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Abstract 
This deliverable of D3.3 is the third and final deliverable of WP3. The goal of this deliverable is to 
provide the final validation results of different 5G-DIVE use cases defined in D1.1, i.e., Digital Twin 
(DT), Zero Defect Manufacturing (ZDM) and Massive Machine-Type-of-Communication (mMTC) use 
cases for Industry 4.0 (I4.0) trial, and drone fleet navigation (ADSUC1) and Intelligent Image Processing 
for Drones (ADSUC2) use cases for Autonomous Drone Scouting (ADS) trial. Experiments of each use 
case have been performed for implementation validation including scalability analysis and system 
reliability. And the experimental results are evaluated considering the 5G-DIVE platform, 5G 
connectivity and edge and fog computing. Furthermore, the updated information of I4.0 trial site in 
5TONIC and I4.0 use case integration are also provided in this deliverable. 
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Executive Summary 
This deliverable of D3.3 is the final deliverable of WP3 after D3.2 (D3.1: Definition and setup of vertical 
trial sites, 2020). The goal of this deliverable is to provide the final validation results of different 5G-
DIVE use cases defined in D1.1 (D1.1: 5G-DIVE architecture and detailed analysis of vertical use cases, 
2020), i.e., Digital Twin (DT), Zero Defect Manufacturing (ZDM) and Massive Machine-Type-of-
Communication (mMTC) use cases for Industry 4.0 (I4.0) trial, and Drone Collision Avoidance System 
(DCAS) and Intelligent Image Processing for Drones (IIPFD) use cases for Autonomous Drone Scouting 
(ADS) trial. The main achievements of D3.3 are: (1) Final experiments of each use case have been 
performed for use-case implementation validation. The experimental results are evaluated against the 
technical requirements defined in D1.1, which indicates that the developments of the use cases are all 
on track. (2) The final use case integration is provided, presenting the basic ideas of how all use cases 
can be integrated under one common DEEP platform (5G-DIVE Elastic Edge Platform). The following 
provides a summary of the contents in Sections 2-6, respectively.  
In Section 2, the final 5G solution validation results are presented. In particular, 5G-SA solution is 
mainly used for I4.0 uses cases and 5G-NSA solution is used for ADS use cases.  
In Section 3, The main features are (1) BASS is developed orchestrator drivers to support different 
orchestrator frameworks (e.g., K8s and FogO5) which are used by different use cases; (2) IESS provides 
a common IESS catalog for storing use-case specific ML/AI models especially for DT; (3) most of the 
use cases adopted a common DASS component using Eclipse Zenoh developed in 5G-DIVE. In this 
way, a common DEEP platform can serve multiple vertical use cases simultaneously.  In addition, 
validation results have been shown in this section. 
In Section 4, the I4.0 and ADS trials are planned in Taiwan. However, this plan gets affected by the 
COVID-19 pandemic situation. Therefore, we provide an update regarding the trial site information for 
both I4.0 and ADS trials. In particular, more details are provided on the adopted alternative plan for 
I4.0 trial (5TONIC lab in Spain). Then, we present the final use-case integration regarding how all 5G-
DIVE use cases will be integrated under one common DEEP platform. 
In Section 5, three use cases have been validated for the I4.0 trial. The results indicate that the 
development of three use cases delivered the aimed targets. DT focused on the development of 
additional AI/ML features and their integration in the DEEP platform. In particular, movement 
prediction, obstacle avoidance and SLA Enforcer. Then, ZDM use case focused on a new object 
detection engine, integration with AWS and integration with 5G network. In addition, mMTC use case 
focused on application layer features, RF fingerprinting, orchestration and automation features. All the 
use case above also provided DEEP integration validation, long-term validation and scalability 
analysis. 
In Section 6, two use cases have been validated for the ADS trial. The results indicate that the 
development of two use cases delivered the aimed targets. ADSUC1 focused on adopting Drone 
Collison Avoidance System (DCAS) into the edge for drone fleet navigation and Internet Drone 
Operating System (IDrOS). Then, ADSUC2 focused on 5G-NSA validation, EagleEYE and Egale 
stitching. In addition, DEEP integration validation, long-term validation and scalability analysis are 
provided. Finally, Section 7 concludes the deliverable. 
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1. Introduction  
One of the key objectives of 5G-DIVE WP3 is to perform field trials for pilots over the E2E in European 
and Taiwanese testbeds. The two verticals are Industry 4.0 (I4.0) and Autonomous Drone Scouting 
(ADS) have worked extensively even under COVID-19 restriction to validate the solution. Also, WP3 
had integrated the novel 5G-DIVE DEEP strata (developed in WP2) into the 5G-CORAL baseline 
architecture. The deployment of the 5G-DIVE platform occurred in all trial sites, including software 
and hardware components for the aforementioned pilots. This deliverable addressed the long and short 
validation for 3 tires of 5G-DIVE solution. The tires include 5G connectivity, Edge computing, and AI. 
For 5G connectivity, a comprehensive set of validation featuring high-throughput and low-latency 
demanding applications at the vicinity of the end-user and in real-world environments is possible using 
5G-SA and 5G-NSA solutions. More details on 5G solution validation are presented in Section 2. Edge 
computing and AI have been reported individually for each use case. 
 
On the other hand, it is mandatory to orchestrate and manage the pilot through DEEP platform. Hence, 
in Section 3, we validate DEEP platform. This covers three parts: BASS, DASS, IESS. For BASS, resource 
management, automates the lifecycle management, user-friendly UI and active monitoring features 
have been elaborated. In addition, BASS performance has also been evaluated in terms of scalability, 
availability and reliability.  For DASS, data preprocessing, storage, as well as data dispatching features 
have been elaborated and validated. In addition, the DASS has been evaluated in terms of scalability 
and performance. The scalability test was a mesh routing at scale test and was performed at Zenoh-net 
level.  The performance tests were carried out in peer-to-peer and in brokered communication mode, 
in both the Zenoh API, and Zenoh-net layer. For IESS, it offers features to facilitate the adoption of AI 
and ML functionalities. Besides, IESS performance has also been evaluated in terms of scalability, 
availability and reliability. 
 
Section 4 presented the final integration where an update regarding more information on the trial sites 
of I4.0 trials in Spain and ADS trials in Taiwan is provided.  Also, the final use-case integration is 
presented regarding how all 5G-DIVE use cases in trials are integrated with one common DEEP 
platform. 
 
Section 5, the final validation results of the three I4.0 use cases are presented. For Digital Twin (DT) use 
case part, focused on the development of additional AI/ML features for and their integration in the 
DEEP platform (i.e. movement prediction, obstacle avoidance and SLA Enforcer). It also provided 5G-
SA profiling network measurements. For Zero Defect Manufacturing (ZDM) use case, a new object 
detection engine has been integrated and the ZDM use case has been integrated with AWS Wavelength. 
Moreover, the various ZDM experiments are used to evaluate 5G connectivity, fog and edge 
computing, DEEP components. For Massive Machine-Type-of-Communication (mMTC) use case, final 
validation for the added orchestration features using K8s for automation and auto-scaling is performed. 
Besides, intelligent RF fingerprinting is developed, integrated into the tested and validated.  
  
Section 6 provides a description of the integration of 5G-DIVE solution as well as the complete end-to-
end deployment of 5G-enabled edge infrastructure for Autonomous Drone scout (ADS) has been 
described. In particular, ADS is used for a disaster relief response system into two use cases. The first 
ADS use case (ADS-UC1) is drone fleet navigation.  The second ADS use case (ADS-UC2) is intelligent 
image processing for drones. In ADS-UC1, the drone fleet can support several applications for relief 
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efforts including DCAS. While in ADS-UC2, it supports Eagle EYE, and EagleStitch. The system (i.e. 
ADSUC1 and ADSUC2) has shown the scalability and availability required for such public safety 
mission. In addition, the 5G-DIVE DEEP platform (e.g.: BASS, DASS, IESS) utilization toward 
enhancement of the overall performance has been elaborated. For example, it provided high 
throughput data publishing framework via the DASS, automatic training of AI model via the IESS, as 
well as automatic application deployment and lifecycle management via the BASS. 
 
Finally, Section 7 concludes the deliverable with the key achievements for each use case. 
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2. 5G Solution Validation   
In this section, we present 5G SA solution used in I4.0 field trials as elaborated in Section 2.1. Also, we 
present 5G NSA solution used in ADS field trials as elaborated in Section 2.2. 

2.1. 5G SA solution for I4.0 trials in 5TONIC  
A 5G SA trial system is deployed at 5TONIC, the trial site for I4.0 use cases of 5G-DIVE. The 5G SA 
system is designed based on Ericsson Radio Dot System, where 5G DOT is deployed on a cable ladder 
and the rest of the nodes are installed in one half-size rack (referred to as flightrack with a minimal 
footprint which is easy to transport), as shown in Figure 2-1.  For UEs, we have two ASKEY HPUE 
RTL0330 UEs and two other test UEs based on RaspberryPi HAT (Raspberry Pi HAT), as shown in 
Figure 2-2. The UEs are based on Qualcomm SDX55 chipset.   
 
  

 
FIGURE 2-1 5G SA trial system installed in 5TONIC 

 
FIGURE 2-2 Two types of UEs used  

(left: ASKEY RTL0330, right: RaspberryPi HAT) 

Figure 2-3 shows the system design of the flightrack which houses an IRU 8846, a Baseband BB6630, 
UPF server, app server, a switch and a firewall. The 5G connectivity supports band n79 and 100 MHz 
bandwidth with 4T4R, i.e. 4 transmit and 4 receive antennas. A local GNSS sync source provides the 
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SYNC signal to the BB6630 using an Ethernet cable. The Control Plane of 5GC is located remotely in 
Sweden and connected to 5G RAN a.k.a flightrack over the Internet via an IP Sec tunnel. The User Plane 
Function (UFP) of 5GC, i.e. UPF server, is deployed locally on the flightrack. 
 

 
FIGURE 2-3 5G SA trial system design 

The trial network setup at 5TONIC has 3 main components. 
• 5G RAN and UPF at the trial site at 5TONIC, Madrid, Spain. 
• 5GC at a remote location at Kista, Sweden. 
• Edge servers at the 5TONIC data centre in the server room next to the trial site, Madrid, Spain. 

These three components are established in separate physical locations and belong to different private 
networks. Hence it was necessary to create efficient connectivity among them. The network topology 
and connectivity are illustrated in Figure 2-4. 

 
FIGURE 2-4 Network Topology of the 5G SA trial system 
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Connectivity between 5G RAN and 5GC 

5G RAN is connected to the 5GC over the Internet via an IP SEC tunnel. We achieve this by configuring 
a public IP address at the 5G RAN firewall and connecting to the 5G CORE. This allows us to provide 
a 5G control plane from a remote site making the connectivity setup flexible and cloud friendly. In 
addition to that, we can manage and configure the 5G RAN setup remotely over the same tunnel 
connection securely. 
 

Connectivity between 5G RAN and Edge servers 

The EDGE servers necessary for the I4.0 use cases are behind the firewall of 5TONIC lab and reachable 
over the Internet using a secure VPN connection. These servers belong to a local network [10.5.4.0/24] 
which is different than the 5G network to which the UEs [10.19.150.0/24] belong to. Although the UEs 
have access to the Internet, being on a different network they can’t reach the EDGE servers directly. 
The use of VPN at the UEs to establish a connection with EDGE server is not efficient in terms of the 
potential performance and latency impairments. It was important for UEs to have a reliable and low 
latency connection towards the EDGE servers. Towards this, we created a Link Network between the 
5G SA setup (via switch and firewall on the flightrack) and 5TONIC data center over their firewall to 
establish a close loop connection between 5G UEs [10.19.150.0/24] and Edge Servers (VMs) [10.5.4.0/24] 
networks. With this new Link Network, the UEs have reliable and low latency connections to the EDGE 
servers. 
 

Connectivity to Internet 

As described before, UPF is deployed in the flightrack locally. Therefore, the user plane data are locally 
connected to the Internet via UPF. With an IP Sec tunnel towards remote 5GC and a local Link Network 
with 5TONIC data center, the 5G SA trial setup provides all necessary connectivity for I4.0 use cases. 
On top of that, we can remotely manage and configure the 5G SA setup as needed. 

To verify the performance of the setup, we list some measurement results done at 5TONIC. These 
results were done with the SpeedTest application preinstalled in the application server, which is 
usually used for performance verification. Figure 2-5 shows a screenshot of one SpeedTest 
measurement. 
 

 
FIGURE 2-5 Screenshot of the SpeedTest measurement 
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Figure 2-6 shows the locations of 5 measurements done in 5TONIC. For each location, the UE was 
placed on the table where I4.0 use case trials would take place. And Table 2-1 lists the measurement 
results. It shows that more than 100 Mbps in UL and more than 750 Mbps in DL are achieved 
consistently. The average round-trip time (RTT) is up to 20 ms while the jitter remains under 14 ms. 
These results validated that the system is up & running properly at 5TONIC and ready for I4.0 use case 
trials. 
 

 
FIGURE 2-6 Measurement locations at 5TONIC 

 
TABLE 2-1 Throughput measurement results 

UE 
Location 

Uplink 
throughput 

(Mbps) 

Downlink 
throughput (Mbps) 

Latency (RTT) 
(ms) 

Jitter (ms) 

Location 1 112.85 800.95 12 7 

Location 2 112.23 866.11 20 13.27 

Location 3 111.86 872.36 14 6.49 

Location 4 107.48 825.96 16 10.63 

Location 5 106.30 757.54 12 5.81 
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2.2. 5G-NSA solution for ADS trials in MIRC 
The 5G NSA mobile network at NCTU site is built for ADS use cases. This 5G NSA network consists of 
the Radio Access Network and the Core network. The eNB-gNB combo base station made by Askey 
Computer supports both 4G and 5G radios. They follow 3GPP EN-DC Option 3X procedures for a UE 
(a drone) to switch its connectivity to 5G when the signal is strong enough and otherwise fall back to 
4G The overall architecture is shown in Figure 2-7.  In Figure 2-7, the green topology of lines depicts 
the cabling. The text near a line describes the 3GPP protocol interfaces. The other lines without text 
have been traffic local breakout, and thus those packets in the lines are of regular IP. 
 
 

 
FIGURE 2-7 The overall 5G NSA structure 

The fully-virtualized core network is developed by III and ITRI as shown in Figure 2-8 and Figure 2-9. 
III upgraded the former 4G Core to enable 5G signalling. Meanwhile, ITRI provides the NSA-enabled 
iMEC, which runs the specialized serving gateway to perform local breakout of UE traffic to those 
virtual servers, such as EagleEye and EagleStitch, on compute nodes. iMEC also provides a GUI 
interface for operators to deploy or to remove a virtual server.  
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FIGURE 2-8 Internal structure of 5G NSA EPC 

 

 
FIGURE 2-9 Internal structure of 5G NSA iMEC 

 
Connectivity between NSA RAN and NSA EPC 

An eNB-gNB combo base station connects to EPC over a local Ethernet network. After booting up, it 
registers its existence to MME at NSA EPC. During run time, it forwards the controlling signals between 
a UE and MME, as well as delivers data between UE and serving gateway with the ability to do local 
breakout. During run time, the base station continuously measures the radio strength and inform MME 
to upgrade or fall back data path to gNB or eNB radio for UEs accordingly. 
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Connectivity between NSA RAN and iMEC with Virtualized Drone Servers 

No matter eNB or gNB that a UE is connected to, the UE traffic reaches the serving gateway, which 
runs on iMEC. The serving gateway performs local breakout, decapsulate GTP-U header, and then 
forwards the traffic to localized application servers that also run on iMEC. The networking performance 
of this NSA mobile network has been evaluated at NCTU trial site. The measuring positions are shown 
in Figure 2-10, and the results are in Table 2-2. 
 

 
FIGURE 2-10 5G NSA NSA locations of measurement 

 
TABLE 2-2 Various SpeedTest measurement results 

UE 
Location 

Uplink 
throughput 
(Mbps) 

Downlink 
throughput (Mbps) 

Latency (RTT) 
(ms) 

Jitter (ms) 

Location 1 99.1 177.0 39.512 9.308 

Location 2 126.0 166.1 51.735 13.615 
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3. DEEP Platform Validation  
One of the main challenges of the 5G-DIVE project is the design and development of the DEEP platform, 
an intelligent software system for the unified access to heterogeneous and remote clusters of resources 
and the integration of multiple use cases. The final design is presented in D1.3 (D1.3 , 2021), while 
details about the implementation are reported in D2.3 (D2.3: Final Specification of 5G-DIVE 
Innovations, 2021). 
The functionalities and performance of the platform have been validated in multiple experiments and 
benchmarking activities. Since the DEEP aims at providing advanced features to vertical use-cases, the 
project effort focused on multiple iterative integration cycles in order to get quick feedback about 
proposed features and their usability. The integration campaign has culminated in the setup of a field 
trial testbed at 5TONIC premises in Spain. Here, the I4.0 use cases have been all deployed on the DEEP 
platform that manages and orchestrates a common pool of computing, networking, and storage 
resources. Due to travel and technical restrictions, ADS use-cases have been integrated with a far 
remote testbed configuration where the DEEP platform was deployed in Spain and the Vertical 
Premises were located in Hsinchu City, Taiwan. 
The next sections report separately the validation of the three main components of the DEEP platform, 
the Business Analysis Support Stratum (BASS), the Data Analysis Support Stratum (DASS), and the 
Intelligence Engine Support Stratum (IESS). 

3.1. BASS Validation results  
The BASS' functional and non-functional features have been validated against all of the use cases of the 
project during a preliminary integration phase and finally during the field trials. The central component 
of the DEEP platform takes care of managing the resources in vertical premises (i.e., regions), automates 
the lifecycle management of the use cases, and provides advanced features like a user-friendly UI and 
active monitoring to ease the interaction of verticals with the infrastructure and vertical services. The 
BASS performance has also been evaluated in terms of scalability, availability and reliability. 

3.1.1. Multi-region orchestration feature validation 
The BASS provides the unified management of multiple clusters of computing, networking, and 
storage resources. A cluster or aggregation of clusters owned by a single vertical is named Vertical 
Region and it can be local or remote with respect to the location of the BASS instance that manages it. 
For the field trials at 5TONIC premises, we emulated a scenario with three vertical regions, deployed 
locally in the data centre but configured as they were remote (see Section 4). Plus, we included a real 
remote region located in Hsinchu City, Taiwan. Table 3-1 provides more information about the 
configuration of each region. 

TABLE 3-1 Region configured in 5Tonic trials 

Region name Orchestration technology Orchestrated resources 
5tonic-dtwin-edge K3s 1 edge node 
5tonic-dtwin-fog Fog05 2 fog nodes 
5tonic-mmtc Kubernetes 3 edge nodes 
5tonic-zdm Fog05 1 edge node, 1 fog node 
NCTU-Hsinchu City, Taiwan. K3s 1 edge node 
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As shown in the previous table, each region is implemented with a different orchestration platform. 
The BASS provides a common, unified interface to manage both Fog05 and Kubernetes (plus 
compatible flavours like K3s) based regions. The software is designed with a plugin-based pattern in 
order to add support for more in the future. 
 

 
FIGURE 3-1 BASS Web view of the regions for the final trials 

During the trials at 5TONIC premises, we validated the correct functionality of the multi-region 
management region. Figure 3-1 shows a screenshot of the BASS user interface showing the managed 
regions. 

3.1.2. Service management feature validation 
The BASS provides several tools in order to define a Vertical Service and to manage its lifecycle. The 
Vertical Service Descriptor (VSD) is a data model to define services on the BASS, describing 
components, connections, and any other information for the deployment. The descriptor is applicable 
to all the orchestration platforms supported by the BASS, as shown in Section 3.1.1, providing a 
common language for the definition of services. Similarly, the BASS defines a unified lifecycle for 
Vertical Services that are applicable to all the orchestration platforms supported. The management of 
the lifecycle is facilitated by a simple Web User Interface. 
To demonstrate how the BASS facilitates the definition and management of a Vertical Service, with 
respect to its direct implementation on an orchestration platform, we can compare the descriptors. We 
use lines of code (LOC) as a raw measurement of the complexity and we select the mMTC use-case (see 
Section 5.3) as an example. The use case is deployed on a Kubernetes compatible orchestration platform 
(K3S). Kubernetes deployment files are expressed in YAML, while the BASS’ VSD is expressed in JSON. 
Since YAML is a superset of JSON, the conversion from JSON to YAML is possible without any 
information loss. The mMTC VSD is converted to YAML in order to perform a meaningful comparison. 
Comparing the VSD and Kubernetes deployment files for the mMTC use case, the first thing we can 
notice is that the BASS descriptor is contained in a single file. On the contrary, Kubernetes needs 
multiple files in order to fully describe the deployment: six YAML files are needed in order to 
completely describe the deployment of mMTC use-case in Kubernetes. Actually, thanks to YAML 
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features, the different files can be merged into a single one but this is not a best practice as it generates 
a more complicated file harder to manage for the user. Concerning the complexity in terms of LOC, the 
Kubernetes deployment files sum up to 193 lines while the BASS’ VSD file only contains 44 lines, a 
reduction of about 77% (the VSD, in YAML format, is provided in Section 8). The BASS achieves this 
significant result thanks to its augmented intelligence that abstracts the vertical service definition from 
Kubernetes technical details, infrastructure details, and provides safe defaults for common 
requirements from verticals collected during the project. 
During the trials at 5TONIC premises, all the use-cases were correctly deployed and managed by the 
BASS. The verticals were able to create, deploy, stop, and delete several versions of their services. Figure 
3-2 provides a screenshot of the Web User Interface during the trials, showing several Vertical Services 
managed with the BASS at the same time. 
 
