

H2020 5G Dive Project
Grant No. 859881

D3.3 KPI and Performance Evaluation of
5G-DIVE Platform in Vertical Field Trials

Abstract
This deliverable of D3.3 is the third and final deliverable of WP3. The goal of this deliverable is to
provide the final validation results of different 5G-DIVE use cases defined in D1.1, i.e., Digital Twin
(DT), Zero Defect Manufacturing (ZDM) and Massive Machine-Type-of-Communication (mMTC) use
cases for Industry 4.0 (I4.0) trial, and drone fleet navigation (ADSUC1) and Intelligent Image Processing
for Drones (ADSUC2) use cases for Autonomous Drone Scouting (ADS) trial. Experiments of each use
case have been performed for implementation validation including scalability analysis and system
reliability. And the experimental results are evaluated considering the 5G-DIVE platform, 5G
connectivity and edge and fog computing. Furthermore, the updated information of I4.0 trial site in
5TONIC and I4.0 use case integration are also provided in this deliverable.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 2

H2020-859881

Document properties
Document number D3.3
Document title KPI and performance evaluation of 5G-DIVE platform in vertical

field trials
Document responsible ITRI
Document editor Samer Talat (ITRI)
Editorial team NCTU: Muhammad Febrian Ardiansyah, Timothy William

ADLINK: Gabriele Baldoni, Ivan Paez
ITRI: Andee Lin, Samer Talat
UC3M: Laura Caruso, Milan Groshev
EAB: Chenguang Lu, Gyanesh Patra
ULUND: Chao Zhang
RISE: Saptarshi Hazra, Luca Mottola
TELCA: Javier Sacido, Matteo Pergolesi, Aitor Zabala
IDCC: Ibrahim Hemadeh, Filipe Conceicao

Target dissemination level Public
Status of the document Final
Version 1.0

Production properties
Reviewers Antonio De la Oliva, Bengt Ahlgren, Ibrahim Hemadeh, Filipe

Conceicao, Ivan Paez, Milan Groshev, Muhammad Febrian
Ardiansyah , Timothy William, Matteo Pergolesi, Samer Talat,
Andee Lin, Chenguang Lu, Shally Lu.

Document history
Revision Date Issued by Description
1.0 2021-12-28 Samer Talat Final version

Disclaimer
This document has been produced in the context of the 5G Dive Project. The research leading to these
results has received funding from the European Community's H2020 Programme under grant
agreement Nº H2020-859881.
All information in this document is provided “as is" and no guarantee or warranty is given that the
information is fit for any particular purpose. The user thereof uses the information at its sole risk and
liability.
For the avoidance of all doubts, the European Commission has no liability in respect of this document,
which is merely representing the authors’ view.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 3

H2020-859881

Contents
List of Tables ... 5

List of Figures .. 6

List of Acronyms .. 10

Executive Summary ... 14

1. Introduction ... 15

2. 5G Solution Validation .. 17

2.1. 5G SA solution for I4.0 trials in 5TONIC ... 17

2.2. 5G-NSA solution for ADS trials in MIRC .. 21

3. DEEP Platform Validation .. 24

3.1. BASS Validation results .. 24

3.1.1. Multi-region orchestration feature validation .. 24

3.1.2. Service management feature validation .. 25

3.1.3. Active Monitoring feature validation .. 26

3.1.4. SLA Enforcement feature validation ... 30

3.1.5. Scalability measurements .. 31

3.1.6. Availability and Reliability ... 35

3.2. DASS Validation results ... 36

3.2.1. Scalability measurements .. 36

3.2.2. Performance measurements .. 37

3.3. IESS Validation results .. 41

3.3.1. Model training feature validation .. 41

3.3.2. Inference app packaging and deployment feature validation ... 41

3.3.3. IESS Catalogue feature validation ... 42

3.3.4. Offer AutoML service for easy AI adoption ... 42

3.3.5. Scalability ... 43

3.3.6. Availability and Reliability ... 45

4. Final Integration ... 47

4.1. Trial setup premises and hardware resources .. 47

4.2. Configuration for DEEP platform and use-cases .. 50

5. Final validation results of I4.0 use cases ... 52

5.1. I4.0-UC1: Digital Twin .. 52

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 4

H2020-859881

5.1.1. DEEP Integration Validation .. 52

5.1.2. End-to-end profiling .. 57

5.1.3. Experimental Results ... 60

5.1.4. Scalability ... 67

5.2. I4.0-UC2: ZDM ... 72

5.2.1. DEEP Integration Validation .. 72

5.2.2. Experimental Results ... 73

5.3. I4.0-UC3: massive MTC .. 83

5.3.1. DEEP Integration Validation .. 85

5.3.2. Experimental Results ... 88

5.3.3. Scalability ... 100

6. Final validation results of ADS use cases ... 105

6.1. Experimental setup ... 105

6.2. ADS-UC1: Drone Fleet Navigation ... 106

6.2.1. Mission Scenario and Flow ... 108

6.2.2. Experimental Results ... 109

6.2.3. Scalability ... 113

6.3. ADS-UC2: Intelligent Image Processing for Drones .. 116

6.3.1. Mission Scenario and Flow ... 116

6.3.2. Experimental Results ... 118

6.3.3. DEEP Integration Validation .. 122

6.3.4. Scalability ... 124

7. Conclusions ... 126

8. Annex A- VSD in YAML format for mMTC ... 128

9. References .. 129

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 5

H2020-859881

List of Tables
Table 2-1 Throughput measurement results .. 20

Table 2-2 Various SpeedTest measurement results ... 23

Table 3-1 Region configured in 5Tonic trials .. 24

Table 3-2 CPU usage results for 10 sequential deployments on the BASS .. 31

Table 3-3 CPU usage results for parallel deployments on the BASS .. 32

Table 3-4 Deployment time results for 10 sequential deployments on the BASS 33

Table 3-5 Deployment time results for parallel deployments on the BASS ... 34

Table 3-6 Mesh routing at scale test results .. 36

Table 3-7 CPU usage results for multiple requests on the IESS ... 44

Table 3-8 Elapsed time for multiple requests arriving at the IESS .. 45

Table 4-1 List of servers available in 5TONIC trial site used for the deployment 49

