed at host ℎ.

𝑙(ℎ, 𝑣) Physical distance3 between the location of host ℎ and the center of the area

requested to place VNF 𝑣.

ℜ(𝑣) Radius of the area around a specified location where VNF 𝑣 is allowed to be
placed.

3 Geographical locations are expressed as GPS coordinates. This distance is therefore the
great-circle distance calculated using the haversine formula [8].

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 53

H2020-761536

We consider that the 5GT-SO receives two main pieces of information, upon which it
can leverage to make orchestration decisions. The former is provided by the 5GT-VS
and is given in the form of the service VNF Forwarding Graph (VNFFG), i.e., the set of
VNFs and edges connecting them, and the deployment flavors representing the service
to be deployed and the associated requirements. The latter is provided by the 5GT-
MTP and refers to the available resources. The representation of the resources
depends on the abstraction level, although our algorithms can work with multiple
different levels of abstraction. Thus, in the following we will refer to the resource
representation as a host graph, where hosts (i.e., vertices) can be either physical
machines, or NFVI-PoPs, depending on the assumed abstraction level, and edges are
virtual links (VLs) connecting hosts.

As far as the VNFFG is concerned, we denote its VNFs (i.e., vertices) by 𝑣 ∈ 𝑉, each
requiring an amount 𝑟(𝑣, 𝜌) ≥ 0 of resource type 𝜌 ∈ 𝑅. Resource typeset 𝑅 includes

resources such as CPU, memory, and storage. In detail, 𝑟-values account for both the
quantity of traffic each VNF has to process (e.g., in Mbits), and the amount of
computational resources needed to process each unit of traffic (e.g., in CPU cycles per
Mbit). Each time data traverse a VNF 𝑣, this incurs a delay 𝑑(𝑣). For each pair of VNFs
𝑣1, 𝑣2 ∈ 𝑉, i.e., for each edge of the VNFFG, we know the amount of traffic 𝑓(𝑣1, 𝑣2) ≥ 0

flowing from 𝑣1 to 𝑣2. Clearly, 𝑓(𝑣1, 𝑣2) = 0 means that there is no traffic between those
VNFs.

The 5GT-SO also knows the set of services to be deployed, 𝑆 = {𝑠1, 𝑠2, … }, the number
of times 𝑛(𝑠, 𝑣) requests of service 𝑠 visit VNF 𝑣, the probabilities 𝑃(𝑣2|𝑣1, 𝑠) that they
visit 𝑣2 immediately after 𝑣1 , and the maximum acceptable delay for that service

𝐷𝑚𝑎𝑥(𝑠). If 𝑛(𝑠, 𝑣) = 0, VNF 𝑣 is not part of service 𝑠. The aforementioned probabilities
indicate how branching in the VNFFG is implemented, and are mainly used when
calculating an estimate of the end-to-end network latency for a given service. For
example, a load balancer 𝑣1 may be present to split the traffic load equally towards two
identical VNFs 𝑣2 and 𝑣3. In this case, 𝑃(𝑣2|𝑣1, 𝑠) = 𝑃(𝑣3|𝑣1, 𝑠) = 0.5.

The host graph has hosts ℎ ∈ 𝐻 as vertices, each with capabilities 𝐶(ℎ, 𝜌) > 0 for each
resource type. Links (VLs) between hosts have capacities 𝑇(ℎ1, ℎ2), expressing the
maximum total quantity of traffic that can flow per second from VNFs hosted at ℎ1 to

VNFs hosted at ℎ2 . Similarly, requests traversing a link incur a delay 𝛿(ℎ1, ℎ2).

It should be noted that a VNF may in fact be a MEC application, which is a constraint
the algorithm needs to consider by placing it at a MEC host. The requirement to be
placed at the edge is indicated by 𝑚, where 𝑚(𝑣) = 1 if the VNF is a MEC application
and 0 otherwise. In the same spirit, 𝑀(ℎ) = 1 if a host is MEC-capable, i.e., it is located
at the mobile edge and can host MEC applications, and 0 otherwise.

The main decision to make at the 5GT-SO is whether to place an instance of VNF 𝑣 at
host ℎ, expressed through a binary variable 𝑥(ℎ, 𝑣) ∈ {0,1}. Each VNF placement incurs

a cost 𝜅(ℎ, 𝑣, 𝑜𝑝). A very relevant factor contributing to 𝜅 is represented by the fees
charged by each different infrastructure provider, op, for the usage of their
infrastructure by placing VNF 𝑣 at host ℎ. The fees are pre-determined and defined by
each provider. The maximum cost per service is denoted by 𝜅𝑚𝑎𝑥(𝑠).

Two sets of constraints must be satisfied, concerning the capabilities of hosts and the
capacity of links, i.e.,

∑ 𝑟(𝑣, 𝜌)𝑥(ℎ, 𝑣) ≤ 𝐶(ℎ, 𝜌), ∀ℎ ∈ 𝐻, 𝜌 ∈ 𝑅,

𝑣∈𝑉

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 54

H2020-761536

∑ 𝑥(ℎ1, 𝑣1)𝑥(ℎ2, 𝑣2)𝑓(𝑣1, 𝑣2)

𝑣1,𝑣2∈𝑉

≤ 𝑇(ℎ1, ℎ2), ∀ℎ1, ℎ2 ∈ 𝐻.

In addition, latency constraints, accounting for both request processing and
propagation delays, as well as cost constraints, have to be met. For each service 𝑠 ∈ 𝑆,
the following must hold.

- The sum of processing delays and delays to traverse links should be below the
maximum end-to-end latency threshold indicated by the vertical:

∑ 𝑛(𝑠, 𝑣)𝑑(𝑣) + ∑ 𝑛(𝑠, 𝑣1)𝑃(𝑣2|𝑣1, 𝑠) ∙

𝑣1,𝑣2∈𝑉𝑣∈𝑉

∑ 𝑥(ℎ1, 𝑣1)𝑥(ℎ2, 𝑣2)𝛿(ℎ1, ℎ2) ≤

ℎ1,ℎ2∈𝐻

𝐷𝑚𝑎𝑥(𝑠).

The first term of the left hand side of the above expression represents the latency
incurred to process a request at the service’s traversed VNFs. Although in many
practical scenarios a given service request would normally traverse each VNF once
(𝑛(𝑠, 𝑣) = 1), there could be cases4 where a request has to pass a VNF multiple times,
resulting in higher processing delay. The second term is an estimate of the latency a
request experiences as it traverses the edges of the VNFFG. Each such edge
contributes to network latency proportionally to its traversal probability. The third sum in
the expression amounts to zero for all host pairs other than the one where VNFs 𝑣1 and

𝑣2 have been placed.

- The sum of fees for the deployment of all the VNFs composing a service should be
below the service’s maximum allowed cost:

∑ 𝑘(ℎ, 𝑣, 𝑜𝑝)𝑥(ℎ, 𝑣)𝑛(𝑠, 𝑣) ≤ 𝜅𝑚𝑎𝑥(𝑠)𝑣∈𝑉,ℎ∈𝐻,𝑜𝑝 .

MEC-related constraints are captured by the following expression:

𝑥(ℎ, 𝑣)𝑚(𝑣) ≤ 𝑀(ℎ), ∀ℎ ∈ 𝐻, 𝑣 ∈ 𝑉.

The above constraints guarantee that a MEC application v (i.e., for which 𝑚(𝑣) = 1)

cannot be placed at a non-MEC host (i.e., for which 𝑀(ℎ) = 0). Note that a regular VNF
is allowed to be placed at a MEC host.

Finally, the location of a VNF can be constrained to a specific geographical area
defined as a circle around given coordinates and with a given radius, as provided by
the vertical. At the same time, location information about each host/NFVI-PoP
(depending on the abstraction) is exposed by the 5GT-MTP. If a location constraint is in
place for a VNF, the latter can be deployed only at one of the locations that are in the
area specified by the vertical. In this case, the following should hold:

𝑥(ℎ, 𝑣)𝑙(ℎ, 𝑣) ≤ ℜ(𝑣), ∀ℎ ∈ 𝐻, 𝑣 ∈ 𝑉,

where 𝑙(ℎ, 𝑣) is the geographical distance between the center of the desired area

specified by the vertical for VNF 𝑣 and the location exposed by the 5GT-MTP for
host/NFVI-PoP ℎ, and ℜ(𝑣) is the radius of the desired area.

Based on this system model, different placement algorithms developed in this project
are introduced along with the performance evaluations in the following sections, while

4 For example, a VNFFG may specify that packets reaching a VNF needs to be passed to
another VNF performing deep packet inspection, and then sent back to the former to continue
their route.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 55

H2020-761536

each of the algorithms look into different optimization criteria and applied to different
use cases, as mentioned at the beginning.

6.6.1.2 Placement Algorithm A

6.6.1.2.1 Description

Placement Algorithm A follows the Genetic Algorithm (GA) paradigm [9]. Genetic
Algorithms are a generic heuristic methodology for solving optimization problems by
efficiently exploring the space of potential solutions. A solution is represented as a
chromosome, which is in turn composed of a number of genes, each corresponding to
a specific property.

A genetic algorithm operates as follows: Starting from a pool of initial solutions, it
iteratively applies genetic operations to selected chromosomes to produce offspring
(i.e., new chromosomes) of better quality according to a fitness function, in an attempt
to drive search towards the optimal solution. The main genetic operations are crossover
and mutation, as explained below. In each iteration of the algorithm (a generation, in
the GA terminology), a new solution pool is generated including the highest quality
chromosomes out of the population of existing ones and their offspring. After a fixed
number of generations or if it is detected that new chromosomes do not significantly
improve the quality of the solution, the algorithm terminates returning the chromosome
with the highest fitness function value. We have adapted the GA methodology to our
problem context as follows:

Encoding: In our case, a chromosome is a specific placement solution. A gene
corresponds to a specific NFVI-PoP, together with the set of VNF instances placed at
it.5

Fitness function and selection: Our genetic algorithm can be adapted to optimize for
different criteria. A cost or delay-minimizing algorithm uses as fitness functions directly
the expressions defined in Section 6.6.1.1 for calculating the overall cost and the end-
to-end latency of a service, respectively.

At the end of a generation, the fitness function is calculated for each chromosome and
the top-S of them form the new solution pool.

If VNF, host, and link failure rates are available, a service reliability-aware fitness
function can be defined, where the aim is to find a placement which minimizes the
probability that any VNFFG component fails.

For the case of service availability, the system model of Section 6.6.1.1 is extended as

follows: Let 𝑞𝑖
(𝑉)

, 𝑞𝑗
(𝐻)

, and 𝑞(ℎ1,ℎ2)
(𝐿)

 denote the failure rates of the i-th VNF, the j-th host

and the host VL (ℎ1, ℎ2), respectively. We assume that the 𝑞𝑖
(𝑉)

 values are available by

the vertical providing the VNFs and the latter values are exposed by the 5GT-MTP. We
define service availability as the probability that all of the VNFs composing the service
instance are accessible, which implies that (i) no VNF instance fails due to internal
reasons, (ii) no host where any of the VNFs deployed fails, and (iii) no host VL involved
in the service instance fails. Although VNF-hosted software, hosts, and links are
assumed to fail independently, VNF failures can be correlated: For a single gene, if the
corresponding host fails, all VNFs of the gene become inaccessible at the same time. A

5 However, assuming a different level of abstraction where the placement algorithm would
decide to place VNFs directly per host, a gene would represent a host instead of an NFVI-PoP.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 56

H2020-761536

gene’s availability, that is, the probability that the VNF group instantiated at host h is
available, is defined as follows:

𝑎ℎ(𝑦) = Pr{𝑎𝑙𝑙 𝑉𝑁𝐹𝑠 𝑎𝑟𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑛𝑑 ℎ 𝑖𝑠 𝑢𝑝} = (1 − 𝑞ℎ
(𝐻)

) ∏ (1 − 𝑞𝑣
(𝑉)

) .

𝑣∈𝑉|𝑦(ℎ,𝑣)=1

The overall availability of a placement is thus given by the probability that all genes
(correlated VNF groups) are available and no VNF link fails (due to the underlying host
link):

𝐴(𝑦) = ∏ 𝑎ℎ(𝑦)

ℎ∈𝐻|{∃𝑣∈𝑉|𝑦(ℎ,𝑣)=1}

 ∏ (1 − 𝑞(ℎ1,ℎ2)
(𝐿)

)

ℎ1,ℎ2∈𝐻|{∃𝑣1,𝑣2∈𝑉|𝑦(ℎ1,𝑣1)=1,𝑦(ℎ2,𝑣2)=1 }

.

Initial population generation: Our GA begins by creating an initial pool of S
chromosomes by performing random VNF-to-host assignment. For each initial solution,
the capacity, delay and availability constraints (if present) are checked, and, if violated,
the chromosome is rejected and a new random placement is attempted.

Crossover: The crossover rate (rc) parameter determines the number of offspring to
produce per generation. The selection of rc involves a trade-off between execution time
and solution quality; typical values range between 0.5 and 1. Each crossover operation
selects two random chromosomes from the pool and combines their genes to derive a
new one. To improve the quality of the produced offspring, we do not select the genes
to combine blindly. Rather, we introduce specific gene efficiency metrics per
optimization objective, and select the genes of the two parents with the highest
efficiencies. After the two parent solutions are selected, their genes are sorted by their
efficiency values. The crossover operation proceeds by selecting the genes with the
highest efficiencies until all VNFs have been placed. In the event that a VNF of a gene
that is about to be added to the new chromosome has already been placed at another
more efficient host, it is ignored. If a gene’s host has already been used, the gene is
ignored. This however can cause a situation where, after all genes of the two parents
have been checked (and have either been included in the new chromosome or
ignored), there are still some VNFs to be placed. If this is the case, the remaining VNFs
are placed in the first available host in a first-fit manner.

Efficiency functions: Depending on the optimization criterion, one of the following
efficiency metrics is used to evaluate a gene during crossover:

Cost efficiency: For each gene representing host h, its cost efficiency is given by
𝐸𝑐(ℎ, 𝑦) = ∑ 𝜅(ℎ, 𝑣)𝑣∈𝑉|𝑦(ℎ,𝑣)=1 , i.e., the sum of the costs of the VNF instances placed at

it.

Latency efficiency: To characterize a gene representing host h from a latency
perspective, we use the average delays of h’s incoming and outgoing host edges

(𝑑𝑖𝑛
̅̅ ̅̅ (ℎ) and 𝑑𝑜𝑢𝑡

̅̅ ̅̅ ̅̅ (ℎ), respectively). A VNF contributes to the gene’s latency efficiency

via the VNFFG edges it is incident to. For example, if 𝑣1 is placed at h, edge (𝑣1, 𝑣2)

contributes 𝑑𝑜𝑢𝑡
̅̅ ̅̅ ̅̅ (ℎ)𝑃(𝑣2|𝑣1, 𝑠). Our rationale is to mix hosts with better delay properties

in the new chromosome. Note that we ignore processing delays in this calculation,
since, according to our system model, the 𝑑(𝑣) values are independent of the
underlying hosts. The latency efficiency for a specific service is thus given by:

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 57

H2020-761536

𝐸𝑙(ℎ, 𝑦, 𝑠) = ∑ 𝑑𝑜𝑢𝑡
̅̅ ̅̅ ̅̅ (ℎ)𝑃(𝑣2|𝑣1, 𝑠)

(𝑣1,𝑣2)|𝑦(ℎ,𝑣1)=1,𝑦(ℎ,𝑣2=0)

+ ∑ 𝑑𝑖𝑛
̅̅ ̅̅ (ℎ)𝑃(𝑣2|𝑣1, 𝑠)

(𝑣1,𝑣2)|𝑦(ℎ,𝑣1)=1,𝑦(ℎ,𝑣2=0)

.

This function promotes genes with many VNFs (since edges between them are zero-
latency ones) and/or genes of “fast” hosts (i.e., those which have low-latency incoming
and outgoing links). If there are more than one services, the latency efficiency of a gene
is defined as the average of its 𝐸𝑙 values across all services.

Service availability efficiency: To characterize the availability of a gene 𝑦, we directly
use the expression for 𝑎ℎ(𝑦).

Mutation: At each generation, and with low probability, each chromosome is subject to
a random change in its genes. In our case, we implement mutation by selecting two
random hosts of a solution and exchanging their VNFs. If the resulting chromosome
violates any constraint, it is rejected. The purpose of mutation is to introduce diversity in
the chromosome pool in order to avoid being trapped into local optima. On the other
hand, the mutation probability rm should be very low so that the fitness-driven evolution
of the population is maintained.

Termination: The algorithm terminates either when the value of the objective function
does not improve by more than δ for a number of consecutive generations
(convergence criterion) or after a fixed number of generations.

6.6.1.2.2 Performance evaluation

We have carried out a set of experiments to evaluate the convergence properties of
Placement Algorithm A and to compare its behavior under different optimization criteria.
We execute the algorithm on a simulated full mesh topology with 16 NFVI-PoPs, where
the algorithm places three services, each composed of 5 to 10 VNFs. The algorithm
terminates if for 30 consecutive generations the value of the best solution does not
improve by more than δ = 10-4.

Table 8 presents the performance of the GA in terms of the cost and (network) latency
objectives, as well as its execution time, for two different configurations (i.e., optimizing
for cost and optimizing for latency). The reported results are average values across 30
iterations on the same topology6. 95% confidence intervals are shown in parentheses.
The experiments executed on an Intel i5 machine with 16 GB of RAM, running Ubuntu
16.04.