 

 
FIGURE 3-2 BASS web view of multiple vertical services 

3.1.3. Active Monitoring feature validation 
The BASS offers to the verticals a monitoring solution working out-of-the-box. For Vertical Services 
deployed on resources orchestrated by Kubernetes, it automatically enables the monitoring of per-
component CPU usage, memory usage, network usage, and disk usage. Furthermore, it provides active 
probes templates to integrate custom metrics from the Vertical Service into the monitoring system. The 
storage and query engine are done with InfluxDB (InfluxDB, n.d.), while the probes are deployed as 
Telegraf plugins (Telegraf documentation, 2021), integrated as sidecar containers. 
During the trials at 5TONIC premises, we validated the monitoring features of the BASS for all the use-
cases deployed on regions orchestrated by Kubernetes. Figure 3-3 shows a screenshot of the metrics 
collected inside InfluxDB for the mMTC use case.   
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FIGURE 3-3 INFLUXDB metrics visualization for mMTC use case 

A basic visualization of metrics is also available directly from the BASS Web User Interface. Figure 3-4 
shows an example visualization of a metric measuring the total received bytes on the interface of a 
component. 
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FIGURE 3-4 Metrics visualization from the BASS' web user interface 

The BASS also embeds the visualization of logs for the managed components, as shown in Figure 3-5. 
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FIGURE 3-5 Logs visualization from the BASS’ user interface 

 
The automatic activation of resource monitoring and logs visualization was greatly appreciated by use 
case owners since it is extremely useful for the detection of anomalies, the identification of performance 
issues, and the assessment of the service health. Monitoring a Vertical Service requires the 
implementation or setup of several tools to collect, store, query, and visualize the metrics. The unified 
monitoring platform provided by the BASS already implements all of these things out-of-the-box, with 
sane defaults for the configuration and the application of best practices in order to avoid common 
mistakes. From the measurements during the trials, it has been observed that 30 to 40 MB of monitoring 
data are generated for a single component daily. Considering that a Vertical Service is usually 
composed of three or four components, we can estimate about 150 MB of monitoring data per service 
per day. This amount of data per service generates a storage pressure that can be easily handled in 
modern data centres, where storage solutions are designed for Big Data. Furthermore, the monitoring 
system allows for the configuration of data retention parameters with the possibility to aggregate or 
delete old data, so to save storage resources. 
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Furthermore, the active monitoring feature acts as a source of truth for the status of the resources 
managed by the BASS necessary for the SLA management feature. SLA enforcement engines get data 
from the monitoring system to check if any SLA violation is happening. 

3.1.4. SLA Enforcement feature validation 
The BASS allows defining a Service Level Agreement (SLA) for each Vertical Service. The SLA 
information is included in the VSD in the form of more atomic elements, such as Service Level 
Indicators (SLI) and Service Level Objectives (SLO). More details about the SLA model can be found in 
(D1.3 , 2021). Figure 3-6 shows an example of SLA definition in a VSD. 
 

 
FIGURE 3-6 Example of SLA definition in a VSD 

 
The SLI defines the component and the metric to be monitored, as well as the range of time for 
sampling. The structure also contains an SLO, which defines the thresholds for the metrics. In the 
example in Figure 3-6, the maximum acceptable value for the CPU usage of “Component-A” is 80%. 
Aside from the SLA definition, the BASS also provides methods to get SLI values, validate SLOs are 
respected, and execute corrective actions in case of SLA violations. The corrective actions allow for 
vertical (i.e., setting CPU and memory limits per component) and horizontal (i.e., increasing the 
number of replicas of a component) scaling. 
All the methods are exposed by the BASS through an HTTP interface so that external clients can operate 
on the SLA. The latter are called SLA enforces and they implement algorithms in order to check the 
SLA of a Vertical Service for violations and request actions in order to correct it. Thanks to the generic 
interface, the enforcement logic can be trivial or more advanced, depending on the level of 
sophistication desired by the specific use case. An advanced example of an SLA enforcer is presented 
in Section 5.1.1.2 for the Digital Twin use case. 
The features summarized above have been thoroughly validated in the BASS unit and integration test 
during the second year. They constitute the SLA Enforcement Framework, presented in more detail in 
D2.3 (D2.3: Final Specification of 5G-DIVE Innovations, 2021). 
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3.1.5. Scalability measurements 
The scalability of the BASS is defined as the trend of resource consumption under a constantly 
increasing amount of load. We also include in this definition the performance trend, measured as the 
elapsed time needed to deploy a service. In the context of the BASS, the load is intended as the number 
of Vertical Services currently deployed (i.e., active or in running state). Since each Vertical Service is 
composed of multiple components, using complex services may lead to different trends in the 
measurements. Hence, we selected a representative service for performing the scalability tests which is 
a copy of the Digital Twin service (see Section 5.1). During the tests, we deploy several replicas of the 
Vertical Service and collect the metrics aforementioned in order to observe a trend. For specifications 
about the hardware configuration for the experiments, please see Table 4-2. 
To observe the effect of multiple Vertical Services on the CPU consumption of the BASS two series of 
tests have been executed. In the first, an increasing number of Vertical Services are deployed on the 
system sequentially. Starting from an initial state in which only one service is present, we deploy new 
services one by one up to a total of 10 services running at the same time. Table 3-2 reports a summary 
of the collected results. 
 

TABLE 3-2 CPU usage results for 10 sequential deployments on the BASS 

Vertical 
Services 

Components 
(total) 

Mean (%) Standard 
deviation (%) 

Minimum (%) Maximum 
(%) 

0 0 0,0753 0,0272 0,0501 0,2008 
1 7 0,2521 0,1369 0,1256 0,5643 
2 14 0,2448 0,1389 0,1758 0,5529 
3 21 0,2134 0,1321 0,1885 0,5028 
4 28 0,2951 0,1029 0,2137 0,5028 
5 35 0,2773 0,1689 0,2261 0,6416 
6 42 0,2882 0,1621 0,2514 0,6399 
7 49 0,3275 0,1939 0,2768 0,7543 
8 56 0,3517 0,1266 0,3016 0,6159 
9 63 0,3656 0,1532 0,3270 0,7044 
10 70 0,3898 0,1610 0,3639 0,8169 

 
The first thing we can notice from the results in Table 3-2 is how little is the BASS consuming in general. 
The mean CPU utilization stays always below one percent (computed on all the available cores of the 
node where the BASS is deployed). In the raw data, we noticed a spike in the CPU consumption while 
deploying a service that later decreases to a lower and more stable value. Hence it is important to look 
at the “Maximum (%)”to evaluate the intensity of the spike. The reader can observe that the higher 
value recorded is 0,8169 %, corresponding to the last test case. We can confirm that the BASS has a very 
low impact in terms of resource utilization: a fair price considering the advanced features that it 
provides. Anyway, the Maximum column hints at an increasing trend in the CPU consumption in 
correspondence with more services deployed on the platform. Despite working with very low numbers, 
probably affected by measurement noise due to the operating system and the Java Virtual Machine,  
Figure 3-7 provides a plot of the maximum values. 
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FIGURE 3-7 Trend visualization of the maximum CPU usage 

 
As shown in the figure, the trend in CPU consumption is linear. We can conclude that the BASS scales 
well with respect to an increasing number of vertical services deployed on the platform. 
The second series of tests has the goal to observe the effect of parallel deployments on the CPU 
consumption of the BASS. In this case, we send multiple deployment requests at the same time to a 
single instance of the BASS, starting from one and stepping up to 10. Table 3-3 reports a summary of 
the collected results. 
 

TABLE 3-3 CPU usage results for parallel deployments on the BASS 

Vertical 
Services 

Components 
(total) 

Mean (%) Standard 
deviation (%) 

Minimum (%) Maximum 
(%) 

1 7 0,2521 0,1369 0,1256 0,5643 
2 14 0,2015 0,3833 0,1257 1,0565 
4 28 0,3014 0,3720 0,1130 1,3581 
6 42 0,3140 0,4069 0,1131 1,4845 
8 56 0,3779 0,3500 0,1128 1,5436 
10 70 0,3893 0,3353 0,1633 1,6198 

 
We can observe how the mean CPU usage stays negligible, aligned with the results in Table 3-3. 
Anyway, looking at the “Maximum (%)” column, we can see higher spiking values even if they manage 
to stay under 2% of the total available CPU in the node. We can conclude that multiple deployment 
requests at the same time have some appreciable effect on the CPU consumption of the BASS but 
without constituting a risk for its normal operation. Figure 3-8 shows the trend visualization for 
maximum values in the case of parallel deployments. The trend appears to reach a plateau of around 
1,60% of CPU utilization and so does not pose any issue for the scalability of the BASS. 
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FIGURE 3-8 Trend visualization of the maximum CPU usage for parallel deployments 

 
The two series of tests, in sequential and in parallel order, have been also used to measure the 
deployment time. Table 3-4 reports the measured deployment times for a series of ten sequential 
deployments on the BASS. 
 

TABLE 3-4 Deployment time results for 10 sequential deployments on the BASS 

Vertical Services Components (total) Deployment time (s) 
1 7 56,13 
2 14 33,08 
3 21 28,36 
4 28 33,10 
5 35 30,37 
6 42 29,54 
7 49 28,78 
8 56 30,60 
9 63 29,37 
10 70 31,61 

 
Mean (s) Standard deviation (s) Minimum (s) Maximum (s) 

30,48 8,25 28,36 56,13 
 
The first deployment taking a longer time is an expected result, since the BASS needs to transfer the 
container images to its local registry via the network. The subsequent deployments show a quite stable 
behaviour, with little variations in the elapsed time for the service to be completely running. 
The results for deployment time in the series of tests with parallel deployments are reported in Table 
3-5. 
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TABLE 3-5 Deployment time results for parallel deployments on the BASS 

Vertical 
Services 

Components 
(total) 

Mean (s) Standard 
deviation (s) 

Minimum (s) Maximum (s) 

1 7 30,4800 0 30,4800 30,4800 
2 14 31,4995 4,1019 28,5990 34,4000 
4 28 49,6045 18,5656 32,9090 66,5160 
6 42 64,2430 17,2051 32,8550 70,0110 
8 56 69,9720 32,6310 33,6110 124,4660 
10 70 71,5195 39,9318 38,3950 135,3720 

 
The arrival of multiple requests at the same time affects significantly the deployment time. As we can 
see by observing the “Minimum (s)” and “Maximum (s)” columns, the BASS manages to parallelize 2 
deployments requested at the same time and later on it starts queueing the requests. The plot of the 
maximum values, shown in Figure 3-9, confirms this observation. 
 

 
FIGURE 3-9 Deployment times for parallel deployments 

The cause for the increase in steps of two is unknown. Further investigation and tests on different 
hardware configurations are required. While the discussed behaviour may look alarming for the 
scalability of the system, it is also true that the probability of receiving parallel requests for deployments 
decreases with respect to their amount. It is quite unlikely for ten deployment requests to arrive at the 
same time, meaning the same second. Despite the performance degradation, the BASS demonstrated 
to react without errors to unusual load. Further tests, with more realistic arrival distributions (e.g., 
Poisson) can provide a more representative behaviour of a production-like scenario. 
Finally, for what concerns memory consumption, we state that it remained constant throughout all the 
tests we performed. Being the BASS developed in Java, we monitored Heap and non-Heap memory. 
The only, small, variations we observed were due to the intervention of the garbage collector. 
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3.1.6. Availability and Reliability 
Availability and reliability are KPIs that aim at validating the stability of the BASS and they are 
measured on a relatively long period of time of one month. Availability is defined as the probability 
that the BASS is operating properly when it is requested for use. We use a self-hosted uptime 
monitoring service, Kuma Uptime [5], in order to periodically probe the BASS Northbound Interface. 
During the long-term monitoring period, we measured availability of 99.97% for the BASS. The result 
is acceptable for a setup in an experimental environment. Figure 3-10 shows the results visualized in 
the uptime monitoring service user interface. 
 

 
FIGURE 3-10 Uptime monitor for the BASS 

 
Anyway, this availability measurement does not give any information about the capacity of the BASS 
to correctly perform its functions, e.g., deploy a Vertical Service. Hence, a small software tool has been 
developed to deploy and subsequently stop a Vertical Service on the BASS, while validating that the 
deployment was successful. The routine is executed twice a day. The collected results show a success 
rate of 100%. 
Reliability is defined as the probability that the BASS will produce correct outputs up to some given 
time. To measure reliability, we use again the aforementioned uptime monitoring service that measures 
also the response time for requests to the BASS’ Northbound Interface. Setting a threshold of 100 ms 
for the response time (about the limit for having the user feel that the system is reacting instantaneously 
(Nielsen, 1993)) we measured reliability of 100% for the BASS. 
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3.2. DASS Validation results  
The DASS functional and non-functional features have been validated for most of the use cases of the 
project during the field trials. The use cases have adopted it to perform data preprocessing, storage, as 
well as data dispatching, which are the main functionalities of the DASS. 
For the DASS to support a wide heterogeneity of scenarios, networks, and devices, we adopt a two-
level protocol design the Zenoh API and the Zenoh-net API. The data pre-processing and the data 
storage components are implemented by the Zenoh layer. The Zenoh layer is a higher-level API 
providing the same abstractions as the Zenoh-net API in a simpler and more data-centric oriented 
manner as well as providing all the building blocks to create distributed storage. The Zenoh layer is 
aware of the data content and can apply content-based filtering and transcoding. 
The Zenoh-net layer is a network-oriented API providing the key primitives to allow pub/sub (push) 
communications as well as query/reply (pull) communications. The Zenoh-net layer focuses on data 
transportation and is agnostic about data content nor storing data. The Zenoh-net layer implements the 
data-dispatching functionality.  
Besides the functional validation of the DASS in the context of the use cases, the DASS has been 
evaluated in terms of scalability and performance. The scalability test was a mesh routing at scale test 
and was performed at the Zenoh-net level.  The performance tests were carried out in peer-to-peer and 
in brokered communication mode, in both the Zenoh API, and Zenoh-net layer.  

3.2.1. Scalability measurements 
Regarding scalability, we performed a mesh routing at scale test at the Zenoh-net layer. The Zenoh-net 
layer was tested on three scenarios: initial setup, router failure, and router insertion. During each of 
these scenarios, it was collected the data regarding the number of link-state message, link-state 
bandwidth (Kb), link-state alignment time (ms), network trees computation time (ms), routes 
computation time (ms) and total alignment time (ms). The total set of mentioned parameters were 
calculated for a network graph of 50 nodes, and a graph of 100 nodes. The results are presented in the 
following Table 3-6: 

TABLE 3-6 Mesh routing at scale test results 

 Graph 50 nodes, 99 edges Graph 100 nodes, 121 edges 
Initial 
setup 

Router 
failure 

Router 
insertion 

Initial 
setup 

Router 
failure 

Router 
insertion 

Linkstate msgs 13388 567 1841 13544 659 1383 
Linkstate 
bandwidth (Kb) 

918 20 91 1527 23 103 

Linkstate alignment 
time (ms) 

948 222 34 3864 251 66 

Trees computation 
time (ms) 

102 100 92 111 122 112 

Routes computation 
time (ms) 

44 78 81 71 596 630 

Total alignment 
time (ms) 

1094 400 207 4046 969 808 
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3.2.2. Performance measurements 
Regarding performance, during the last year of the project, there have been some design improvement 
in the DASS implementation with regards to isolating the async code in specific parts of the code, 
especially the one interacting with the network, and moving some other parts to the standard sync 
library. As a result, Eclipse Zenoh has now a very balanced mix of sync and async code that takes the 
best of both worlds. This design improvement allowed us to drastically reduce the stack size of some 
critical async futures which immediately reflected in a performance boost as described below in terms 
of throughput and latency in two different scenarios: peer-to-peer and brokered communication. 
 
Peer-to-peer communication: throughput 

The peer-to-peer communication scenario consists of two Zenoh applications that can directly 
communicate with each other without the need for any infrastructure component through a 100GbE 
connection, see Figure 3-11.  
 

 
FIGURE 3-11 Peer-to-peer communication scenario 

 
Figure 3-12 A) presents in the y-axis the number of messages per second, and in the x-axis, the payload 
of the messages ranging from 8 bytes to 1 GB. The results are shown in a log scale, in terms of the 
number of messages per second. As we can see, Zenoh-net API delivers more than 3.5M msg/s with 
an 8 bytes payload. At the same time, Zenoh API delivers 2M msg/s with the same 8 bytes payload.  
Figure 3-12 B) presents in the y-axis the bits per second, and in the x-axis, the payload of the messages 
ranging from 8 bytes to 1 GB. The results are shown in log scale, in terms of throughput (bit/s) delivered 
at API level. We also report the throughput obtained with iperf on the same 100GbE connection as 
reference baseline: 60 Gb/s. As it can be seen, a 100 Mb/s connection is already saturated by Zenoh-net 
and Zenoh with a payload as little as 8 bytes. A 1 Gb/s connection is then saturated with a payload 
of 32 and 64 bytes for Zenoh-net and Zenoh, respectively. A payload of 512 and 1024 bytes is then 
sufficient for Zenoh-net and Zenoh to saturate a 10 Gb/s connection. Finally, payloads larger than 128 
KB suffice to saturate a 40 Gb/s connection., this is a good indicator because it shows that the data 
transmission protocol makes use of most of the existing bandwidth in the infrastructure, even with 
small payloads.   
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FIGURE 3-12 a) Eclipse Zenoh API messages/seconds in log scale, b) Eclipse Zenoh API bits/seconds in log 
scale 

 
Peer-to-peer communication: latency 

Latency is the time it takes for data to pass from one point on a network to another. As you can see 
from Figure 3-13, in the y-axis we have the time in micro-seconds (µs), and in the x-axis the number of 
messages per second, as the number of messages per second increases, latency decreases. This brings 
us to the conclusion that latency depends heavily on the load of the system because when messages are 
sent at a low rate, the processes are more likely to be descheduled by the operating system. This 
operation adds additional latency since the processes need to be rescheduled when messages are sent 
and received. This is true for both Zenoh and the classical ping, which is reported as a reference baseline 
for latency. 

 

FIGURE 3-13 Eclipse Zenoh API latency on P2P communication 

 
The x-axis of Figure 3-13 shows the number of messages that we configured to be sent in one second, 
from 1 to 1 million and beyond. The inf case represents the scenario where messages are sent back-to-
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back as fast as possible. In such a backlogged scenario, we can see that the latency is as little as 35 
µsec for both Zenoh-net and Zenoh APIs. The payload size was constant for this test, and it was 64 
bytes, the same as standard ICMP. 
 
Brokered communication scenario: throughput 

The brokered communications scenario happens when a Zenoh instance performs as a message broker 
and serves for message validation, transformation, and routing. It mediates communication among 
applications, minimizing the mutual awareness that participants should have of each other to be able 
to exchange messages, effectively implementing decoupling. In this test, one workstation runs the 
publisher, a second one runs the Zenoh router and a third one runs the subscriber. All workstations are 
connected through a 100GbE connection, see Figure 3-14. 
  
 

 
FIGURE 3-14 Brokered communication scenario 

 
Figure 3-15 A) presents in the y-axis the number of messages per second, and in the x-axis, we have the 
payload of the messages ranging from 8 bytes to 1 GB. The results are shown in the log scale.  We can 
observe that Zenoh-net API delivers 3M msg/s with an 8 bytes payload. At the same time, Zenoh API 
delivers 1.8M msg/s. Figure 3-15 B presents in log scale, the same results in terms of throughput (bit/s) 
delivered at API level, in the y-axis the bits per second, and in the x-axis, the payload of the messages 
ranging from 8 bytes to 1 GB. As it can be noticed from the results, a 100 Mb/s connection is still 
saturated by Zenoh-net and Zenoh with a payload as little as 8 bytes. A 1 Gb/s connection is then 
saturated with a payload of 64 bytes for Zenoh-net and Zenoh. A payload of 1024 bytes is then sufficient 
for both Zenoh-net and Zenoh to saturate a 10 Gb/s connection. Finally, larger payloads are forwarded 
at 20-30 Gb/s. 
 
 
 



D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials  40 
 

H2020-859881 

 

 
FIGURE 3-15 a) Eclipse Zenoh API messages/seconds in log scale, b) Eclipse Zenoh API bits/seconds in log 
scale 

 

Brokered communication: latency 

In the brokered communication test, we considered two clients that communicate with each other 
through a Zenoh router as an intermediate node. In the brokered test, as you can see in Figure 3-16, 
latency is double than the peer-to-peer test: 70 µs. This is due to the fact that an additional network 
hop, i.e. the router, has been introduced between the two clients. Nevertheless, it can be noticed that 
the router does not add any noticeable latency to the overall communication, being the latency is driven 
mainly by the number of hops. The message payload size remains constant at 64 bytes. 
 

 
FIGURE 3-16 Eclipse Zenoh API latency on brokered communication 
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To summarize, recent work makes Zenoh capable to deliver over 3.5M msg/s for small messages, 
over 45 Gb/s for large messages, and latency as little as 35 µsec in the peer-to-peer scenario.  These 
experiments are relevant as all the use cases require high throughput and lowering latency is an 
important part of building a good user experience. 

3.3. IESS Validation results  
The IESS functional and non-functional features have been validated for most of the use cases of the 
project during the field trials. The IESS offers features to facilitate the adoption of AI and ML 
functionalities, like automatic management of the model training operations, automatic packaging and 
deployment of the inference applications, and storage of pre-trained models in a catalogue. The general 
IESS performance has also been evaluated in terms of scalability, availability and reliability. 