Table 4-2: Resource specification for the trial setup .. 51

Table 5-1 Digital Twin modules, deployment location and BASS orchestration Driver 53

Table 5-2 Ping results ... 58

Table 5-3 Inference times of the movement prediction module in the Raspberry pi 62

Table 5-4 Hardware performance comparison .. 63

Table 5-5 Network and Application layer measurement ... 75

Table 5-6 Yolo engine telemetry collection example data point .. 78

Table 5-7 Parameters for different message patterns .. 94

Table 5-8 Impact of collection frequency on application performance .. 94

Table 5-9 Comparison results for the Pod failure without redundancy scenario 97

Table 5-10 Measurement results for POD redundancy scenario ... 98

Table 5-11 Measurement results for node redundancy scenario ... 99

Table 6-1 DCAS RTT latency measurements with 7 meter spacing .. 110

Table 6-2 DCAS RTT latency measurements with 15 meter spacing .. 110

Table 6-3: EagleEYE key modules processing latency .. 119

Table 6-4 EagleStitch key modules processing latency ... 120

Table 6-5 Drone data processor system performance metrics ... 121

Table 7-1: Final achievement per use case .. 126

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 6

H2020-859881

List of Figures
Figure 2-1 5G SA trial system installed in 5TONIC ... 17

Figure 2-2 Two types of UEs used ... 17

Figure 2-3 5G SA trial system design ... 18

Figure 2-4 Network Topology of the 5G SA trial system ... 18

Figure 2-5 Screenshot of the SpeedTest measurement .. 19

Figure 2-6 Measurement locations at 5TONIC ... 20

Figure 2-7 The overall 5G NSA structure .. 21

Figure 2-8 Internal structure of 5G NSA EPC .. 22

Figure 2-9 Internal structure of 5G NSA iMEC .. 22

Figure 2-10 5G NSA NSA locations of measurement .. 23

Figure 3-1 BASS Web view of the regions for the final trials ... 25

Figure 3-2 BASS web view of multiple vertical services .. 26

Figure 3-3 INFLUXDB metrics visualization for mMTC use case ... 27

Figure 3-4 Metrics visualization from the BASS' web user interface .. 28

Figure 3-5 Logs visualization from the BASS’ user interface ... 29

Figure 3-6 Example of SLA definition in a VSD ... 30

Figure 3-7 Trend visualization of the maximum CPU usage ... 32

Figure 3-8 Trend visualization of the maximum CPU usage for parallel deployments 33

Figure 3-9 Deployment times for parallel deployments ... 34

Figure 3-10 Uptime monitor for the BASS .. 35

Figure 3-11 Peer-to-peer communication scenario .. 37

Figure 3-12 a) Eclipse Zenoh API messages/seconds in log scale, b) Eclipse Zenoh API bits/seconds in
log scale .. 38

Figure 3-13 Eclipse Zenoh API latency on P2P communication .. 38

Figure 3-14 Brokered communication scenario .. 39

Figure 3-15 a) Eclipse Zenoh API messages/seconds in log scale, b) Eclipse Zenoh API bits/seconds in
log scale .. 40

Figure 3-16 Eclipse Zenoh API latency on brokered communication .. 40

Figure 3-17 IESS catalogue view in BASS User Interface ... 42

Figure 3-18 Component descriptor for AutoML with IESS .. 43

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 7

H2020-859881

Figure 3-19 Trend visualization for the maximum CPU usage ... 44

Figure 3-20 Elapsed time for multiple requests arriving at the IESS .. 45

Figure 3-21 Uptime monitor for the IESS .. 46

Figure 4-1 Plan of the 5TONIC Trial site ... 48

Figure 4-2 Trial setup at 5TONIC premises .. 50

Figure 5-1 Robot drivers section in the Digital Twin VSD ... 53

Figure 5-2 BASS Web-view after successful deployment and instantiation .. 54

Figure 5-3 Movement prediction section in the VSD .. 54

Figure 5-4 BASS Dataset catalogue web-view .. 55

Figure 5-5 BASS Web-view during IESS training .. 56

Figure 5-6 BASS web-view upon successful deployment and instantiation with the movement
prediction ... 56

Figure 5-7 TCP downlink throughput ... 57

Figure 5-8 TCP uplink throughput .. 58

Figure 5-9 Downlink latency .. 59

Figure 5-10 Uplink latency ... 59

Figure 5-11 Comparison of movement prediction algorithms (training set). .. 61

Figure 5-12 Movement predictions for different actions and different algorithms (5 movements). 61

Figure 5-13 Movement predictions for different actions and different algorithms (50 movements). ... 61

Figure 5-14 Performance of movement prediction when applied to the physical robot 62

Figure 5-15 Average cumulative reward during training .. 64

Figure 5-16 Virtual environment for the training of the algorithm representing the robot workspace 65

Figure 5-17 Overall workflow of the SLA enforcer ... 66

Figure 5-18 Learning behaviour of SLA enforcer algorithm for precision tasks (500 ms) 67

Figure 5-19 Learning behaviour of SLA enforcer algorithm for screening tasks (1000ms) 67

Figure 5-20 CPU and RAM usage for the Digital twin modules when deployed on the robot 68

Figure 5-21: Testbed setup .. 69

Figure 5-22: Edge node overall CPU usage, Digital Twin control loop, update and command time and
command loss rate .. 71

Figure 5-23. ZDM use case VSD file ... 73

Figure 5-24. Application-level measurement software ... 75

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 8

H2020-859881

Figure 5-25 ZDM video stream initial throughput assessment ... 76

Figure 5-26 Defective object on displayed on the edge screen .. 77

Figure 5-27 Training and predicted object detection confidence values .. 79

Figure 5-28 future available wi-fi throughput ... 80

Figure 5-29 FUTURE AVAILABLE 5G THROUGHPUT .. 81

Figure 5-30 Example output of ATSSS decision making .. 82

Figure 5-31 achieved ATSSS xApp throughput for different splitting rules ... 82

Figure 5-32 5TONIC trial setup of massive MTC use case ... 84

Figure 5-33 mMTC trial setup deployment in 5TONIC .. 85

Figure 5-34 BASS VSD for the mMTC use case .. 86

Figure 5-35 BASS web view of mMTC use case with details on its components 87

Figure 5-36 mMTC Kubernetes cluster deployed using BASS .. 87

Figure 5-37 Influxdb monitoring dashboard for mMTC use case ... 88

Figure 5-38 Implementation of Experimental Setup for experiment A .. 89

Figure 5-39 CDF of RTT for asynchronous requests ... 90

Figure 5-40: Result of application performance per node for asynchronous requests 91