TABLE 8: AVERAGE PERFORMANCE OF PLACEMENT ALGORITHM A (GENETIC

ALGORITHM)

Configuration Cost Network latency (s) Execution time (s)
Cost-driven 110.86 (107.84, 113.88) 0.0314 (0.03, 0.032) 75.53 (63.73, 87.34)

Latency-
driven

232.2 (223.64, 240.76) 0.019 (0.018, 0.02) 84.43 (74.98, 93.88)

Figure 11 and Figure 12 present the behavior of the cost- and latency-minimizing
genetic algorithms, respectively, as generations progress. Each figure shows the
evolution of the objective function value for a single execution of the algorithm on the

6 This is necessary due to the stochastic nature of the algorithm.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 58

H2020-761536

same topology and service scenario. Notably, in both cases, after a small number of
generations, the value of the objective function is practically the same and the algorithm
has converged to a solution.

FIGURE 11: COST-MINIMIZING GENETIC ALGORITHM CONVERGENCE BEHAVIOR

FIGURE 12: LATENCY-MINIMIZING GENETIC ALGORITHM CONVERGENCE BEHAVIOR

6.6.1.3 Placement Algorithm B

6.6.1.3.1 Description

The Placement Algorithm realized by SSSA and CTTC (a.k.a. Placement Algorithm B),
is made of two different heuristics that with different objective functions. In the first
Algorithm (i.e., Placement Algorithm B-1), the objective function is the minimization of
the distance (MD) between the selected NFVI-PoPs. If we consider the network latency
proportional to the length of a logical link (LL), the approach is equivalent in minimizing

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 59

H2020-761536

the network latency of the requested NS. The second algorithm proposed (i.e.,
Placement Algorithm B-2) wants to minimize the overall latency (ML). In fact, in this
algorithm, we also consider the NFVI-PoP internal latency parameter of each selected
NFVI-PoP. To explain our devised algorithms, the following statement is considered:

𝑚𝑖𝑛 |∑ 𝑥𝑖| ≤ ∑ 𝑚𝑖𝑛|𝑥𝑖| (1)

Thus, according to (1), to minimize the distance (the latency) of the overall end-to-end
service, we can proceed by minimizing the distance (the latency) of a single
segment/hop forming the entire service. This is done by the MD (ML) algorithms based
on a set of input information provided by the RO-OE starting from (i) the NSD
specifying the service requirements, and (ii) the abstract view of the NFVI specifying
underlying available resources. Accordingly, the algorithms are provided with the VNFs
to be deployed and their characteristics (e.g., required virtual links to connect them,
etc.), and with the required details of the underlying (abstracted) NFVI infrastructure
(e.g., NFVI-PoP capabilities such as aggregated available CPU, RAM and Storage,
Logical Link (LL) attributes and related available resources, etc.).

The MD algorithm (Placement Algorithm -B-1) aims at minimizing the propagation
latency experienced by the data while traversing DC interconnections, and thus the
VNF placement decisions are performed according to the distance between a given
pair of NFVI-PoPs, i.e., length of LL. Hence, for each NFVI-PoP selected for a VNF
composing the service, the MD algorithm seeks for a NFVI-PoP with the minimum
delay from the previously selected one, provided that it has sufficient available
computing resources (i.e., CPU, RAM, storage), and the inter-NFVI-PoP
interconnection (LL) meet both the bandwidth and the latency requirements expressed
for the VNF virtual links. The pseudocode of MD algorithm is shown below.

We have defined the function CHECKRESOURCESAVAILABILITY (lines 1-5) to verify
whether a particular NFVI-PoP has enough available computational (i.e., CPU, RAM,
and Storage) capabilities to host/accommodate the requested VNFs. In lines 6-7 we
verify if the input NSD specifies the presence of a Service Access Point (SAP).

For each VNF of the NSD that need to be allocated (line 8), the MD algorithm checks if
ihe VNF is connected to the same VNFLink of the SAP and set the SAP parameter to
True (lines 9-12). After that we also check if the VNF is a MEC_app, so it has to be
placed in a MEC capable NFVI-PoP. If so, we set the MEC parameter to True (lines 13-
14). Then the algorithm invokes CHECKRESOURCESAVAILABILITY to check for
resource availability (line 15). If the NFVI-PoPs cannot deal with the VNF requirements,
the NS request is blocked (line 16-17).

If we have to place the first VNF (line 18), if the SAP parameter is True, we look for a
NFVI-PoP (from the list of the available NFVI-PoP) whose coordinates are within the
SAP area and we add it to a list possibleNFVI-PoP (lines 18-22). If the SAP parameter
is False, the list possibleNFVI-PoP correspond to the list available_NFVI-PoP (lines 23-
24). The MD algorithm selects randomly the NFVI-PoP where to allocate the VNFfrom
the possible_NFVI-PoP list (line 25) and adds it to the usedNFVI-PoP list (line 26).
Otherwise, if the VNF is not the first one from the targeted NSD to be allocated, both
available_NFVI-PoP and possibleNFVI-PoP are empty (line28) and the
CHECKRESOURCESAVAILABILITY (line 29) function is invoked removing the
previous selectedNFVI-PoP (i.e., the last NFVI-PoP appearing in the usedNFVI-PoP
list). Indeed, such a previous chosen NFVI-PoP is considered to be the source endpoint
of the logical link (LLsrc) that eventually will allow the remote connectivity between the

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 60

H2020-761536

resulting NFVI-PoPs. In this case, for each NFVI-PoP in available_NFVI-PoP (line 33) ,
if the MEC parameter is set to True, we add to possibleNFVI-PoP all the NFVI-PoP
Mec capable, otherwise, if MEC is False, possibleNFVI-PoP correspond to the list
available_NFVI-PoP (Lines 33-37). From the VNFLink structure (within the NSD), it is
extracted the networking requirements in terms of both the bandwidth (Bw) and latency
(l) that the virtual link connecting a pair of VNFs must satisfy (line 38).

In the candidateLL list it is added all the LLs that have the specific selected source
NFVI-PoP, previously allocated (line 45), and do guarantee the VNFLink service
requirements (i.e., Bw and the l). Among all the elements in the candidateLL list, the
shortest one (line 47) with respect to the distance is chosen. For the sake of
clarification, it is worth noting that among the set of attributes describing every LL, there
is a parameter related to the real LL distance (e.g., expressed in km) for each pair of
interconnected NFVI-PoPs. The chosen source LL (referred to as LL_s) is then added
to the usedLL (line 48). The remote LL_s endpoint, that is the destination NFVI-PoP
(LLdst_s) is then added as well in the usedNFVI-PoP (line 30). Finally, it is updated the
resulting TotalLatency with the latency associated to the LL_s (latency_s) and the
internal latency of the selected NFVI-PoP (line 50).

Algorithm B-1: Minimum Distance (MD) Algorithm

Input: NSD, NFVI
Output: response=[usedNFVI-PoPs,usedLLs, TotalLatency] OR BlockVNF-FG_Req
Inizialization: Parse the request and extract VNFs parameter to be allocated
available_NFVI-PoP = Ø
candidate_NFVI-PoP = Ø
candidate_LL = Ø
usedNFVI-PoP = Ø
usedLL = Ø
TotalLatency = 0

1: FUNCTION CHECKRESOURCESAVAILABILITY:
2: for each NFVI-PoP in NFVI:
3: check_resource_availability (CPU, RAM, Storage)
4: if resource_Available:
5: available_NFVI-PoP.append(NFVI-PoP_i)
6:if SAP in NSD:
7: SAP_info=[coordinates, VNFLink_id]
8:for each VNF in NSD:

9: for each CP in VNF:
10: if CP[‘VNFLinkID’]==SAP_info[1]
11: //VNF has to be placed in a NFVI-PoP within the coordinates SAP_info[0]
12: SAP=True
13: if 'MEC’ in VNF['requirements’]:
14: MEC=True
15: CHECKRESOURCESAVAILABILITY
16: if available_NFVI-PoP = Ø:
17: return BlockVNF-FG_Req
18: elif usedNFVI-PoP = Ø:
19: if SAP==True:
20: for each NFVI-PoP in available_NFVI-PoP:
21: if NFVI-POP['coordinates’] in SAP_info[0]:
22: possibleNFVI-PoP.append(NFVI-PoP)
23: else:

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 61

H2020-761536

24: possibleNFVI-PoP= available_NFVI-PoP
25: selectedNFVI-PoP=random(possibleNFVI-PoP)
26: usedNFVI-PoP.append(selectedNFVI-PoP)
27: else:
28: available_NFVI-PoP = Ø, possible NFVI-PoP= Ø
29: CHECKRESOURCESAVAILABILITY
30: if available_NFVI-PoP = Ø:
31: return BlockVNF-FG_Req
32: else:
33: for each NFVI-PoP in available_NFVI-PoP:
34: if MEC==True:
35: possible_NFVI_PoP.append(MEC_capable_NFVI-PoP)
36: else:
37: possible_NFVI-PoP= available_NFVI-PoP
38: for each VNFLink:
39: get(Bw, l)
40: for each LL in NFVI:
41: i=length(usedNFVI-PoP)-1
42: if LLsrc = usedNFVI-PoP[i]:
43: if LLbw>=Bw and LLl<=l:
44: if LLdst in possible_NFVI_PoP \LLsrc:
45: candidateLL.append([LL,
 length, LLdst, latency])
46: for each candidateLL:
47: min(candidateLL[i][2]} //compare length and
 select the shortest one
48: usedLL.append(LL_s)
49: usedNFVI-PoP.append(LLdst_s)
50: TotalLatency=+latency_s+NFVI-PoPsInternalLatency
51: return response

The ML algorithm (Placement Algorithm B-2) aims at at minimizing the overall latency
which is defined as the sum of the NFVI-PoP internal latency and the incurred LL
latency that connects them. Thus, VNF placement decisions are performed according
to the processing latency featured by NFVI-PoPs and based on the distance between a
given pair of NFVI-PoPs, i.e., length of LL. Hence, for each NFVI-PoP selected for a
VNF composing the service, the ML algorithm seeks for a NFVI-PoP that minimize the
sum of the processing latency at hosts and the propagation latency at the LL reaching
that NFVI-PoPs, provided that it has sufficient available computing resources (i.e.,
CPU, RAM, storage), and the inter-NFVI-PoP interconnection (LL) meet both the
bandwidth and the latency requirements expressed for the VNF virtual links. The
pseudocode of the ML algorithm is shown below.

Similarly to the MD algorithm, we have defined the function
CHECKRESOURCESAVAILABILITY (lines 1-5) to verify whether a particular NFVI-
PoP has enough available computational (i.e., CPU, RAM, and Storage) capabilities to
host/accommodate the requested VNFs. Also the ML algortihm also checks if in the
NSD is specified the SAP location (Lines 6-7).

From line 8 to line 24, the procedure is the same as the MD Algorithm. Conversely to
the MD algorithm, in the ML algorithm the NFVI-PoP where to allocate the first VNF in
the one with the minimum Internal latency (line 25), that is added to the usedNFVI-PoP
List (Line 26). The TotalLatency value is updated with the NFVI-PoP Internal latency
(line 27).

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 62

H2020-761536

Otherwise, if a VNF was already allocated, likewise the MD algorithm, the
CHECKRESOURCESAVAILABILITY (line 30) function is triggered, where the
previously selected NFVI-PoP (the last from the usedNFVI-PoP list) is removed. Recall
that, as said before, such previously selected NFVI-PoP becomes the source endpoint
of the LL (i.e., LLsrc). Also in this Algorithm the MEC parameter (if present) of a VNF
has to match the MEC capability of the NFVI-PoP where to place it (Lines 35-38). From
NSD’s VNFLink structure, both the Bw and l requirements are extracted (line 40).

In the candidateLL list, it is added those existing LLs outgoing the chosen source NFVI-
PoP that can accommodate the required Bw and the l of the VNFLink. For each of the
resulting LL, the algorithm computes the tempLatency as the sum of the LL_Latency
(delay associated to the LL) and the src/dstNFVI-PoPInternalLatency. Among all the
elements in the candidateLL list, the one with the smallest computed tempLatency is
chosen (line 49). This LL (called LL_s) is then added to the usedLL (line 50), where its
destination NFVI-PoP (LLdst_s) is included into the usedNFVI-PoP (line 51). Last but
not least the TotalLatency is updated with the previously computed tempLatency (line
52).

Algorithm B-2: Minimum Latency (ML) Algorithm

Input: NSD, NFVI
Output: response=[usedNFVI-PoPs,usedLLs, TotalLatency] OR BlockVNF-FG_Req
Inizialization: Parse the request and extract VNFs parameter to be allocated
available_NFVI-PoP = Ø
candidate_NFVI-PoP = Ø
candidate_LL = Ø
usedNFVI-PoP = Ø
usedLL = Ø
TotalLatency = 0

1: FUNCTION CHECKRESOURCESAVAILABILITY:
2: for each NFVI-PoP in NFVI:
3: check_resource_availability (CPU, RAM, Storage)
4: if resource_Available:
5: available_NFVI-PoP.append(NFVI-PoP_i)
6:if SAP in NSD:
7: SAP_info=[coordinates, VNFLink_id]
8:for each VNF in NSD:
9: for each CP in VNF:
10: if CP[‘VNFLink’]==SAP_info[1]
11: VNF has to be placed in a NFVI-PoP within the coordinates SAP_info[0]
12: SAP=True
13: if 'MEC’ in VNF['requirements’]:
14: MEC=True
15: CHECKRESOURCESAVAILABILITY
16: if available_NFVI-PoP = Ø:
17: return BlockVNF-FG_Req
18: elif usedNFVI-PoP = Ø:
19: if SAP==True:
20: for each NFVI-PoP in available_NFVI-PoP:
21: if NFVI-POP['coordinates’] in SAP_info[0]:
22: possibleNFVI-PoP.append(NFVI-PoP)
23: else:
24: possibleNFVI-PoP= available_NFVI-PoP
25: selectedNFVI-PoP=min(possibleNFVI-PoP[‘internal_latency’])
26: usedNFVI-PoP.append(selectedNFVI-PoP)
27: TotalLatency=+NFVI-PoPInternalLatency

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 63

H2020-761536

28: else:
29: available_NFVI-PoP = Ø, possible NFVI-PoP= Ø
30: CHECKRESOURCESAVAILABILITY
31: if available_NFVI-PoP = Ø:
32: return BlockVNF-FG_Req
33: else:
34: for each NFVI-PoP in available_NFVI-PoP:
35: if MEC==True:
36: possible_NFVI_PoP.append(MEC_capable_NFVI-PoP)
37: else:
38: possible_NFVI-PoP= available_NFVI-PoP
39: for each VNFLink:
40: get(Bw, l)
41: for each LL in NFVI:
42: i=length(usedNFVI-PoP)-1
43: if LLsrc = usedNFVI-PoP[i]:
44: if LLbw>=Bw and LLl<=l:
45: if LLdst in possible_NFVI_PoP \LLsrc:
46: tempLatency =
 latency+LLdstInternalLatency
47: candidateLL.append([LL, LLdst,
 tempLatency])
48: for each candidateLL:
49: min(candidateLL[i][2]) //compare tempLatency and select
 // the smallest one
50: usedLL.append(LL_s)
51: usedNFVI-PoP.append(LLdst_s)
52: TotalLatency = +tempLatency
53: return response

6.6.1.3.2 Performance evaluation

The experimental performance evaluation is performed using the CTTC ADRENALINE
testbed (represented in Figure 13) encompassing a cloud/network infrastructure. For
the sake of clearness, the building block termed Cloud & Network Orchestrator
(Allocator) in the picture takes into account a specific set of functions mostly related to
the resource orchestration which in the framework of 5GT, these functions are
performed at both the SO and the MTP. Moreover, T-SDN (PCECC) controller used for
the experimental setup provides the operations and functions that a WIM plugin (within
the context of 5GT architecture) provides. A detailed description of the testbed and of
the experiment setting is reported in [11].

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 64

H2020-761536

FIGURE 13: ADRENALINE TESTBED SETUP

The performance evaluation has been conducted by considering a network service
composed of two VNFs. During the test we have not considered the location
constraints related to the SAP and the MEC constraints.

FIGURE 14: ACCEPTED REQUESTS

In Figure 14, the VNF-FG_Req’s acceptance ratio is illustrated as a function of the
traffic load. At the lowest traffic load, the NNI algorithm presents comparable
acceptance ratio values with respect to both ML and MD algorithms. . The NNI
algorithm is the one without orchestration capabilities. In fact, in this case, the Cloud
and Network Orchestrator has no information (knowledge) about the underlying
network. We recall that NNI performs separated cloud and networking resource
selections and does not address the minimization of the distance (in km) and the
latency (in ms) as done in MD and ML. This result in fewer constraints to be fulfilled
thereby obscuring the less efficient resource selection due to the separation. This

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 65

H2020-761536

explains the high values of acceptance rates for NNI, even higher than MD and ML for
low traffic Load values (4 and 6 Er) where NNI achieves more than 99% of accepted
requests. However, as traffic load increases, the performance of NNI significantly
degrades (e.g., at traffic load set to 14 Er the acceptance rate is around 55%), whilst
MD and ML algorithms present acceptance ratio values smoothly decreasing, being
stabilized around 85%. The rationale behind this is at higher offered traffic load, cloud
and networking resources become more occupied and the separated cloud and
networking selections made by NNI encounters more difficulties to be satisfied
(especially for the cloud) despite fewer constraints need to be fulfilled. On the other
hand, the advantage of joint selections becomes evident for ML and MD where they
allow attaining a more efficient use of the cloud and network resources thanks to the
fact that both are in somehow jointly selected at the Allocator.