3.3.1. Model training feature validation 
The IESS automatically defines a model training pipeline that includes resource discovery and 
allocation, deployment of containers for the training, storage of trained models and other software 
artifacts in a catalogue. The IESS does not actually manage any resources, but it interacts with the BASS 
that is the component in the DEEP platform responsible for resource management and orchestration. 
During the trials at 5TONIC premises, the training feature was validated with the Digital Twin use case 
(see Section 5.1). The vertical provided a container image including the code of the algorithm 
performing the training (based on statsmodel (statsmodel, n.d.)) and the dataset. The training task is 
declared as an AI Component in the use case’s Vertical Service Descriptor. The BASS recognizes these 
kinds of components and it forwards all of them to the IESS. Figure 5-5 shows the training of the 
movement prediction intelligence engine in the BASS Web User Interface. The other components of the 
service are kept in a WAIT TRAINING state while the training of the model is in progress. Indeed, the 
BASS waits for an IESS notification before proceeding with the deployment of the Vertical Service. 

3.3.2. Inference app packaging and deployment feature validation 
A usual problem in machine learning is how to serve prediction results from a trained model. In fact, 
trained models can be exported to different binary formats but to be used in order to obtain predictions, 
they need to be imported into other applications through the development of additional code. The IESS 
provides an automated packaging procedure that, given a trained model as input, generates a web 
application with a well-defined and well-documented HTTP REST interface to request and obtain 
predictions. The aforementioned application is then deployed by the BASS as a regular component of 
the Vertical Service, so that other components have connectivity with the HTTP interface and can all 
request and obtain predictions. 
During the trials at 5TONIC premises, the packaging and deployment feature for intelligence engines 
was validated for the Digital Twin use case. After the training phase is complete (see Figure [above]), 
the component used for training is stopped and removed. The IESS packages the Movement Prediction 
trained model into a container image and uploads it into the catalog. When the image is available, the 
BASS finally starts the deployment of the whole Vertical Service. Figure 5-6 shows the Digital Twin 
vertical service successfully deployed with the Movement Prediction intelligence engine. Being the 
intelligence engine a regular component of the vertical service, it benefits of all the features available in 
the BASS, like optimized placement in the cloud, edge, or fog depending on where the predictions are 
requested or monitoring as discussed in Section 3.1.3. 
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3.3.3. IESS Catalogue feature validation 
The IESS catalogue can store metadata about supported Machine Learning platforms and algorithms, 
binary artifacts like trained models, and container images for inference applications. The catalogue has 
already been validated in the previous Sections 3.3.1 and 3.3.2) since it acts as a supporting component 
for all the other operations. 
Another use for the IESS catalog is the possibility for the Vertical to manually upload a pre-trained 
model. This can be motivated by the requirement of specific hardware for the model training (i.e., GPU) 
that is not available in the regions managed by the BASS, or by a preference for an offline training 
procedure in order for data scientists to manually verify the accuracy of the model, or finally by the 
preference for a training in a cloud environment with lots of computing resources. 
If the pre-trained model is uploaded to the IESS catalogue, at the moment of deploying the service, the 
IESS retrieves the model, stores it in a static volume, and mounts the volume into the component that 
declares the requirement for the model. With this procedure, the Vertical does not need to include the 
model into its component and has the possibility to use a different model for each deployment of the 
use case. 
Finally, the IESS catalogue can store also datasets for the training and testing of models. They can be 
retrieved automatically at deployment time. Figure 3-17 shows the web view for the IESS Datasets 
Catalogue, integrated in the BASS User Interface. The vertical can review the available datasets and 
upload new ones. The web view for the IESS Models Catalogue is similar. 
 

  
FIGURE 3-17 IESS catalogue view in BASS User Interface 

 

3.3.4. Offer AutoML service for easy AI adoption 
Apart from taking care of the training-packaging-deployment pipeline, the IESS also offers AutoML 
services. With this feature, the Vertical does not need to select or develop a machine learning algorithm 
in order to produce a trained model for its problem. The only thing needed is a declarative description 
of the problem, in the form of a component in the VSD as shown in Figure 3-18. 
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FIGURE 3-18 Component descriptor for AutoML with IESS  

 
The problem is described by three main fields: 

• aitype: describing the kind of problem to solve, can be “classification” or “regression” 
• dataset: a link where to retrieve the dataset for training 
• columnPredict: the goal of the prediction, can be a set of classes (classification problem) or a series 

of real numbers (regression problem)  
The IESS leverages the H2O.ai (H2o.ai, n.d.) platform for training and subsequently, the generated 
model follows the pipeline, passing through the packaging and deployment phases. 
The AutoML feature has been tested and validated through several demos presented in webinars and 
workshops. It has attracted great interest from the audience. For simple problems, like Zoo Animal 
Classification from Kaggle (Kaggle), the trained models achieve an accuracy of around 99%. While not 
being a complete replacement for custom algorithms, AutoML can result very useful for inexperienced 
verticals allowing them to easily integrate machine learning features in their services. 

3.3.5. Scalability 
The scalability of the IESS is defined as the trend of resource consumption under a constantly increasing 
amount of load. We also include in this definition the performance trend, measured as the elapsed time 
needed to train and deploy an AI component. In the context of the IESS, the load is measured as the 
number of simultaneous requests arriving at the same time. We selected a representative intelligence 
engine for performing the scalability tests which is the Movement Prediction engine of the Digital Twin 
use case. With respect to the tests for the scalability of the BASS, we only observe the effect of parallel 
requests for the IESS. Indeed, while the BASS deploys services that stay running for long periods, the 
IESS creates jobs (i.e., the training-packaging-deployment pipeline) that terminate after their 
completion. For specifications about the hardware configuration for the experiments, please see Table 
4-2. 
During the tests, we send multiple requests to the IESS, starting from one and stepping up to 6. Table 
3-7 reports a summary of the collected results for the CPU usage. During the tests, we send multiple 
requests to the IESS, starting from one and stepping up to 6. Table 3-7 reports a summary of the collected 
results for the CPU usage. 
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TABLE 3-7 CPU usage results for multiple requests on the IESS 

Requests for 
intelligence engines 

Mean (%) Standard 
deviation (%) 

Minimum (%) Maximum (%) 

1 0,0194 0,5679 0,0126 1,5855 
2 0,0189 1,5231 0,0168 5,7335 
4 0,0188 2,0362 0,0125 9,9859 
6 0,0189 2,3920 0,0125 16,4318 

 
On average the CPU usage stays on very low values. This is because the IESS delegates the execution 
of the training phase to the BASS. Indeed the BASS can manage large clusters of resources and it is 
worth leveraging its functions in order to allocate the proper resources for training (e.g., GPU devices) 
and manage the lifecycle of the relevant components. Anyway, we can see significant peak CPU usage 
by the IESS by observing the values reported in the “Maximum (%)” column of Table 3-7. By analyzing 
the raw experimental results, we identified the cause of the peak in the packaging phase. We can 
observe the trend for the Maximum CPU usage in Figure 3-19. 
 
 

 
FIGURE 3-19 Trend visualization for the maximum CPU usage 

 
Despite the significant values reported, the trend of the CPU usage is linear, suggesting acceptable 
scalability for the IESS. Furthermore, during the trials at 5Tonic premises, the IESS was given a limited 
amount of resources. On more powerful hardware, a more representative target for a production-like 
configuration, we expect the impact of the packaging phase to be less significant. Table 3-8  reports the 
total elapsed time for executing the training-packaging-deployment pipeline against an increasing 
number of parallel requests arriving at the IESS. 
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TABLE 3-8 Elapsed time for multiple requests arriving at the IESS 

Requests for intelligent engines Deployment time (s) Deployment time (m) 
1 242 4m 2s 
2 297 4m 57s 
4 502 8m 22s 
6 627 10m 27s 

 
The majority of the elapsed time for serving a request for an intelligent engine is spent in the training 
phase. This is expected as it is well known that training of machine learning models can take a long time 
(i.e., from minutes to hours) depending on the algorithm and the size of the dataset. Figure 3-20shows 
the trend for the deployment time. 
 

 
 

FIGURE 3-20 Elapsed time for multiple requests arriving at the IESS 

 
The elapsed time grows almost linearly with respect to the number of requests arriving at the same 
time at the IESS. The experiments demonstrate that the IESS provides good scalability in terms of both 
resource usage and requests’ execution time. Furthermore, despite the unusual load, the IESS reacted 
without errors and always provided a correct outcome. 
 
Finally, for what concerns memory consumption, we state that it remained constant throughout all the 
tests we performed. Being the IESS developed in Java, we monitored Heap and non-Heap memory. 
The only, small, variations we observed were due to the intervention of the garbage collector 

3.3.6. Availability and Reliability 
Availability and reliability are KPIs that aim at validating the stability of the IESS and they are 
measured on a relatively long period of time of one month. Availability is defined as the probability 
that the IESS is operating properly when it is requested for use. We use a self-hosted uptime monitoring 
service, Kuma Uptime [5], in order to periodically probe the IESS Northbound Interface. During the 
long-term monitoring period, we measured availability of 99.99% for the IESS. The result is acceptable 
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for a setup in an experimental environment. Figure 3-21  shows the results visualized in the uptime 
monitoring service user interface. 
 

 
FIGURE 3-21 Uptime monitor for the IESS 

 
Anyway, this availability measurement does not give any information about the capacity of the IESS to 
correctly perform its functions, e.g., train, package, and deploy an intelligence engine. Hence, a small 
software tool has been developed to periodically send a request for an intelligence engine on the IESS 
and validate that the job terminates successfully. The routine is executed twice a day. The collected 
results show a success rate of 100%. 
Reliability is defined as the probability that the IESS will produce correct outputs up to some given 
time. To measure reliability, we use again the aforementioned uptime monitoring service that measures 
also the response time for requests to the IESS’ Northbound Interface. Setting a threshold of 100 ms for 
the response time (about the limit for having the user feel that the system is reacting instantaneously 
(Nielsen, 1993)) we measured reliability of 100% for the IESS. 
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4. Final Integration  
This section provides, an update on the trial sites of I4.0 trials in Spain and ADS trials in Taiwan. Then 
the final use-case integration is presented explaining how all 5G-DIVE use cases in trials are integrated 
with one common DEEP platform. In the previous D3.1 (D3.1: Definition and setup of vertical trial sites, 
2020)and D3.2 (D3.2, 2021), we provided the initial information regarding the trial sites of I4.0 and ADS. 
The ADS trial site is unchanged from the one described in D3.2 [2].  Basically, it has two locations for 
ADS uses cases. For ADS-UC1, the trial site is located at the football field of ITRI campus.  This trial site 
is suitable for developing drone collision avoidance-related applications. For ADS-UC2, the trial is 
located at the Microelectronics and Information Systems Research Center (MIRC) building premises. 
The MIRC building is an 8-story building located inside of NCTU campus. This trial site is suitable for 
developing drone disaster relief missions. 

4.1. Trial setup premises and hardware resources  
In this section, the details of the final trial site of I4.0 will be elaborated. This final test trials were carried 
out in the 5TONIC premises. Figure 4-1 presents the plan of the 5TONIC trial site. The 5TONIC DPC, 
in the upper part of the image, hosts the edge side of the use cases located at 5TONIC premises. The 
5TONIC Industrial Experiments area, 92 sqm big, was dedicated to hosting the fog side and hardware 
devices of the use cases. Here, the devices are connected to the Ericsson 5GC, with the UPF server 
placed in 5TONIC, through the Ericsson Radio Dot indoor antenna, which guarantees coverage for half 
of the room. The UPF is connected to both the Ericsson 5GC located in Sweden and the servers in the 
5TONIC DPC datacentre, where the 5G-DIVE Edge infrastructure is situated.  
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FIGURE 4-1 Plan of the 5TONIC Trial site 

The following Table 4-1 presents the list of the 5TONIC servers used for the deployment of the DEEP 
Platform and the Industry 4.0 use cases. In particular: 
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TABLE 4-1 List of servers available in 5TONIC trial site used for the deployment 

Component Details 

R430 v3: 

Dell PowerEdge R430 
processor: Intel(R) Xeon(R) CPU E5-2609 v3 @ 1.90GHz 
memory: 16Gb DDR4 2133 Mhz 
disc : 1TB (raid 1) 
networking: 2x 10Gb (X540-AT2), 4x1Gb (NetXtreme BCM5720) <- 
Ethernet 

R630: 

Dell PowerEdge R630 
processor: Intel Xeon E5-2620 v4 processors (16 cores and 32 threads in 
total) 
memory: 128 GB of RAM 
disk: 1TB 
networking: 2x X550 10Gbps 
networking: 4xI350 1Gbps network interfaces 

R630 dual: 

Dell PowerEdge R630 
processor: 2x Intel Xeon E5-2620 v4 processors (16 cores and 32 threads in 
total) 
memory: 128 GB of RAM 
disk: 1TB 
networking: 4xX520 10Gbps network interfaces 
networking: 4xI350 1Gbps network interfaces 

 
 
Eventually, we had the I4.0 use cases present in 5TONIC+ADS fully integrated with the BASS (and 
running in the 5G CPE). So basically all containers are present at the BASS, can be instantiated and 
deployed using the BASS, and telemetry out of them is being received. In addition, the intelligence 
engines are been integrated into the IESS. So we have intelligence engines selected based on a template, 
automatic training, and deployment of the trained intelligent engine. For example, the DT movement 
prediction has been integrated following this idea. 
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4.2. Configuration for DEEP platform and use-cases  
For the sake of the trials, hosted both at 5TONIC and remotely connected vertical premises, we created 
a scenario with four distinct regions (see Section 3.1.1) managed and orchestrated by a single 
deployment of the DEEP platform. A graphical representation of the setup is presented in Figure 4-2, 
with each region in a different colour. 
 

 
FIGURE 4-2 Trial setup at 5TONIC premises 

 
The DEEP platform deployment, the Digital Twin UC Region Edge, the Digital Twin UC Region Fog, 
the ZDM UC Region, and the mMTC UC Region are deployed co-located with the resources provided 
by 5TONIC. The ZDM UC Region and the ADS UC Region, is are remotely located in London and 
Taiwan respectively and orchestrated remotely by the same DEEP instance through a VPN connection. 
Each region collects, defines a separated set of resources vertical owned by a single vertical premises, 
dedicated to hosting one or more instances of the corresponding I4.0 use case. The Digital Twin UC 
Region Edge and the Digital Twin UC Region Fog (green and purple inFigure 4-2) includes a 
Kubernetes (K8s) cluster composed of an edge node and a fog node, and a trivial Fog05 cluster 
composed of a single node. The ZDM UC Region (light blue inFigure 4-2) is composed of an Edge node 
and a Fog node, both controlled by Fog05 resources orchestrator. The mMTC UC Region (light red 
inFigure 4-2) includes a K8s cluster composed by three Edge nodes. The Digital Twin use case, the 
ZDM use case, and the mMTC use case make use of the 5G-SA network described in Section 2.1. In 
particular, the Fog nodes are equipped with 5G UEs and are connected to the radio interface. The ZDM 
UC Region (light blue in Figure 4-2) is composed of an Edge node and a Fog node, both controlled by 
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the Fog05 resources orchestrator and it includes a 5G Network deployed at IDCC premises. Finally, the 
ADS UC Regioni (light orange in Figure 4-2) includes a single Kubernetes Edge Node and makes use 
of the 5G-NSA network solution described in Section 2.2. To implement the nodes shown in Figure 4-2, 
both virtual machines and hardware devices have been used. The virtual machines have been created 
on top of the hardware resources presented in Table 4-1.  Table 4-2 reports all the nodes with their 
technical specification. 
 

TABLE 4-2: Resource specification for the trial setup 

Role Device Type CPU cores Memory Disk Operating 
System 

DEEP Platform deployment 
K8s Edge Node KVM machine 8 12 GB 300 GB Ubuntu 20.04 
 
Digital Twin UC Region 
K8s Edge Node KVM machine 4 8 GB 32 GB Ubuntu 20.04 
K8s Fog Node NUC MiniPC 4 8 GB 32 GB Ubuntu 18.04 
Fog05 Fog Node RaspberryPi 3 4 1 GB 32 GB Ubuntu 18.04 
      
ZDM UC Region 
Fog05 Edge Node Nvidia Xavier  8 32 GB 32 GB Ubuntu 18.04 
Fog05 Fog Node  Notebook 8 8 GB 500 GB Ubuntu 20.04 
      
mMTC UC Region 
K8s Edge Node KVM machine 4 16 50 GB Ubuntu 20.04 
K8s Edge Node KVM machine 4 8 50 GB Ubuntu 20.04 
K8s Edge Node KVM machine 4 16 50 GB Ubuntu 20.04 
      
ADS UC Region 
K8s Edge Node 2U Server w/ GPU 

(Tesla V100) 
24 128 1TB Ubuntu 18.04 
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5. Final validation results of I4.0 use cases  
In this section, we present the final validation results of the three I4.0 use cases, regarding network and 
system performances, such as throughput, latency, resource utilization and robot movement accuracy, 
etc. In Section 4.1 the general experimental setup is provided for all three use cases. Sections 5.1, 5.2 
and 5.3) present the specific testbed setup and experimental results of Digital Twin, ZDM and mMTC 
use cases, respectively.  

5.1. I4.0-UC1: Digital Twin  
The second year was focused on the development of additional AI/ML features for the Digital Twin 
use case and their integration in the DEEP platform, namely:  
o Movement prediction 
o Obstacle avoidance 
o SLA Enforcer 

As the date of the deliverable, the Replay (already showcased in the 1st year final demo) and the 
Movement Prediction features were fully integrated into the DEEP platform.  

 
The DEEP integration validation of the Digital Twin service and the integrated AI feature is presented 
more in detail (Section 5.1.1). In the 2nd year, the e2e connectivity was upgraded from 5G-NSA to 5G-
SA, of which we provide profiling network measurements (Section 5.1.2).  
Finally, we report experimental results in Section 5.1.3 that validate and evaluate the performance of 
the algorithms underlying the additional features. 

5.1.1. DEEP Integration Validation  
In the trials, the BASS and the IESS are fully integrated with the Digital Twin service. In this section, 
we describe in detail the integration with the BASS and the IESS showing that the DEEP works properly 
with the Digital Twin Service. Please note that the DASS was successfully integrated into the Digital 
Twin service in the first year of the project through the Relay Feature. 

5.1.1.1. BASS 

The Digital Twin deployment is automated through the BASS using a combination of k3s (lightweight 
Kubernetes) driver for the Edge modules and Eclipse Fog05 driver for the Fog nodes. The BASS offers 
the benefits of deploying native applications on the physical entities at the factory floor through the 
Fog05 driver. This feature of the BASS is useful for Digital Twin applications because very often the 
physical devices (e.g. robots, production lines) are customer specific hardware that has very limited 
capabilities and programing interfaces that do not support virtualization. In order to deploy the Digital 
Twin service, the remote operator will fill in the BASS VSD that contains abstracted information about 
the modules that are part of the service. Figure 3-1 shows the VSD section that is related to the Robot 
Drivers module. 
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FIGURE 5-1 Robot drivers section in the Digital Twin VSD 

 
In addition, it also shows the modules that are composing the Digital Twin service. Besides the 
information about the CPU architecture and the amount of ram and storage size that is required, the 
VSD contains information about the region and location where you want to deploy the Digital Twin 
service and the Driver Type. The region and location fields enable the remote operator to select the 
factory location where he wants to run the service and the driver type field allows the operator to select 
one of the available drivers in order to control the physical entity. In our example, the factory floor is 
5tonic, the location is fog and the driver type is FOG05. In the hypervisorSpecific filed, instead of having 
hypervisor-related information, we can notice the cmd parameter that will be used by Fog05 to start 
the native application. It is worth mentioning that for every module that part of the Digital Twin service 
a section is presented in the VSD with similar information. Table 5-1 presents the modules that are part 
of the Base Digital Twin service with their Location and Orchestration Driver that they use. 
 

TABLE 5-1 Digital Twin modules, deployment location and BASS orchestration Driver 

Module Location Orchestrator Driver 
Drivers Fog Fog05 
Control Edge K3s 
Motion Edge  K3s 
Interface Fog K3s 
Digital Twin Edge K3s 
Replay Edge K3s 
Web Edge K3s 

 
Once the VSD is completed and submitted through the BASS web-view, all the modules will be loaded, 
deployed and instantiated. Figure 5-2 shows the BASS upon successful deployment and instantiation. 
After this step, the Digital Twin service is up and running and the remote operator can start using the 
application. 
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FIGURE 5-2 BASS Web-view after successful deployment and instantiation 

5.1.1.2. IESS 

In the second year of the project, we extended the Base Digital Twin service with Movement Prediction 
AI/ML feature and we integrate with the DEEP platform. The movement prediction was conceptually 
described in D2.3 [7], while the technical details of the implementation are presented in Section 5.1.3.1.1. 
The complete integration of the Movement Prediction AI/ML-based model with the DEEP was divided 
into three steps. 
 
 

 
FIGURE 5-3 Movement prediction section in the VSD 

 
Dataset creation and upload in the DEEP Dataset Catalogue 

In order to train and use the Movement Prediction model, we created a dataset by performing pick and 
place actions. The pick and place actions were manually repeated 100 times by a human operator to 
create a dataset that contains 187108 commands. The dataset was generated in .csv format and 
contained the joint states of the robot manipulator under ideal network conditions. The created dataset 
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was then uploaded in the DEEP Dataset Catalogue where the data can be visualized. Figure 5-4 shows 
the Dataset Catalogue view of the BASS. 
 