Figure 5-41 CDF of RTT for scheduled requests .. 92

Figure 5-42 Application performance of different nodes with scheduled requests 92

Figure 5-43 CDF of RTT with 5G connectivity ... 93

Figure 5-44 Application performance per node with 5G connectivity ... 93

Figure 5-45 ROC curve for RF Fingerprinting .. 96

Figure 5-46 Results of application performance per node for pod failure scenario 98

Figure 5-47 Results of application performance per node for POD redundancy scenario 99

Figure 5-48 Experimental setup with emulated test nodes .. 100

Figure 5-49 CPU utilization with respect to the number of test nodes ... 101

Figure 5-50 Impact of balancing the load across two RAN microservices ... 102

Figure 5-51 CPU utilization for PHY and Contiki under different traffic loads 103

Figure 6-1 ADS Network connectivity mapping ... 105

Figure 6-2 ADS drone connectivity mapping ... 106

Figure 6-3 ADS Utilized drone ... 106

Figure 6-4: iDrOS experimental setup ... 107

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 9

H2020-859881

Figure 6-5 DCAS experimental setup .. 108

Figure 6-6: DCAS validation setup .. 108

Figure 6-7 ADS-UC1 mission timing sequence .. 109

Figure 6-8: DCAS latency measurement setup .. 110

Figure 6-9 IDRoS execution times when migrating components .. 111

Figure 6-10 IDRoS migration performance ... 112

Figure 6-11 Scalability testing with 20 emulated drones .. 113

Figure 6-12 Scalability testing with 50 emulated drones .. 114

Figure 6-13 Control webpage of 20 emulated drones ... 115

Figure 6-14 Overview of ADS-UC2 system .. 116

Figure 6-15 ADS-UC2 mission scenario and flow ... 116

Figure 6-16 ADS-UC2 mission timing sequence .. 117

Figure 6-17 Overview of EagleEYE key modules .. 118

Figure 6-18 EagleEYE output .. 119

Figure 6-19 Overview of EagleStitch key modules .. 120

Figure 6-20 EagleStitch output ... 120

Figure 6-21 Visualization output of ADS-UC2 during two hours stress test .. 122

Figure 6-22 Stress test setup at ASKEY's lab .. 122

Figure 6-23 EagleEYE System Deployment with BASS .. 123

Figure 6-24 EagleEYE scalable architecture for multiple drone inputs .. 124

Figure 6-25 EagleEYE scalability test with 6 drones Input ... 125

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 10

H2020-859881

List of Acronyms
3GPP 3rd Generation Partnership Project
4G 4th Generation
5G 5th Generation
5G NR 5th Generation New Radio
5G-DIVE eDge Intelligence for Vertical Experimentation
AC Alternating Current
ACK Acknowledgement
ADS Autonomous Drone Scout
AI Artificial Intelligence
AP Average Precision
API Application Programming Interface
APPs Applications
AWS Amazon Web Services
BASS Business Automation Support Stratum
CDF Cumulative Distribution Function
CNN convolutional neural networks
COVID-19 Coronavirus Disease 2019
CPE Customer Premises Equipment
CPU Central Processing Unit
CRAN Cloud Radio Access Network
D1.1 Deliverable 1.1
D2.3 Deliverable 2.3
D3.1 Deliverable 3.1
D3.2 Deliverable 3.2
DASS Data Analytics Support Stratum
DC Data Centre
DCAS Drone Collision Avoidance System
DEEP 5G-DIVE Elastic Edge Platform
DL Downlink
DNS Domain Name System
DoD Dual Object Detection
DT Digital Twin
E2E Exchange-to-Exchange
EAB Ericsson AB
EagleEYE Aerial Edge-enabled Disaster Relief Response System
EagleStitch 2D Panorama Stitching System
EDC Edge Data Centre
EFS Edge and Fog System
eMMB Enhanced Mobile Broadband
eNB Evolved Node Base Station
EPC Evolved Packet Core
EuCNC European Conference on Networks and Communications

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 11

H2020-859881

E-UTRAN Evolved UMTS Terrestrial Radio Access Network
FIM Fog Infrastructure Manager
FOrcE Fog Orchestration Manager
Gbps Gigabytes per second
GGC Green grass Core
GHz Gigahertz
gNB 5G NR base stations
GPS Global Positioning System
GPU Graphics processing unit
GUTI Globally Unique Temporary Identifier
H2020 Horizon 2020
HD High Definition
HTTP Hypertext Transfer Protocol
HW Hardware
I4.0 Industry 4.0
ID Identity
IDCC Interdigital Europe
IDrOS Internet Drone Operating System
IE Intelligence Engine
IEEE Institute of Electrical and Electronics Engineers
IESS Intelligence Engine Support Stratum
III Institute for Information Industry
IIPFD Intelligent Image Processing for Drones
IMDEA Madrid Institute for Advanced Studies
IMSI International Mobile Subscriber Identity
IoT Internet of Things
IP Internet Protocol
ITRI Industrial Technology Research Institute
JSON JavaScript Object Notation
K8S Kubernetes
KPI Key Performance Indicator
LED Light Emitting Diode
LoRa Long Range
LTE Long Term Evolution
LTS Long Term Support
LWM2M Lightweight M2M standard
MAC Medium Access Control
mAP mean Average Precision
Mbps Megabits per second
MiniPC Minicomputer
MIRC Microelectronics and Information Systems Research Centre
ML Machine Learning