FIGURE 15: END-TO-END DELAY

FIGURE 16: PROPAGATION DELAY

Figure 15 and Figure 16 depict the propagation delay (due to fiber links) and the end-
to-end delay (i.e., propagation delay plus DC processing latency) for the orchestration
approaches. As shown in Figure 15, ML approach does minimize the end-to-end
experienced latency (i.e., sum of the propagation and processing delays). Conversely,
as shown in Figure 16, MD approach, aiming at minimizing distance between source
and destination DCs, attains the lowest propagation delay. As expected, NNI achieves
the worst performance since it focuses on simply satisfying the VNF-FG_Req’s latency
requirement without conducting an optimization of any delay source.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 66

H2020-761536

FIGURE 17: SETUP TIME

Figure 17 depicts the average setup time (in s) with respect to the offered traffic load.
The setup time is computed as the elapsed time between the reception of an incoming
VNF-FG_Req and when it is successfully set up. This indicator is always higher in both
MD and ML orchestration strategies than NNI because it results the price to pay for a
truly joint cloud and net-work orchestration requiring further operations with the T-SDN
Controller to acquire aggregated network resource (at packet layer) information. The
setup time overhead introduced by ML and MD approaches with respect to the NNI
strategy is slightly above 2 seconds which remains almost steady as traffic load grows.
However, we observe increasing traffic load the average setup time performance for all
the resource orchestration strategies tends to be reduced. Traffic load being increased
entails that larger resources (both compute and networking such as Gw’s packet port
bandwidth) are more occupied.

6.6.1.4 Placement Algorithm C

6.6.1.4.1 Description

The key idea of the Placement Algorithm C is to overbook the amount of NFV-NSs
through driving the reservation of the resource closer to the actual usage. This enables
dynamic resource sharing among vertical services and thus increasing the resource
efficiency and boosting the revenue. The algorithm constantly receives the monitoring
report through the monitoring platform on the resource usage for each NFV-NS and
leverages the ability of 5G-TRANSFORMER Service Orchestrator (5GT-SO) to
reallocate the resources of its deployed network services during configurable time
windows. Intuitively, we allocate less resource to network services during the periods
that exhibit a low activity allocating those spare resources to the network services that
are having high activity peaks. In fact, the algorithm assumes that verticals have an
agreement with the 5GT service provider on the SLA and its price (service reward). In
detail, the assumption is that the price is fixed during the total service time of the
deployed service. However, resource underprovising has a risk of SLA violation. Thus,
the algorithm balances the risk of service disruption reimbursing the verticals back an
amount (service penalty) proportional to the service disruption.

We formulate the placement algorithm as an optimization problem running periodically
on a slotted-time system. That is, we run our placement algorithm at the beginning of
each slot and we only reconfigure our system only at the beginning of the next slot (e.g.
each slot might have a duration of an hour). We design the following objective function:

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 67

H2020-761536

The objective function tries to minimize and recomput the overall cost of the system
subtracting the potential penalties (𝐾𝜏) and the reward (𝑅𝜏) among all the network
service requests (𝒯), paths (𝒫), base stations (ℬ) and cloud units (𝐶). The objective
function is composed of two kinds of optimization variables. The set 𝒙 contains the

binary variables managing the admission control while 𝒛 contains a set of continuous
variables managing the resource allocation. Furthermore, 𝜌 function estimates the
potential service disruption weighting a forecast of the resource deficit with the risk of a
wrong prediction. Finally, the optimization function is subject to two sets of constrains.
On the one hand, the system is subject to a decoupled set of constrains such as total
resource capacity and maximum delay. On the other hand, the system is subject to a
couple set of constrains which indicated that the resources granted for an accepted
NFV-NS should be bigger than the forecasted utilization and less than the vertical SLA.
We solve this optimization problem using Bender’s decomposition and a heuristic
algorithm.

6.6.1.4.2 Performance evaluation

We evaluated our approach against a no-overbooking scenario considering three types
of network services: eMBB (enhanced Mobile Broad Band), mMTC (massive Machine
type communications) and uRLLC (Low-latency communications). We simulate how
these service behave when running our placement algorithm. In Figure 18 we observe
how overbooking leads to a better resource utilization and boosts the revenue since the
system has more room to accept NFV-NSs. We also observe how accurate predictions
are key to take more risks when under-provisioning a network service accepted into our
system.

FIGURE 18: PERFORMANCE OF ALGORITHM C

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 68

H2020-761536

6.6.1.5 Placement Algorithm D

6.6.1.5.1 Description

The high-level goal of Algorithm D, based on a cluster-based approach, is to find the
best tradeoff between the cost for the operator, as expressed by the 𝜅-parameters, and
the service latency. The algorithm follows a two-step approach, dealing with delay
constraints and cost separately, in two different stages:

1. We divide both the VNFFG and the host graph into clusters in such a way to

guarantee low network delays;

2. we assign VNFs in each VNFFG cluster to hosts in the corresponding host

cluster so as to ensure low costs 𝜅(ℎ, 𝑣, 𝑜𝑝).

Clustering stage. The intuition behind this stage is that, in order to meet service delay
constraints, we must keep network delays low, and this in turn means having as little
traffic as possible flowing on high-delay links between hosts. Therefore, we cluster both
the VNFFG and the host graph in the same number of clusters, ensuring that: (i) in the
VNF graph, high-traffic edges connect VNFs of the same cluster and low-traffic edges
connect VNFs of different clusters; (ii) in the host graph, low-delay links connect hosts
of the same cluster and high-delay links connect hosts of different clusters.

We adopt an iterative, hierarchical clustering technique [10]: at the first iteration, each
node starts in its own cluster (singleton). At subsequent iterations, the two clusters
connected by the highest-traffic edge in the VNFFG, and the two connected by the
lowest-delay edge in the host graph, are joined.

Assignment stage. In this stage, we have to decide at which host each VNF shall run.
Due to the previous clustering stage, network delays can be ignored, while processing
delays 𝑑 only depends on the VNF and not on the host at which it runs. Therefore, we
can assign VNFs to hosts with the sole purpose of minimizing costs; specifically, we
start from the VNF with the largest delay and place it at the cheapest host with enough
spare resources to run it.

In many situations, multiple hosts will be associated with the same cost. In these cases,
we break ties by trying to balance the load across different hosts. Formally, we choose
the VNF to place and the host at which it should be placed so that the following quantity
is minimized:

max
ℎ∈𝐻

max
𝜌∈𝑅

∑ 𝑥(ℎ, 𝑣)𝑟(𝜌, 𝑣)𝑣∈𝑉

𝐶(ℎ, 𝜌)
.

In the expression above, the fraction represents how close to exhaustion resource 𝜌 is
at host ℎ. We seek to minimize the maximum of such ratios among all resources and
hosts, thus reducing the risk to have, e.g., hosts with plenty of spare CPU but no free
memory.

Importantly, each step of our approach has linear time complexity in the number of
VNFs, hosts, and links; therefore, the global complexity is linear as well. This
guarantees very quick decisions, enabling the 5GT-SO to quickly react to new requests
and changed conditions.

Furthermore, the approach can be easily extended to multi-domain scenarios where
federation can be exploited in case of lack of resources in the domain controlled by the
5GT-SO that is in charge of deploying the service requested by the 5GT-VS. In
particular, the algorithm can be extended as follows:

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 69

H2020-761536

• in the clustering stage, edges connecting hosts belonging to different domains

should be assigned higher weight, so as to limit the amount of traffic flowing

across different domains;

• in the assignment stage, hosts belonging to foreign domains should be

assigned higher costs, to model the fact that resources from foreign domains

ought to be used only when necessary.

6.6.1.5.2 Performance evaluation

We compare our algorithm against Placement Algorithm A (GA) in its cost- and delay-
minimizing configurations and for the same topology and service scenario as in the
experiments of Section 6.6.1.2.2. Figure 19 shows the cost and delay associated with
our algorithm; each yellow dot therein corresponds to a specific number of clusters,
varying from 1 to 7. It is easy to see that changing the number of clusters leads to
different cost/delay trade-offs.

FIGURE 19: PERFORMANCE OF ALGORITHM D AND OF ALGORITHM A

The two purple markers correspond to the results of the GA-based benchmark under
the two objectives it supports: when it is set to minimize delay, the resulting
configuration is similar to the one generated by the cluster-based approach. Setting the
GA algorithm to minimize costs results in significantly lower costs than the cluster-
based approach, but in a much higher delay.

Finally, it is worth mentioning that the execution time is below one second for the
cluster-based approach, against one minute for the GA benchmark.

6.6.2 Service Scaling

6.6.2.1 Motivation

5GT Vertical Services are designed to be deployed and used in highly dynamic
environments. Here the volume of service requests and the mobile traffic might change
drastically and unexpectedly. Moreover, users might connect and disconnect from the
service at a very high rate.

Provisioning a service with the size required to serve the highest anticipated traffic
might be overly expensive, for example, the traffic might be as much as 10x higher
during the day than at night. Moreover, such strategy might still lead to interruptions of
the service or degradation of the QoS during unforeseen peaks.

To mitigate these issues, the 5GT-SO offers the capability of scaling the service at
runtime, without service interruption, in order to be able to accommodate a very high

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 70

H2020-761536

number of peak users without wasting resources in periods where the service demand
is lower.

In 5G-TRANSFORMER three different types of service scaling have been defined,
Vertical-driven VSI Scaling, Automated VSI Scaling and Automated NFV-NS Scaling,
as summarized in the following sections.

6.6.2.2 Vertical-driven VSI Scaling

The Vertical-driven VSI Scaling occurs whenever the scaling of a vertical service
instance is triggered by the vertical, either manually through the GUI of the 5GT-VS or
through the 5GT-VS REST API. The REST API is automatically triggered by some
other tool under the vertical’s control (e.g. embedded in its own applications) and
external to the 5GT platform. In both cases, a message is sent to the 5GT-VS, which,
after checking that the request is acceptable, identifies the NFV-NS instance(s) to be
scaled and invokes the 5GT-SO by sending a ScaleNsRequest (according to IFA 013,
7.3.4.2 [5]) to its NBI.

The 5GT-SO NBI dispatches the request to the SOE, which identifies the changes that
should be applied to the NFV-NS instance. Then, for each resource identified, either to
be created, to be removed or to be updated, the SOE contacts the ROOE with the
resource request, which in turn manages the low-level requests towards the MANO and
WIM components.

6.6.2.3 Automated VSI Scaling

The Automated VSI Scaling occurs whenever the 5GT-VS, usually its Arbitrator
component, encounters the need to resize a vertical service or a network slice. This
leads the 5GT-VS to trigger a scaling action on the corresponding NFV-NS instance.
The most likely scenario is if the vertical customer has exhausted its resources quota,
but it needs to instantiate a high priority service. In that case the 5GT-VS scales down
another – lower priority – service in order to free the resources required to instantiate the
high priority service.

From the point of view of the 5GT-SO, this case is equal to the Vertical-driven scaling,
as in both cases the 5GT-VS will send a ScaleNsRequest to the 5GT-SO, and the 5GT-
SO will react in exactly the same way.

6.6.2.4 Automated NFV-NS Scaling

The Automated NFV-NS scaling is driven by the auto-scaling rules expressed in the
NFV-NSD and it is managed entirely at the 5GT-SO level. Each auto-scaling rule
contains a condition, based on the service’s monitored data, and a reaction, i.e. a
scaling action. Whenever the condition is verified, the scaling reaction is performed by
the 5GT-SO.

The whole procedure is coordinated by the SLA Manager (see section 6.4.10). During
the NFV-NS instantiation phase, the SLA Manager subscribes to the Monitoring
Platform according to the “conditions” encoded in the auto-scaling rules of the NSD, in
order to receive the required alerts during the service runtime. Whenever the SLA
Manager is notified that one of the conditions is verified, it will send to the 5GT-SO a
ScaleNsRequest based on the “reaction” specified for that condition in the auto-scaling
rule. From then on, everything proceeds as in the other cases.

6.6.3 Service Composition

Service composition is the process of joining already instantiated NFV-NS instances
with new NFV-NS instances that need to be instantiated. The service composition as a

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 71

H2020-761536

joining process can be executed as concatenation of NFV-NS or composition of NFV-
NS.

The concatenation of NFV-NS consists of instantiating a new NFV-NS instance and
establishing connections with already existing (up-and-running) NFV-NSs. Each of the
concatenated NFV-NS can operate independently but being concatenated can provide
different features and/or new E2E services. In case one of the NFV-NS instances is
terminated, the rest NFV-NS instances would remain active and provide their service
features.

The composition of NFV-NS consists of creating a new composite NFV-NS instance
that would contain a set of nested NFV-NSs. The set of NFV-NSs can be combination
of already instantiated and active NFV-NS instances and new NFV-NS instances. The
composite NFV-NS is orchestrated as a single instance. Applying modification to the
composite NFV-NS instance affects each of the nested NFV-NS. The nested NFV-NS
are not independent and the connections between each nested NFV-NS are not
dynamically changed.

6.6.4 Service Assurance and SLA Management

Service assurance is the application of policies and processes with a goal to ensure
that services offered over networks and computational resources meet a pre-defined
service quality level for an optimal subscriber experience.

Each NFV-NS is instantiated with a certain configuration, which contains scaling,
monitoring and alerting rules. These configurations are controlled by the Configuration,
Monitoring and SLA Managers to meet certain SLA for the service.

The SLA Management capabilities are covered by SLA Manager features which are
described in section 6.4.10.

6.6.5 Service Federation

Service federation is the overall process of establishing, consuming or providing NFV
network services (NFV-NS) by an administrative domain from/to other (peering/partner)
administrative domain. The administrative domain that requests service is referred to
as consumer domain while the peering administrative domain capable of providing
service is a provider domain. The service federation is the combination of establishing
business/service level agreements among the administrative domains and
consuming/providing federated nested NFV-NSs that are part of composite End-to-end
NFV-NS. The details about the business/service agreements are out of scope of 5G-
TRANSFORMER. Section 6.6.5.1 focuses on the definition and procedure of service
federation. The Section 6.6.5.2 focuses on the ETSI GS NFV-IFA 028 [28] solution for
multi-domain orchestration and decomposition of composite NFV-NSs. The last
section, Section 6.6.5.3 briefly explains the exchange of information regarding available
services for federation among different domains.

6.6.5.1 Federation Assumptions: Service delegation & Service federation

The service federation, as a concept of deploying a nested NFV-NS of a composite
NFV-NS in an external domain or of providing a nested NFV-NS to an external domain,
is a broad concept. It appears in two forms: service delegation & service federation.
Both procedures are orchestrated by the Composite NSO module of the 5GT-SO.

Service delegation is the process of delegating the request for a service instantiation to
an external (federated) domain. Generally, when a 5GT-VS issues a request for
instantiation of a single NFV-NS (not composite), the request is received by a 5GT-SO

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 72

H2020-761536

(Composite NSO) on the NBI. The Composite NSO analyses the request and decides
to delegate to an external/peering domain. The Composite NSO simply redirects the
request on the E/WBI (So-So-LCM). The peering 5GT-SO (Composite NSO) accepts
the request and instantiates the single NFV-NS. Note that federation of composite NFV-
NS or further decomposition by the provider domain Composite NSO is not foreseen.
More information regarding decomposition of NFV-NSs can be found in Section 6.6.5.2.
Upon instantiation of the single NFV-NS, it sends back all the information to the
consumer 5GT-SO (Composite NSO). The consumer Composite NSO redirects the
response back to the 5GT-VS on the NBI. The local/consumer 5GT-SO role is to act as
a proxy between the 5GT-VS and the federated/provider 5GT-SO. The 5GT-VS is not
aware of the setup, hence service delegation is transparent for the 5GT-VS. The life-
cycle management is handled by the federated/provider 5GT-SO. The monitoring
information is delivered to the 5GT-VS using the local/consumer 5GT-SO as proxy as
well.

Federation of services in 5GT-SO follows a similar approach as in ETSI GS NFV-IFA
028 [28]. Federation of services is used for composite NFV-NSs or single NFV-NSs that
are decomposed by the NS decomposition algorithms. The composite NFV-NS has
defined a set of nested NFV-NSs that by instantiating each of them and stitching them
together form the composite End-to-end NFV-NS. On the other hand, the NS
decomposition algorithm runs at instantiation time and generates a set of nested NFV-
NS out of a single NFV-NS. In both cases, the Composite NSO decides for each of the
nested NFV-NS whether to deploy it locally or in a peering/federated domain. The
process of instantiating part of a composite NFV-NS (one or more nested NFV-NSs) in
a federated domain and another part in a local domain in order to form the end-to-end
NFV-NS is defined as service federation. The main difference with respect to service
delegation is that the consumer Composite NSO has an active role in orchestrating the
composite End-to-end NFV-NS.