 
FIGURE 5-4 BASS Dataset catalogue web-view 

 
IESS Training and BASS deployment 

Next, the VSD was updated by adding a section related to the Movement Prediction AI/ML module 
(see Figure 5-3). During the service loading process, the BASS first will check if there is an AI module 
that needs to be trained using the IESS. It will use the dataset that is indicated in the dataset field of the 
VSD to train the model.  
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FIGURE 5-5 BASS Web-view during IESS training 

The AI model type that is desirable for the Movement Prediction is specified in the ai engine field. Figure 
5-2 shows the BASS web-view during the IESS training procedure. When the training is done, the IESS 
will store the trained model in the IESS catalog (using the name that is indicated in the 
trainingImageRepositiry filed) and will inform the BASS that it can proceed with the loading and 
deployment process. Figure 5-6 shows the BASS upon successful deployment with the Movement 
prediction inference application as part of the Digital Twin service. After this step, the Movement 
Prediction service is up and running and Digital Twin can start using the predictions. 
 

 
 

FIGURE 5-6 BASS web-view upon successful deployment and instantiation with the movement prediction 
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Command Inference and execution  

In the last step of the integration, we developed a simple client that via HTTP was consuming the 
predictions in real-time from the deployed Movement Prediction model. Periodically, the client will 
send the last 10 successfully executed commands by the robot arm to the Movement Prediction model, 
and the model will respond with the predicted command of the next time slot. Whenever a control 
command will not arrive in time, the client will execute the predicted command. 

5.1.2. End-to-end profiling 
Initially, we profiled the network performance of 5G-SA, to see if they were capable of sustaining the 
KPIs required for the correct functioning of the Digital Twin use case.  
Benchmark results were carried out for the following metrics: throughput, packet loss, latency RTT, 
jitter, both uplink and downlink.  
We used the commercial 5G CPE provided by Ericsson, ASKEY RTL0330, to connect a PC to the 5GC, 
and a VM server in the 5TONIC edge premise connected to the core, then run performance evaluation 
with iperf3, sending a UDP stream at 800 Mbit/s in downlink and 100 Mbit/s in the uplink. The results 
are reported in the following subparagraphs.  

5.1.2.1. Network Measurements 

The iperf3 experiments were run for 30 minutes, both for TCP and UDP. 
For TCP maximum capacity the mean throughput was 817.05 Mbit/sec in downlink (see Figure 5-7) 
and 111.58 Mbit/sec in uplink (see Figure 5-8). The TCP slow start phase is visible in the first graph. 
 

 
FIGURE 5-7 TCP downlink throughput 
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FIGURE 5-8 TCP uplink throughput  

 
The same experiments were run with UDP using 800 Mbit/sec in downlink and 100 Mbit/sec (the TCP 
reference values) in uplink to measure the packet loss and obtain insights about the reliability of the 
wireless link. Mean packet loss in downlink was 0.027 %, while in uplink 0.0304 %, due to the links 
working at almost full capacity. No significant difference was found with the 5G-NSA connectivity in 
comparison, as the data rate boost is mainly granted by the NR technology. We could not calculate the 
theoretical data rate achievable due to missing parameters. As for the latency and the jitter, we report 
the results of the pings over 240s in Table 5-2, with the latency values in ms and the CDF of the pings 
in Figure 5-9 and Figure 5-10.  

 
 

TABLE 5-2 Ping results 

 Min (ms) Avg (ms) Max (ms) Mdev Jitter 
(ms) 

Uplink (RTT) 13.082 19.149 59.272  3.741 3 
Downlink (RTT) 7.547 16.584 28.095 4.036 4.4 
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FIGURE 5-9  Downlink latency  

 
 

 
FIGURE 5-10  Uplink latency  
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5.1.3. Experimental Results 

5.1.3.1.1. Experiment A: Movement Prediction   

As described in D2.3 (D2.3: Final Specification of 5G-DIVE Innovations, 2021), the Movement Prediction 
feature can predict a robot command that is missing due to packet loss, based on the historical records 
of the movements.  
At first, a dataset of commands (in this context, the sequence of x, y, z Cartesian coordinates given to 
the robot) was built manually, controlling the robotic arm with the joystick to perform the same task 
several times. This is what happens in real scenarios: the robot is operated by a human who uses a 
controller to make the robot perform the same task over time. Thus, the resulting sequence of 
commands is something that can be predicted, as the task is repetitive per se and the commands are 
stochastic.  
Initially, to validate the solution the Digital Twin stack was deployed in an Edge environment 
equivalent to that of D3.2 (D3.2, 2021): 1 vCPUs and 2 GB of RAM in an Edge Server (Dell PowerEdge 
R430). Still, the Robot Drivers were kept locally on the robotic arm. Then, the intelligence engine with 
the actual Movement Prediction module was deployed directly in the Niryo One robotic arm, using a 
TPU accelerator for ML inferring.  
Performance comparison of the algorithm was conducted with respect to 3 approaches:  

1. Vector Autoregressive (VAR): AI/ML algorithm, statsmodel library 
2. Sequence-to-Sequence Neural network (seq2seq) [ref]: AI/ML, Tensorflow, 200 LSTM units, 
163200 parameters. 
3. Moving Average (MA), no AI/ML. 

The dataset consists of 4 tasks/actions, executed 20 times. Commands were issued every 20ms, as usual. 
Packet-loss was set at 5% over Wi-Fi.  
The training of the algorithm was realized using 80% of the dataset, the remaining 20% was used to test 
the prediction accuracy. 
The Root Mean Square Error (RMSE) was adopted to estimate the accuracy of each algorithm, thus a 
preliminary performance comparison was carried out in Figure 5-11. The error in question is the 
difference between the predicted robot coordinate and what would be the real one.  
Performance is affected by the size of the window of commands to be predicted. The algorithm accuracy 
was first evaluated for several window sizes of commands (5, 10, 50, etc.).  
In Figure 5-12 and Figure 5-13, it can be noticed the difference between predictions of different actions 
with a window size of 5 (100 ms) and 50 (1000 ms) movements, respectively. As one can see, VAR 
performs the best. VAR is known to work well with correlated signals, as this was the case.  
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FIGURE 5-11 Comparison of movement prediction algorithms (training set). 

 
FIGURE 5-12 Movement predictions for different actions and different algorithms (5 movements). 

 
FIGURE 5-13 Movement predictions for different actions and different algorithms (50 movements). 
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Finally, the algorithms were tested with the physical robot evaluating, introducing a packet loss of 5% 
in a Wi-Fi link issuing the commands to the tele operated robotic arm, for time-spans of 200 ms 
(corresponding to a window size of 10 movements where predictions need to happen). 
Qualitatively, the robot experienced more stable and less jerky movements when the VAR algorithm 
was applied, w.r.t other algorithms or no AI/ML at all, as shown in the performance representation of 
Figure 5-14.  
 

 
FIGURE 5-14 Performance of movement prediction when applied to the physical robot 

 
As the Digital Twin use case in practice utilizes a close-by fog module (Raspberry Pi3), where the 
Drivers are deployed for optimal control-loop time and commands’ latency (around 2ms), and the 
movement prediction needs to act promptly with comparable latency times, further experiments were 
conducted by running the training of the algorithms and the inference of the command directly in this 
constrained device, serving closely the robot. The RPi proved to be suitable to sustain the needs of the 
use case, carrying out the training in a reasonable amount of time (around 6ms) and predicting a 
missing command in less than 2 ms (see Table 5-3). Nevertheless, training is a sporadic event to be 
performed for building the model from scratch or when updating. For the sake of comparison, the time 
performance of more powerful hardware is reported in Table 5-4. 
 

TABLE 5-3 Inference times of the movement prediction module in the Raspberry pi 

 Load Data (s) Down Sampling 
(s) 

Check Quality (s) Training Model 
(s) 

Raspberry Pi3 
(Robot) 

1.95 ± 0.02 0.26 ± 0.007 306.38 ± 3.15 50.98 ± 0.54 
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TABLE 5-4 Hardware performance comparison 

 Training (min) Inference (ms) 
Raspberry Pi3 (Robot) 5.99 ± 0.06 1.60 ± 0.16 
NVIDIA Jetson Nano (Robot) 1.31 ± 0.01 0.61 ± 0.28 
Laptop (UE) 0.36 ± 0.01 0.22 ± 0.10 
Local Server (Edge) 0.23 ±0.007 0.0001 ± 0.00003 

5.1.3.1.2. Experiment B: Obstacle Avoidance 

As explained in D2.3 (D2.3: Final Specification of 5G-DIVE Innovations, 2021), the obstacle avoidance 
feature allows the robot to calculate the motion plan to move an object from a source point to a 
destination, avoiding an obstacle. Thus, as a first step, the 2D coordinates that the end effector has to 
follow to perform the pick-and-place task, were evaluated using the popular reinforcement learning 
algorithm Q-Learning.  
The algorithm was first designed and then evaluated in a virtual Python environment representing the 
robot reachability workspace, an anulus of radii R and r with the robot placed in the middle of the inner 
circle, with the following characteristics:  
• R = 40 cm, outer radius  
• r = 10 cm, inner radius 
• Δ = 4 cm, discretization step of the environment 
• a set of 8 possible actions, Α = {up, right, left, down, up-right, up-left, down-right, down-left} 

A parallelepiped, whose base is a square of size (𝑅 − 𝑟)/𝑟 and arbitrary height, short enough so that 
the robot can overcome it from above, representing the bounding box of a potential obstacle impeding 
the robot movements was added to the virtual environment for every possible position within the 
discretized workspace. For a taller obstacle, the inference of 2D coordinates would not have been 
enough, also joint collision must have been considered. Actually, this would be the case of a real 
application, but for the sake of simplicity we carried out initial results with the obstacle being way 
shorter than the robot, so that collision could be neglected in the learning phase. 
Q-Learning was used to calculate the 2D trajectory coordinates that the end effector of the robot had to 
follow to move an object from fixed source to fixed destination position for every possible position of 
the obstacle, a total of 238 sub episodes with the given Δ.  
In QL an “episode” is the set of states (positions in the workspace) that the learning agent has to follow 
to move from the initial state (source) to the final state (destination). Throughout its movements, the 
agent gains a reward inversely proportional to the distance of the destination, a negative reward if it 
hits an obstacle, and a greater positive reward when it reaches the destination. In fact, the reward 
function R was chosen as follows, depending on the state observed by the agent:  
 

'
𝑅 = −1000, 𝑖𝑓	𝑠𝑡𝑎𝑡𝑒	 ∈ 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒

𝑅 = 1000, 𝑖𝑓	𝑠𝑡𝑎𝑡𝑒 = 𝑑
𝑅 = 	80 − ‖𝑥 − 𝑑‖

 

 
Where d is the destination where 80 was chosen as it is the maximum distance in the environment 
corresponding to the diameter of the circular workspace.  
Every time the agent hits an obstacle, it is restarted, so a complete episode corresponds to full agent 
travel from source to destination. The Q-Learning training consists in updating a Bellman equation 
stored in a q-table for each state/action pair [complete here]. 
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We called “sub episode” the Q-Learning training related to a particular permutation of the 
environment, i.e., a specific obstacle position. The algorithm was run over these sub episodes for 
N=4000 episodes, a number that was found to be adequate for the algorithm to reach reward 
convergence for each possible sub episode/environment configuration. Also, the ε-greedy strategy was 
implemented, where the agent could choose between exploration and exploitation with probability ε, 
representing the balance between the two policies. Moreover, the parameter ε was decayed 
exponentially by a decaying factor of 0.95 (ε(n) = 0.95!, where n is the episode number), so that after 
approximately 200 episodes ε was almost zero, and a longer phase of exploitation could start. Actually, 
when the algorithm is run, pure exploitation is what is adopted (always the best action according to 
the q-table is selected). 
Overall training time over all the sub episodes and for the chosen number of episodes was 23 minutes.  
Below, in Figure 5-15, you can find the plot of the average cumulative reward per episode on a 
logarithmic scale exhibiting the desired convergence behaviour after episode 120. 
 
 

 
  

FIGURE 5-15 Average cumulative reward during training 

 
 
In Figure 5-16, the virtual environment is displayed with the coordinates steps representing the travel 
the end effector of the robot has to make to pick up an object from the source and drop it at the 
destination.  
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Figure 5-16 Virtual environment for the training of the algorithm representing the robot workspace 
Finally, the solution was validated in the simulated robot, using rviz, the robot visualizer, and moveit, 
the ROS Motion Planning calculating the inverse kinematics transformation between the coordinates of 
the robot end-effector, calculated with Q-Learning, and the joint state movements. The feature was not 
validated with the physical robot, due to time constraints, but it laid the premises for further 
development and integration in more advanced proof of concepts of the Digital Twin use case. 

5.1.3.1.3. Experiment C: SLA Enforcer 

An SLA Enforcer proof-of-concept was realized for the Digital Twin use case. The e2e application 
latency was the metric identified as the most impacting the QoE, as it affects the control loop of the 
robot and can easily produce a loss in the precision of the synchronization with the digital replica. 
Latency thresholds were set as possible SLA requirements not to be violated, for which two digital twin 
SLOs were set: 

1. Precision task: maximum e2e latency allowed 500 ms 
2. Screening task: maximum e2e latency allowed 1000 ms  

The parameters influencing the latency performance were found to be mainly the CPU and memory 
utilization. 
 
The SLA enforcer's overall workflow is presented in Figure 5-17. During the service creation, the DEEP 
platform configures the SLA Enforcer based on the vertical intend: 

1. The Vertical Service Coordinator extracts any intend-based SLA from the vertical oriented 
descriptor, forwarding them to the SLA & Policy Management. 

2. The SLA & Policy Management validates the intend, translating them into a set of policies 
that identify their scope, thresholds and validation data.  

3. Based on the extracted policies, the SLA & Policy Management requests an AI/ML model 
from the IESS and the deployment of the monitoring probes towards the Active Monitoring 

4. Using AutoAI, the IESS selects the AI/ML model from its catalogue, performs its training 
and cross-validation, delivering the trained model to the SLA & Policy Management. 
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Finally, the SLA & Policy Management triggers new instance of SLA Enforcer tied to the vertical service 
SLAs.    
 
The modules are deployed as Docker containers. The Monitoring Probe in-between the robot and the 
service stack relays the data to the DRL SLA Enforcer model through the DASS/Zenoh router. Then the 
SLA Enforcer can scale the desired resources using the Docker orchestrator.  
 
 

 
FIGURE 5-17 Overall workflow of the SLA enforcer 

 
A Deep Reinforcement Learning (DRL) algorithm was developed to evaluate the optimal minimum 
MEM and CPU allocation for the system in order not to violate the system above.  
The following experiment was performed: commands were exchanged between the Digital Twin stack 
and the Robotic Arm, in both directions. A module referred to as Monitoring Probe was placed in 
between to inspect the E2E latency of these commands, which is the time from when commands are 
sent and it is executed by the robot. As commands are processed by the Robotic Stack (Control, Motion, 
Interface), the resources associated with this module were found to be the ones affecting the 
performance and the ones to be scaled accordingly.   
In the training of the algorithm, the latency values were constantly monitored to see if they violated the 
thresholds. When this would happen, the associated reward penalized the associated CPU and MEM 
percentage utilization. At the end of the training, the RL algorithm was able to carry out optimal CPU 
and MEM allocations for meeting the e2e application latency requirements.  
The training phase required approximately 14.500 steps for the algorithm to be able to learn, as can be 
noticed in Figure 5-18 and Figure 5-19, picturing the learning behaviour in the two SLOs cases. After 
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that number of steps, the CPU and MEM predicted limit percentages with the associated reward values 
settled at a level that could guarantee the required latencies (see Response Times pictured in grey).  
 

 
FIGURE 5-18 Learning behaviour of SLA enforcer algorithm for precision tasks (500 ms) 

 
FIGURE 5-19 Learning behaviour of SLA enforcer algorithm for screening tasks (1000ms) 

 

5.1.4. Scalability 
In this section we will have a look into the vertical scaling of the Digital Twin service and how does the 
increase of resource consumption in an edge server can directly impact the service performance. This 
analysis aims to characterize the main resource usage of the designed Digital Twin service and help the 
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potential AI-based scaling algorithms that can be implemented in the DEEP as part of the BASS. It is 
worth mentioning that the experimental evaluation of this section is performed over wired technology 
(Ethernet). The main reason is that when investigating the resource consumption of the Digital Twin 
service, the bottleneck is not on the communication technology. 

5.1.4.1. CPU and RAM consumption 

In this first set of experiments, we used the Base Digital Twin modules that were introduced in Section 
3.1.1.1 in D2.3 (D2.3: Final Specification of 5G-DIVE Innovations, 2021) The Niryo One robotic arm is 
connected to the Digital Twin using a 10Gb Ethernet connection. The robot is equipped with Raspberry 
Pi 3 with a 1.2 GHz 64-bit CPU and 1GB RAM.  Each experimental run consists of the Digital Twin 
controlling 1-axis of the robot arm for 30 seconds and a moving offset of 0.01 rad. The experiments 
consider the following on-device configurations: i) Robot Drivers VNF, ii) Robot Drivers and Control 
VNF, ii) Robot Drivers, Control and Motion Planning VNFs, and iv) full Robot Stack. The experiments 
were repeated 10 times for each deployment, being presented the average values and their standard 
deviation. In the robot arm we obtained data for CPU and MEM consumption using the psutil (Psutil 
cros-platform python library ) cros-platform python library. 
 

 
FIGURE 5-20 CPU and RAM usage for the Digital twin modules when deployed on the robot 

 
Figure 5-20 presents the average CPU and RAM usage for all the deployment configurations while 
processing navigation commands. It can be seen that the CPU consumption of the whole Robot Stack 
(Control, Motion and Interface) is approximately 30% of the total CPU consumption on the Raspberry 
Pi 3 with a 1.2 GHz CPU. In particular, 23% of the CPU is being used by Interface VNF, around 5% by 
the Motion Planning VNF and 2% by the Control VNF. The Interface VNF has the highest 
computational requirements needed to perform the command translation, validation and real-time 
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synchronization between the Digital Twin and the ROS system. For what concerns the Motion planning 
VNF, the low CPU consumption is because of the simple path planning in our experiments. Finally, the 
Control VNF CPU consumption is mainly due to the controllers that it implements to run a control loop 
towards the Robot Drivers.  
Regarding the MEM usage, the Interface VNF consumes approximately 16% of the total RAM usage, 
while the Motion Planning and Control VNFs around 4% and 7% respectively. The 16% of MEM used 
by the Interface VNF is partially due to the robot action server that handles the Digital Twin concurrent 
requests, checks if the command can be processed, validate parameters and calls required controllers 
(e.g., Motion Planning VNF or Control VNF). The MEM usage of Motion Planning and Control VNF is 
smaller since the robotic arm receives simplified navigation commands (small offset of 0.01 between 
two separate commands) from the Interface VNF. 

5.1.4.2. Control VNF scaling 

In the second set of experiments, we focused on the Control VNF because it is the most time-sensitive 
function that implements a generic control-loop feedback mechanism used for robot manipulation. We 
investigated how does the CPU usage of the Edge node that hosts the Control VNFs, influences the 
Digital Twin performance. 

 
FIGURE 5-21: Testbed setup 

 
Figure 5-21 shows the experimental testbed that we created in 5TONIC.  The testbed is composed of: i) 
1 Fog node (Fog1), equipped with 2nd gen Intel Core i7 and 6GB RAM, ii) 3 Edge nodes (Edge2, Edge3 
and Edge4) implemented as virtual machines equipped with 3vCPUs and 8GB of RAM and iii) 1 Edge 
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node (Edge1) implemented as a virtual machine equipped with 1vCPU and 8GB of RAM. All the nodes 
are interconnected with 1Gb Ethernet connection and are configured to be part of a Docker swarm. 
Fog1 node hosts the Simulated Robot Drivers VNF, while Edge1, Edge2, Edge3 and Edge4 host the 
Control, Motion Planning, Interface and Digital Twin VNFs respectively. The VNFs are implemented 
as Docker containers. 
The experiment starts when an application logic that is hosted in the Fog node deploys a Digital Twin 
instance over the Docker swarm. Once the Digital Twin instance is deployed the Digital Twin VNF will 
start controlling the simulated robot in a closed-loop fashion as presented in Figure 5-21. (Red arrows). 
(1) The Digital Twin sends a control command with offset of 0.01 rad and command execution time of 
20ms to the Control VNF of the Robot Stack. (2) The Control VNF translates the control command into 
position commands and sends them towards the Robot Driver VNF. The Robot Driver VNF executes 
the received position command, moves to the instructed position and generates a joint state message 
that through the Control VNF (3) is propagated to the Digital Twin (4) as a validation for successfully 
executed command. It is worth mentioning that the messages of the joint state are generated in an open 
loop fashion every 20ms independently if the robot changed the position or not. The application logic 
adds a new Digital Twin instance every 5 minutes and each instance is following the described 
workflow.   
Throughout the duration of the experiment, in the Edge4 node, we obtained the Digital Twin control-
loop time, Digital Twin update time and Digital Twin command loss rate, while in the Edge1 node we 
obtained the CPU load. Finally, in the Fog node the Digital Twin command time. The collected metrics 
are defined as follows:  

• The Digital Twin control loop is the time elapsed from when the Digital Twin VNF sends a 
control command until the corresponding joint state message that validates the successful 
command execution is received in the Digital Twin VNF. 

• Digital Twin update time is the time elapsed from when a joint state message is generated by 
the Robot drivers until the message is received by the Digital Twin VNF. 