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 12

H2020-859881

MME Mobility Management Entity
mMTC Massive Machine Type of Communication
MQTT Message Queuing Telemetry Transport
MTC Machine Type Communications
NBI Northbound interface
NCTU National Chiao Tung University
NDI Network Device Interface
NR New Radio
NSA Non-standalone
OCS Orchestration and Control System
OPTUNS SDN-based optical-tunnel-network system
PER Packet Error Rate
PHY Physical (Layer)
PiH Person in need of Help
PoC Proof of Concept
PTZ Pan, Tilt and Zoom
QoE Quality of Experience
QoS Quality of Service
RAM Random Access Memory
RAN Radio Access Network
RAT Radio Access Technology
RF Radio Frequency
ROS Robot Operating System
RSRP Reference Signal Received Power
RSSI Received Signal Strength Indicator
RTSP Real Time Streaming Protocol
RTT Round Trip Time
SA Standalone
SCTP Stream Control Transmission Protocol
SFP Small Form-factor Pluggable
Sgw Serving Gateway
SINR Signal to interference plus noise radio
SLA Service Level Agreement
SQL Structured Query Language
TBD To Be Determined
TCP Transmission Control Protocol
TED Test Dataset
TELCA Telcaria S.A
TLS Transport Layer Security
TW Trained Weight
UAV Unmanned Aerial Vehicle

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 13

H2020-859881

UC Use Case
UC3M University Carlos III of Madrid
UDP User Datagram Protocol
UE User Equipment
UI User Interface
UL Uplink
ULUND Lund University
URLLC Ultra-reliable low-latency communication
USB Universal Serial Bus
USRP Universal Software Radio Peripheral
VM Virtual Machine
VPN Virtual Private Network
WAN Wide Area Network
Wi-Fi Wireless Fidelity
WP Work Package
ZDM Zero Defect Manufacturing
ZMQ ZeroMQ

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 14

H2020-859881

Executive Summary
This deliverable of D3.3 is the final deliverable of WP3 after D3.2 (D3.1: Definition and setup of vertical
trial sites, 2020). The goal of this deliverable is to provide the final validation results of different 5G-
DIVE use cases defined in D1.1 (D1.1: 5G-DIVE architecture and detailed analysis of vertical use cases,
2020), i.e., Digital Twin (DT), Zero Defect Manufacturing (ZDM) and Massive Machine-Type-of-
Communication (mMTC) use cases for Industry 4.0 (I4.0) trial, and Drone Collision Avoidance System
(DCAS) and Intelligent Image Processing for Drones (IIPFD) use cases for Autonomous Drone Scouting
(ADS) trial. The main achievements of D3.3 are: (1) Final experiments of each use case have been
performed for use-case implementation validation. The experimental results are evaluated against the
technical requirements defined in D1.1, which indicates that the developments of the use cases are all
on track. (2) The final use case integration is provided, presenting the basic ideas of how all use cases
can be integrated under one common DEEP platform (5G-DIVE Elastic Edge Platform). The following
provides a summary of the contents in Sections 2-6, respectively.
In Section 2, the final 5G solution validation results are presented. In particular, 5G-SA solution is
mainly used for I4.0 uses cases and 5G-NSA solution is used for ADS use cases.
In Section 3, The main features are (1) BASS is developed orchestrator drivers to support different
orchestrator frameworks (e.g., K8s and FogO5) which are used by different use cases; (2) IESS provides
a common IESS catalog for storing use-case specific ML/AI models especially for DT; (3) most of the
use cases adopted a common DASS component using Eclipse Zenoh developed in 5G-DIVE. In this
way, a common DEEP platform can serve multiple vertical use cases simultaneously. In addition,
validation results have been shown in this section.
In Section 4, the I4.0 and ADS trials are planned in Taiwan. However, this plan gets affected by the
COVID-19 pandemic situation. Therefore, we provide an update regarding the trial site information for
both I4.0 and ADS trials. In particular, more details are provided on the adopted alternative plan for
I4.0 trial (5TONIC lab in Spain). Then, we present the final use-case integration regarding how all 5G-
DIVE use cases will be integrated under one common DEEP platform.
In Section 5, three use cases have been validated for the I4.0 trial. The results indicate that the
development of three use cases delivered the aimed targets. DT focused on the development of
additional AI/ML features and their integration in the DEEP platform. In particular, movement
prediction, obstacle avoidance and SLA Enforcer. Then, ZDM use case focused on a new object
detection engine, integration with AWS and integration with 5G network. In addition, mMTC use case
focused on application layer features, RF fingerprinting, orchestration and automation features. All the
use case above also provided DEEP integration validation, long-term validation and scalability
analysis.
In Section 6, two use cases have been validated for the ADS trial. The results indicate that the
development of two use cases delivered the aimed targets. ADSUC1 focused on adopting Drone
Collison Avoidance System (DCAS) into the edge for drone fleet navigation and Internet Drone
Operating System (IDrOS). Then, ADSUC2 focused on 5G-NSA validation, EagleEYE and Egale
stitching. In addition, DEEP integration validation, long-term validation and scalability analysis are
provided. Finally, Section 7 concludes the deliverable.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 15

H2020-859881

1. Introduction
One of the key objectives of 5G-DIVE WP3 is to perform field trials for pilots over the E2E in European
and Taiwanese testbeds. The two verticals are Industry 4.0 (I4.0) and Autonomous Drone Scouting
(ADS) have worked extensively even under COVID-19 restriction to validate the solution. Also, WP3
had integrated the novel 5G-DIVE DEEP strata (developed in WP2) into the 5G-CORAL baseline
architecture. The deployment of the 5G-DIVE platform occurred in all trial sites, including software
and hardware components for the aforementioned pilots. This deliverable addressed the long and short
validation for 3 tires of 5G-DIVE solution. The tires include 5G connectivity, Edge computing, and AI.
For 5G connectivity, a comprehensive set of validation featuring high-throughput and low-latency
demanding applications at the vicinity of the end-user and in real-world environments is possible using
5G-SA and 5G-NSA solutions. More details on 5G solution validation are presented in Section 2. Edge
computing and AI have been reported individually for each use case.

On the other hand, it is mandatory to orchestrate and manage the pilot through DEEP platform. Hence,
in Section 3, we validate DEEP platform. This covers three parts: BASS, DASS, IESS. For BASS, resource
management, automates the lifecycle management, user-friendly UI and active monitoring features
have been elaborated. In addition, BASS performance has also been evaluated in terms of scalability,
availability and reliability. For DASS, data preprocessing, storage, as well as data dispatching features
have been elaborated and validated. In addition, the DASS has been evaluated in terms of scalability
and performance. The scalability test was a mesh routing at scale test and was performed at Zenoh-net
level. The performance tests were carried out in peer-to-peer and in brokered communication mode,
in both the Zenoh API, and Zenoh-net layer. For IESS, it offers features to facilitate the adoption of AI
and ML functionalities. Besides, IESS performance has also been evaluated in terms of scalability,
availability and reliability.