The 5GT-SO receives a request for instantiation of a composite NFV-NS/ single NFV-
NS from 5GT-VS on the NBI. In the case of single NFV-NS, the Composite NSO first
makes decomposition of the requested NFV-NS into several nested NFV-NSs using the
NS decomposition algorithm module. More on the decomposition are described in
Section 6.6.5.2. Afterwards, the Composite NSO decides where to instantiate each of
the nested NFV-NS, in the local domain or in a federated domain using service
federation. The reasons can be diverse, such as: lack of resources provided by the
local 5GT-MTP, different target location that is not supported by the administrative
footprint, extension of services, unsupported NFV-NSs, lack of on-boarded NSDs for
the nested NFV-NS, etc.

Upon the decision for service federation, the Composite NSO queries a peering
administrative domain for availability of providing the requested nested NFV-NS.
(Alternatively, the set of offered services could be pre-negotiated offline among
administrative domains.) Note that the information of availability is previously stored in
the local Catalogue Database (DB) and the network connections to all peering 5GT-
SOs are already established. Optionally, for the dynamic decomposition case, the
consumer Composite NSO can provide an NSD to the peering (provider) 5GT-SO for
the requested NFV-NS for federation (e.g., for more specific deployment flavor). This
optional case is for further study. The provider Composite NSO checks & confirms the
availability and starts with instantiation of the federated NFV-NS. The instantiation
procedure in the provider domain is similar to instantiating local nested NFV-NS
(through the Constituent NSO, RO-OE, RO-EE, etc.). However, the process is marked
as “federated NFV-NS” at starting time. Once the provider domain instantiates the

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 73

H2020-761536

federated nested NFV-NS, the provider Composite NSO confirms the instantiation to
the consumer Composite NSO. The Composite NSO checks instantiation of both local
nested NFV-NSs and federated NFV-NSs before proceeding with the stitching
procedure. In the stitching procedure the Composite NSO instructs the Composite RO
to exchange information and setup interconnections with the provider domain
Composite RO on the E/WBI (So-So-RM). Once all the interconnections are set locally
and with the provider domain, the composite End-to-end NFV-NS is up and running.

The implementation workflow of establishing service federation is covered in Section
6.7.7.

As in ETSI GS NFV-IFA 028 [28], the consumer Composite NSO is not aware of the
resources and VNFs that the provider Composite NSO is using to provide the federated
NFV-NS. The consumer 5GT-SO NFVO-NSO is using the So-So-LCM to send requests
for lifecycle operations of the provided NFV network service. The lifecycle operations
are performed by the provider 5GT-SO NFVO-NSO. The So-So-MON allows exchange
of limited information consisting of performance indicators and fault alarms. According
to the already negotiated terms and conditions, some performance indicators may be
hidden from the consumer domain. The 5GT-SO NFVO-NSO is using the So-So-CAT
reference point to exchange catalogue updates, querying for NSDs or on-boarding
MEC AppDs.

6.6.5.2 NFV-NS decomposition and NFVO Multi-domain orchestration

The use case of offering NFV-NS to other administrative domains is covered in ETSI
GS NFV-IFA 028 [28]. In the reference document, it is described how composite NFV-
NS can span onto separate administrative domains. NFVO Multi-domain orchestration
of NFV-NSs is done upon decomposition of composite NFV-NS received from the 5GT-
VS by the 5GT-SO NFVO or by handling those composite NFV-NSs that come from the
5GT-VS. The result of decomposing a composite NFV-NS is a set of multiple nested
NFV-NS. The decomposition of the requested NFV-NS can be static or dynamic. Static
decomposition is prearranged when the composite NSD is on-boarded. On the other
hand, dynamic decomposition generates the set of nested NFV-NSs during
instantiation time as a result of applying decomposition algorithms in the NS
decomposition algorithm module. These algorithms may optimize the decomposition
process according to the current overview of available resources at instantiation time or
based on other metrics. Upon decomposition, each nested NFV-NS can be instantiated
on a different administrative domain as a federated nested NFV-NS and by chaining it
with the constituent nested NFV-NSs, together, they form the requested composite
NFV-NS. According to the ETSI GS NFV-IFA 028 architectural approach [28] the NFVO
Multi-domain orchestration of NFV-NSs can be established using the Or-Or interface
between the NFVO belonging to a consumer domain and the NFVO belonging to a
provider domain. The consumer NFVO is requesting nested NFV-NS to be federated at
the provider NFVO. Once the federated NFV-NS is instantiated, the consumer NFVO
can continue requesting Lifecycle Management (LCM) operations to the provider
NFVO. However, the provider domain is responsible for all NFVO functionalities and
LCM operations over the established federated nested NFV-NS. The consumer NFVO
is aware neither of the resources that are part of the provider NFVO nor of the exact
placement of the VNFs and corresponding interactions with its underlying MTP for their
eventual deployment.

6.6.5.3 Catalogue of services

The catalogue of services can be formed dynamically or statically. In the dynamic
approach, each administrative domain (5GT-SO) locally creates a list of NFV-NSs that

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 74

H2020-761536

can provide as federated NFV-NS to other peering administrative domains based on
the capabilities and previously on-boarded NSDs. Each list is broadcasted to peering
administrative domains and stored in their Catalogue DB. Note that we assume that
the network of peering administrative domains is already established. Optionally, the
catalogue list can be dynamically extended due to on-boarding of a new NSDs or by a
request from peering 5GT-SOs (other administrative domains). The dynamic approach
is intended for further study.

The static approach is simple and time endurable. Each administrative domain
implementing the 5G TRANSFORMER system estimates its capabilities and generates
a list of possible services that it can offer as provider of NFV-NSaaS (service
federation) to other partnering administrative domains. This list of NFV-NSs is later
negotiated (e.g., on business agreements) with each peering domain. Depending on
the federation level and business/service level agreements, it is reduced or extended.
The final and agreed modifications of the list of services represent the catalogue of
(offered) services that are delivered to the specific partnering administrative domain.
The partnering administrative domain receives the catalogue of services and stores it in
the NFV-NS/VNF Catalogue Database of the 5GT-SO. All available services that can
be consumed from an external partnering administrative domains are stored in this
database.

6.6.6 Resource Federation
Resource federation is the overall process of consuming or providing NFVI resources

from or to external federated domains. The resource federation process is divided

between establishing business/service level agreements and the allocation process of

providing/consuming NFVI resources. In this section we are focusing on the allocation

process. Throughout the document, the resource federation is also referred to as NFVI

as a Service (NFVIaaS). Based on the agreed terms and conditions, a share of the

resource capacity is available to be federated in external domains.

Similar to service federation, resource federation could be exploited when there is lack

of resources in the local 5GT-MTP domain, due to different location constraints,

extended footprint, etc. However, in the case of resource federation, the orchestration

of federated resources is done by the consumer domain. NFV-NSs, VNFs, VAs or VMs

can be deployed over the federated resources by the consumer domain, and the

deployed components are transparent to the provider domain. Since resource

federation requires a high level of trust, the administrative domains should set-up

precise agreements with various trust/business levels. Based on these levels, the

administrative domains define the amount of resources (capacity) and quality of

information related to the resources that they share with external domains. For this

reason, resource abstractions are employed. The RO-EE and the SO-SO Resource

Management & Advertisement modules carry out the resource federation procedures.

The allocation of NFVI resources in resource federation includes two phases: 1)

advertising phase and 2) allocation and management of federated resources. In the

next sections, the motivation for using federation of resources is covered. The

advertisement phase is covered in Section 6.6.6.1 and the allocation and management

of federated resources is covered in Section 6.6.6.2.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 75

H2020-761536

6.6.6.1 Advertisement phase

From a resource federation perspective, the business/service level agreements define

only the relationship between two administrative domains. Only the general terms and

conditions for sharing NFVI resources are defined. A finite list of available resources for

federation that is similar to the catalogue of services, does not exist. The 5GT-SOs

need to perform an advertisement phase where they exchange information about the

NFVI resources that they can offer to other potential consumer 5GT-SOs. In this phase,

all 5GT-SOs have an equal role without being consumer or provider. The aim of the

advertisement procedure is to allow each 5GT-SO to broadcast its available resources

for federation to the external domains and, at the same time, to discover or accumulate

all the potentially available resources for federation owned by the external domains.

The advertisement phase consists of two local operations and an outbound/inbound

exchange of information:

• Calculating available resources – local operation performed by 5GT-MTP and

stored into the NFVI Resource Repository. The available resources are stored

and tagged as “local resources” in the NFVI Resource Repository database.

• Generating resource abstractions – local operation performed by SO-SO

Resource Management & Advertisement module. According to the federation

levels, specified service level agreements, etc., first the SO-SO Resource

Management & Advertisment extracts the available resources intended for

federation. Then, from the extracted set of resources, it generates the resource

abstractions and stores them in the NFVI Resource Repository.

• Exchanging resource abstractions with peering 5GT-SOs – performed by SO-

SO Resource Abstractions via the So-So-RAM reference point of the EBI/WBI.

The exchange of information occurs in both directions. The generated resource

abstractions, from the “Generation resource abstractions” operation, are

broadcasted in outbound direction to the peering 5GT-SOs. In inbound

direction, the received abstractions from the peering 5GT-SOs are accumulated

and stored in the local cache or in the NFVI Resource Repository.

The advertising phase occurs periodically or event-based. Upon NFV-NS instantiation,

modification (scaling up), performed by the 5GT-SO, that directly changes the state of

the available NFVI resources provided by the local 5GT-MTP, the advertisement phase

should be repeated in order the peering domains to get the updated information.

6.6.6.2 Allocation & management phase

The allocation of federated resources or the trigger for resource federation begins when
the RO-OE decides for VNF placement over a set of resources that belong to an
external domain. The RO-OE by default makes transparent decision over the
Aggregated view from both local and federated domains, without distinguishing among
both. Once the VNF placement (performed by the PA) is done, the result is delivered to
the RO-EE. The RO-EE, by querying the NFVI Resource Repository, is aware of the
location of each resources contained in the VNF placement decision. For allocating the
external resources from federated domain, the RO-EE issues a request towards the
SO-SO Resource Management and Advertisement module, which redirects the request
to the specific domain or peering/provider SO-SO Resource Management and
Advertisement module on the E/WBI (So-So-RM). The provider SO-SO Resource
Management and Advertisement module translates the request (e.g., the request

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 76

H2020-761536

contains certain level of resource abstraction), which is de-abstracted and translated
into a request for local resources. The translated request is sent to the provider RO-EE
module which generates allocation requests for the resources at the provider 5GT-MTP
and prepares the end-points to grant access to the consumer domain. In the final
stages, resources are allocated and the provider RO-EE via the provider SO-SO
Resource Management and Advertisement module exchange information regarding
connectivity and usage of the resources within the consumer domain. At the final stage
of the allocation phase, the consumer RO-EE is in charge of inclusion, orchestration
and deployment of VNFs over the federated resources in the provider domain, meaning
that it operates over the federated resources as over local ones.

During the management phase, the RO-EE may trigger requests for deployment of
VMs or other resource-related lifecycle management operations towards the federated
resources on the So-So-RM of the E/WBI via the SO-SO Resource Management and
Advertisement module (used as proxy). On the provider domain side, the provider SO-
SO Resource Management and Advertisement and the provider RO-EE module are in
charge of delivering the requests to the provider 5GT-MTP and deliver back responses.
The limitations of the lifecycle operations directly depend of the federation level
established with the provider domain. The So-So-RMM reference point is used for
receiving monitoring information of the federated resources at the SLA Manager. The
monitoring information (performance parameters and fault alarms) is limited as well and
directly depending on the federation level.

6.7 5GT-SO Workflows

In this section we detail the main workflows that are implemented in the 5GT-SO,
namely: (1) Service On-boarding, (2) Service Instantiation, (3) Service instantiation
include MEC applications, (4) Service Termination, (5) Service Monitoring, (6) Service
Scaling, and (7) Service Federation.

6.7.1 Service Onboarding

Description: The workflow describes the on-boarding of VNFs (initiated by the 5GT-SO
admin), VAs (initiated by the vertical) and network services (initiated by the 5GT-VS). A
similar procedure applies regarding on-boarding MEC applications.7

Prerequisites: None.

Assumptions: The vertical service can be deployed in one NFV-NS. Also, the service is
deployed in one new NFV-NSI. We assume the mapping between vertical service and
the NSD has been already performed. Note that the on-boarding of a MEC application,
which is packaged as a Virtual Application (VA), will be initiated by the verticals.

Workflow:

This workflow includes three parts that are initiated at separate times by different
actors, as set forth below.

7 MEC applications are described using the AppD as specified by ETSI MEC. The AppD has
similar information as the VNFD, but with specific fields reflecting the MEC applications
requirements (e.g., traffic redirection, latency requirement, required MEC service, etc.). In 5G-
TRANSFORMER we assume that the NSD is extended to integrate AppD(s).

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 77

H2020-761536

The first part of the workflow describes the on-boarding of VNFs:

• The process is triggered by the 5GT-SO administrator or operator, requesting

the on-board to the 5GT-SO NFVO-NSO (1) and providing the VNF package –

including the VNFD as well as additional configuration files – as an input;

• The 5GT-SO NFVO-NSO requests the VNF package (2) from the software

provider8, which replies (3) by sending the VNF package;

• The 5GT-NFVO-NSO extracts the VNFD from the VNF package (4) and stores it

in its VNFD/AppD catalogue (5-7);

• The 5GT-NFVO-NSO can confirm the successful on-boarding to the 5GT-SO

administrator9 (8).

The second part of the workflow describes the on-boarding of VAs:

• The vertical sends to the 5GT-VS an on-board request (9), including the VA

application package path (see [12] for more details);

• The 5GT-VS sends to the 5GT-SO NFVO-NSO a request to on-board the

application package, including the package path (10). The 5GT-SO NFVO-NSO

then issues a request for the application package itself (using the path) to the

5GT-VS (11). The 5GT-VS replies (12) by sending the application package,

including the corresponding VNFD or AppD as well as additional configuration

files;

• The 5GT-SO NFVO-NSO extracts the VNFD/AppD from the VA application

package (13), and then stores the VNFD/AppD into the 5GT-SO VNFD/AppD

catalogue (14-16);

• If the VA package contains an AppD, the 5GT-SO NFVO-NSO on-boards the

VA (17) via the SBI to the 5GT-MTP, including in the request the corresponding

AppD. The on-boarding is confirmed by the 5GT-MTP (18).

• The 5GT-SO NFVO-NSO confirms (19) the successful uploading to the 5GT-

VS. Then the 5GT-VS sends a response (20) to the original on-board request

from the vertical.

The third part of the workflow describes the on-boarding of network services:

• The 5GT-VS sends an on-boarding request to the 5GT-SO NFVO-NSO (21),

including the NSD info;

• The 5GT-SO NFVO-NSO checks with the 5GT-SO VNFD/AppD catalogue that

all the VNFs referenced in the NSD are already correctly stored (22-24);

• The 5GT-SO NFVO-NSO stores the NSD in the 5GT-SO NSD catalogue (25-

27);

• The 5GT-SO NFVO-NSO replies with a success message (28) to the original

request from the 5GT-VS.

8 A software provider is an entity that assists 5G-TRANSFORMER’s service provider with VNFs.

9 The 5GT-SO administrator is the entity in charge of the management of 5G-TRANSFORMER
service orchestrator.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 78

H2020-761536

FIGURE 20: SERVICE ONBOARDING WORKFLOW

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 79

H2020-761536

6.7.2 Service instantiation

Description: The workflow describes the instantiation of a network service triggered by
the vertical on instantiation of a vertical service.

Prerequisites: The vertical has prepared a vertical service description and the 5GT-VS
sends a service instantiation requests to the SO.

Assumptions: The vertical service is a simple one, meaning it can be deployed on one
NFV network service instance. We also assume that this service is deployed in a new
NFV network service instance. We assume that (1) VSD has been on-boarded into the
5GT-VS; (2) and the NSD including its associated VNFDs/AppDs, to which the vertical
service is mapped to and which describes the network service, has been previously on-
boarded to the 5GT-SO.

Workflow:

1. The 5GT-VS requests the SOE-parent of the 5GT-SO, through its NBI, to create

a new NFV-NS identifier, specifying its NSD id.

2. The SOE-parent checks in the DB if the NSD of the requested NFV-NS is on-

boarded already.

3. The DB module confirms that NSD_id exist in the database.

4. The SOE-parent generates & stores “ns instance ID” in the DB.

5. The DB confirms the stored operation, and the confirmation is redirected back to

the 5GT-VS with the “ns instance ID” included in the response confirmation.

6. The 5GT-VS sends request for instantiation of the NFV-NS, specifying the “ns

instance id”, “flavor Id”, “deploymentLevel”, etc.

7. The SOE-parent initiates the operation. Generates & stores operationID in the

DB and responds to the 5GT-VS with the operationID included in the message.

8. The SOE-parent extracts the descriptors from the DB module: NSD and VNFD.

9. The DB module returns all the descriptors in JSON format.

10. The SOE-parent processes the NSD to check if it is a composite or regular

descriptor. In case of composite descriptor, it needs to iterate and extract all the

nested NSDs contained in the descriptor. In this workflow we are focusing in the

case of regular/single descriptor.

11. The SOE-parent sends instantiation request to the SOE-child.

12. The SOE-child receives the request and issues new request to the ROOE

including the JSON descriptors, deployment flavors, deployment levels, etc.

13. The ROOE extract all the information from the descriptors.

14. At the same time, issues request for available aggregated resources to the

5GT-MTP on the SBI interface.

15. The 5GT-MTP responds with information of the available aggregated resources

on the underlying infrastructure.