• Digital Twin command loss is the ratio of total number of commands send and the total number 
of commands that are not executed by the Robot Drivers. A command is considered to be lost if 
a joint state message is not received in the period of 400ms. 

• Digital Twin command time is the time elapsed from when a command is sent from the Digital 
Twin VNF until the command is received by the Robot Driver VNF. 

The obtained data from the first Digital Twin instance is analysed and aggregated to generate the results 
presented in Figure 5-22 Note that the application logic was adding a Digital Twin instance every 5 
minutes until 20 instances were present in the system. 
The top graph shows the average CPU load of the Edge1 node that hosts the Control VNFs. A first 
observation is that the average CPU load increases linearly by approximately 7% when a new instance 
enters the system. It can be seen that for up to 11 robots (61% of the average CPU load of Edge1), the 
Digital Twin instance works correctly reporting stable average values of around 40ms (20ms for 
command execution + 20ms for generating a joint state update) for the control-loop, and 1ms for the 
update and command time with 0.04% of command loss. The update and command time are 1ms due 
to the fact that we are using Ethernet as our underlying technology. Please note that update and 
command time values do not represent the frequency at which joint states and commands are being 
generated. These values are the propagation and processing delay of the service upstream and 
downstream. 
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As we continue to increase the Digital Twin instances in the system, in the interval from 11 to 15 Digital 
Twin instances, we can notice an increase in the update and command time that also result in increased 
variability of the control-loop of and increased number of lost commands. This is due to the fact that as 
the CPU load of the Edge1 increases, the processing latency of the Control VNF will increase and this 
will result in increased update and command times. The increased number of lost commands is because 
the Robot Drivers VNF will discard all the delayed control commands and with this degrade the 
performance of the Digital Twin service. 

 
FIGURE 5-22: Edge node overall CPU usage, Digital Twin control loop, update and command time and 

command loss rate 

Finally, when the CPU load of the Edge1 node is above 80% (from 15 to 20 Digital Twin instances) we 
can notice that the command loss starts to increase exponentially with command and updates times 
riching values of up to 200ms. In this interval, the Digital Twin service is completely degraded resulting 
in frequent stop and move behaviour of the robot. 
As concluding remarks, the results show how the CPU load of the Edge node that hosts the Control 
VNF have direct implications on the Digital Twin control-loop, update time, command time and 
command loss rate. The results give hints into how the Control VNF does behaves under different 
CPU loads and they can be used by the SLA manager in the BASS in order to trigger scaling of the 
Edge resources or even migration of the Control VNF. 
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5.2. I4.0-UC2: ZDM  
The ZDM use case evolution from its initial stages has been reported in D2.3 [7]. A new object detection 
engine has been described and the ZDM use case has been integrated with AWS Wavelength, Amazon’s 
Edge Computing services (telco-Edge), where the ZDM object detection runs. In this section, the final 
ZDM setup is described, as well as the setup of the different experiments to evaluate it, and the 
experimental results obtained, both for the use case and for the DEEP integration. The DEEP integration 
subsection describes the integration of the ZDM functionalities with the DEEP platform. Finally, 
present a summary of the section, scalability aspects of the ZDM are addressed. 

5.2.1. DEEP Integration Validation  
The ZDM deployment is automated through the BASS using Eclipse Fog05 driver for the Fog and Edge 
nodes. The BASS offers the benefits of deploying native applications on the physical entities at the 
factory floor through the Fog05 driver. This feature of the BASS is useful for the ZDM use case 
applications because the physical devices, i.e., the robots and components of the factory, are customer-
specific hardware that has proprietary libraries and programing interfaces that do not support 
virtualization. In order to deploy the ZDM services, a remote operator fills the BASS VSD that contains 
abstracted information about the modules that is part of the service. Screen capture of the vertical 
service descriptor is seen in Figure 5-23. 
 
Once the VSD is completed and submitted through the BASS web-view, all the applications will be 
instantiated. Figure 3-1 shows the BASS upon successful deployment and instantiation. After this step 
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the Digital Twin service is up and running and the remote operator can start using the application.

 
FIGURE 5-23. ZDM use case VSD file 

5.2.2. Experimental Results 
In D3.2 (D3.2, 2021), the connection between the production line and the edge side was reported for 
two connectivity options, namely Wi-Fi and 4G LTE. The main measurements carried for both 
connectivity options covered the bandwidth and latency measurements. In this deliverable, E2E 5G 
connectivity between the Fog node and the Edge node is reported. These results are taken from a pilot 
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reported in the project with Vodafone Uk and Amazon Web services, where the Edge computing 
resources are located within the Vodafone UK CN (telco-edge). Specifically, the Fog node is directly 
connected to the 5G modem at the production line side, whereas the Edge node is directly connected 
to the Vodafone 5G network. Two main measurements are performed: 
 
Network-Layer Measurements  

In this deliverable, E2E 5G connectivity between the Fog node and the Edge node is reported. 
Specifically, the Fog node will be directly connected to the 5G modem at the production line side, 
whereas the Edge node will be directly connected to the 5TONIC 5G network. Two main measurements 
will be performed: 
 

• Bandwidth measurements: using the IPERF tool (GUEANT, 2021) both in the DL (Edge to Fog) 
and in the UL (Fog to Edge). This provides the measurements of the available BW for the video 
stream in the UL and the control signalling in the DL: 

o Uplink: Iperf 
o Downlink: Iperf 

• Latency measurements: Using the PING tool between the Fog and Edge nodes. 
o Ping (Fog-Edge) 

 
Application-Layer Measurements 

In addition to the connectivity measurements, the application-level communication between the edge 
and the fog side is further investigated in this deliverable. The ZDM use case relies on video streaming 
and an object detection engine at the edge. The application layer protocol used in the ZDM is NDI. NDI 
requires extra time for particular tasks to be executed before a video frame can be transmitted over a 
network. There are, therefore, task-related factors that can influence the latency of video streams, on 
top of the delivery network used itself. These factors include video encoding pipeline duration, 
ingestion and packaging operations, video segment length, user policies on buffering and resilience, 
video codec used, compression and decompression of the video frames, the number of frames per 
second, etc. The added latency of these factors needs to be factored in in a use case like ZDM that relies 
on fast defect detection and consequent automated actions.  
Specifically on the ZDM setup, measurement software is employed at both the fog and edge nodes, 
where both devices are time-synchronized via time input from the same NTP server. Additionally, the 
measurement software has in built functions where both fog and edge nodes communicate and 
synchronize their CPU time further. The measurement software is executed using two devices, local 
and remote, where the local device is the fog device located at the production line, while the remote 
device is the edge side, as shown in Figure 5-24. 



D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials  75 
 

H2020-859881 

 

 
FIGURE 5-24. Application-level measurement software 

The camera employed in the ZDM use case uses a specific network protocol to convey the video that is 
the Network Device Interface (NDI). This allows the high-definition video to be streamed over the 
network in real-time.  The software uses fog and edge devices in order to monitor the NDI video frames 
streamed from the production line side to the edge side over the 5G network.  Using this software, the 
main KPI of interest to the ZDM use case was measured, the latency of the video. The achieved results 
are summarized in Table 5-5. 
 

TABLE 5-5 Network and Application layer measurement 
 

Measured 
KPI 

Video settings 
720p50 1080p60 

Network layer Latency 11ms 
Throughput 35.5Mbps 

Application Layer Latency 473.6ms 564.7ms 
 

The results from the pilot validate the ZDM use case and were taken over intervals of 5 minutes over 
different days. At the network layer, 11ms latency is a very good latency for tasks performed in the 
ZDM. The measured throughput in the uplink meets and exceeds the requirement in D1.1 (D1.1: 5G-
DIVE architecture and detailed analysis of vertical use cases, 2020). The Application layer latency is 
sufficient because every object is monitored over a few seconds. 

5.2.2.1. Experiment A: Bandwidth usage optimization: Adaptive video settings 

The ZDM use case relies very strongly on the transmission of the video stream from the ZDM factory, 
towards the Edge side. The camera used in the setup is capable of outputting a full High Definition 
(HD) video stream. The quality associated with HD video has a 5 Mbps UL Bandwidth requirement. 
This requirement is indicative of factors that can influence the required bandwidth such as the number 
of frames per second (fps), video encoding method, etc. . It is, therefore, an important challenge to meet 
this requirement in a 5G network – the network could easily provide the required bandwidth if the 
video stream was the only traffic running through it. Because other services and traffic are served by 
the same network, and because the ZDM relies on the video stream reception at the Edge side, it makes 
sense to address bandwidth consumption aspects in the context of the ZDM.  
 

Fog Device

Camera

Production line Edge 

NDI Video 
Stream
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To address the scalability aspects of the ZDM use case, a simulated, larger factory environment is 
envisioned. In this scenario, multiple stages in a production line process are considered. The monitoring 
of all the production stages is an effective way of improving predictive maintenance aspects. Predictive 
maintenance reduces maintenance frequency to certain minimum values and keeps resources in good 
condition, leading to cost savings (Mohammed M. Mabkhot, 2018) Besides this, a failure in the 
production line equipment at the earlier stages of the process might cause a halt to the entire production 
line – factory production lines are usually a sequential process (Mohammed M. Mabkhot, 2018) .In 
smart factories, data is collected about the resources and products, to then be analysed in real-time, at 
all stages of the production process (Mohammed M. Mabkhot, 2018). As a result, equipment status and 
failures can be forecasted, patterns can be drawn, and a suitable maintenance strategy can be tested 
and evaluated. 
 
Predictive maintenance is therefore a key aspect of smart factories and the ZDM scalability study relates 
to it. There are, however, some limitations on the ZDM use case. Its simulated factory environment can 
be seen as the output or the last stage of the production process of the factory. Obviously, in a real 
factory environment setup, the production process would have more steps involved, and the steps can 
also be monitored via filming and streaming of video. Hence, in this section, scaling up on the factory 
process via video monitoring is addressed. It would be unfeasible to increase the number of cameras 
in the real ZDM setup. Therefore, a study is presented simulating a larger factory environment, where 
multiple steps in a production line are being filmed and their video feed is being streamed towards the 
Edge. 
 
For the bandwidth evaluation, the ZDM use case makes use of InterDigital’s proprietary software that 
is able to measure packet statistics between two ends connected with a Content Delivery Network 
(CDN). The SW measures statistics at the application layer, providing an understanding of the QoE for 
the measured traffic. This is an important aspect to be measured because of the need for the Yolo [12] 
detection engine to receive the video packets properly, which can only be considered after the packets 
become an input to the engine. Bandwidth measurements were performed for different video settings 
in the camera and are presented in Figure 5-25. The measurements were performed for four different 
camera settings for resolution and fps. The x-axis represents relative time starting from the initial video 
stream capture moment by the receiving end SW component, in minutes.  
 
 

 
FIGURE 5-25 ZDM video stream initial throughput assessment 



D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials  77 
 

H2020-859881 

 

The presented results show two lines per video setting. The NDI library allows choosing a "high" or 
"low" bandwidth setting. In practice, this means that a high setting will try to encode and transmit the 
desired video settings (the ones represented in the figure). The low setting is an NDI feature that will 
automatically set the video settings to a certain resolution and number of frames per second, that the 
NDI protocol deems suitable, given the current network conditions, in order to maximize the video 
experience. The figure shows this very clearly, as the red line displays a much lower throughput than 
the high setting for all four possibilities.  It can be seen as well that, when the number of fps is set to 30 
and 50, higher throughput results are achieved with the “low” adaptive setting. The highest quality 
setting provided by the camera is 1080p60. The results obtained for this particular setting show that 
there is a throughput degradation, implying that the connection can sustain the video in the uplink, 
but there are video frames dropped, which is much less noticeable with any of the other three video 
settings.  
 
This is a very important aspect to look further into when considering the scalability aspects of the ZDM 
use case. Its setup is designed so that cubes with a defect mark are placed in the conveyor belt (D2.3: 
Final Specification of 5G-DIVE Innovations, 2021), on their way to a) out of the factory or b) to a disposal 
bin. Because of the nature of this design, and as previously shown in the available 5G-DIVE ZDM 
demonstrations, the camera is placed in a way that it can capture part of the conveyor belt, and the 
cubes themselves while running on top of it. In practice, this results in just a few moments when the 
cube is captured in the video when it is running on a specific area of the conveyor belt to where the 
camera points to, as illustrated in Figure 5-26. 
 
 

 
FIGURE 5-26 Defective object on displayed on the edge screen 

 
In practice, the specific small time window where the cube is captured on the conveyor belt is the only 
important part of the video stream, because those are effectively the only video frames that are relevant 
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for the Yolo object detection. When there is no cube being captured by the camera, the Yolo engine will 
not be able to perform any detection, because it doesn’t have any relevant frames (with cubes) to work 
with. This realization allows concluding immediately that the ZDM use case (and any other similar 
application relying on a video stream), has a very high unnecessary bandwidth consumption, 
considering all the time that there is no object being captured on the video and the video stream still 
remains with a very high-quality setting. Ideally, the camera would have its video quality settings 
tuned to the highest possible setting when an object is captured only (and the video stream is 
transmitted to the Yolo engine), and set to the lowest possible settings (or even switched off), when 
there is no cube being captured. This would allow for significant bandwidth, energy, and generalized 
network resource savings.  
 
To address the bandwidth usage, a new IE has been developed for the ZDM. The telemetry framework 
in place for the use case allows for the collection of several telemetry parameters from several setup 
components (D2.3: Final Specification of 5G-DIVE Innovations, 2021). Part of the telemetry data 
collected from the Yolo engine was recorded and used to create a dataset where an example entry is 
given in Table 5-6. 
 

TABLE 5-6 Yolo engine telemetry collection example data point 

Parameter Value 
Time 25/05/2021 09:40:48,600454 
Detection result & confidence NON-DEFECTIVE & 99% 
Bounding box coordinates in the frame x :  758 || y :  3 || w :  517 || h : 312 
Input timestamp 25/05/2021 09:40:48,610139 
Required Detection time (s) 0.020067453384399414 
Detection timestamp 25/05/2021 09:40:48,630243 
Number of objects detected 1 

 
The telemetry framework records amongst others, the input timestamp, that reflects the timestamp 
when the first frame used for object detection was used by the Yolo engine. It records as well the 
required detection time, i.e., the time that was required for the Yolo engine to conclude on the detection 
result, also shown in the above table. The recorded value (in Table 5-6) is 0.020067453384399414 s, and 
the average on the entire recorded dataset is 0.020s.  The availability of these two telemetry parameters 
on the dataset was used to train an ML model that is capable of predicting the next timestamps for the 
first frame of a given object to reach the Yolo engine from the factory. The training of the model is based 
on a time series forecasting approach where the confidence values of the telemetry collected from the 
Yolo engine were used as the predicted feature – detection confidence values are high when the engine 
is performing detection (i.e. when the object is displayed on the screen at the Edge), and low when there 
is no object present. Figure 5-27 shows the time series predictions on the test set in purple and the 
predicted future confidence values. 



D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials  79 
 

H2020-859881 

 

 

 
FIGURE 5-27 Training and predicted object detection confidence values 

 
As mentioned, the best way to scale up the ZDM use case is by envisioning a larger scale factory. 
However, the HW limitations are obvious. This IE has therefore been developed to demonstrate that 
the underlying 5G connectivity needs re-dimensioning for a larger scale factory. The recorded 
measurements show that high-definition video can be close to the limits of a commercial 5G connection 
and that transmitting video streams with these fixed settings constantly is a waste of resources that will 
lead to a much denser deployment of the 5G infrastructure. With adaptive settings from the camera 
side, and ML predictions to assess when there is a need for high-quality video (20ms as input for Yolo), 
and low settings (or even video off) for the remainder of the time, large energy and bandwidth savings 
can be achieved, and the dimensioning of the 5G connectivity for a large scale factory would be 
executed with generalized lower requirements, resulting in the same QoE levels. 
 

5.2.2.2. Experiment B: Access Traffic Steering, Spliting and Switching xApp 

In D2.3 (D2.3: Final Specification of 5G-DIVE Innovations, 2021), an ATSSS xApp has been described 
to enhance the available throughput for the camera to transmit its video without risking dropped 
frames that can be important for a defect detection or predictive factory maintenance aspects. This 
section describes how the xApp works and some achieved results that were obtained with its usage.  
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The results obtained with the xApp consider that both 3GPP and non-3GPP access traffic are available 
at all times. Two machine learning models have been trained based on telemetry collected from a Wi-
Fi router and a 5G UE.  
The Wi-Fi router used was a Belkin RT3200 with an Open source, linux based OS named OpenWRT 
(OpenWRT, n.d.) flashed into it. OpenWRT allows for telemetry data collection from the router, 
collecting statistic related to CPU load, quality of the radio signals, available throughput, amongst 
others. This data has been collected and used to train a model that predicts future available Wi-Fi 
throughput. Figure 5-28 future available wi-fi throughput shows the predicted future Wi-Fi available 
throughput for a 10 seconds time window.  
 

 
FIGURE 5-28 FUTURE AVAILABLE WI-FI THROUGHPUT 

 
The 5G UE telemetry was obtained from a dataset available online in (5Gdataset, n.d.). The model also 
predicts future throughput, but in this instance for a 5G cell. Figure 5-29 FUTURE AVAILABLE 5G 
THROUGHPUT shows the predicted future available throughput from a 5G cell for the same 10 
seconds time window. 
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FIGURE 5-29 FUTURE AVAILABLE 5G THROUGHPUT 

 
As both models can predict the future available throughput for a 10 seconds window, these predictions 
are then fed into the ATSSS xApp, that then has all the information to decide on e.g., the splitting rules 
in case of overlapping coverage  of both 5G and Wi-Fi. Figure 5-30 Example output of ATSSS decision 
making shows an example output of the ATSSS decision making, where the predict throughput values 
for both Wi-Fi and 5G are displayed, along with the actual or true values, for performance assessment, 
and the final splitting rule, i.e., the traffic percentage allocation that is done for 5G and the same for Wi-
Fi.   
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FIGURE 5-30 EXAMPLE OUTPUT OF ATSSS DECISION MAKING 

 
The models have then been given as input data, data that is part of the same dataset, but that hasn’t 
been used for training purposes. The performance of the xApp has then been evaluated and it is 
depicted in Figure 5-31 achieved ATSSS xApp throughput for different splitting rules.  
 

 
FIGURE 5-31 ACHIEVED ATSSS XAPP THROUGHPUT FOR DIFFERENT SPLITTING RULES 

LEFT: ACHIEVED THROUGHPUT FOR DIFFERENT SPLITTING RULES 

RIGHT: BOX PLOTS OF THE  ACHIEVED THROUGHPUT FOR DIFFERENT SPLITTING RULES 

 
The experiment was executed over 400 time steps. Every 10 time steps, the predictions from the trained 
models for Wi-Fi and 5G are generated and fed into the xApp that then dictates the splitting of the 
traffic. The achieved throughput is then measured and compared over different splitting rules, namely 
a fixed 50%-50% split, and a fixed 75%-25% split, where 75% of the traffic is allocated to the 5G cell. The 
baseline for the performance benchmark is the “5G only” split, where there is no traffic directed via the 
Wi-Fi access point. The Figure on the left shows as well results obtained with “our prediction models”, 



D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials  83 
 

H2020-859881 

 

and the “perfect prediction models”. The former represents the enhancements introduce by the xApp, 
while the latter represents the possible achievable performance, in case both the 5G and Wi-Fi models 
had a 100% prediction accuracy. The baseline results obtained for the 5G only split are around 40 Mbps 
for the duration of the simulation. This has been chosen in the dataset to match the reported throughput 
at the network layer, reported in Table 5-5 Network and Application layer measurement, to match the 
experiment and demonstrated executed in partnership with Vodafone UK and Amazon. It is also a 
borderline available bandwidth for a 4K video streaming, which has a typical bandwidth requirement 
of 35 Mbps.  
 
Results validate the predictive models for both 5G and Wi-Fi as the result of the steering rules with 
both trained and perfect models are very similar, and both outperform the 5G connectivity only option 
by a maximum of 45%. The 50%-50% split always performs worse than the baseline. The 75%-25% split 
sometimes outperforms the baseline but almost never outperforms our xApp. In roughly the same 
proportion, this split also performs worse than the baseline, achieving less throughput than the 5G cell 
only option. In addition to this, the right hand side figure also shows a much higher variance between 
minimum and maximum achieved throughput than the ATSSS xApp.  
  
These results validate the idea that the ATSSS xApp can improve RAN functions and achieve higher 
available throughput for the camera, enabling better quality video streaming, higher reliability, and 
general QoE improvements.  
 
 

5.3. I4.0-UC3: massive MTC  
Figure 5-32 shows the system setup for the mMTC trial. We deploy one radio-head which connects to 
7 IoT devices/nodes. The radio head connects to the 5TONIC Edge Data Center via a Gigabit Ethernet 
link or a 5G connectivity. In the 5TONIC Edge Data centre, 3 VMs are provided for mMTC use case. 
We configured the 3 VMs as a Kubernetes cluster hosting with 3 nodes (1 Master node and 2 Worker 
nodes), which host the edge services of mMTC use cases.  The DEEP platform is also deployed in the 
same data centre, where the services of other use cases are also deployed. Therefore, all three I4.0 use 
cases are integrated in the same data centre infrastructure using the same DEEP platform for 
management and coordination, as well as performance monitoring. Specifically, in mMTC trial, we use 
BASS in DEEP, to manage the mMTC service comprising three microservices/containers, namely 
Contiki, RAN, and Fingerprinting, deployed in the Kubernetes cluster.  
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 FIGURE 5-32 5TONIC trial setup of massive MTC use case 

 
In the following, the functionality of each microservice deployed in the Kubernetes cluster is briefly 
described. 