Section 4 presented the final integration where an update regarding more information on the trial sites
of I4.0 trials in Spain and ADS trials in Taiwan is provided. Also, the final use-case integration is
presented regarding how all 5G-DIVE use cases in trials are integrated with one common DEEP
platform.

Section 5, the final validation results of the three I4.0 use cases are presented. For Digital Twin (DT) use
case part, focused on the development of additional AI/ML features for and their integration in the
DEEP platform (i.e. movement prediction, obstacle avoidance and SLA Enforcer). It also provided 5G-
SA profiling network measurements. For Zero Defect Manufacturing (ZDM) use case, a new object
detection engine has been integrated and the ZDM use case has been integrated with AWS Wavelength.
Moreover, the various ZDM experiments are used to evaluate 5G connectivity, fog and edge
computing, DEEP components. For Massive Machine-Type-of-Communication (mMTC) use case, final
validation for the added orchestration features using K8s for automation and auto-scaling is performed.
Besides, intelligent RF fingerprinting is developed, integrated into the tested and validated.

Section 6 provides a description of the integration of 5G-DIVE solution as well as the complete end-to-
end deployment of 5G-enabled edge infrastructure for Autonomous Drone scout (ADS) has been
described. In particular, ADS is used for a disaster relief response system into two use cases. The first
ADS use case (ADS-UC1) is drone fleet navigation. The second ADS use case (ADS-UC2) is intelligent
image processing for drones. In ADS-UC1, the drone fleet can support several applications for relief

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 16

H2020-859881

efforts including DCAS. While in ADS-UC2, it supports Eagle EYE, and EagleStitch. The system (i.e.
ADSUC1 and ADSUC2) has shown the scalability and availability required for such public safety
mission. In addition, the 5G-DIVE DEEP platform (e.g.: BASS, DASS, IESS) utilization toward
enhancement of the overall performance has been elaborated. For example, it provided high
throughput data publishing framework via the DASS, automatic training of AI model via the IESS, as
well as automatic application deployment and lifecycle management via the BASS.

Finally, Section 7 concludes the deliverable with the key achievements for each use case.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 17

H2020-859881

2. 5G Solution Validation
In this section, we present 5G SA solution used in I4.0 field trials as elaborated in Section 2.1. Also, we
present 5G NSA solution used in ADS field trials as elaborated in Section 2.2.

2.1. 5G SA solution for I4.0 trials in 5TONIC
A 5G SA trial system is deployed at 5TONIC, the trial site for I4.0 use cases of 5G-DIVE. The 5G SA
system is designed based on Ericsson Radio Dot System, where 5G DOT is deployed on a cable ladder
and the rest of the nodes are installed in one half-size rack (referred to as flightrack with a minimal
footprint which is easy to transport), as shown in Figure 2-1. For UEs, we have two ASKEY HPUE
RTL0330 UEs and two other test UEs based on RaspberryPi HAT (Raspberry Pi HAT), as shown in
Figure 2-2. The UEs are based on Qualcomm SDX55 chipset.

FIGURE 2-1 5G SA trial system installed in 5TONIC

FIGURE 2-2 Two types of UEs used

(left: ASKEY RTL0330, right: RaspberryPi HAT)

Figure 2-3 shows the system design of the flightrack which houses an IRU 8846, a Baseband BB6630,
UPF server, app server, a switch and a firewall. The 5G connectivity supports band n79 and 100 MHz
bandwidth with 4T4R, i.e. 4 transmit and 4 receive antennas. A local GNSS sync source provides the

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 18

H2020-859881

SYNC signal to the BB6630 using an Ethernet cable. The Control Plane of 5GC is located remotely in
Sweden and connected to 5G RAN a.k.a flightrack over the Internet via an IP Sec tunnel. The User Plane
Function (UFP) of 5GC, i.e. UPF server, is deployed locally on the flightrack.

FIGURE 2-3 5G SA trial system design

The trial network setup at 5TONIC has 3 main components.
• 5G RAN and UPF at the trial site at 5TONIC, Madrid, Spain.
• 5GC at a remote location at Kista, Sweden.
• Edge servers at the 5TONIC data centre in the server room next to the trial site, Madrid, Spain.

These three components are established in separate physical locations and belong to different private
networks. Hence it was necessary to create efficient connectivity among them. The network topology
and connectivity are illustrated in Figure 2-4.

FIGURE 2-4 Network Topology of the 5G SA trial system

IRU 8846

BB 6630

CPRI GPS

UPF server

Kickstart&app server

Switch (Firewall)

Power unit

48V
DC

IP

5GCInternet
IP Sec tunnel

Local breakout

Dot 4489

Band n79
(4.8-4.9GHz)

Flight rack
(10 U)

GPS Source

@Ericsson

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 19

H2020-859881

Connectivity between 5G RAN and 5GC

5G RAN is connected to the 5GC over the Internet via an IP SEC tunnel. We achieve this by configuring
a public IP address at the 5G RAN firewall and connecting to the 5G CORE. This allows us to provide
a 5G control plane from a remote site making the connectivity setup flexible and cloud friendly. In
addition to that, we can manage and configure the 5G RAN setup remotely over the same tunnel
connection securely.

Connectivity between 5G RAN and Edge servers

The EDGE servers necessary for the I4.0 use cases are behind the firewall of 5TONIC lab and reachable
over the Internet using a secure VPN connection. These servers belong to a local network [10.5.4.0/24]
which is different than the 5G network to which the UEs [10.19.150.0/24] belong to. Although the UEs
have access to the Internet, being on a different network they can’t reach the EDGE servers directly.
The use of VPN at the UEs to establish a connection with EDGE server is not efficient in terms of the
potential performance and latency impairments. It was important for UEs to have a reliable and low
latency connection towards the EDGE servers. Towards this, we created a Link Network between the
5G SA setup (via switch and firewall on the flightrack) and 5TONIC data center over their firewall to
establish a close loop connection between 5G UEs [10.19.150.0/24] and Edge Servers (VMs) [10.5.4.0/24]
networks. With this new Link Network, the UEs have reliable and low latency connections to the EDGE
servers.