16. The ROOE stores the information in the DB

17. The DB module confirms the updates on the aggregated resources

18. The ROOE sends the request for computation of VNF placement to the PA

module, including the extracted information from the NSD/VNF descriptors plus

the newly updated information of the aggregated resources.

19. The PA module computes the placement using one of the placement

algorithms. The result is returned to the ROOE.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 80

H2020-761536

20. Meanwhile, the 5GT-VS polls the status of the instantiation operation, using the

operation ID.

21. The SOE-parent responds with the status (“processing”).

22. Based on the PA output, the ROOE sends a request to the OSM wrapper for

allocation & instantiation of computing resources/VMs and establishing intra-

PoP connectivity.

23. The OSM wrapper translates the incoming information from the request to the

API procedures of the OSM and triggers the instantiation procedures in the

OSM.

24. The OSM using internal flows, allocates & instantiates the computing resources

and establishes the intra-connectivity (intra-PoP connections).

25. The OSM via the OSM wrapper sends back to the ROOE, the allocation &

instantiation confirmation along with the IP addresses of the computing

resources.

26. The ROOE sends multiple requests to the RO-EE-WIM module, for each Virtual

Link (VL) that needs to be established between the instantiated VNFs (inter-PoP

connectivity). Each of the requests is processed and redirected from the RO-

EE-WIM to the 5GT-MTP via the SBI.

27. The 5GT-MTP sends VL instantiation confirmation back to the ROOE, via the

SBI and the RO-EE-WIM. All information per VL is included in the confirmation.

28. The ROOE stores all the information related to computing and networking

resources the instantiated NFV-NS in the DB.

29. The ROOE stores additional optional information regarding the deployment in

the DB.

30. The ROOE sends NFV-NS instantiation confirmation to the SOE-child including

the IP addresses to access the VNFs/VMs.

31. The SOE-child updates the DB with the operation “processing” → “instantiated

NFV-NS”.

32. The SOE-child sends confirmation to the SOE-parent.

33. The 5GT-VS polls the SOE-parent for the operation (using the operationID).

34. The SOE-parent sends back the status “instantiated NFV-NS”.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 81

H2020-761536

FIGURE 21: SERVICE INSTANTIATION WORKFLOW

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 82

H2020-761536

6.7.3 Service instantiation including MEC applications

5G-TRANSFORMER considers three scenarios to deploy a MEC application: (i) a MEC
application requiring traffic redirection and consuming MEC services; (ii) a MEC
application requiring only MEC services; (iii) MEC application requiring only traffic
redirection. For the first scenario, the MEC application requires that also an EPC (i.e.,
MME, HSS, SPGW-C), SPGW-U, eNodeB(s) and Mobile Edge Platform (MEP) are
deployed. Specifically, the SPGW-U and the MEP should be run at the edge with the
MEC application. For the second scenario, the MEC application needs eNodeB(s) and
MEP. For the third scenario, the MEC application can be deployed without the need of
other components.

Description: The workflow describes the instantiation of a NFV-NS instance including
AppD (i.e. MEC applications). This workflow is based on the normal NFV-NS
instantiation workflow as described in Section 6.7.2, but adding the additional steps and
parameters for the MEC specific support and orchestrations, which are highlighted in
blue in the text in the workflow in Figure 22.

Prerequisites: None.

Assumptions: The NSD includes AppD.

Workflow:

1. The 5GT-VS requests the SOE-parent of the 5GT-SO, through its NBI, to create

a new NFV-NS identifier, specifying its NSD id.

2. The SOE-parent checks in the DB if the NSD of the requested NFV-NS is on-

boarded already.

3. The DB module confirms that NSD_id exist in the database.

4. The SOE-parent generates & stores “ns instance ID” in the DB.

5. The DB confirms the stored operation, and the confirmation is redirected back to

the 5GT-VS with the “ns instance ID” included in the response confirmation.

6. The 5GT-VS sends request for instantiation of the NFV-NS, specifying the “ns

instance id”, “flavor Id”, “deploymentLevel”, as well as the location requirements

for placing the AppDs, etc.

7. The SOE-parent initiates the operation. Generates & stores operationID in the

DB and responds to the 5GT-VS with the operationID included in the message.

8. The SOE-parent extracts the descriptors from the DB module: NSD and VNFD

and AppD.

9. The DB module returns all the descriptors in JSON format.

10. The SOE-parent processes the NSD to check if it is a composite or regular

descriptor. In case of composite descriptor, it needs to iterate and extract all the

nested NSDs contained in the descriptor. In this workflow we are focusing in the

case of regular/single descriptor.

11. The SOE-parent sends instantiation request to the SOE-child.

12. The SOE-child receives the request and issues new request to the ROOE

including the JSON descriptors, deployment flavors, deployment levels, etc.

13. The ROOE extract all the information from the descriptors, i.e., NSD and AppD.

14. At the same time, issues request for available aggregated resources including

MEC and the availability of the MEC support in the 5GT-MTP on the SBI

interface.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 83

H2020-761536

15. The 5GT-MTP responds with information of the available aggregated resources,

and also a list of the MEC capable NFVI-PoPs with their associated locations in

the underlying infrastructure.

16. The ROOE stores the information in the DB

17. The DB module confirms the updates on the aggregated resources

18. The ROOE sends the request for computation of VNF placement to the PA

module, including the extracted information from the NSD/VNFD/AppD

descriptors and the location constraint information plus the newly updated

information of the aggregated resources including MEC part.

19. The PA module computes the placement using one of the placement algorithms

to decide where to place the VNFs and the AppDs of the associated NFV-NS.

The result is returned to the ROOE.

20. Meanwhile, the 5GT-VS polls the status of the instantiation operation, using the

operation ID.

21. The SOE-parent responds with the status (“processing”).

22. Based on the PA output, the ROOE sends a request to the OSM wrapper for

allocation & instantiation of computing resources/VMs and establishing intra-

PoP connectivity.

23. The OSM wrapper translates the incoming information from the request to the

API procedures of the OSM and triggers the instantiation procedures in the

OSM.

24. The OSM using internal flows, allocates & instantiates the computing resources

and establishes the intra-connectivity (intra-PoP connections).

25. The OSM via the OSM wrapper sends back to the ROOE, the allocation &

instantiation confirmation along with the IP addresses of the computing

resources.

26. The ROOE sends a request to the 5GT-MTP to instantiate the AppD providing

the AppD ID and its associated compute resources.

27. The ROOE sends multiple requests to the RO-EE-WIM module, for each Virtual

Link (VL) that needs to be established between the instantiated VNFs (inter-PoP

connectivity). Each of the requests is processed and redirected from the RO-

EE-WIM to the 5GT-MTP via the SBI.

28. The 5GT-MTP sends VL instantiation confirmation back to the ROOE, via the

SBI and the RO-EE-WIM. All information per VL is included in the confirmation.

29. The ROOE stores all the information related to computing and networking

resources the instantiated NFV-NS in the DB.

30. The ROOE stores additional optional information regarding the deployment in

the DB.

31. The ROOE sends NFV-NS instantiation confirmation to the SOE-child including

the IP addresses to access the VNFs/VMs.

32. The SOE-child updates the DB with the operation “processing” → “instantiated

NFV-NS”.

33. The SOE-child sends confirmation to the SOE-parent.

34. The 5GT-VS polls the SOE-parent for the operation (using the operationID).

35. The SOE-parent sends back the status “instantiated NFV-NS”.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 84

H2020-761536

FIGURE 22: MEC SERVICE INSTANTIATION WORKFLOW

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 85

H2020-761536

6.7.4 Service termination

Description: The workflow describes the termination of a networks service, triggered by
the vertical on termination of a vertical service.

Prerequisites: The vertical service instance has been instantiated.

Assumptions: The vertical service is a simple one, meaning it can be deployed in one
network slice. We also assume, that this service is deployed in its own network slice,
the service does not share the slice with another slice.

Workflow:

1. The 5GT-VS requests the SOE-parent of the 5GT-SO, through its NBI, to

terminate a NFV-NS identifier, using the “ns instance ID”.

2. The SOE-parent generates new termination “operation ID” and stores into the

DB.

3. The SOE-parent confirms the start of the termination procedure to the 5GT-VS

including the “operation ID” in the confirmation.

4. The SOE-parent sends request for termination to the SOE-child using the “ns

instance id”.

5. The SOE-child redirects the request to the ROOE.

6. Meanwhile, the 5GT-VS periodically polls the SOE-parent for the status of the

termination operation using the “operation ID”

7. The SOE-parent sends response o

8. The ROOE based on the “ns instance id”, extracts the information of the

resources used for the NFV-NS instance.

9. The DB returns the information for all computing and networking resources used

for the NFV-NS instance.

10. The ROOE sends termination request to the OSM wrapper for each of the

allocated & instantiated computing resources and termination of the intra-PoP

connectivity. The OSM wrapper translates the incoming request and adjusts to

the OSM API.

11. The OSM runs internal workflow for termination of the computing and

networking resources, interacting with the 5GT-MTP.

12. The OSM sends termination confirmation to the ROOE via the OSM wrapper,

after all computing and intra-PoP connectivity are terminated.

13. The ROOE sends multiple requests to the RO-EE-WIM, one for each VL that

needs to be terminated. The RO-EE-WIM redirects the request to the 5GT-MTP

via the SBI.

14. The 5GT-MTP confirms the termination of the VLs via the SBI and the RO-EE-

WIM.

15. The ROOE updates the DB by removing all the information regarding the

allocated & instantiated computing and/or networking resources of the NFV-NS

instance.

16. The ROOE sends termination confirmation to the SOE-child including the “ns

instance ID”

17. The SOE-child redirects the confirmation to the SOE-parent.

18. The SOE-parent updates the status of the termination procedure “processing”

→ “terminated NFV-NS”

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 86

H2020-761536

19. The DB confirms the update.

20. The 5GT-VS polls for the status of the operation to the SOE-parent, using the

“operation ID”

21. The SOE-parent confirms the termination operation with the “terminated NFV-

NS (operation ID)”

FIGURE 23: SERVICE TERMINATION WORKFLOW

6.7.5 Service monitoring

Description:

The workflow describes the procedures to activate the monitoring of an NFV-NS, based
on the monitoring parameters defined in its NSD. Monitoring data are visualized on a
dedicated, per-service web GUI implemented through the Grafana tool. The per-service
GUI is returned to the 5GT-VS, that integrates the visualization of the monitoring
parameters in its own GUI.

Prerequisites: The NSD includes a list of monitoring parameters. The 5GT-SO, the
5GT-VS and the Monitoring Platform are up and running.

Assumption: The instantiation of the NFV-NS proceeds successfully.

Workflow:

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 87

H2020-761536

1. The 5GT-VS requests the 5GT-SO, through its NBI, to instantiate a new NFV-

NS instance, specifying its NSD, Deployment Flavor (DF) and Instantiation

Level (IL).

2. A new ID for the requested NFV-NS is generated (in this example NFV-NSI ID

1) and returned to the 5GT-VS.

3. The NBI forwards the request to instantiate the NFV-NSI to the SOE

4. The NFV-NSI is successfully instantiated, following the procedure defined in

section 6.7.2.

5. At the end of the instantiation procedure, the SOE activates the monitoring for

the new instance, sending a request to the Monitoring Manager.

The configuration of the monitoring for a given NFV-NSI includes two different steps.

The former is the creation of the monitoring jobs to collect the required monitoring

parameters through specific Prometheus exporters. The latter is the creation of a

dashboard to visualize graphs for all the relevant monitoring parameters. In particular:

6. For each monitoring parameter defined in the NSD, the Monitoring Manager

sends a request to the Config Manager for the creation of a monitoring job. The

details of a new Prometheus exporter are provided whenever a new kind of

monitoring collection is required.

7. The Config Manager interacts with Prometheus to request the configuration of

the exporters.

8. The Prometheus platform is internally reconfigured and an acknowledgment is

sent back to the Config Manager.

9. The Config Manager generates an internal ID for the monitoring job (and the

exporter), which is returned back to the Monitoring Manager.

10. When the complete set of monitoring jobs is configured, the Monitoring Manager

interacts with the Config Manager to request the creation of a dashboard to

visualize the monitoring data through a set of graphs. The request includes a list

of queries specifying how the elementary monitoring items must be aggregated

to generate the monitoring time series to be represented in each graph.

11. The dashboard configuration request is forwarded to Prometheus.

12. Prometheus verifies the presence of exporters for the elementary monitoring

items and interacts with Grafana to request the creation of the dashboard.

13. Grafana generates a new dashboard, available at a certain URL, and returns

the URL to Prometheus.

14. An acknowledgement with dashboard identified and URL is provided back to the

Config Manager…

15. … and from the Config Manager to the Monitoring Manager.

16. All the monitoring details about the NFV-NSI are persisted in the NS Instances

DB, including the IDs of the exporters and the URL of the dashboard.

17. A notification is sent back from the Monitoring Manager to the SOE to notify the

successful activation of the monitoring.

During the runtime of the NFV-NSI, its monitoring data can be visualized from the 5GT-
VS GUI, in the page of the Vertical Service Instance (VSI) corresponding to the given
NFV-NSI. The procedure to visualize the NFV-NSI monitoring dashboard in the 5GT-
VS GUI is the following:

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 88

H2020-761536

18. The 5GT-VS identifies the NFV-NSI associated to the VSI of interest (in this

case NFV-NSI 1) and sends a query to the 5GT-SO NBI to retrieve the details of

the NFV-NSI.

19. The 5GT-SO NBI queries the NS Instance DB…

20. … and retrieves the NFV-NSI 1 information …

21. … that are returned back to the 5GT-VS.

22. The 5GT-VS processes the NFV-NSI record and extracts the information about

the monitoring dashboard URL.

23. This URL is encoded in the 5GT-VS GUI, so that it can be accessed directly

from the vertical user.

FIGURE 24: Service Monitoring Workflow

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 89

H2020-761536

6.7.6 Service scaling

6.7.6.1 Vertical-driven scaling

Description: The workflow describes the procedure to scale a NFV network service,
triggered by a vertical’s request on the scale of a vertical service. This request is
processed by the 5GT-VS, which sends the 5GT-SO an explicit request to scale the
NFV-NS to a different instantiation level.

Prerequisites: The vertical has instantiated a vertical service instance and the 5GT-VS
has sent a ScaleNS requests to the SO.

Assumptions: We assume that the service is deployed successfully. The vertical sends
a request to the 5GT-VS to scale out the service from the current deployment toward a
higher instantiation level.

Workflow:

Since the vertical-scaling workflow is very large, it is hard to present it on a single
diagram. In order to mitigate this issue, the whole workflow is split on to 4 phases:

• Request phase

• Execution phase

• Monitoring upgrade phase

• 5GT-VS notification phase

Each phase workflow diagram is shown after the actions list, that describes it.

1. After the vertical has triggered the VSI Scale workflow by requesting the 5GT-

VS to modify an existing VSI, the 5GT-VS sends a ScaleNS request to the 5GT-

SO NBI. This request includes information about the type of scaling to be

performed (in this case the scaling of an NFV-NS towards a different

instantiation level), the ID of the NFV-NSI to be scaled and the target

instantiation level. Such request is forwarded to the SOE.

2. The SOE invokes the NS inst DB to check if the NFV-NSI with the given ID is

correctly instantiated.

3. The SOE receives information about the target NFV-NSI from NS inst DB.

4. The SOE requests the NSD and the VNFDs of the target NFV-NSI to DB

Catalog.

5. The SOE receives the requested information from DB Catalog.

6. The SOE verifies the feasibility of the scaling request and, if the operation is

possible, it changes the NFV-NSI status in NS inst DB for to “INSTANTIATION”

7. The SOE generates an ID that is assigned to the current scaling operation and it

returns it to the 5GT-VS.

8. The SOE invokes the ROOE requesting to scale the NFV-NSI. This request

contains information nsId, nsd, vnfds, current df, current instantiation level,

requested instantiation level.

9. The 5GT-VS periodically requests the information about the scaling operation to

the 5GT-SO, in order to get updates about the status of the scaling process.

10. The status of the scaling operation (PROCESSING) is returned to the 5GT-VS.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 90

H2020-761536

FIGURE 25: VERTICAL-DRIVEN SCALING - REQUEST PHASE

11. The ROOE sends a ScaleNS request to the CoreMANOWrap. This request

contains the following information: ID of the NFV-NSI to be scaled, its NSD and

VNFDs, its current and target deployment flavours (DF) and instantiation levels

(IL). The CoreMANOWrap forwards this request to The Cloudify/OSM Wrapper.

12. The Cloudify/OSM Wrapper processes the received information and calculates

the additional number of VNF instances to be instantiated and the links between

them. Then, the Cloudify/OSM Wrapper sends a request to Cloudify/OSM,

transmitting all the necessary NFVO-specific information to deploy the new VNF

instances.

13. Cloudify/OSM requests the 5GT-MTP to deploy the new VNF instances and,

when the allocation is completed, it receives back the needed information about

links and IP addresses assigned to the VNF instances.

14. Cloudify/OSM returns the deployment status and the information about the IP

addresses to ROOE through the Cloudify/OSM Wrapper.

15. The ROOE identifies the new required VLs.

16. If needed, the ROOE invokes the SO-EE-WIM to request the creation of the

new VLs.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 91

H2020-761536

17. The SO-EE-WIM forward the request to the 5GT-MTP.

18. The operation result from the 5GT-MTP is returned to the ROOE.

19. The ROOE updates the information in the NS Inst. Res. DB,

20. which confirms the success of the operation.