• RAN: The RAN instantiates an IEEE 802.15.4 O-QPSK 250kbps physical layer, which modulates 
and demodulates packets to and from the radio-head. It uses the ZMQ PUSH-PULL message 
pattern to communicate to the Contiki and the Radiohead. 

• Contiki: As described in D 2.3 (D2.3: Final Specification of 5G-DIVE Innovations, 2021), Contiki 
acts as the IoT networking stack. In our experiments, we use our asynchronous MAC as our 
MAC protocol. We use RPL (RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks) 
as our routing protocol. We configure the nodes to only act as leaf nodes to create a star topology 
network. The IP layer connects via a TUN interface to the host networking stack. We also 
integrated a modified Leshan (OMA Lightweight M2M server and client in Java) server as our 
LWM2M server that connects to the Contiki stack through the TUN interface. It manages the 
registration of the IoT nodes and subsequent application-layer communication to the IoT nodes. 
It also provides an HTTP server that translates HTTP requests to LWM2M requests. 

• Fingerprinting: The fingerprinting module uses our Siamese network architecture introduced 
in D2.3 to identify the sender (IoT node) based on the IQ samples to enhance device-level 
security. The Fingerprinting module collects IQ samples from the radio head using ZMQ TCP.  
We use the RAN microservice (i.e. IEEE 802.15.4 PHY) to identify the starting and ending of a 
single packet from the IQ samples. Next, we parse the demodulated packet to collect the MAC 
address of the sending node from the received packet. We also check for the correctness of the 
data packet using the CRC. The fingerprinting module has a dictionary of reference samples for 
the nodes used in the trial. We collect the reference samples in our office in Stockholm by placing 
each node next to a USRP. Hence, they can be assumed to be free from noise and multi-path 
effects. An AI model based on deep neural network is trained in our office in Stockholm using 
IQ samples from the nodes in the experiments, using the training process outlined in D 2.3 (D2.3: 
Final Specification of 5G-DIVE Innovations, 2021). Once the samples corresponding to a packet 



D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials  85 
 

H2020-859881 

 

are identified, the model compares the IQ samples with the reference samples corresponding to 
the MAC address identified in the packet. It outputs a similarity score which highlights how 
similar the radio characteristic of the sender is to the sender of the reference packet. 
 

In the setup, we have a radio head comprising a USRP and a mini-PC. The radio head transmits and 
receives IQ samples using a USRP B210 software-defined radio (SDR). It acts as a forwarder of the IQ 
samples to and from the RAN microservice in the mMTC service deployed at the edge. We use 
NodePort in Kubernetes to expose the mMTC service to external network. In the mini-PC, we 
implemented a preamble detection function in the receive chain to reduce the amount of data sent to 
the RAN microservice. The radio head is not managed by the BASS as this will be placed in the industry 
premises and not at the edge. It is connected to the mMTC service through a Gigabit Ethernet link or a 
5G link using a 5G CPE connected to the 5G system used in the trial. 

Figure 5-33 shows the actual trial deployment in 5TONIC. Seven IoT nodes are deployed at three 
locations where each of them are powered by a USB hub. The radio head is deployed on one table, 
where the connectivity to the edge data centre is provided via a RJ45 socket on the wall or the 5G-CPE 
on the same table. 

 

 
FIGURE 5-33 mMTC trial setup deployment in 5TONIC 

 

5.3.1. DEEP Integration Validation  
In the trial, the BASS is fully integrated with the mMTC service. In this section, we describe details of 
the integration with the DEEP platform, showing that DEEP works properly with the mMTC service. 
In (D2.3: Final Specification of 5G-DIVE Innovations, 2021) we presented the Kubernetes deployment 
scripts and explained the mapping of mMTC use case to the DEEP platform, focusing on BASS service 
instantiation and IESS automation.  
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Figure 5-34 illustrates the BASS VSD file for the mMTC use case. We deploy three microservices in the 
cluster and expose them with an external IP address. The BASS descriptor is expressed in JSON format, 
compared with Kubernetes deployment YAML file. In (D2.3: Final Specification of 5G-DIVE 
Innovations, 2021), we discussed that for each microservice deployed in the vertical service, we need 
to create the corresponding Deployment to provide declarative updates for Pods and ReplicaSets 
configurations. Besides, we also need to create the Service which defines a policy to access the Pods 
inside the cluster. In Section 3.1.2, the LOC for Kubernetes deployment files and BASS VSD are 
compared to show the low complexity as well as easy management with BASS deployment.  

 

 
FIGURE 5-34 BASS VSD for the mMTC use case 
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After the VSD file is created and deployed by the BASS, we observe a service list from the web GUI 
with details on components for the mMTC use case, as shown in Figure 5-35. The web GUI offers easy 
life-cycle management of the vertical service, i.e., it allows the vertical service operator to start and stop 
the service in a declarative way. Each time a vertical service is deployed, the BASS will generate a new 
namespace in the Kubernetes cluster and the components from the vertical service will be deployed 
therein. Figure 5-36 shows the screenshot of the microservices deployed in the Kubernetes cluster using 
BASS.  

 

 
FIGURE 5-35 BASS web view of mMTC use case with details on its components 

 
FIGURE 5-36 mMTC Kubernetes cluster deployed using BASS 

To visualize the system metrics of the mMTC use case, we then integrate the use case with BASS active 
monitoring feature. As explained in Section 3.1.3, the BASS automatically supports the monitoring of 
basic metrics, e.g., CPU usage, memory usage, etc. for each component deployed using a Kubernetes 
cluster. A Dashboard, as shown in Figure 5-37, has been established to monitor system metrics. It is 
worth mentioning that for other customized metrics such as latency and data loss rate, we use log data 
to save the metrics for post-processing. 
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FIGURE 5-37 Influxdb monitoring dashboard for mMTC use case 

5.3.2. Experimental Results 
Three types of Experiments, i.e. Experiments A, B and C, have been performed in the trial. Experiment 
A is to measure application layer performance. Experiment B is to measure RF fingerprinting 
performance. Experiment C is to measure the performance of orchestration and automation features. 
Each type of experiment comprises several measurements to cover different aspects. For example, 
Experiment A has 4 measurements labeled as Experiment A.1, A.2, A.3 and A.4. 

5.3.2.1. Experiment A: Application Layer Performance 

In the experiments of Experiment A, we evaluate the performance of our mMTC service with an 
application that periodically collects temperature measurements from the IoT nodes. The 
implementation of experiments is shown in Figure 5-38.  We developed a control and measurement 
module which acts like an application. It sends HTTP GET requests to the Leshan server to collect 
temperature data from all the connected IoT nodes. The Leshan server translates the HTTP GET 
request to a CoAP (Constrained Application Protocol) GET request. We modify the Leshan server to 
measure the round-trip time for data retrieval. 
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FIGURE 5-38 Implementation of Experimental Setup for experiment A 

5.3.2.1.1. Methodology 

The following describes the basic steps of performing the experiment. 

1. Instantiate the mMTC service using the BASS of DEEP 
2. Power up the IoT nodes which have been programed with a LWM2M client. 
3. Wait for the clients to connect to the gateway.  
4. Using the control and measurement module: 

a. Set a collection frequency for all nodes (reading of all nodes, scheduled sequentially or 
asynchronously by Leshan server) 

b. Request the IoT nodes for temperature sensor data (logged by the control and 
measurement module). Measure application data integrity or losses. Data losses signify 
the time-out of the HTTP response.  

5. Measure the round-trip time for the response (logged by the control and measurement module 
together with sensor data simultaneously with step 4). 

a. LWM2M RTT: Measures the round-trip time (RTT) for each LWM2M request. It is 
measured by the Leshan server. 

b. Application RTT: Measures the RTT for each application (HTTP) request. The Leshan 
server uses synchronous requests and sends the subsequent request on successful 
reception of the current request by the target IoT node. This results in a queuing delay 
of a request at the Leshan server. So, the Application RTT includes LWM2M RTT, 
queuing delay at the Leshan server, and the HTTP request to CoAP request translation 
time.  
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5.3.2.1.2. Experiment A.1: Asynchronous Message Collection  

IoT nodes with a specified message frequency can wake up and send the data asynchronously at 
random intervals. To model this messaging pattern, we set the control module to enable asynchronous 
polling of the nodes. The control module instantiates threads for polling each connected IoT node. Each 
thread sleep for a random delay between 0 and 20 seconds before sending the HTTP request for data 
collection from its designated client. The collection frequency is set to 1 data reading per minute for 
each node. We collected the data for 10 days.   

5.3.2.1.2.1. Results 

Figure 5-39 shows the CDF of the measured round-trip times (RTT) from all the clients. We receive a 
response to over 90% of requests within 400 ms. The application RTT closely follows the LWM2M RTT 
with a slight delay incurred by HTTP to CoAP translation and queuing delay. The DLR (data loss rate) 
for application data retrieval is 1.039% for close to 86000 application requests. Our application does not 
have a retransmission mechanism and relies on link-layer retransmissions. Due to the asynchronous 
nature of the responses from the IoT nodes for message requests with random delay initialization, over-
the-air collisions are probable. This leads to link failure and failure of the application data retrieval. 
Some performance degradation is also due to the IoT node behavior. The 5 newly bought IoT nodes 
didn’t perform as well as the 2 nodes we have used for a long time. This phenomenon is also shown in 
Figure 5-40, which will be discussed there. Nevertheless, we can further improve the reliability of our 
application by using application-layer retransmissions. For example, by one retransmission on the 
application layer by request again the data if no response received on the first request, the DLR can be 
reduced to less than 0.011%. Further reduction can be done with more retransmissions on the 
application layer 

 
FIGURE 5-39 CDF of RTT for asynchronous requests 

Figure 5-40 shows the application performance per node. We use boxplots to show the distribution of 
the LWM2M RTT for each node. The nodes have similar RTT distribution with a median of 
approximately 250 ms. However, the DLR for each node varies considerably. The nodes with the 
nRF52840 platform (A527, B60E, F16B, 5105, EDA1 in the figure) which were newly bought show higher 
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DLR than nodes with the Zolertia Firefly platform (B16D, B4D4 in the figures) which we have used for 
a long time. The nodes with the nRF52840 platform also have lower LWM2M RTT than the nodes with 
the Zolertia Firefly platform. It points to a failure of our MAC retransmissions on the nodes to send the 
requested data. Basically, B16D and B4D4 have been more robust than the other 5 nodes, which 
represents more the normal performance expected. It can be due to RF compatibility issues or an issue 
regarding configuration optimization between our SDR receiver and the nRF52840 platform.  

 
FIGURE 5-40: Result of application performance per node for asynchronous requests 

5.3.2.1.3. Experiment A.2: Scheduled Message Collection 

In an application-driven architecture, the application schedules the data retrieval from the IoT nodes. 
We model this messaging pattern by using the control module to schedule the requests to the IoT nodes. 
The collection frequency is set to 1 data reading per minute per node. The control module instantiates 
threads for data retrieval from each connected IoT node. The control module instructs the threads to 
sleep for a particular delay. On waking up from sleep, each thread sends an HTTP request for data 
collection from its designated IoT node. For this measurement, the control module schedules data 
collection every 5 seconds. The data are collected for 7 days.   

5.3.2.1.3.1. Results 

Figure 5-41 shows the CDF of the measured RTT from all the clients. Similar to the asynchronous 
polling case, we receive a response to over 90% requests before 400 ms with a slight difference between 
the application RTT and the LWM2M RTT.  We achieve a lower DLR of 0.639% with scheduled requests 
than 1.039% with asynchronous requests. The scheduling of data retrieval by the control module 
reduces the chances of over-the-air collision between packets from different nodes. This results in better 
reliability, as demonstrated by the lower DLR. 
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FIGURE 5-41 CDF of RTT for scheduled requests 

We show the LWM2M RTT and DLR for each node in Figure 5-42. For LWM2M RTT distribution, we 
observe similar results to the asynchronous case. The DLR across different IoT nodes once again 
highlights the discrepancy between nodes with different platforms. The Zolertia Firefly nodes have 
only one data loss event for the duration of this experiment. However, scheduling requests to the nodes 
reduces the DLR from each node. It means the actual performance in practice with good IoT nodes 
should perform as well as the Zolertia Firefly nodes. 

 

FIGURE 5-42 Application performance of different nodes with scheduled requests 
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5.3.2.1.4. Experiment A.3: Performance over 5G 

In this experiment, we connect the radio-head to our mMTC service using 5G instead of the 1Gbps 
ethernet link. We use asynchronous polling with a collection frequency of 1 message per minute for 
each node. The data is collected for 1 hour. 

5.3.2.1.4.1. Results 

Figure 5-43 shows the CDF of the RTT with a 5G connectivity. We observe a higher RTT (about 100 ms 
in average) as compared to the results with the Ethernet link. This is mainly because of a higher 5G 
latency than the Ethernet link. However, we observe a DLR of 0.621%, similar to the scheduled message 
collection results. Hence, the higher latency of the 5G link does not impact the reliability of our data 
collection application. 

 
FIGURE 5-43 CDF of RTT with 5G connectivity 

Figure 5-44 shows the breakdown of the LWM2M RTT and DLR per node. We observe a median 
LWM2M RTT of slightly over 300ms. Like our previous experiments, the nodes with the nRF52840 
platform have higher DLR as compared to the nodes with Zolertia firefly platform. Overall, the results 
show that we can use a 5G connectivity to support our mMTC service. This is useful in cases where the 
radio-heads do not have access to a fixed network in an environment that requires high security or is 
in a remote area too costly to access a fixed network. 

 
FIGURE 5-44 Application performance per node with 5G connectivity 
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5.3.2.1.5. Experiment A.4: Impact of Collection Frequency 

In this experiment, we measure the impact of collection frequency on performance. We select the 
collection frequency of 5 and 10 messages per minute for each node. The data is collected for 30 minutes. 
The parameters used in the control module for the asynchronous message pattern and the scheduled 
message pattern are shown in Table 5-7. 
 

TABLE 5-7 Parameters for different message patterns 

Message Pattern Packets per minute per 
node 

Random Delay (async)/ 
Interval between requests 
(scheduled) 

Async 5 0-5 seconds 
10 0-2.5 seconds 

Scheduled 5 1.5 seconds 
10 700 milliseconds 

5.3.2.1.5.1. Results 

Table 5-8 shows the LWM2M RTT and DLR results for the two tested message frequencies for the 
asynchronous and the scheduled message patterns. We observe an increase in the DLR with increased 
message frequency for both the message patterns. However, due to higher chances of collision in the 
asynchronous message pattern, we observe significant degradation in the DLR with a message 
frequency of 10 packets per minute to each node. We also notice the impact of the over-the-air collisions 
in the 95th percentile value for the LWM2M RTT. The high RTT for this case, which indicates the 
application needed multiple MAC layer retransmissions for successful data retrieval. The scheduled 
message pattern achieves a 95th percentile value below 1000 ms with a PER of 1.5%, which is 
considerably better than the asynchronous message pattern. 

We also evaluate the impact of collection frequency with a 5G connectivity. In this case, we use the 
scheduled message pattern. For both the collection frequencies, we observe DLRs comparable to the 
scheduled case. The higher 5G-link latency is highlighted in the mean, 5th percentile and 95th percentile 
values of the LWM2M RTT. However, given the low DLR for high collection frequency of 10 messages 
per node, we can argue that with application layer reliability we can also use 5G connectivity for high 
frequency message collection with our mMTC service. 

TABLE 5-8 Impact of collection frequency on application performance 

Message 
Pattern 

Packets per 
minute per 

node 

LWM2M RTT 
(50th 

percentile) in 
ms 

LWM2M RTT 
(5th percentile) 

in ms 

LWM2M RTT 
(95th 

percentile) in 
ms 

DLR (%) 

Async with 
Ethernet 

5 233.00 81.00 868.75 1.06 
10 235.00 84.00 2419.50 3.40 

Scheduled 
with Ethernet 

5 241.50 85.35 398.55 0.70 
10 238.00 84.80 826.80 1.50 

Scheduled 
with 5G  

5 388.03 181.67 709.55 0.38 
10 446.61 158.50 1225.00 1.37 
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5.3.2.2. Experiment B: RF Fingerprinting Performance 

In this experiment, we evaluate the functionality of our RF Fingerprinting module. IoT networks can 
be attacked by intruder nodes. The intruder nodes disguise their identify and communicate with the 
gateway. Our RF Fingerprinting module identifies nodes based on their signal characteristics and hence 
can be an effective solution to intrusion attacks at the gateway. We evaluate its performance in a longer 
running experiment for 18 days.   

5.3.2.2.1. Methodology: 

In our RF Fingerprinting module, we compare an incoming message from the node with MAC address 
“ID” to a reference signal from that node. The steps are highlighted below. 

Identifying nodes based on their radio characteristics: 

1. For every incoming packet, we collect the MAC address and verify the packet is correctly 
decodable (eliminates corrupted packets) 

2. We randomly sample radio chunks of window size of 128 I/Q samples from the reference signals 
for that node. 

3. We compare the incoming packet with the radio chunks and get a similarity score. 
4. We log the similarity score for each packet along with the node details for post-processing. 

5.3.2.2.2. Results: 

We have 7 IoT nodes, comprising of 6 original nodes and 1 intruder node. We program the intruder 
node with the same MAC ID as one of our trained nodes (not used in the experiments). We log the 
similarity scores per-packet identification and then post-process the identification results. The data is 
collected for 18 days. In total, we collected 528928 packets, out of which 89058 packets are from the 
intrusion node.  

Figure 5-45 shows the Receiver Operating Characteristics (ROC) curve for the duration of the 
experiment.  The X-axis shows the false positive rate i.e., the fraction of the intrusion messages that get 
misidentified as messages from the correct devices. The Y-axis shows the true positive rate i.e., the 
fraction of messages from the correct devices getting identified as correct messages. Both the X-axis and 
Y-axis are normalized to the total number of messages from the intrusion node and the correct nodes.   

The ROC curve shows the true positive rate and false positive rate that can be achieved by tuning the 
threshold on the similarity score. Ideally, we would like to find a threshold that enables the RF 
Fingerprinting module to correctly identify all messages from the correct nodes accurately, while 
flagging all messages from the intruder node as an intrusion. This scenario would be depicted by a 
straight line that has a Y value of 1 for an X value of 0. With our RF-Fingerprinting module, we can 
achieve a Y value of over 0.85 for an X value of 0. This means we can accurately identify 85% of messages 
from the correct devices when it flags all intrusion messages as an intrusion. Moving along the X-axis 
signifies a lowering of the threshold on the similarity score. A lower threshold would allow messages 
that have a lower similarity score to be identified as a correct message. This leads to an increase in the 
false-positive rate i.e. the number of intrusion messages identified as correct. We achieve a true positive 
rate of 1 i.e., all messages from correct devices get correctly classified at X < 0.1. So, our fingerprinting 
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module can correctly identify all correct messages when we allow misidentification of around 10% of 
intruder messages.   

For reference, we show the ROC curve for a random classifier as a dotted blue line. We observe that we 
can achieve a high true-positive rate for even a low false-positive rate signifying our model manages to 
differentiate the correct messages from the intrusion messages.  The ROC Area under the Curve (ROC-
AUC) measures the area under the ROC curve for our classifier.  Our model achieves a high ROC-AUC 
of 0.9966 (ROC-AUC for the perfect classifier is 1) and signifies that we can find a threshold with our 
model that differentiates between correct and intruder nodes significantly well.   

 
FIGURE 5-45 ROC curve for RF Fingerprinting 

5.3.2.3.  Experiment C: Orchestration and Automation Performance  

In previous sections, we verify the functional features of the BASS and test the performance of our 
mMTC system. However, due to the heterogeneity of edge sites, e.g., using different types of CPUs, 
different CPU clock frequency, and memory footprint, varying background load, network interrupts, 
etc., the services deployed may experience unexpected slow execution, even crash in runtime (H. Zhao, 
2020). The hardware nodes used in an Edge data centre, e.g. servers, are usually less robust than 
telecom-grade equipment, which can experience HW issues more often. Thus, it is important to 
understand the performance impact of such failures that may happen to the system and how these 
failures can be mitigated in mMTC use case.  

In this section, we discuss the self/healing capability of Kubernetes and the life cycle management of 
the BASS. More specifically, we measured the performance of the mMTC service when pod/node 
failure happens. We have four test scenarios, i.e., no failure scenario (baseline scenario), pod failure 
scenario, pod failure with redundancy scenario, and node failure with redundancy scenario. For each 
measurement, we run the test for 10 minutes with the node traffic of 10 requests /min/IoT node. 
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5.3.2.3.1. Experiment C.1: Pod failure without redundancy 

In this part, four experiments are conducted to analyse the performance impact of the pod failure. In 
all four experiments, we have the ‘replicas’ value set to 1 for ‘Contiki-PHY’ microservice 
(corresponding to the RAN microservice) in our VSD file, i.e., we have one RAN instance running in 
the edge. For the baseline case, there is no human intervention and for the failure test, we manually 
delete the pod which is running ‘Contiki-PHY’ microservice. It is worth mentioning that Kubernetes 
implements graceful termination by applying a default grace period of 30 seconds. In our experiments, 
we set the grace period value to 0 in order to achieve immediate pod termination to emulate the pod 
failure event. 