Connectivity to Internet

As described before, UPF is deployed in the flightrack locally. Therefore, the user plane data are locally
connected to the Internet via UPF. With an IP Sec tunnel towards remote 5GC and a local Link Network
with 5TONIC data center, the 5G SA trial setup provides all necessary connectivity for I4.0 use cases.
On top of that, we can remotely manage and configure the 5G SA setup as needed.

To verify the performance of the setup, we list some measurement results done at 5TONIC. These
results were done with the SpeedTest application preinstalled in the application server, which is
usually used for performance verification. Figure 2-5 shows a screenshot of one SpeedTest
measurement.

FIGURE 2-5 Screenshot of the SpeedTest measurement

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 20

H2020-859881

Figure 2-6 shows the locations of 5 measurements done in 5TONIC. For each location, the UE was
placed on the table where I4.0 use case trials would take place. And Table 2-1 lists the measurement
results. It shows that more than 100 Mbps in UL and more than 750 Mbps in DL are achieved
consistently. The average round-trip time (RTT) is up to 20 ms while the jitter remains under 14 ms.
These results validated that the system is up & running properly at 5TONIC and ready for I4.0 use case
trials.

FIGURE 2-6 Measurement locations at 5TONIC

TABLE 2-1 Throughput measurement results

UE
Location

Uplink
throughput

(Mbps)

Downlink
throughput (Mbps)

Latency (RTT)
(ms)

Jitter (ms)

Location 1 112.85 800.95 12 7

Location 2 112.23 866.11 20 13.27

Location 3 111.86 872.36 14 6.49

Location 4 107.48 825.96 16 10.63

Location 5 106.30 757.54 12 5.81

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 21

H2020-859881

2.2. 5G-NSA solution for ADS trials in MIRC
The 5G NSA mobile network at NCTU site is built for ADS use cases. This 5G NSA network consists of
the Radio Access Network and the Core network. The eNB-gNB combo base station made by Askey
Computer supports both 4G and 5G radios. They follow 3GPP EN-DC Option 3X procedures for a UE
(a drone) to switch its connectivity to 5G when the signal is strong enough and otherwise fall back to
4G The overall architecture is shown in Figure 2-7. In Figure 2-7, the green topology of lines depicts
the cabling. The text near a line describes the 3GPP protocol interfaces. The other lines without text
have been traffic local breakout, and thus those packets in the lines are of regular IP.

FIGURE 2-7 The overall 5G NSA structure

The fully-virtualized core network is developed by III and ITRI as shown in Figure 2-8 and Figure 2-9.
III upgraded the former 4G Core to enable 5G signalling. Meanwhile, ITRI provides the NSA-enabled
iMEC, which runs the specialized serving gateway to perform local breakout of UE traffic to those
virtual servers, such as EagleEye and EagleStitch, on compute nodes. iMEC also provides a GUI
interface for operators to deploy or to remove a virtual server.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 22

H2020-859881

FIGURE 2-8 Internal structure of 5G NSA EPC

FIGURE 2-9 Internal structure of 5G NSA iMEC

Connectivity between NSA RAN and NSA EPC

An eNB-gNB combo base station connects to EPC over a local Ethernet network. After booting up, it
registers its existence to MME at NSA EPC. During run time, it forwards the controlling signals between
a UE and MME, as well as delivers data between UE and serving gateway with the ability to do local
breakout. During run time, the base station continuously measures the radio strength and inform MME
to upgrade or fall back data path to gNB or eNB radio for UEs accordingly.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 23

H2020-859881

Connectivity between NSA RAN and iMEC with Virtualized Drone Servers

No matter eNB or gNB that a UE is connected to, the UE traffic reaches the serving gateway, which
runs on iMEC. The serving gateway performs local breakout, decapsulate GTP-U header, and then
forwards the traffic to localized application servers that also run on iMEC. The networking performance
of this NSA mobile network has been evaluated at NCTU trial site. The measuring positions are shown
in Figure 2-10, and the results are in Table 2-2.

FIGURE 2-10 5G NSA NSA locations of measurement

TABLE 2-2 Various SpeedTest measurement results

UE
Location

Uplink
throughput
(Mbps)

Downlink
throughput (Mbps)

Latency (RTT)
(ms)

Jitter (ms)

Location 1 99.1 177.0 39.512 9.308

Location 2 126.0 166.1 51.735 13.615

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 24

H2020-859881

3. DEEP Platform Validation
One of the main challenges of the 5G-DIVE project is the design and development of the DEEP platform,
an intelligent software system for the unified access to heterogeneous and remote clusters of resources
and the integration of multiple use cases. The final design is presented in D1.3 (D1.3 , 2021), while
details about the implementation are reported in D2.3 (D2.3: Final Specification of 5G-DIVE
Innovations, 2021).
The functionalities and performance of the platform have been validated in multiple experiments and
benchmarking activities. Since the DEEP aims at providing advanced features to vertical use-cases, the
project effort focused on multiple iterative integration cycles in order to get quick feedback about
proposed features and their usability. The integration campaign has culminated in the setup of a field
trial testbed at 5TONIC premises in Spain. Here, the I4.0 use cases have been all deployed on the DEEP
platform that manages and orchestrates a common pool of computing, networking, and storage
resources. Due to travel and technical restrictions, ADS use-cases have been integrated with a far
remote testbed configuration where the DEEP platform was deployed in Spain and the Vertical
Premises were located in Hsinchu City, Taiwan.
The next sections report separately the validation of the three main components of the DEEP platform,
the Business Analysis Support Stratum (BASS), the Data Analysis Support Stratum (DASS), and the
Intelligence Engine Support Stratum (IESS).

3.1. BASS Validation results
The BASS' functional and non-functional features have been validated against all of the use cases of the
project during a preliminary integration phase and finally during the field trials. The central component
of the DEEP platform takes care of managing the resources in vertical premises (i.e., regions), automates
the lifecycle management of the use cases, and provides advanced features like a user-friendly UI and
active monitoring to ease the interaction of verticals with the infrastructure and vertical services. The
BASS performance has also been evaluated in terms of scalability, availability and reliability.