21. The ROOE updates the information in the NFVI Resources DB.

FIGURE 26: VERTICAL-DRIVEN SCALING – SCALING EXECUTION PHASE

22. The ROOE returns the information about the status and the IP addresses of the

new VNF instances to the SOE.

23. The SOE requests the Monitoring Manager to create exporters on the

Configuration Manager for the new VNF instances (if needed).

24. The SOE requests the SLA Manager to create alerts on the Configuration

Manager for new VNF instances (if needed).

25. The SOE changes the status to SUCCESSFULLY_DONE for the current Scale

process in NS Inst. DB.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 92

H2020-761536

FIGURE 27: VERTICAL-DRIVEN SCALING – MONITORING UPDATE PHASE

26. The 5GT-VS periodically polls the 5GT-SO about the status of the scaling

operation.

27. When the scaling operation is successfully completed, the 5GT-SO returns the

“SUCCESSFULLY_DONE” code for the requested Scale operation.

28. When the 5GT-VS receives the status SUCCESSFULLY_DONE, it updates its

internal database with the new status of the corresponding network slice and

vertical service instances.

29. The 5GT-VS sends a queryNs request to the 5GT-SO to receive updated

information about the elements of the NFV-NS instance that has been scaled.

30. The 5GT-VS receives such information and updates its internal structures (e.g.

updating the amount of resources currently in use for the involved tenant).

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 93

H2020-761536

FIGURE 28: VERTICAL-DRIVEN SCALING – 5GT-VS NOTIFICATION PHASE

6.7.6.2 Auto-scaling

Description: The workflow describes the procedure to scale automatically an NFV-NS
instance, based on autoscaling rules defined in its NSD. The autoscaling procedure is
triggered by the SLA Manager when the monitoring data collected for that NFV-NS
instance exceed a given threshold specified in the autoscaling rules.

Prerequisites: The NSD with monitoring parameters and autoscaling rules has been
correctly on-boarded.

Workflow:

1. The 5GT-VS sends an “instantiate NS” request to the 5GT-SO NBI. The request

specifies the NSD, the initial deployment flavor DF and the initial instantiation

level (IL A).

2. The 5GT-SO NBI sends the “instantiate NS” request to the SOE.

3. The SOE instantiates the requested NFV-NS following the procedure described

in section 6.7.2 (the detailed messages are omitted for this part of the

procedure).

4. Since the NSD contains a list of “monitoredInfo”, each representing a parameter

to be monitored, the SOE request the Monitoring Manager to configure the

performance monitoring jobs required for the NFV-NS instance.

5. The 5GT-SO Monitoring Manager determines the type of monitoring jobs

necessary to retrieve the information related to the NFV-NS instance. For each

monitoring parameter defined in its NSD (in section “monitoredInfo”), the

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 94

H2020-761536

Monitoring Manager invokes the Config Manager to request the creation of the

related job.

6. The Config Manager translates the monitoring job specification into

Prometheus-specific parameters and changes the Prometheus configuration.

7. The new Prometheus configuration is successfully loaded.

8. The Config Manager returns the ID of the performance monitoring job to the

Monitoring Manager.

9. When all the monitoring jobs are created, the Monitoring Manager updates the

information of the NFV-NS instance in the 5GT-SO NS Inst. DB.

10. The Monitoring Manager notifies the SOE about the successful creation of the

performance monitoring jobs.

11. The SOE invokes the SLA Manager for activating the configuration needed to

receive the alerts associated to the NFV-NS instance.

12. The SLA Manager queries the 5GT-SO NS Inst. DB to retrieve the list of

performance monitoring jobs activated for the given NFV-NSI.

13. Such details are returned by the NS Inst. DB.

14. For each autoscaling rule defined in the NSD (in the “autoScalingRule” section,

the SLA Manager requests the Config Manager to create an alert subscription,

specifying a query that defines the metric to be evaluated and the threshold.

15. The Config Manager re-configure Prometheus to create the new alert

configuration.

16. This configuration is also applied to the Prometheus Alert Manager.

17. The Config Manager notifies the SLA Manager about the successful creation of

the alert configuration, providing details about the alert and its ID.

18. The SLA Manager saves the information about the configured alerts in the NS

Inst. DB.

19. The SLA Manager notifies the SOE about the successful configuration of the

alerts. At this stage the monitoring for the NFV-NS instance is fully active.

Let’s see now assume that one of the performance metrics specified in the autoscaling
rules exceeds the related threshold. The detection of this condition starts the
procedures for an autoscaling action.

20. Prometheus detects that some monitoring parameter is higher than the related

threshold.

21. The Alert Manager is notified by Prometheus.

22. The Alert Manager sends an alert message to the SLA Manager.

23. The SLA Manager receives the alert message, reads the Alert ID and, based on

that, it decides that a scaling action is required.

24. The SLA Manager sends a request to the 5GT-SO NBI to start the NFV-NS

scaling procedure.

From this step on, the 5GT-SO internal processing of this scaling action follows exactly
the same workflow reported in section 6.7.6.1.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 95

H2020-761536

FIGURE 29: NFV-NS AUTOSCALING WORKFLOW

6.7.7 Service Federation

Description: The workflow describes network service federation through instantiation of
composite NFV-NSs locally and in different administrative domains.

Prerequisites: Different administrative domains need to have some business relations.

Assumptions: 5GT-SO receives a request for instantiation of a certain composite NFV-
NS (with the NSD) that should be instantiated in multiple administrative domains, it can
exploit the service federation for accommodating and instantiating the end-to-end NFV-
NS instance. Only complete nested NFV-NSs can be instantiated in different (external)
administrative domains.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 96

H2020-761536

Workflow:

1. The 5GT-VS requests the SOE-parent of the 5GT-SO, through its NBI, to create

a new NFV-NS identifier for a composite NFV-NS, specifying its NSD id.

2. The SOE-p checks in the DB if the NSD of the requested NFV-NS is on-boarded

already. The DB module confirms that NSD_id exist in the database. The SOE-

p generates & stores “NS ID” in the DB.

3. The SOE-p sends confirmation to the 5GT-VS including the NS ID.

4. 5GT-VS sends instantiation of NFV-NS request to the SOE-p via the NBI. The

request contains the NS ID, deployment flavor, instantiation levels, etc.

5. The SOE-p initiates the operation. Generates & stores operationID along with a

status parameter (“PROCESSING”) in the DB

6. The SOE-p responds to the 5GT-VS with the operationID included in the

message.

7. The SOE-p extracts the NSD/VNFD from the DB.

8. The DB responds with all the descriptors delivered as a JSON format

9. The SOE-p processes the NSD, extracts each of the nested NSDs

10. The SOE-p sends request to the CROOE to map Virtual Links (VLs) of

composite NSDs and those of the corresponding nested NSDs and to assign a

unique network name to each of them, which will eventually be used at the

infrastructure level when creating the networks to which VNFs attach

11. The CROOE generates the net names and responds to the SOE-p with the

mappings of the VLs

12. The SOE-p starts iteration for each nested NSD, to check if it should be

instantiated locally or in a federated domain.

13. If the NSD should be instantiated in the local domain, the SOE-p sends

instantiation request to the SOE-c

14. The SOE-c continues with the regular service instantiation workflow (Section

6.7.2) including the rest of the modules ROOE, RO-EE-WIM, OSM/Cloudify

wrappers, OSM/Cloudify and MTP.

15. The nested NFV-NS is instantiated locally, SOE-c sends confirmation to SOE-p

for the instantiation. The SOE-p continues with iteration and instantiation of

local nested NFV-NSs using the NSD_i for the NFV-NS instance i.

16. After the local iteration finishes for instantiation of nested NFV-NS in another

federated domain, the SOE-p sends request for creating new NFV-NS identifier

using the nsdId-F of the nested (federated) NFV-NS.

17. The (federated) F-SOE-p receives the request and checks if NSD with nsdId-F

has been already on-boarded in the F-DB (i.e., there was a previous agreement

between domains and the agreed NSD was onboarded in the F-DB). If it is true,

the F-SOE-p generates and stores new NS ID in the F-DB.

18. The F-SOE-p responds to the SOE-p including the NS_ID of the nested NFV-

NS.

19. The SOE-p sends instantiation request to the F-SOE-p to instantiate the nested

NFV-NS using the NS ID, nsdId-F, the deployment flavor, additional parameters

(such as the network mappings previously performed by the CROOE).

20. The F-SOE-p receives the request and starts the operation by assigning &

storing operation ID and status (“PROCESSING”) in the F-DB.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 97

H2020-761536

21. The F-SOE-p confirms the start of the instantiation to the SOE-p, including the

reference operation ID.

22. The SOE-p stores the operation ID and the status of the operation in the DB.

23. The F-SOE-p instructs the F-CROOE to obtain information regarding the

resource parameters needed for instantiation of the nested (federated) NFV-NS.

24. The F-CROOE sends request for information to CROOE regarding the CIDR

and the @pool in the CIDR range.

25. The CROOE returns the CIDR and @pool in the CIDR range to the F-CROOE.

26. The F-SOE-p issues instantiation request to the F-SOE-c including the NS ID of

the nested (federated) NS ID, deployment flavors, instantiation levels, as well as

the obtained information (network names, CIDR, @pool).

27. The F-SOE-c executes/orchestrates the instantiation of the nested (federated)

NFV-NS as an instantiation of regular NFV-NS in local domain (including as

optional parameters: network names, CIDR, @pool).

28. The F-SOE-c confirms the instantiation of the nested (federated) NFV-NS to the

F-SOE-p. The F-SOE-p redirects the confirmation along with the operation ID to

the SOE-p

29. All nested NFV-NSs are instantiated in local and federated domain, the inter-

nesting (inter-connecting) to compose the end-to-end composite NFV-NS

begins.

30. The SOE-p sends request to the CROOE to set-up all necessary inter-nested

paths between nested NFV-NSs of the local domain

31. The CROOE starts the instantiation of the local inter-nested VLs. The Link

selection algorithm runs to select the networking resources used to establish the

local VLs.

32. The output of the LSA from the CROOE is sent to the MTP to instantiate the

local VLs along with the optional parameter of the network names.

33. The MTP confirms the instantiation of the local VLs with all the IDs of the

allocated networking resources.

34. Upon instantiation of all local inter-nested VLs, the CROOE stores all the

information in the DB.

35. The CROOE sends confirmation to the SOE-p for the completed instantiation of

the local inter-nested VLs.

36. The SOE-p instructs the CROOE to set-up inter-domain paths for all inter-

domain inter-nested VLs between local and federated nested NFV-NSs.

37. To each federated domain, the CROOE sends request to F-CROOE to get

information regarding the IP addresses and VLAN IDs to set up the link towards

the nested (federated) NFV-NS.

38. The F-CROOE replies to the CROOE with the information of the IP addresses

and VLAN IDs for inter-nesting the instantiated nested (federated) NFV-NS.

39. Based on the collected information from each federated domain, the CROOE

starts the instantiation of the inter-domain inter-nested VLs for all nested

(federated) NFV-NS. The LSA selects the logical links for all VLs towards the

federated domains.

40. The calculated output from the LSA (CROOE) is sent to the MTP along with the

collected information (IP addresses, VLAN IDs, network names, etc.)

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 98

H2020-761536

41. The MTP sets up and allocates all the local networking resources in order to

establish the inter-domain inter-nested VLs. The information of the resource IDs

is returned back from the MTP to the CROOE.

42. The CROOE stores the returned information regarding the instantiated

networking resources in the DB.

43. The DB confirms the operation.

44. The CROOE sends the IP addresses of all VNFs that are connected to the inter-

nested links in all domains to all F-CROOEs of federated domains.

45. Each F-CROOE starts the instantiation of all inter-domain inter-nested VLs in

order to connect the nested (federated) NFV-NS to the rest of the end-to-end

NFV-NSs. The LSA of the F-CROOE calculates the link selections for all VLs.

46. The calculated output is sent from the CROOE to the F-MTP.

47. The F-MTP instantiates the networking resources and establishes the inter-

domain inter-nested VLs. Then, the F-MTP sends confirmation and all the

information regarding the instantiated networking resources.

48. The F-CROOE stores the information of the instantiated inter-domain inter-

nested VLs in the F-DB.

49. Each F-CROOE from each federated domain sends confirmation to the CROOE

of successfully instantiated inter-domain inter-nested VLs.

50. The CROOE confirms to the SOE-p the successful instantiation of all inter-

domain inter-nested VLs.

51. The SOE-p stores in the DB the successful instantiation of the composite NFV-

NS in both local and federated domain.

52. The DB confirms the storing operation.

53. The 5GT-VS polls for information regarding the instantiation of the composite

NFV-NS using the operationID.

54. The SOE-p confirms the status of the operation “SUCCESSFULLY_DONE”

55. The 5GT-VS further queries about the information regarding the end-to-end

NFV-NS instance.

56. The SOE-p extracts information from the DB and returns all parameters

including the NS instance id, IP addresses etc.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 99

H2020-761536

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 100

H2020-761536

FIGURE 30: SERVICE FEDERATION WORKFLOW

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 101

H2020-761536

6.8 Details of the 5GT-SO software implementation

This section presents the software architecture and details the internal structure and
functionality of the software components that have been implemented in the 5GT-SO.

6.8.1 Mapping of functional architecture to software architecture

In Section 6.2, the functional architecture of the 5GT-SO is introduced. That section

presents the concept-level functional architecture with a few more functions than those

that were implemented.

In order to distinguish the implementation from the functional architecture, the software

architecture is presented below. The mapping from the functional architecture to the

software architecture figure is as follows:

• NBI Exposure layer → NBI

• NFV-NS/VNF Catalogue DB/Manager → not implemented

• NFV Orchestrator → Service Manager + Core MANO platform

• NFVO-NSO → SOE parent + SOE child

o Composite NSO → SOE parent (SOE-p)

o Constituent NSO → SOE child (SOE-c)

o NS decomposition algorithms → not implemented

• NFVO-RO → ROOE + ROEE + CROOE + Core MANO platform

o RO-OE → ROOE + Core MANO wrappers + Core MANO platform

o PA → PA

o RO-EE → ROEE

o Composite RO → CROOE (incl. LSA)

• VNFM → Exploiting that of core MANO platform

• SO-SO advertisement & management block → not implemented

• NFVI Resource Repository → NFVI Resources DB

• NS/VNF Instance Repository → NS Instance DB + NS Instance Resources DB

• SO Monitoring Manager → Monitoring manager

• SLA Manager → SLA Manager

6.8.2 Software architecture

The 5GT-SO uses two MANO platforms as orchestration engines for managing
compute resources, Cloudify and OSM. Others may be added by implementing a
wrapper. The SM component has been designed to integrate the different MANO
platforms with the inclusion of a wrapper for each platform providing more
functionalities and allowing multi-MANO platform compatibility. The extended
functionalities include automatic translation between descriptors of the 5GT-VS
component (compliant with ETSI NFV-IFA013) and the modeling language of OSM and
Cloudify orchestration platforms (YANG and TOSCA, respectively). It also includes a
driver that provides a unified interface between the SM and the MANO platforms.

The architecture extension provides advanced interfacing through the NBI Exposure
Layer to OSS/BSS functions represented by the 5GT-VS to provide tailored network
service set-up. The interface towards the 5GT-VS supports requests for on-boarding,
creation, instantiation, modification and termination of network services. Moreover, SLA
support is provided leveraging monitoring services assuring that the agreed SLAs are
verified, and the SLA Manager can trigger scaling actions in case of SLA violations.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 102

H2020-761536

The 5GT-SO includes the implementation of the PA module that include the placement
algorithms in charge of the resource management supporting inter-PoP
communications.

6.8.3 5GT-SO components software implementation

The prototype of the 5GT-SO features de functionalities described in section 6.8.2. All
the code is open source. In particular, the novel components developed as part of the
Service Manager (SM) have been released under Apache 2.0 license and they are
available in the project git repository [1] . All its components are presented in Figure 31

FIGURE 31: 5GT-SO IMPLEMENTED COMPONENTS

6.8.3.1 SM

The SM is implemented in Python 3.5 and adopts MongoDB as database backend for
its repositories (Figure 31. The Service Manager is a collection of stateless
components, where the status of all the managed entities is maintained through the
MongoDB repositories. All the SM modules access the MongoDB repositories to get a
shared view of the internal status of the whole system. Concurrent requests about
active lifecycle actions on new or existing Network Services are managed in an
asynchronous manner, with per-service dedicated threads. The feasibility of each
requested action is verified based on the current status of the related service, as
reported in the database, and refused in case of conflicts.

The system design of the Service Orchestrator is based on a modular approach, where
the entire prototype is structured in several components that interact with each other via
REST APIs. The same kind of interaction is also adopted with the external components,
like the 5GT-VS and the 5GT-MTP.