Table 5-9 reports the measurement results for the pod failure without redundancy scenario. We observe 
that we receive 695 and 697 response packets for the two measurements, respectively, when no pod 
restart happens for the baseline case. The data loss rates for the two measurements are 1.44% and 1.58% 
respectively. For the pod failure case, we receive 596 and 589 response packets for the two 
measurements, respectively. This is due to that two nodes were disconnected from the Leshan LWM2M 
server when pod failure happens. We can also observe that the pod restart time is around 3.5 seconds 
which means that the service outage lasts for at least 3.5s and response data from the IoT devices during 
that period will be lost. For the two measurements, we got 28 and 29 data losses due to the pod failure. 

TABLE 5-9 Comparison results for the Pod failure without redundancy scenario 

Measurement 
# 

Data 
received Pod 

restart 
times 

Pod restart 
time [s] 

Data 
loss 
rate 

Data loss 
due to 
pod 
failure 

RTT Leshan 
Server 
(mean) [ms] 

RTT 
application 
(mean) [ms] 

1 695 0 - 1.44% - 362.20 368.16 
2 697 0 - 1.58% - 351.58 357.61 
3 596 1 3.4 5.87% 28 334.81 341.06 
4 589 1 3.6 6.28% 29 412.13 418.46 
 

Figure 5-46 shows the application performance per node for the pod failure test. We use the results of 
measurement 3 to show the average server RTT as well as application RTT in the left figure. There are 
four nodes with average RTT values below 300ms. The overall RTT values vary from 268ms to 391ms. 
However, in the right figure which shows the data loss rate for each node, we observe the great 
disparity between the nodes. The two nodes (node ‘B16D’ and ‘B4D4’) with the Zolertia Firefly platform 
only receive around 60 data packets as both nodes disconnect from the server when pod failure happens. 
The nodes located farthest from the receiver (node ‘D60E’ and ‘F16B’) introduce more data losses 
compared with the rest nodes. It is also worth mentioning that these two nodes have higher data loss 
in the baseline case also, as seen in Experiment A.1 and A.2. 
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FIGURE 5-46 Results of application performance per node for pod failure scenario 

5.3.2.3.2. Experiment C.2: Pod-level redundancy 

In this part, we have 2 more measurements done with pod failure. However, we set the ‘replicas’ value 
to 2 instead of 1 to have redundancy in the system. By doing this, we have two ‘Contiki-PHY’ pods in 
our cluster and Kubernetes will route the traffic to either pod. During the measurement, we still 
manually delete one pod from the cluster, and Kubernetes will automatically start a new pod to meet 
the ‘replicas’ value set for the ‘Contiki-PHY’ deployment. 

Table 5-10 reports the measurement results for the pod redundancy scenario. We observe from the table 
that the Leshan LWM2M server received nearly the same amount of response data in all four 
measurements. Besides, for the pod redundancy cases, no data loss due to the pod failure is observed, 
leading to data loss rates of 0.43% and 1.15% respectively. However, there is no data loss observed 
during the pod failure. The value is still reasonable since we know that some nodes may have unstable 
performance regarding data loss rate. Furthermore, with a redundant pod, we also obtain similar 
average server/application RTT for the measurements. It shows having a replica is an effective solution 
to increase the availability and reliability of the mMTC service. 

TABLE 5-10 Measurement results for POD redundancy scenario 

Measurement 
# 

Packet 
received 

Pod 
restart 
times 

Data 
loss rate 

Data loss 
due to Pod 
failure 

RTT Leshan 
Server (mean) 
[ms] 

RTT 
application 
(mean) [ms] 

1 695 0 1.44% - 362.20 368.16 
2 697 0 1.58% - 351.58 357.61 
3 696 1 0.43% 0 365.55 372.79 
4 697 1 1.15% 0 323.39 329.51 

Figure 5-47 illustrates the application performance of each IoT node for pod redundancy scenario. We 
use measurement 3 as an example to show the node behaviour when failure happens in pod 
redundancy scenario. It is shown in the right figure that we haven’t got a service outage during the 
whole measurement. All nodes are connected stably and only node ‘D60E’ introduces some data losses. 
In the left figure, we observe the average RTT for all nodes varies between 263ms to 567ms, with the 
highest value also from the node ‘D60E’. 
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FIGURE 5-47 Results of application performance per node for POD redundancy scenario 

5.3.2.3.3. Experiment C.3: Node-level redundancy 

In this measurement, we have two ‘Contiki-PHY’ pods deployed on two worker nodes. Instead of 
manually deleting the pod, we reboot the worker node 1 where only ‘Contiki-PHY’ pod is running on. 
Thus, we can explore the performance impact of having node redundancy without harming other pods 
inside the cluster. Below we show what happens inside the cluster when a node failure happens. 

• When the node fails, it becomes unreachable and the master sets the node to the ‘NotReady’ 
state. 

• The master waits for ‘pod-eviction-timeout’ before taking any action. The default value is 5 
minutes. 

• After ‘pod-eviction-timeout’ time, the master sets the partitioned node’s pod to ‘Terminating’ 
state and creates new instances of pods on different nodes. 

For our case, we have two pods on two different worker nodes. After we manually reboot one node, 
there is only one other pod left in the cluster that takes over the traffic. The new pod will not be created 
until the default ‘pod-eviction-timeout’ time is up. 

Table 5-11 reports the measurement results for the node redundancy scenario. It is worth mentioning 
that the measurement time for measurement 3 is 8 minutes 30 seconds, so we have fewer data received 
compared with the baseline case. We observe that with node redundancy, we manage to obtain a 
similar data loss rate compared with the baseline case. Furthermore, we observe zero data loss when 
the node failure happens, indicating a graceful handover of the traffic from one node to the other node. 
It shows that node-level redundancy is an effective way to protect the system from node failure events 
and therefore further enhance increase the availability and reliability of the mMTC service. 

TABLE 5-11 Measurement results for node redundancy scenario 

Measurement 
# 

Packet 
received 

Node 
restart 
times 

Data 
loss rate 

Data loss 
due to node 

failure 

RTT Leshan 
Server (mean) 

[ms] 

RTT 
application 
(mean) [ms] 

1 695 0 1.44% - 362.20 368.16 
2 697 0 1.58% - 351.58 357.61 
3 582 1 1.20% 0 346.70 353.06 
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5.3.3. Scalability 
In an IoT application where the amount of data can be unpredictable on occasion, it is important to 
have the ability to assign more resources when needed and withdraw the resources after the surge ends. 
One of the major capabilities of Kubernetes as an orchestrator lies in its ability to dynamically manage 
and respond to varying network traffic by performing effective auto scaling. In this section, we evaluate 
the scalability (in terms of resource utilization) of the mMTC microservices, i.e., RAN and Contiki 
microservices that are deployed in the edge under different traffic loads. We first present the evaluation 
utilizing the test node simulator (D2.3: Final Specification of 5G-DIVE Innovations, 2021) we developed 
in the project, with which we can emulate a large number of nodes to investigate the scalability. Then 
we present the results measured in the I4.0 trial in 5TONIC. This section is concluded with the 
discussions regarding the two service auto scaling approaches, i.e., horizontal scaling and vertical 
scaling that are supported by Kubernetes. 

5.3.3.1. Simulation results with emulated test nodes 

Figure 5-48 shows the experimental setup with emulated test nodes. The test node acts as a fully 
functional Contiki-based LWM2M Client. We create a Docker network and deploy our Contiki and 
PHY functions. We allocate one CPU core to Contiki and the two RAN functions. Next, we instantiate 
the test nodes and wait for the registration of these nodes. On successful registration of these nodes, we 
schedule ping to each of these nodes with an interval of 1 minute like our long-term measurements. 
The experiments were conducted on an Apple MacBook Pro equipped with an 8-core Intel i9 processor 
with hyper-threading which effectively gives us 16 cores. We measure the resource utilization of the 
Contiki and PHY instances using Docker stats every second. 

 
FIGURE 5-48 Experimental setup with emulated test nodes 

 
We conduct two experiments to study the scaling behaviour of the mMTC components. As our Contiki 
and RAN functions are CPU-intensive processes, in these experiments we examine the CPU utilization 
with the varying number of test nodes.  

Experiment 1: CPU Resource utilization with varying number of nodes 

In this experiment, we initially instantiate 20 test nodes and measure the CPU utilization under ping 
load. We collect the measurements for 10 minutes. Then we instantiate 10 more test nodes and repeat 
the measurement process. We could emulate up to 40 nodes due to CPU resource limitation in this 
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experiment setup, which is already much more than the number of nodes we could deploy in the trial 
field.  

Figure 5-49 shows the variation of CPU utilization with the increase in the number of test nodes. The 
Y-axis shows the mean percentage of CPU utilization of one core assigned to the Contiki and RAN 
microservices. The error bars show the 95% confidence interval of the mean CPU utilization. For this 
experiment, all the test nodes are connected to ‘RAN #1’. We observe that both the ‘Contiki’ and ‘RAN 
#1’ microservices scale with the number of the test nodes. Since the RAN must perform heavier signal 
processing operations, its CPU utilization increases at a higher rate compared to the Contiki. Broadcast 
packets are still sent over ‘RAN #2’, hence resulting in a small CPU utilization. From the trend, it can 
be estimated that one CPU core used in this experiment can support more than 100 IoT nodes under 
the test traffic pattern. Then it will scale with the number of CPU cores when even more IoT nodes are 
connected.  

 
FIGURE 5-49 CPU utilization with respect to the number of test nodes 

Experiment 2: Balancing the load across multiple RAN microservices 

In this experiment, we examine if handling traffic from multiple RAN microservices impacts the 
resource utilization of the Contiki microservices. We instantiate 40 test nodes and distribute them 
equally among both the RAN microservices. Figure 5-50 shows the impact of balancing the nodes across 
the two RAN microservices. We observe that distributing the load evenly among the RAN 
microservices results in lower overall CPU utilization. This is because that the load balancing also 
makes the system more robust such that the number of retransmissions is reduced, which reduces the 
actual processing load. The CPU utilization of the Contiki microservice remains the same for both cases, 
highlighting there is no significant overhead for handling traffic from multiple RAN microservices. 
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FIGURE 5-50 Impact of balancing the load across two RAN microservices 

5.3.3.2. Trial results in 5TONIC 

Using the BASS active monitoring, we measure the resource utilization of the mMTC microservices 
during the trial. Since the nodes are physically deployed at 5TONIC lab, we herein increase the traffic 
loads by sending more requests to the nodes. Figure 5-51 shows the CPU utilization of the RAN and 
Contiki microservices (or pods). The Y-axis shows the CPU utilization of one core assigned to the 
corresponding instance. We use boxplots to show the distribution of the CPU utilization under different 
traffic loads. We have tested with seven different traffic loads which vary from 1 data requested per 
minute per node to 25 data requested per minute per node. We observe that the average CPU utilization 
increases with more traffic loads for both RAN and Contiki microservices, as expected. For the RAN 
microservice, the median CPU utilization values of all test cases are 2.92%, 3.78%, 5.58%, 7.32%, 8.76% 
and 9.12%, respectively. The results show a significant scaling of CPU consumption for the RAN 
microservice and thus we can use it as an effective metric to scale out/in the service. 

For the Contiki microservice, the median CPU utilization values for all test cases are 5.18%, 5.28%, 
5.37%, 5.45%, 5.51% and 5.52%, respectively. Under the case of 25 data requested per minute, the 
median CPU utilization of Contiki microservice is 5.52% compared with 9.12% of RAN microservice, 
indicating that one Contiki instance can handle much more traffic than one RAN microservice. In 
addition, the slower trend of the increase in CPU utilization for Contiki further proves this. It is also 
worth mentioning that our use case is not memory demanding, and the average memory usage is 
always below 1%. Thus, we don’t use memory usage as criteria for the scaling of the services. 
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FIGURE 5-51 CPU utilization for PHY and Contiki under different traffic loads 

5.3.3.3. Discussion regarding autoscaling 

From the simulation results, for the RAN microservice, we get a mean CPU utilization of 28.13% for 
one CPU core with 40 test nodes under load. For the traffic pattern tested, considering the increasing 
trend in the CPU utilization with the number of test nodes, the RAN microservice will be able to 
support more than 100 IoT devices with one CPU core. Similarly, the Contiki microservices will be able 
to support more than 150 IoT devices with one CPU core. Taking this into account, we also discuss 
scaling strategies using horizontal and/or vertical scaling to dynamically scale the resources to the RAN 
and Contiki microservices according to the processing load.  

Horizontal Pod Autoscaler (HPA) 

Horizontal scaling allows Kubernetes administrators to automatically increase or decrease the number 
of running pods (or microservices) when the level of resource usage changes. The horizontal pod 
autoscaling controller periodically adjusts the desired scale of its target, e.g., a Deployment, to match 
observed metrics such as average CPU utilization, average memory utilization, etc. If the operator 
configures a workload to autoscale based on multiple metrics, the HPA evaluates each metric 
separately and uses the scaling algorithm to determine the new workload scale based on each one. The 
largest scale is selected for the autoscale action. The horizontal scaling doesn’t interrupt the traffic 
processing thanks to load balancing used which automatically routes the traffic to the available pods. 

Vertical Pod Autoscaler (VPA) 

Instead of changing the number of pods in the cluster, vertical scaling set limits on container resources 
based on the actual level of resource usage. A VPA allows the operator to scale a given service vertically 
within a cluster. It is more applicable for the cases where some services are not possible or not ideal to 
scale horizontally due to some constraint. It is also worth mentioning that VPA destroys a pod and 
recreates it with a new resource limit to vertically scale the resources allocated. Due to this, it is 
recommended to use VPA for more stable updates of pods over a longer period. 

For mMTC, the RAN microservice is suitable for horizontal scaling as it is more sensible to the traffic 
loads. Besides, by enabling horizontal scaling for the RAN, the system will also benefit from having 
pod redundancy when the service scales out. Meanwhile, vertical scaling is recommended as a scaling 
strategy for the Contiki service as it is less sensitive to the traffic loads.  Use of a single Contiki 
microservice to manage the overall IoT network leads to more optimized networking decision making, 
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e.g which radio-head is better suited for a particular IoT node. Furthermore, it makes it enables the 
application developers to have a unified access and control interface for the entire network.  In our 
current implementation, the MAC layer is located in the Contiki microservice. But, from the autoscaling 
perspective, it may be more suitable to have the MAC layer in the RAN microservice as this layer is 
more suitable for horizontal scaling. 
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6. Final validation results of ADS use cases  
In this section, we presented the final validation results for ADS use cases. This will cover the 
connectivity. Where ADS replaced the 4G network solution with 5G-NSA solution. Also, it over new 
features added for ADS implementation. In particular, ADS performed the following implementations. 
First, the addition of a drone charging spot for the multiple drone trial and Internet Drone Operating 
System (IDrOS) validations. Second, Zenoh (Zenoh, n.d.) integration as a data transmission protocol 
for streaming data from the drone to the edge. And third, update of EagleEYE (Ardiansyah, 
Muhammad Febrian and William, Timothy and Abdullaziz, Osamah Ibrahiem and Wang, Li-Chun and 
Tien, Po-Lung and Yuang, Maria C, 2020) processing pipeline to better support multiple drone trials. 

6.1. Experimental setup  
The edge data center as well as the gNB/eNB combo small cell are located in the MIRC building. The 
MIRC building is an 8 floors high-rise building located inside the NCTU campus. The gNB/eNB combo 
small cell is mounted on the sixth floor of the MIRC building, while the edge data center is located in 
the basement of the MIRC building. In Figure 6-1 above, the complete connectivity mapping at the edge 
in support of the ADS mission is depicted. The edge data center is also connected with the BASS 
instance in 5TONIC lab in Spain for edge infrastructure management and orchestration. At the edge, is 
where all of the components supporting the disaster relief response system are deployed. More details 
on each of the components have been previously reported in D2.3 (D2.3: Final Specification of 5G-DIVE 
Innovations, 2021), and D3.2 (D3.2, 2021). 

 
FIGURE 6-1 ADS Network connectivity mapping 

Also, the utilized drone model is shown in Figure 6-2 and Figure 6-3. In Figure 6-2, the drone support 
5G-NSA and Ubiquiti connectivity. 5G-NSA is mainly used to send sensory data and video streaming 
(i.e. range from 848x480 to 1920x1080 full HD based on drone camera) from drones to edge. While the 
Ubiquiti is useful to share information among drones whenever needed (see Figure 6-3). More details 
of drone hardware including the battery, weight, and camera are provided in D3.2 (D3.2, 2021).  
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FIGURE 6-2 ADS drone connectivity mapping 
 

 
FIGURE 6-3 ADS Utilized drone 

6.2. ADS-UC1: Drone Fleet Navigation  
For ADSUC1, we present early results on the performance of the iDrOS drone operating system. We 
specifically focus on iDrOS’ ability to migrate application components from drone to edge. In addition, 
we present the updated DCAS adopted at the edge with the new drone navigation server.   
For IDrOS, we take as an example the migration of an application component implementing a dummy 
image processing functionality for object detection. We emulate the behaviour of a companion 
computer running onboard a drone using a RaspberryPI 4 device and simulate an edge installation 
using an Intel Canyon NUC i7 running at 3.4GHz. The Raspberry PI is connected to a wireless network 
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created by a Netgear 5G mobile router. The 5G network is the one of Vodafone Italia (5G trial in Milano). 
The Intel Canyon NUC is connected to the Vodafone backbone network via Ethernet. The average 
round-trip time between the Raspberry PI and the Intel Canyon NUC is 3.8ms before the start of the 
experiments. We use mahimahi (Mahimahi) to emulate different degrees of packet losses. 
Figure 6-4 shows the experimental setup. The image processing components migrate from the “Data 
Processing” package on board the drone to the same class on the edge device. We measure the execution 
time of the image processing functionality as a function of the number of executions per minute and 
the times for performing the offloading, that is, from the drone to the edge, and inloading, that is, from 
the edge to the drone of the component from/to the drone as a function of the number of state variables 
storing the component state, which we call “state variables” from now on, that need to be migrated. 

 
FIGURE 6-4: iDrOS experimental setup 

 
As a baseline for comparison, we build a functionally equivalent implementation that uses the Python 
library Pyro4 (Python libarary Pyro4) to remotely expose the image processing functionality and we 
test the same range of queries per time unit.  
 
For DCAS, the experimental setup is shown in Figure 6-5 for two drones. Basically, multiple drones are 
monitored at the same time to support collision avoidance between drones. In-flight, when the distance 
between drones is too short, the system will automatically issue avoiding commands. DCAS 
mechanism is exactly the same as elaborated in D3.2 (D3.2, 2021) but we move it to edge within the 
drone navigation server. This will allow us to utilize 5G-NSA and improve the visibility of drones by 
human operators. 
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FIGURE 6-5 DCAS experimental setup 

6.2.1. Mission Scenario and Flow 
In ADS-UC1, the mission operation operators three drones. The drone navigation client is connected to 
the Drone navigation server through the mobile network. This will allow for drone monitoring and 
dynamic control as shown in Figure 6-5. Besides, DCAS functionality is available on each drone and 
can connect it to the drone navigation client and have been tested previously as elaborated in D3.2. 
Now, DCAS functionality is adopted in drone navigation servers and it was tested in and will be 
elaborated in this section.  
 

 
FIGURE 6-6: DCAS validation setup 
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 In our validation, the drones fly on the ITRI campus. The Drone Navigation Server controls the drones 
to take off and sets them to fly to different destinations. During the flight, if the drones are too close to 
one another as depicted in Figure 6-7, the DCAS on the edge will detect potential collisions and 
eventually will take over the control of the affected drones for a limited period of time. This period is 
function of collision risk, as there is no risk, the control will be again with the drone navigation server. 
After the potential collision is resolved, the drone control returns to the Drone Navigation Server in 
order to continue the mission. During the field trial, three drones (i.e. Drone #1, Drone #2, and Drone 
#3) will be part of the drone fleet required to fly to certain locations as the relief mission required. 
Initially, two drones (Drone #1 and Drone #2) fly to perform this mission, and collision is detected and 
then the drone navigation server will perform DCAS. The mission still running, but Drone #1 was 
detected with a low battery by the drone navigation server. The drone navigation server will request 
Drone#3 to fly autonomously to replace Drone#1. Hence, Drone #3 will fly in the shortest path using 
DCAS to replace Drone #1 and continue the mission as shown in Figure 6-7.    

 
FIGURE 6-7 ADS-UC1 mission timing sequence 

 

6.2.2. Experimental Results 
In this section, the experimental results for Drone to Drone (Section 6.2.2.1), and IDroS System (Section 
6.2.2.2) are reported.  

6.2.2.1. Experiment A: Drone to Drone Communication 

The evaluation is conducted on ITRI campus football field, the distance used between drones is 
approximately 7 meters and 15 meters, respectively. With respect to the latency performance 
evaluation, the system achieves an average of less than 3.2ms RTT (ping test; 100 samples). The results 
are collected for different drone arrangements as shown in Figure 6-8, Table 6-1 and  
Table 6-2.  The results show that the drone-to-drone communication system can support the packet 
transmission of DCAS in real-time. Having the DCAS deployed at the edge or the fog does not affect 
performance significantly.  Also, the scalability test has been performed as shown in Section 6.2.3. 
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FIGURE 6-8: DCAS latency measurement setup  

 
TABLE 6-1 DCAS RTT latency measurements with 7 meter spacing 

 Arrangement 1 Arrangement 2 
Drone_A~Drone_B 3.352ms 2.478ms 

Drone_B~Drone_C 1.963ms 1.177ms 

Drone_C~Drone_A 1.635ms 1.522ms 

 
TABLE 6-2 DCAS RTT latency measurements with 15 meter spacing 

 Arrangement 1 Arrangement 2 
Drone_A~Drone_B 2.976ms 2.913ms 

Drone_B~Drone_C 1.519ms 1.545ms 

Drone_C~Drone_A 1.624ms 1.365ms 

6.2.2.2. Experiment B: iDrOS Migration  

The results of the comparison between IDrOS and Pyro4 experiments are reported in Figure 6-9: the 
performance of IDrOS is slightly better than the one of Pyro4. On average, the execution time of IDrOS 
is ∼450 milliseconds shorter than the execution time of the Pyro4 implementation. We repeated the 
experiment 10 times and averaged the results. The standard error of IDrOS means is 0.169 seconds, the 
standard error of Pyro4 means is 0.33 seconds. 
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FIGURE 6-9 IDRoS execution times when migrating components 

 
Figure 6-10 reports the results when migrating components to and from the edge. From the graphs, we 
can derive the following conclusions: 

• The number of state variables (see Section 6.2 ) in the range we tested does not significantly 
affect the in loading and offloading times, since there is no increasing trend in the average times. 