3.1.1. Multi-region orchestration feature validation
The BASS provides the unified management of multiple clusters of computing, networking, and
storage resources. A cluster or aggregation of clusters owned by a single vertical is named Vertical
Region and it can be local or remote with respect to the location of the BASS instance that manages it.
For the field trials at 5TONIC premises, we emulated a scenario with three vertical regions, deployed
locally in the data centre but configured as they were remote (see Section 4). Plus, we included a real
remote region located in Hsinchu City, Taiwan. Table 3-1 provides more information about the
configuration of each region.

TABLE 3-1 Region configured in 5Tonic trials

Region name Orchestration technology Orchestrated resources
5tonic-dtwin-edge K3s 1 edge node
5tonic-dtwin-fog Fog05 2 fog nodes
5tonic-mmtc Kubernetes 3 edge nodes
5tonic-zdm Fog05 1 edge node, 1 fog node
NCTU-Hsinchu City, Taiwan. K3s 1 edge node

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 25

H2020-859881

As shown in the previous table, each region is implemented with a different orchestration platform.
The BASS provides a common, unified interface to manage both Fog05 and Kubernetes (plus
compatible flavours like K3s) based regions. The software is designed with a plugin-based pattern in
order to add support for more in the future.

FIGURE 3-1 BASS Web view of the regions for the final trials

During the trials at 5TONIC premises, we validated the correct functionality of the multi-region
management region. Figure 3-1 shows a screenshot of the BASS user interface showing the managed
regions.

3.1.2. Service management feature validation
The BASS provides several tools in order to define a Vertical Service and to manage its lifecycle. The
Vertical Service Descriptor (VSD) is a data model to define services on the BASS, describing
components, connections, and any other information for the deployment. The descriptor is applicable
to all the orchestration platforms supported by the BASS, as shown in Section 3.1.1, providing a
common language for the definition of services. Similarly, the BASS defines a unified lifecycle for
Vertical Services that are applicable to all the orchestration platforms supported. The management of
the lifecycle is facilitated by a simple Web User Interface.
To demonstrate how the BASS facilitates the definition and management of a Vertical Service, with
respect to its direct implementation on an orchestration platform, we can compare the descriptors. We
use lines of code (LOC) as a raw measurement of the complexity and we select the mMTC use-case (see
Section 5.3) as an example. The use case is deployed on a Kubernetes compatible orchestration platform
(K3S). Kubernetes deployment files are expressed in YAML, while the BASS’ VSD is expressed in JSON.
Since YAML is a superset of JSON, the conversion from JSON to YAML is possible without any
information loss. The mMTC VSD is converted to YAML in order to perform a meaningful comparison.
Comparing the VSD and Kubernetes deployment files for the mMTC use case, the first thing we can
notice is that the BASS descriptor is contained in a single file. On the contrary, Kubernetes needs
multiple files in order to fully describe the deployment: six YAML files are needed in order to
completely describe the deployment of mMTC use-case in Kubernetes. Actually, thanks to YAML

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 26

H2020-859881

features, the different files can be merged into a single one but this is not a best practice as it generates
a more complicated file harder to manage for the user. Concerning the complexity in terms of LOC, the
Kubernetes deployment files sum up to 193 lines while the BASS’ VSD file only contains 44 lines, a
reduction of about 77% (the VSD, in YAML format, is provided in Section 8). The BASS achieves this
significant result thanks to its augmented intelligence that abstracts the vertical service definition from
Kubernetes technical details, infrastructure details, and provides safe defaults for common
requirements from verticals collected during the project.
During the trials at 5TONIC premises, all the use-cases were correctly deployed and managed by the
BASS. The verticals were able to create, deploy, stop, and delete several versions of their services. Figure
3-2 provides a screenshot of the Web User Interface during the trials, showing several Vertical Services
managed with the BASS at the same time.

FIGURE 3-2 BASS web view of multiple vertical services

3.1.3. Active Monitoring feature validation
The BASS offers to the verticals a monitoring solution working out-of-the-box. For Vertical Services
deployed on resources orchestrated by Kubernetes, it automatically enables the monitoring of per-
component CPU usage, memory usage, network usage, and disk usage. Furthermore, it provides active
probes templates to integrate custom metrics from the Vertical Service into the monitoring system. The
storage and query engine are done with InfluxDB (InfluxDB, n.d.), while the probes are deployed as
Telegraf plugins (Telegraf documentation, 2021), integrated as sidecar containers.
During the trials at 5TONIC premises, we validated the monitoring features of the BASS for all the use-
cases deployed on regions orchestrated by Kubernetes. Figure 3-3 shows a screenshot of the metrics
collected inside InfluxDB for the mMTC use case.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 27

H2020-859881

FIGURE 3-3 INFLUXDB metrics visualization for mMTC use case

A basic visualization of metrics is also available directly from the BASS Web User Interface. Figure 3-4
shows an example visualization of a metric measuring the total received bytes on the interface of a
component.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 28

H2020-859881

FIGURE 3-4 Metrics visualization from the BASS' web user interface

The BASS also embeds the visualization of logs for the managed components, as shown in Figure 3-5.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 29

H2020-859881

FIGURE 3-5 Logs visualization from the BASS’ user interface

The automatic activation of resource monitoring and logs visualization was greatly appreciated by use
case owners since it is extremely useful for the detection of anomalies, the identification of performance
issues, and the assessment of the service health. Monitoring a Vertical Service requires the
implementation or setup of several tools to collect, store, query, and visualize the metrics. The unified
monitoring platform provided by the BASS already implements all of these things out-of-the-box, with
sane defaults for the configuration and the application of best practices in order to avoid common
mistakes. From the measurements during the trials, it has been observed that 30 to 40 MB of monitoring
data are generated for a single component daily. Considering that a Vertical Service is usually
composed of three or four components, we can estimate about 150 MB of monitoring data per service
per day. This amount of data per service generates a storage pressure that can be easily handled in
modern data centres, where storage solutions are designed for Big Data. Furthermore, the monitoring
system allows for the configuration of data retention parameters with the possibility to aggregate or
delete old data, so to save storage resources.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 30

H2020-859881

Furthermore, the active monitoring feature acts as a source of truth for the status of the resources
managed by the BASS necessary for the SLA management feature. SLA enforcement engines get data
from the monitoring system to check if any SLA violation is happening.