In particular, the interaction with the MANO platforms (i.e., Cloudify and OSM) is
wrapped by the Core MANO module, which hides the NFVO-specific REST APIs and
information models exposing a unified interface towards the other modules of the
Service Manager. A similar approach is adopted at the SBI, which is modelled as an
extension of the interface specified in ETSI NFV IFA 005 [2] and, internally, VIM- and

SOEp

NS/VNF
CATALOGUE
MANAGER

PA
SERVICE

ORCHESTRATION
ENGINE

VNFM

RO-EE-VIM

NS/VNF
CATALOGUE

NS/VNF
INSTANCES

VIM
ACCOUNTS

CLOUDIFY/OSM

TRANSLATOR

PARAMETER
MANAGEMENT

DRIVER

CLOUDIFY WRAPPER

TRANSLATOR

PARAMETER
MANAGEMENT

DRIVER

OSM WRAPPER

CORE MANO

RO-EE-WIM

ROOE

NSD
CATALOGUE

VNFD/AppD
CATALOGUE

OPERATIONS

NS
INSTANCES

NS INSTANCE
RESOURCES

NFVI
RESOURCES

SERVICE MANAGER

NSD
CATALOGUE

VNFD/AppD
CATALOGUE

NS
INSTANCES

NS
INSTANCE

RESOURCES

OPERATIONS

NFVI
RESOURCES

NBI 5GT SERVICE ORCHESTRATOR

5GT-VS

5GT-MTP

Vs-So

SBI

SLA
MANAGER

MONITORING
MANAGER

5
G

T
M

O
N

IT
O

R
IN

G
 P

LA
TF

O
R

M

So-Mtp

So-Mtp

So-So

SOEc
CROOE

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 103

H2020-761536

WIM-specific drivers translate into the HTTP messages exposed by the 5GT-MTP
REST APIs. It should be noted that the standard IFA 005 defines the interaction with a
generic VIM, thus including primitives related only to resources managed by cloud
platforms like OpenStack, for instance, Virtual Machines (VMs), virtual networks, or
virtual storage. In 5GT this concept has been extended to cover also the interaction
with WIMs, thus introducing a set of messages for the advertisement of network
topology from 5GT-MTP and the request of network paths to the 5GT-MTP to
interconnect PoPs with a given Quality of Service.

At the NBI, the SM implements a REST server based on the HTTP protocol and Json
language for message encoding. The information models for NSDs, VNFDs, and
Network Service lifecycle actions (e.g. instantiation, termination and queries of Network
Service instances) follow the ETSI NFV IFA specifications 014 [3], 011 [4] and 013 [5],
respectively. This also includes composite network services. Extensions are possible to
describe additional characteristics of the Network Services, like location constraints, or
specify service constraints or policies to be applied at runtime. Another functionality of
the Core MANO component is to translate all the Json-based descriptors exchanged at
the Service Manager NBI into the NFVO-specific format when performing onboarding
operations. For example, TOSCA-based descriptors are used for Cloudify, while Yaml-
or Json-based descriptors are used for OSM, each of them with its own proprietary
information models.

REST APIs are also used internally in the Service Manager. The service orchestration
engine is split into two, namely parent (SOEp) and child (SOEc). The former handles
federation-related service orchestration, while the latter is in charge of orchestration
regular or each individual nested service. Another example of the use of REST APIs is
allowing the ROOE module to interact with different PAs. This approach allows
supporting multiple resource orchestration algorithms which can be developed by third
parties and easily integrated in the system. Depending on the specific criteria to be
enforced for the selection of the resources, different PAs can be selected, according to
operator’s policy or constraints provided by the vertical. The ROOE-PA API has been
designed using Swagger and it specifies both the Information Model (IM) and the
operations that the PAs can perform (e.g., computing where to deploy a requested
service). The ROOE and PAs use client and server stubs, respectively, generated with
Swagger that implement such operations and IM. Data, such as the resources
requested by the service VNFs, and available infrastructure computing and bandwidth
resources, are present in the Json that follows the IM and exchanged in every
operation. Forcing the ROOE and every PA to implement a common API, eases the
integration of new PAs in the system and the development and maintenance of the
ROOE component.

Even if they are part of the SM, given their relevance in the SM operation, the SOE and
the RO-OE are explained in more detail below.

6.8.3.2 SOE

The service orchestration engine is divided into the SOE-parent (SOEp) and the SOE-
child (SOEc). The former deals with service composition and federation, while the
former handles service orchestration of regular NFV-NSs (i.e., a non-composite NFV-
NS or a single nested NFV-NS included in the composite NFV-NS).

If the service is composite and it must be deployed exclusively in the local domain (i.e.,
there is no service federation), the SOEp will delegate each nested NFV-NS to the
SOEc, and will set up inter-nested NS links by interacting with the composite ROOE,
which, in turn, will request path setup to the 5GT-MTP.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 104

H2020-761536

If the service is composite and there is at least one nested NFV-NS deployed in
another administrative domain, the local SOEp will request the instantiation of this
nested NFV-NS to the SOEp of the federated domain through its northbound interface.
The internal processing in the federated domain is the same as what was explained
above. Furthermore, for those NFV-NSs deployed in the local domain, it will also act as
explained above. Finally, the local SOEp will instruct the local CROOE to interact with
the federated domain CROOE to eventually set up the inter-domain inter-nested paths,
which implies that each of the CROOEs (local and federated) will interact with the
respective 5GT-MTPs to request their segment of the inter-domain inter-nested path.

Both SOE are implemented as a Python package. The corresponding SOE exposes a
Python package interface to receive the requests from the NBI in case of the SOEp, or
the SOEp in case of the SOEc. For the NFV-NS query-related operations, the SOEp
interacts with the database to fulfil the request on the instantiation state and NFV-NS-
related information of the composite NFV-NS.

On the other hand, any query or processing related with regular NFV-NSs (i.e., non-
composite NFV-NSs) is fully delegated to the SOEc, which manages the lifecycle of the
service. As far as resource management is concerned, the SOE delegates the
operation to the ROOE module, which, interacts with the 5GT-MTP to eventually deploy
the VNFs in the form of VMs and to set up the network paths that interconnect the
VNFs of the service.

The implementation of the SOE module is located in the folder /5GT-SO/sm/soe.

6.8.3.3 Composite RO-OE (CROOE)

The composite RO-OE is the entity in charge of resource orchestration as far as
composite NFV-NSs (federated or not) is concerned. In case of composite NFV-NSs
deployed in the local domain, it is in charge of setting up the inter-nested paths by
sending the corresponding requests to the 5GT-MTP through the SM-SBI. It follows a
very similar procedure to that followed by the RO-OE, which does resource
orchestration for regular NFV-NSs (section 6.8.3.4). However, designing the procedure
in this way allows a modular architecture that allows to clearly separate the procedures
followed for regular and composite NFV-NSs.

In case there is service federation, i.e., at least one of the nested NFV-NSs is deployed
in a federated domain, the CROOE will also set up the inter-domain inter-nested path.
In this case, when requested by the SOEp, it will interact with the CROOE in the
federated domain to request the necessary resource information (e.g., IP addresses,
VLAN IDs) to eventually set up the local segment of the inter-domain path (local
CROOE) and the segment in the federated domain of the same path (CROOE in the
federated domain).

Additionally, every time the CROOE needs to select a logical link to connect two nested
NFV-NSs belonging to the same composite NFV-NS, it calls the link selection algorithm
(LSA).

6.8.3.4 RO-OE

The ROOE handles the requests that are related to 5GT-MTP resources management,
i.e., NFV-NS instantiation and termination, and interacts with the PA module, the
coreMANO and the RO-EE-WIM to accomplish the request. The implementation of the
ROOE module is located in the folder /5GT-SO/sm/rooe.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 105

H2020-761536

6.8.3.4.1 Placement Algorithms (PA) Module and PA APIs

All the algorithms presented in Section 6.6.1 have been implemented and are
integrated in the 5GT-SO software distribution. In order to have a unified way to access
them, a single REST API over which they can be called has been specified using
OpenAPI v2.0. Although all algorithms operate on the same basic system model, each
one has its particularities, which are also captured in the API (e.g., Placement
Algorithm A, if configured to optimize for availability, needs VNF- and NFVI-PoP-level
reliability information; Placement Algorithm C requires gateway IP addresses).

The PAs are expected to be running as micro-services, each exposing a REST API
endpoint, which the RO-OE uses to request the calculation of resource allocations
during the instantiation of NFV-NSs. All algorithms, which are written in python, use the
python flask library to implement their API servers.

The interaction between the RO-OE and the PAs is asynchronous: In order to invoke a
PA and not to block the RO-OE on PAs execution, the caller (RO-OE) needs to specify
in the body of the request a callback URL. The PA API service receives the request,
stores this URL internally, responds to the caller notifying it that the request has been
received, and launches the PA. When the latter has terminated, the PA server posts the
results of the algorithm to the callback URL of the caller. Placement requests are
identified by a unique ReqId value, which has to be provided by the caller, together with
the other request information (NFVI-PoP, topology, and NSD-related information, as
well as the callback URL to receive the response). This procedure is presented in
Figure 32.

FIGURE 32: INTERACTIONS BETWEEN THE RO-OE AND A PLACEMENT ALGORITHM

MODULE.

As shown in Figure 33, the API currently provides three functions:

- Invocation of the PA.

- List of ongoing and past PA execution requests.

- Information about a specific PA execution request identified by ReqId.

FIGURE 33: AVAILABLE FUNCTION CALLS OF THE PLACEMENT ALGORITHM REST API

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 106

H2020-761536

The implementation of the PA modules is located in the /pa folder of the service
orchestrator software repository. The OpenAPI definition (written in YAML) of the API is
available in the same location.

6.8.3.5 CoreMANO wrappers

The coreMANO wrappers are Python modules implemented to provide an abstracted
layer between the SM and the MANO platforms enabling the 5GT-SO to be multi-
MANO compliant. They include a translator to map ETSI-NFV IFA013 NS descriptors to
the MANO platform descriptor format, TOSCA or YANG considering Cloudify and OSM
respectively. They also include a parameter management to manage internal
operations regarding the relevant orchestration engine, creating NFV-NS identifiers and
managing NFV-NS requests including instantiation, modification, termination and
updates of the services. The wrappers can support auto-scaling operations and provide
a querying engine that interacts with the logging system of the MANO platforms. The
driver that implements the integration with the MANO platforms through REST API calls
provides functionalities such as PA integration, support for inter-PoP connectivity and
service federation.

6.8.3.6 SLA Manager

SLA Manager is the part of Service Orchestrator. SLA Manager creates request for
creating alerts to Config Manager and analyze alerts after Alert manager, which are the
components of the Monitoring Platform. This interaction is described in the Figure 34.
SLA Manager creates the request for creating alerts based on NSD from 5G-VS.

FIGURE 34: 5GT-SO AND MONITORING PLATFORM

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 107

H2020-761536

In the nutshell, SLA Manager is a program solution, developed on Java programming
language. It is run as a process and has an interface to receive messages from Alert
Manager, which are basically the system alerts, carrying information about an issue,
that can be used by SLA Manager to initiate scaling process. In order to initiate scaling
procedure, SLA Manager sends a message to NBI.

6.8.3.7 Monitoring Manager

Monitoring Manager is the part of Service Orchestrator.

Service Orchestration Engine does request to Monitoring Manager to configure
monitoring jobs. Monitoring manager receives Network Service Descriptor, Network
Service ID of current deployment, set of VNFs’ connection points for configure
monitoring jobs. Monitoring manager analyses NSD section “monitoredInfo”. This
section contains information which VNFs should be monitored. Monitoring manager
creates requests for Config Manager based on this information and information about
VNFs’ connection points. When Monitoring Manager does request to Configure
Manager, Configure Manager returns JobID for each Monitoring Manager’s request.
Monitoring Manager save JobID to NS DB. Further this information uses by SLA
Manager as mentioned in the previous chapter. Also you can see workflow on Figure
5GT-SO internal workflow for auto-scaling.

6.8.4 5GT-SO Interfaces and reference points implementation

6.8.4.1 5GT SO NBI/SBI

Northbound/Southbound Interface (NBI/SBI) sub-modules, Monitoring Manager and
SLA Manager of Figure 31 act as interfaces with the corresponding block of the 5G-
TRANSFORMER architecture, namely the 5GT-VS, the 5GT-MTP and the 5GT-
Monitoring platform, respectively. In this section, we will provide a review of the NBI
interface offered by the 5GT-SO. As mentioned before, this interface is fully aligned
with the procedures and information models described at ETSI NFV IFA specifications
013. For a complete specification of the NBI, we refer the reader to the file located in
the folder /5GT-SO/nbi/python-flask-server/swagger_server. The port used by this
interfaces is 8080 and the base path is 5gt/so/v1/.

The review of the other interfaces of the 5GT-SO are not included in this section since
in this case, the 5GT-SO block acts as client to interact with the 5GT-MTP (see
deliverable D2.3) and the 5GT-Monitoring platform (sections 6.8.3.6 and 6.8.3.7). It is
worth mentioning that the 5GT-SO system communicates with other peering 5GT-SO
system by means of the NBI for service federation.

TABLE 9: SO SYSTEM COMMUNICATION OPERATIONS DESCRIPTION

Type of Operation Path Brief Description

POST /ns Creates and returns a
Network Service
Identifier (nsId)

GET /ns/{nsId} Returns information of
the network service
referenced by {nsId}
parameter

PUT /ns/{nsId}/instantiate Instantiates the Network
Service referenced by
{nsId} parameter

PUT /ns/{nsId}/scale Scales the Network

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 108

H2020-761536

Service referenced by
{nsId} parameter

PUT /ns/{nsId}/terminate Terminates the Network
Service identified by
nsId parameter

GET /ns/nsd/{nsdId}/{version} Returns the descriptorn
of the network service
referenced by {nsdId}
and {version}
parameters

DELETE /ns/nsd/{nsdId}/{version} Deletes the descriptor
of the network service
referenced by {nsdId}
and {version} from the
nsd catalogue database
parameters

GET /ns/vnfd/{vnfdId}/{version} Returns the descriptor of
the VNF referenced by
{vnfdId} and {version}
parameters

DELETE /ns/vnfd/{vnfdId}/{version} Deletes the descriptor
of the VNF referenced
by {vnfdId} and {version}
parameters from the
vnfd catalogue database

POST /ns/vnfdManagement/vnfPackage Performs and returns
information of the
onboarded virtual
network function

POST /ns/nsdManagement/nsd Performs and returns
information of the
onboarded network
service

GET /operation/{operationId} Returns the status of the
operation specified by
{operationId} parameter

6.8.5 5GT-SO user guide

The 5GT-SO user guide is available on github, at the following link:

https://github.com/5g-transformer/5gt-so/tree/master/5GT-SO/documentation

6.8.6 How to extend the 5GT-SO

The 5GT-SO software development guide is available on github, at the following link:

https://github.com/5g-transformer/5gt-so/tree/master/5GT-SO/documentation

6.9 Service Monitoring Platform design and implementation

6.9.1 Service Monitoring Platform design

The 5GT-SO Monitoring Platform is in charge of producing monitoring reports related to
the performance or to failure events associated to the managed NFV network services

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 109

H2020-761536

and their VNFs. The generated monitoring reports can be used internally at the 5GT-
SO, for example to validate SLAs or as triggers to auto-scaling procedures, according
to the auto-scaling rules defined in the NSDs of the instantiated network services.
Moreover, the monitoring reports produced by the 5GT-SO Monitoring Service can be
also provided to the 5GT-VS through the Vs-So(-MON) reference point (see Section
5.3.5 of D3.3 [22] for details).

The 5GT-SO Monitoring Platform collects elementary monitoring data from different
sources and correlates or aggregates them into reports related to the logical entities
managed by the 5GT-SO, i.e. NFV network services and VNFs. The sources of
elementary monitoring data for the 5GT-SO Monitoring Service are the following:

• Local 5GT-MTP Monitoring Platform, for collecting performance metrics or

failure events about the virtualised resources (i.e. virtual computes, virtual

networks, virtual storages) that compose the managed VNFs and network

services.

• 5GT-SO Monitoring Service of federated 5GT-SOs, for collecting performance

metrics or failure events about nested network services or VNFs provided by

the federated 5GT-SO, in case of service federation (see section 6.6.5 for

further details).

• VNFM(s) or Physical Network Function Managers (PNFMs) for collecting

VNF/PNF indicators produced by the managed VNFs/PNFs, or their Element

Managers (EMs).

Examples of performance metrics that can be elaborated at the 5GT-SO Monitoring
Platform are the amounts of vCPU or RAM consumed in a time interval by specific
VNF(s) or by an entire network service, the number of packets lost on a virtual link, or
VNF-specific indicators. The rules to correlate the elementary data received by the
monitoring sources (e.g. vCPU consumption in single VMs as received by the 5GT-MTP
Monitoring Service) are embedded in the monitoring algorithms. These rules allow to
obtain the performance record for entire VNFs or NFV network service instances, as
specified for the different metrics encoded in the NSDs. Section 6.6.4 provides an
example of a workflow to collect monitoring data from the 5GT-MTP and consolidate
them in 5GT-SO performance metrics that can feed procedures for SLA validation.

In detail, the scope of the 5GT-SO Monitoring Platform is focused on producing
“aggregated” monitoring data that provides relevant information about the status and
the performance of a number of logical entities, somehow correlated with the end-to-
end NFV-NS instances managed by the 5GT-SO itself. Starting from these monitoring
data, the 5GT-SO will take decisions about the lifecycle or the resource orchestration of
the NFV-NS instances. In particular, the following logical entities have an impact on the
end-to-end NFV-NS instances and, consequently, should be monitored, directly or
indirectly, by the 5GT-SO Monitoring Service:

• Virtual resources instantiated from the 5GT-SO in its local domain through the

5GT-MTP.

• Virtual resources from federated 5GT-SO (e.g. VMs, connection services

between VMs, etc.) in the NFVIaaS case.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 110

H2020-761536

• VNFs, VAs and (nested) NFV Network Service instances managed by the 5GT-

SO itself, as well as the ones requested to federated 5GT-SOs in the NFV-

NSaaS case.