• The average in loading time (see Section 6.2) is higher than the average offloading time because 
it is influenced by the time needed to restore the variables, and in our experiments, it is driven 
by the performance of the Raspberry. 

• The packet loss rate in the interval we evaluated does not significantly affect the in loading and 
offloading times, because the network transfer time, including TCP retransmissions, is 
negligible with respect to the time needed to serialize, deserialize, and restore the state. 
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FIGURE 6-10 IDRoS migration performance 
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6.2.3. Scalability 
For the drone fleet, it is important to be able to serve multiple drones while utilizing 5G-DIVE platform 
and passing traffic from drone to edge with 5G-NSA connectivity.  Taking that into consideration, we 
observe that the navigation server sends and receives information normally including DCAS messages 
using 20 emulated drones and 50 emulated drones as shown in Figure 6-11 and Figure 6-12, 
respectively. Where the time displayed in the red box is the latency from the control webpage to the 
navigation server. Also, the green box shows information about the navigation server interface. The 
results run for more than 20 minutes (i.e. expected fly time of the drones) and the drone navigation 
server has the connection established with all the drones during this stress test. This means the drone 
navigation server is scalable to perform the drone fleet navigation during the disaster mission. 
 

 
 

FIGURE 6-11 Scalability testing with 20 emulated drones 
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FIGURE 6-12 Scalability testing with 50 emulated drones 

Besides, during this scalability test, the control webpage can be displayed. In particular, the webpage 
can control up to 4 drones at a time. Each control page controls 4 drones taking into account the safety 
(elaborated in D3.1 (D3.1: Definition and setup of vertical trial sites, 2020)) considerations for the naked 
eye of the drone operator. The 20 drones are controlled in multiple pages as shown in Figure 6-13.  
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FIGURE 6-13 Control webpage of 20 emulated drones 
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6.3. ADS-UC2: Intelligent Image Processing for Drones  

 
FIGURE 6-14 Overview of ADS-UC2 system 

Figure 6-14 above provides an overview of the disaster relief response system for ADS-UC2. The system 
consists of three main components, which are the aerial drones, 5G connectivity solution, as well as 
edge. In the edge is where all of the intelligent application is deployed and run. In this section, the 
mission scenario and flow (Section 6.3.1), results on the key modules (Section 6.3.2), DEEP integration 
experiences (Section 6.3.3), as well as key modules scalability (Section 6.3.4) are of focus. Results on 5G 
connectivity solution can be found in Section 2.2. The key modules involved in the disaster relief 
response system involved are the Drone Data Processor system, the EagleEYE system, as well as the 
EagleStitch System. 

6.3.1. Mission Scenario and Flow 
In ADS-UC2, the goal of the disaster relief response system is to detect and localize Persons in need of 
Help (PiH), as well as to provide a view of the surrounding area. In the mission, 3 aerial drones are 
utilized to perform aerial scouting around the MIRC high-rise building located inside NCTU. In the 
mission, the PiH is located on the 6th floor and the right side of the MIRC building.  
 

 
FIGURE 6-15 ADS-UC2 mission scenario and flow 

 
When the mission starts, 3 drones are dispatched to the area. Drone-1, and Drone-2 are dispatched to 
perform aerial building surveillance. Drone-1 will perform aerial surveillance on the left side of the 
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building, while Drone-2 performs aerial scouting on the right side of the building. The scouting is 
performed by continuously flying in a zig-zag pattern, floor-by-floor. Drone-1, and drone-2 
continuously perform surveillance until the key modules running at the edge (EagleEYE) detect and 
localize PiH in the building (Figure 6-15a). When a PiH is detected, drone-1 and drone-2 will be 
instructed to update their trajectory and then perform landing or continue performing PiH detection 
and localization at other parts of the building. During the surveillance mission, drone-3 is also 
dispatched at the same time, but with a different goal. The drone-3 goal is to perform panorama image 
2D stitching of the surrounding mission area, as well as to perform extended aerial surveillance. 
Providing a better view of the surrounding area for the rescue team. The 2D stitching mission is 
executed first, and then when drone-3 finishes this mission it will land and is set on standby mode. In 
standby mode, drone-3 waits for PiH location from the edge. When a PiH is successfully located, 
waypoints will be sent to drone-3 by the drone navigation server running at the edge. Drone-3 will then 
autonomously fly to the location of drone-3 to perform extended aerial surveillance (Figure 6-15b). This 
is to provide the rescue team with live streaming of the PiH to further assess the situation, to 
communicate with the PiH, or to deliver a first aid kit to the PiH. 
During the runtime of the mission, aerial surveillance video will be streamed directly from the drone 
to the edge via the 5G wireless communication medium. The resolution of the streamed video varies 
from 848x480 up to 1920x1080, depending on the wireless network quality as well as the drone camera. 
In the trial itself, the 5G gNB is installed on the 6th floor of the building. The gNB itself is directly 
connected to the edge located in the basement of the building. In the real world, the gNB will be the 
one located at the perimeter of the area, while the edge can be any edge located closest to the disaster 
impacted area. In general, the mission usually lasts around 15-20 minutes. Figure 6-16 below showcases 
the breakdown of the trial mission performed by drone-1, drone-2, and drone-3 as well as its timing 
sequence. Note that the timing numbers are for simulation purposes and this number will change 
during the execution in the real world. 
 

 
FIGURE 6-16 ADS-UC2 mission timing sequence 
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6.3.2. Experimental Results 
In this section, the experimental results for the Drone Data Processor system (Section 6.3.2.3), EagleEYE 
system (Section 6.3.2.1), as well as EagleStitch System (Section 6.3.2.1) are reported. A brief overview 
of each system is also provided in the respective sub-section. 

6.3.2.1. Experiment A: Processing Latency of EagleEYE System 

In Figure 6-17, an overview of EagleEYE key modules is shown. EagleEYE system is used to perform 
Person in need of Help (PiH) detection. The goal of the PiH detection is to detect and locate PiH in a 
disaster-impacted area. A short overview of each of the EagleEYE key modules are the following: 

1. Data Offloader: A round-robin based algorithm used to offload incoming image frames to any 
available Dual Object Detection module. 

2. Dual Object Detection: CNN-based algorithm to detect ’Person’ & ‘Flag’ objects 
3. PiH Candidate Selection: Heuristic algorithm to check if the correlation between ‘Person’ & 

‘Flag’ objects meets a set of criteria of a PiH object. 
4. Sorter: Sort data according to frame sequence and drone ID 
5. PiH Persistence Validation: Sliding window-based algorithm to determine if PiH object appear 

across a consecutive number of frames persistently. 

 
FIGURE 6-17 Overview of EagleEYE key modules 

Further details on each of the EagleEYE key modules have been previously reported in D2.3 (D3.1: 
Definition and setup of vertical trial sites, 2020). The processing latency of each key module is 
summarized in Table 6-3. The processing latency is for the inference of a single image frame. In 
summary, 47.14 ms is needed to perform inferencing to detect and localize for PiH in a single image 
frame. Note that during system deployment, several modules in EagleEYE (e.g.: the Dual Object 
Detection module) are run in parallel to reduce the overall processing latency and to achieve real-time 
performance (<33 ms per image frame processing latency). Apart from that, the pipelining technique is 
also used to further reduce the processing latency. Figure 6-18 below showcases the output of EagleEYE 
system processing 2 drone input streams at once in real-time. 
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TABLE 6-3: EagleEYE key modules processing latency 

EagleEYE Key Modules Processing Latency 
1. Data Offloader 1.873ms; std dev 2.008ms 

2. Dual Object Detection 34.184ms; std dev 8.425ms 

3. PiH Candidate Selection 6.778ms; std dev 3.764ms 

4. Sorter 0.273ms; std dev 0.526ms 

5. PiH Persistence Validation 4.032ms; std dev 1.984ms 

Total 47.14 ms 

 

 
FIGURE 6-18 EagleEYE output 

6.3.2.2. Experiment B: Processing Latency of EagleStitch System 

In Figure 6-19, an overview of EagleStitch key modules is shown. EagleStitch system is used to perform 
2D stitching of drone imagery gathered around the mission area. A short overview of each of the 
EagleStitch key modules are the following: 

1. Feature Matching: To detect features in an image (e.g.: corner, curves). 
2. Image Matching: To match for images that have the same features. 
3. Bundle Adjustment: To bundle all images with the same features. 
4. Panorama Straightening: To align the bundled images so that they are not slanted or rotated. 
5. Blending: To adjust and correct the gain (brightness) of the images being stitched as well as to 

remove the seams (edges) in the stitched images. 
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FIGURE 6-19 Overview of EagleStitch key modules 

Further details on EagleStitch key modules can be found in D2.3 (D2.3: Final Specification of 5G-DIVE 
Innovations, 2021). The processing latency of each key module is summarized in Table 6-4. 
 

TABLE 6-4 EagleStitch key modules processing latency 

EagleStitch Modules Processing Latency (ms) 
1. Feature Matching 329 

2. Image Matching 33 

3. Bundle Adjustment 11 

4. Panorama Straightening 95 

5. Blending 289 

Total 757 ms 
 
 

The processing latency results are for the stitching of 2 image frames. In summary, 0.757s is needed to 
stitch for 2 image frames. Figure 6-20 below showcases the EagleStitch system output stitching 2 images 
taken by the drone of the surrounding trial area. 
 

 
FIGURE 6-20 EagleStitch output 

6.3.2.3. Experiment C: Processing Latency and Network Performance Metrics for Drone Data 
Processor System 

 The drone data processing system is used to inject metadata onto the captured images before sending 
them to the edge. This metadata information is used to differentiate between data coming from multiple 
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drones. Apart from that, the drone data processor is also used to compress the captured images, reduce 
image file size, and save bandwidth. Table 6-5 provides a breakdown of the processing latency as well 
as network bandwidth consumption metrics for the drone data processor. The data transmission is 
done using Zenoh net via the pub/sub-publishing method. 
 
 

TABLE 6-5 Drone data processor system performance metrics 

Performance Metrics Results 
Processing latency (tagging, compression) 31.63 ms / image frame 
Bandwidth consumption 1.1 MB / image frame 

 

6.3.2.4. Experiment D: Stress Test of EagleEYE System and 5G-NSA solution 

 For stress testing the EagleEYE system, multiple tests of non-stop 2 hour PiH detection, and 
localization mission are executed. In the tests, drones footage of different locations is fed to the 
EagleEYE system to perform the PiH detection and localization. During the tests, EagleEYE system can 
work reliably and is able to detect and locate PiH. The stress testing is done with the complete setup as 
shown in Figure 6-14. In the real world, a drone-related mission can only last for about 20 minutes as 
the drone is limited by the battery capacity and the payload that the drone is carrying. In the stress test, 
we make sure that the complete system can run for far longer than 20 minutes and with that, a 2 hour 
test duration is picked. Figure 6-21 shows the visualization of EagleEYE, as well as the visualization 
from the drone navigation server during the 2 hour stress test. Notable, the results prove that EagleEYE 
is capable of detecting the PiH without any service interruption. Also, 5G-NSA solution is reliable to 
deliver HD images of the video stream without any interruption. 
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FIGURE 6-21 Visualization output of ADS-UC2 during two hours stress test 

 
Furthermore, we also test the end-to-end solution in ASKEY labs for two hours with the setup as shown 
in Figure 6-22. The speed test runs for two hours without any interruption. In this setup, a downlink 
speed of up to 740Mbps, and an uplink speed of up to 88Mbps is recorded. 
 

 
FIGURE 6-22 Stress test setup at ASKEY's lab 

6.3.3. DEEP Integration Validation  
In this section, a description on the DEEP platform integration experiences is detailed. The integration 
experiences for DASS, BASS, and IESS are detailed in Section 6.3.3.1, Section 6.3.3.2, and Section 6.3.3.3 
respectively. 
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6.3.3.1. DASS 

In general, with the integration of DASS, enhanced functionality in terms decentralized data 
dispatching and collection can be achieved. The DASS provides for a lightweight and efficient data 
transmission protocol for streaming data from the drones to the edge. With the DASS, the data 
collection process, posting, getting and subscribing to the collected data is simplified. In ADS-UC2, the 
DASS is extensively used by the Drone Data Processor system to perform data publishing from the 
drone to the edge. With results for the network bandwidth consumption listed in Table 6-5. In the ADS-
UC2, the network bandwidth consumption will be limited by the frame rate of the camera mounted on 
the drone, as well as the image resolution of the camera. More details on the advantages of each feature 
of the DASS can be found in Section 3.2. 

6.3.3.2. BASS 

In general, with the integration of BASS, enhanced functionality in terms of application lifecycle 
management can be achieved. The BASS enables automatic and rapid service deployment of the ADS 
vertical service in the field. As a plus, deployment of the service in multiple different regions is also 
possible. Apart from that the BASS also provides for a common general user interface that is compatible 
across different resource orchestrators while also simplifying the descriptor file used to deploy for 
multiple system modules. And finally, the BASS provides for easy and ready-to-use monitoring probes 
that if combined with SLA enforcer will allow for automatic scaling of system modules. More details 
on the advantages of each feature of the BASS can be found in Section 3.1. 
 
Figure 6-23 below captures the deployment of EagleEYE system via the BASS. The BASS is running at 
the 5TONIC lab in Spain, and it is deploying the EagleEYE system at the edge infrastructure that we 
have in Taiwan. 
 
 

 
FIGURE 6-23 EagleEYE System Deployment with BASS 
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6.3.3.3. IESS 

At this moment, the integration with IESS is not yet complete. However, with the integration of IESS, 
we can expect for enhanced functionality in terms of automatic AI model training. The IESS, via 
AutoML, allows for automatic training of AI models for use in vertical service specific missions. For 
example, in ADS-UC2, the AI model is used to perform object detection. During the mission, there is a 
possibility that the object to be detected can change. And with that, the IESS can come in handy to help 
with automatic retraining of AI model to suit the mission needs. Apart from that, IESS also able to 
package the trained model for easy transport across regions for use in a similar mission in different 
regions. Previously trained models are also stored in a catalogue that future missions can utilize. More 
details on the advantages of each feature of the IESS can be found in Section 3.3. 

6.3.4. Scalability 
For EagleEYE, an architecture design that is capable of supporting multiple drone input streams is 
proposed. This proposed architecture is designed based on the incapability of the previous design to 
handle multiple drone streams. Two main concerns are observed in this work, first, when multiple 
streams are being offloaded and processed, the edge system was unable to distinguish the stream 
sources of the drones. Second, the processing is working asynchronously, while the system requires to 
visualize the processed image frames in order. As described in Figure 6-24, the blue blocks represent 
the new component in EagleEYE design. First, we introduced a data tagging approach on the drone 
side, where the image frames are pre-processed and are tagged with insightful information before being 
sent to the edge, such as drone ID, frame ID, and other important information. On the edge, we 
introduce the Data Offloader service to capture and pre-process the incoming image frames, while 
keeping the tuple of information sent by the drones. As for the Dual Object Detection (DoD) service, a 
new sub-module is added to map each image frame from different drones and make sure to process 
them to the correct next coming PiH Candidate Selection services. Afterward, for each processed image 
frame, it will be sorted out as a batch into Sorter service before finally are being sent to the Visualizer 
service. Finally, the end-users will be able to monitor the real-time results of each drone stream. 
 

 
FIGURE 6-24 EagleEYE scalable architecture for multiple drone inputs 

 
To validate our design, we performed a scalability test with six drone streams in an indoor 
environment. In this test, we pre-initialized EagleEye system with multiple Dual Object Detection 
services ready and prepared multiple JetsonNano which has a camera attached. Each camera will 
stream the pre-recorded video to visualize see whether the system can handle a real-time input stream 
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or not. As shown in Figure 6-25, our new proposed EagleEYE design can smoothly handle multiple 
drone streams with no overlapping image frames from different drone sources. 
 
 

 
FIGURE 6-25 EagleEYE scalability test with 6 drones Input 
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7. Conclusions  
This deliverable has presented a detailed view of the final validation results of different 5G-DIVE use 
cases. We have elaborated on the setup of Digital Twin (DT), Zero Defect Manufacturing (ZDM) and 
Massive Machine-Type-of-Communication (mMTC) use cases for Industry 4.0 (I4.0) trial. Also, the set 
of ADSUC1 and ADSUC2 remain unchanged. Then, mission scenarios and flows are presented for all 
the aforementioned use cases of I4.0 and ADS pilot. Indeed, the experiment results depicted how I4.0 
and ADS pilots utilize the DEEP, fog and edge computing platform, and 5G connectivity in different 
levels toward better and reliable services. In addition, the integration for a single platform (in particular, 
BASS of DEEP) has been achieved. In summary, the achievements are summarised in Table 7-1. 

 

TABLE 7-1: Final achievement per use case 

Use Case Main Achievements 

DT 

Developed a Movement Prediction AI model that recovers 
Digital Twin control commands. The Digital Twin use case 
was integrated with BASS of the DEEP for exploiting the 
SLA enforcement feature in order to allocate the optimal 
minimum amount of resources for the service. The use case 
was also integrated with the IESS for auto-packaging and 
auto-deployment of the Movement Prediction inference 
application.  Finally, the use case was installed and 
deployed in the 5TONIC 5G trials where measurements 
were performed regarding application performance, 
Movement Prediction performance for commands 
predictions and vertical resource scaling.  

ZDM 

Integrated the testbed with 5G SA network, as well as other 
elements of the DEEP platform, namely the DASS and the 
BASS. Designed, developed and tested of an edge 
intelligent for the ZDM use case. A new object detection 
engine has been integrated with AWS Wavelength, 
Amazon’s Edge Computing services (telco-Edge), where 
the ZDM object detection runs. An ATSSS xApp has been 
developed and performance results show 45% gains in 
achieved throughput at the network layer. 

mMTC 

Integrated the mMTC testbed with BASS of DEEP, further 
development and optimization of mMTC service implementation 
for trial measurements, installed and deployed the mMTC trial 
setup in 5TONIC integrated with DEEP, performed long-term 
mMTC trial regarding application layer performance with 
Ethernet and 5G, RF fingerprinting performance for intruder 
detection, orchestration and automation performance for 
enhanced system robustness, and scalability with resource 
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utilization. The trial results show that the development of the 
mMTC use case achieves the objectives set in the project. 

ADS-UC1 

Integrated 5G-NSA solution for wireless communication 
from drone to edge. Utilized DCAS in the edge with newly 
developed drone navigation server. Executed drone fleet 
navigation with multiple drones using DCAS and 
considering a drone charging spot for the multiple drone 
trial. Demonstrated IDrOS software mobility features. 

ADS-UC2 

Integrated 5G-NSA solution for wireless communication 
from drone to edge. Integrated Zenoh as data transmission 
protocol for drone-to-edge data streaming. Integrated BASS 
for automatic service deployment and lifecycle 
management. Updated Drone Data Processor Module to 
better support multiple drone trials. Updated EagleEYE 
processing pipeline to better support scalability in handling 
multiple drone inputs. Completed EagleStitch development 
to provide panorama 2D stitching of the mission area. 
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8. Annex A- VSD in YAML format for mMTC 
 
Representative example of the definition of a Vertical Service in the BASS. Can be codified both in JSON 
and YAML. This is the Vertical Service Descriptor for the mMTC use-case in YAML format. 
 
 
name: mmtc 
region: 5tonic-mmtc 
components: 
  - name: contiki-deployment 
    numReplicas: 1 
    imageRepository: docker.io/ericssonsics/5g-dive:contiki 
    maxWaitTime: 1200 
    exposedPorts: 
      - 52001 
      - 52002 
      - 8080 
    driverSpecific: 
      type: KUBERNETES 
      env: 
        podIP: $ComponentIP 
      networkPrivileged: true 
  - name: contiki-phy 
    numReplicas: 1 
    imageRepository: eabsics/5g-dive:contiki_phy_test2 
    maxWaitTime: 3600 
    exposedPorts: 
      - 52001 
      - 52002 
      - 53001 
      - 53002 
    driverSpecific: 
      type: KUBERNETES 
      env: 
        contikiclusterip: contiki-deployment 
        IID: '1' 
        PUB_PORT: '53001' 
        CONTIKI: contiki-deployment 
        PULL_PORT: '53002' 
  - name: fingerprinting 
    numReplicas: 1 
    imageRepository: ericssonsics/5g-dive:finger 
    maxWaitTime: 1800 
    exposedPorts: 
      - 55002 
    driverSpecific: 
      type: KUBERNETES 
      env: 
        contikiclusterip: contiki-deployment 
        THRESHOLD: '0.7' 
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