• PNFs used in scope of the NFV-NS instantiated by the 5GT-SO.

• Optionally, the 5GT-MTP may expose to the 5GT-SO a subset of monitoring

data related to the physical resources, for example to enable more efficient

resource allocation decisions at the 5GT-SO. This is typically the case where

5GT-SO and 5GT-MTP are managed by the same administrative entity.

FIGURE 35: FUNCTIONAL ARCHITECTURE OF THE 5GT-SO MONITORING PLATFORM

Figure 35 shows the functional architecture of the 5GT-SO Monitoring Platform. The
same architecture can be used for the 5GT-VS and 5GT-MTP Monitoring Platforms, the
only difference being that different sources will be used.

At the southbound, the monitoring collector retrieves monitoring data from different
monitoring sources through dedicated agents that translates between different
information models, monitoring mechanisms or message protocols.

The elementary monitoring data collected by these sources is then stored in the internal
storage, typically a time-series DB, to enable more efficient queries. This data can be
used as input for further elaboration at the processing engine, which aggregates and
correlates elementary data using specialized algorithms, according to the rules and
filters specified by the monitoring service consumers. The post-processing data are
also stored in the internal DB, so that they are made available for the consumers, which
can retrieve them through queries (through the Monitoring Service Front-End) or
notifications (through the Notification Dispatcher).

Finally, the monitoring data collected by the platform is also available through
monitoring dashboards generated on-demand, which report the status of the requested
data via real-time plots populated by querying the monitoring timeseries DB.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 111

H2020-761536

6.9.2 Service Monitoring Platform implementation

The 5GT Monitoring platform, as shown in Figure 36 has been implemented by
integrating a Prometheus [29] backend with the 5GT-SO through the development of
an adapter called Monitoring Configuration Manager (or Config Manager for short). This
component acts as a unified entry point for all the configuration functionalities offered
by the monitoring platform, simplifying and adapting the several APIs exposing
monitoring options to the 5G-T environment.

FIGURE 36: MONITORING PLATFORM ARCHITECTURE

In particular, with respect to the functional architecture of the monitoring framework
reported in Figure 36, the Agents at the monitoring sources are implemented as
Prometheus exporters; the Monitoring collector, the storage and the processing engine
components are all implemented by the Prometheus core engine, while PromQL
(Prometheus Query Language) expressions take the role of the processing algorithm,
aggregating and correlating elementary data as needed. The Notification dispatcher is
implemented by the Prometheus Alert manager add-on, while the Reporting component
is implemented by a Grafana instance connected to the timeseries database in
Prometheus core.

All the Prometheus-based monitoring platform is integrated with the 5GT-SO through
the mediation of the Config Manager, a lightweight REST adapter exposing a single,
simplified REST API for the configuration of the whole monitoring system (e.g. to create
monitoring jobs for target monitoring parameters, or thresholds for monitoring alerts),
acting as the “management” NBI of the Monitoring platform. The Config Manager takes
care of translating the platform-independent requests for monitoring-related
management actions into requests directed to both Prometheus and Grafana, taking
care of all the necessary configuration steps.

On The 5GT-SO side, the Config Manager interacts with the Monitoring Manager and
the SLA Manager. The Monitoring Manager is the component in the 5GT-SO translating
requests for high-level monitoring jobs referred to NFV service instances into low-level
requests related to the monitoring of resource-level parameters, which are the data
actually collected at the Monitoring Platform.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 112

H2020-761536

The SLA Manager deals instead with SLA assurance. This component is thus
interested in monitoring parameters, like Key Performance Indicators or real-time
measurements mirroring the load of the resources, that may indicate potential SLA
breaches or anomalous behaviours that may lead to system under-performance. The
SLA Manager interacts with the Monitoring Platform following a subscription-notification
paradigm, in order to promptly react to any alert associated to the target monitoring
data. In particular, the SLA Manager subscribes with the Config Manager, registering
monitoring parameter queries (which may include arbitrarily complex expressions on
many different time series) and threshold values for notifications. Such subscription is
translated into the appropriate configuration of the Prometheus Alert Manager add-on,
so that whenever the given threshold is passed, a notification is sent to the SLA
Manager, which will then trigger the needed reactions at the 5GT-SO.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 113

H2020-761536

7 Annex II – 5GT-SO SST Implementation
This section introduces a 5GT-SO design that uses a proprietary tool to achieve basic
functionalities, if compared to 5GT-SO reference implementation described in Section
6. The basic operations that are supported are Create, Read, Update and Delete
(CRUD) for service/slice deployment, as requested from the Vertical Slicer. This
implementation is developed to support basic Slices/Service Types (SST) as defined in
3GPP specification [19], and it is intended as a simple SO to support the 5GT-VS SST
described in D3.4 [30]. Therefore, this implementation is referred as 5GT-SO SST in
this document.

Figure 37 shows the main components in the 5GT-SO SST design. The main
components are: Resource Monitor Module (RMM) and Placement Algorithm Module
(PAM). Furthermore, NBI and SBI interfaces connect the 5GT-SO SST to the 5GT-VS
and to the OpenStack Tacker orchestrator respectively [31]. The RMM/PAM modules
and the corresponding interfaces are developed using Python. Tacker is used to either
trigger CRUD operations for the requested service according to the command from
PAM or to get the resource status of each VIM according to the command from RMM. It
is important to note that the orchestrator is not limited to Tacker and it can utilize
different platform such as OpenMANO or Cloudify. Also, R2 use the same components
of 5GT-SO SST used in R1 with enhancement for PAM to allow the dynamic network
slicing and allow adopting several scenarios as elaborated in Section 7.4.

FIGURE 37: 5GT-SO SST ARCHITECTURE

The NBI of RMM and PAM receives the requests from 5GT-VS in terms of Monitoring
commands and Slice/Service Life-Cycle Management (LCM) commands. The SBI of
RMM and PAM enables the request towards Tacker. Similarly, the messages
exchanged between the 5GT-SO STT core components (i.e. RMM and PAM) and

Placement Algorithm

APIs provided by Tacker

(WSGI, extension/plugin framework)

Resource Monitor

Vertical Slicer

Vs-So (Slice/Service LCM Command)Vs-So (Monitoring)

NFV Catalog NFVO VNFM

Internal interfaces toward the internal

modules in Tacker

So-Tacker (Monitoring) So-Tacker (Slice/Service LCM Command)

VIM 1 VIM 2 VIM k

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 114

H2020-761536

Tacker are Monitoring and Slice/Service LCM commands. The following subsections
describe the basic functionalities provided by RMM and PAM.

7.1 RMM

The Resource Monitoring Module (RMM) is responsible for getting the status and the
resource consumption of each VIM under the control of the Tacker platform.
Additionally, RMM can have the information of current registration/deregistration for
each VIM. RMM can collect the information of the resource consumption and forward it
towards PAM. PAM can handle the requested service according to the optimized
placement for the related VNF placement in each VIM. The RMM module in R1 and R2
is supported by using the interface/plugin provided by Tacker to get the information of
resource consumption.

7.2 PAM

The Placement Algorithm Module (PAM) receives the service deployment command
from 5GT-VS and starts to estimate the resource requirements for the requested NFV-
NS, i.e. calculates the placement of each VNF related to the requested NFV-NS. With
the resource consumption information from RMM, PAM can handle and calculate the
proper placement for each VNF related to the requested NFV-NS and generate the
VNFFG (VNF Forwarding Graph) descriptor in a TOSCA format [XXX] as input for the
request to the Tacker platform. Then, Tacker can start to deploy each VNF of the
requested service according to the description in the VNFFG. The PAM module in R1 is
supported by using the interface/plugin provided by Tacker to use basic SLA checking
to see whether the resource is following the SLA constraints and to check whether
sufficient resources are available

7.3 Monitoring Platform

In middle of Figure 37, the Monitoring Platform of the 5GT-SO SST implementation is
supported by the plugin framework in Tacker. In Tacker, internal interfaces are provided
to control and manage each VIM. In each VIM under Tacker’s control a plugin, called
Tacker slave, is installed to exchange messages with Tacker master. Each Tacker
slave is installed into each VIM and is responsible for monitoring the resource status in
the controlled VIM. Therefore, RMM in the 5GT-SO SST implementation can
communicate with Tacker Master to get resource information from each Tacker slave
via the SBI monitoring interface, e.g., to get the resource consumption for a specific
VIM or for all VIMs. Then, the resource consumption can be passed to PAM for
deployment calculation of the requested NFV-NS. This Monitoring Platform is to use the
interface/plugin provided by Tacker to get the status of resource consumption.

7.4 Two-tier resource allocation scenario

To release the 5GT-SO SST and 5GT- VS SST, the Joint Edge and Central Resource
Slicer (JECRS) is developed. The JECRS system contains components of 5GT-SO
SST and 5GT- VS SST. The JECRS framework consists of five key elements: an
Operations, Administration, and Maintenance (OAM) portal, a resource coordinator, a
template database, a configuration file maker and an infrastructure orchestrator
communicator. OAM is the implementation of 5GT-SO SST. The OAM portal is
implemented as a web user interface (UI) and comprises two modules, namely a slice
management module which plays as RRM and a user requirement translator module
which plays as the PAM.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 115

H2020-761536

To emulate a real-life scenario, we consider a 2-tier resource allocator that determines
the resources to be provided by each tier of the MEC infrastructure. In allocating the
resources, the resource allocator chooses one of several pre-configured settings of a
resource separation ratio, where this ratio determines the proportion of traffic to be
handled by the central office and edge, respectively. The resource allocation result is
passed to the configuration file maker provided from VS SST, which creates a
corresponding network service descriptor (NSD) with a format dynamically determined
by the infrastructure orchestrator. The NSD is then transferred via the infrastructure
orchestrator communicator to the orchestrator (e.g., Tacker, OpenMANO, or Cloudify).
Upon receiving this NSD, the orchestrator deploys the corresponding slice to the tenant
such that they can build their service.

Moreover, Tacker only provides basic life-cycle functions of VNF, which are create,
update, and delete. More details of Tacker operation can be found in [37].

Figure 38 illustrates the interface between the proposed JECRS framework and the 2-
tier MEC architecture. As shown in Figure 38 (a), the resource orchestrator of the MEC
architecture connects to two separate VIMs, where each VIM manages the computing
and communication resources of the respective tier. In both tiers, the computing
resources are monitored continuously and their status is regularly reported to the
resource orchestrator agent of the tier. The agents then report this information back to
the resource orchestrator to facilitate the JECRS procedure. Regarding the
communication resources, the upper tier controls both the transport network between
the two tiers and the intra network in the central office. Similarly, the lower tier controls
the intra network in the mobile edge and the RAN sharing between the mobile edge
and the user equipment. For both tiers, the communication resources are controlled by
an SDN controller within the respective VIM. The controllers periodically report the
network resource status to the resource orchestrator agents, which then forward this
information to the main resource orchestrator of the MEC architecture. Upon receiving
an NSD from the JECRS framework, the orchestrator passes the logical resource
allocation to the VIMs, which then map this information to the physical resource pools in
order to set up a slice for the corresponding service.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 116

H2020-761536

(A) 2-TIER MEC INFRASTRUCTURE WITH COMPUTING AND COMMUNICATION

RESOURCES

(B) 2-TIER INFRASTRUCTURE IMPLEMENTATION WITH OPEN SOURCES

FIGURE 38: Overview of 2-tier MEC infrastructure.

Final design and implementation report on service orchestration, federation and
monitoring platform (report) 117

H2020-761536

The NFVO of the 2-tier infrastructure was implemented using Tacker (see Figure 38
(b)). Moreover, the VIMs in the upper and lower tiers of the architecture were
implemented using OpenStack, while the south-bound communications between the
NFVO and OpenStack were handled using heat agents [32]. The computing resources
were controlled using NOVA; a built-in element in OpenStack. The network resources
were controlled by a SDN controller, namely OpenDaylight (ver. Oxygen) cooperating
with Neutron [33]. OpenDaylight controls the transport inter-network between the two
tiers and the intra-network in the upper tier using Open vSwitch (OVS v2.8.4) [34].
Neutron manages the intra network of the mobile edge based on the OVS of the lower
tier and cooperated with a RAN proxy (RANP). Neutron management is a virtual
Mobility Management Entity and multiple virtual base station modules are set up inside
to process the control plane and then analyze the Non-access Stratum (NAS)
messages and identify the operator of each user equipment. Besides, for the date
plane, a Tunnel Switching module processes incoming GTP data packets and forwards
them to the correct slice, to control the RAN. Finally, the north-bound communication
between Tacker and the JECRS framework were handled using TOSCA (Topology and
Orchestration Specification for Cloud Applications) [35].

	List of Contributors
	List of Figures
	List of Tables
	List of Acronyms
	Executive Summary and Key Contributions
	1 Introduction
	2 Final 5GT-SO Architecture
	2.1 Final architecture overview
	2.2 5GT-SO features
	2.3 5GT-SO functional components
	2.4 5GT-SO Interfaces
	2.4.1 NBI
	2.4.2 SBI
	2.4.3 E/WBI

	2.5 Service Monitoring

	3 5GT-SO workflows
	4 Conclusions
	5 References
	6 Annex I – 5GT-SO Design and Implementation
	6.1 Requirements to the 5GT-SO
	6.1.1 Business Requirements
	6.1.2 Functional Requirements
	6.1.2.1 Discovery
	6.1.2.2 Fulfilment
	6.1.2.3 Assurance
	6.1.2.4 Decommissioning

	6.2 5GT-SO Architecture
	6.3 5GT-SO key operations
	6.4 5GT-SO building blocks detailed overview
	6.4.1 NBI Exposure Layer
	6.4.2 NFV-NS/VNF/VA Catalogue DB/Manager
	6.4.3 NFVO-NSO
	6.4.3.1 Composite NSO
	6.4.3.2 NS decomposition algorithms
	6.4.3.3 Constituent NSO

	6.4.4 VNF Manager (VNFM)
	6.4.5 NFVO-RO
	6.4.5.1 Composite Resource Orchestration (Composite RO)
	6.4.5.2 Resource Orchestration Engine (RO-OE)
	6.4.5.3 RO Execution Entity (RO-EE)

	6.4.6 SO-SO Resource Management & Advertising
	6.4.7 NFVI Resource Repository
	6.4.8 NFV-NS/VNF/VA Instance Repository
	6.4.9 SO Monitoring Manager
	6.4.10 SLA Manager

	6.5 5GT-SO Interfaces and reference points
	6.5.1 5GT-SO NBI
	6.5.2 5GT-SO SBI
	6.5.3 5GT-SO EBI/WBI

	6.6 Service Orchestrator Features
	6.6.1 Placement algorithms: framework, description, and evaluation
	6.6.1.1 Framework and system model
	6.6.1.2 Placement Algorithm A
	6.6.1.2.1 Description
	6.6.1.2.2 Performance evaluation

	6.6.1.3 Placement Algorithm B
	6.6.1.3.1 Description
	6.6.1.3.2 Performance evaluation

	6.6.1.4 Placement Algorithm C
	6.6.1.4.1 Description
	6.6.1.4.2 Performance evaluation
	6.6.1.5 Placement Algorithm D
	6.6.1.5.1 Description
	6.6.1.5.2 Performance evaluation

	6.6.2 Service Scaling
	6.6.2.1 Motivation
	6.6.2.2 Vertical-driven VSI Scaling
	6.6.2.3 Automated VSI Scaling
	6.6.2.4 Automated NFV-NS Scaling

	6.6.3 Service Composition
	6.6.4 Service Assurance and SLA Management
	6.6.5 Service Federation
	6.6.5.1 Federation Assumptions: Service delegation & Service federation
	6.6.5.2 NFV-NS decomposition and NFVO Multi-domain orchestration
	6.6.5.3 Catalogue of services

	6.6.6 Resource Federation
	6.6.6.1 Advertisement phase
	6.6.6.2 Allocation & management phase

	6.7 5GT-SO Workflows
	6.7.1 Service Onboarding
	6.7.2 Service instantiation
	6.7.3 Service instantiation including MEC applications
	6.7.4 Service termination
	6.7.5 Service monitoring
	6.7.6 Service scaling
	6.7.6.1 Vertical-driven scaling
	6.7.6.2 Auto-scaling

	6.7.7 Service Federation

	6.8 Details of the 5GT-SO software implementation
	6.8.1 Mapping of functional architecture to software architecture
	6.8.2 Software architecture
	6.8.3 5GT-SO components software implementation
	6.8.3.1 SM
	6.8.3.2 SOE
	6.8.3.3 Composite RO-OE (CROOE)
	6.8.3.4 RO-OE
	6.8.3.4.1 Placement Algorithms (PA) Module and PA APIs
	6.8.3.5 CoreMANO wrappers
	6.8.3.6 SLA Manager
	6.8.3.7 Monitoring Manager

	6.8.4 5GT-SO Interfaces and reference points implementation
	6.8.4.1 5GT SO NBI/SBI

	6.8.5 5GT-SO user guide
	6.8.6 How to extend the 5GT-SO

	6.9 Service Monitoring Platform design and implementation
	6.9.1 Service Monitoring Platform design
	6.9.2 Service Monitoring Platform implementation

	7 Annex II – 5GT-SO SST Implementation
	7.1 RMM
	7.2 PAM
	7.3 Monitoring Platform
	7.4 Two-tier resource allocation scenario