3.1.4. SLA Enforcement feature validation
The BASS allows defining a Service Level Agreement (SLA) for each Vertical Service. The SLA
information is included in the VSD in the form of more atomic elements, such as Service Level
Indicators (SLI) and Service Level Objectives (SLO). More details about the SLA model can be found in
(D1.3 , 2021). Figure 3-6 shows an example of SLA definition in a VSD.

FIGURE 3-6 Example of SLA definition in a VSD

The SLI defines the component and the metric to be monitored, as well as the range of time for
sampling. The structure also contains an SLO, which defines the thresholds for the metrics. In the
example in Figure 3-6, the maximum acceptable value for the CPU usage of “Component-A” is 80%.
Aside from the SLA definition, the BASS also provides methods to get SLI values, validate SLOs are
respected, and execute corrective actions in case of SLA violations. The corrective actions allow for
vertical (i.e., setting CPU and memory limits per component) and horizontal (i.e., increasing the
number of replicas of a component) scaling.
All the methods are exposed by the BASS through an HTTP interface so that external clients can operate
on the SLA. The latter are called SLA enforces and they implement algorithms in order to check the
SLA of a Vertical Service for violations and request actions in order to correct it. Thanks to the generic
interface, the enforcement logic can be trivial or more advanced, depending on the level of
sophistication desired by the specific use case. An advanced example of an SLA enforcer is presented
in Section 5.1.1.2 for the Digital Twin use case.
The features summarized above have been thoroughly validated in the BASS unit and integration test
during the second year. They constitute the SLA Enforcement Framework, presented in more detail in
D2.3 (D2.3: Final Specification of 5G-DIVE Innovations, 2021).

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 31

H2020-859881

3.1.5. Scalability measurements
The scalability of the BASS is defined as the trend of resource consumption under a constantly
increasing amount of load. We also include in this definition the performance trend, measured as the
elapsed time needed to deploy a service. In the context of the BASS, the load is intended as the number
of Vertical Services currently deployed (i.e., active or in running state). Since each Vertical Service is
composed of multiple components, using complex services may lead to different trends in the
measurements. Hence, we selected a representative service for performing the scalability tests which is
a copy of the Digital Twin service (see Section 5.1). During the tests, we deploy several replicas of the
Vertical Service and collect the metrics aforementioned in order to observe a trend. For specifications
about the hardware configuration for the experiments, please see Table 4-2.
To observe the effect of multiple Vertical Services on the CPU consumption of the BASS two series of
tests have been executed. In the first, an increasing number of Vertical Services are deployed on the
system sequentially. Starting from an initial state in which only one service is present, we deploy new
services one by one up to a total of 10 services running at the same time. Table 3-2 reports a summary
of the collected results.

TABLE 3-2 CPU usage results for 10 sequential deployments on the BASS

Vertical
Services

Components
(total)

Mean (%) Standard
deviation (%)

Minimum (%) Maximum
(%)

0 0 0,0753 0,0272 0,0501 0,2008
1 7 0,2521 0,1369 0,1256 0,5643
2 14 0,2448 0,1389 0,1758 0,5529
3 21 0,2134 0,1321 0,1885 0,5028
4 28 0,2951 0,1029 0,2137 0,5028
5 35 0,2773 0,1689 0,2261 0,6416
6 42 0,2882 0,1621 0,2514 0,6399
7 49 0,3275 0,1939 0,2768 0,7543
8 56 0,3517 0,1266 0,3016 0,6159
9 63 0,3656 0,1532 0,3270 0,7044
10 70 0,3898 0,1610 0,3639 0,8169

The first thing we can notice from the results in Table 3-2 is how little is the BASS consuming in general.
The mean CPU utilization stays always below one percent (computed on all the available cores of the
node where the BASS is deployed). In the raw data, we noticed a spike in the CPU consumption while
deploying a service that later decreases to a lower and more stable value. Hence it is important to look
at the “Maximum (%)”to evaluate the intensity of the spike. The reader can observe that the higher
value recorded is 0,8169 %, corresponding to the last test case. We can confirm that the BASS has a very
low impact in terms of resource utilization: a fair price considering the advanced features that it
provides. Anyway, the Maximum column hints at an increasing trend in the CPU consumption in
correspondence with more services deployed on the platform. Despite working with very low numbers,
probably affected by measurement noise due to the operating system and the Java Virtual Machine,
Figure 3-7 provides a plot of the maximum values.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 32

H2020-859881

FIGURE 3-7 Trend visualization of the maximum CPU usage

As shown in the figure, the trend in CPU consumption is linear. We can conclude that the BASS scales
well with respect to an increasing number of vertical services deployed on the platform.
The second series of tests has the goal to observe the effect of parallel deployments on the CPU
consumption of the BASS. In this case, we send multiple deployment requests at the same time to a
single instance of the BASS, starting from one and stepping up to 10. Table 3-3 reports a summary of
the collected results.

TABLE 3-3 CPU usage results for parallel deployments on the BASS

Vertical
Services

Components
(total)

Mean (%) Standard
deviation (%)

Minimum (%) Maximum
(%)

1 7 0,2521 0,1369 0,1256 0,5643
2 14 0,2015 0,3833 0,1257 1,0565
4 28 0,3014 0,3720 0,1130 1,3581
6 42 0,3140 0,4069 0,1131 1,4845
8 56 0,3779 0,3500 0,1128 1,5436
10 70 0,3893 0,3353 0,1633 1,6198

We can observe how the mean CPU usage stays negligible, aligned with the results in Table 3-3.
Anyway, looking at the “Maximum (%)” column, we can see higher spiking values even if they manage
to stay under 2% of the total available CPU in the node. We can conclude that multiple deployment
requests at the same time have some appreciable effect on the CPU consumption of the BASS but
without constituting a risk for its normal operation. Figure 3-8 shows the trend visualization for
maximum values in the case of parallel deployments. The trend appears to reach a plateau of around
1,60% of CPU utilization and so does not pose any issue for the scalability of the BASS.

0,0000

0,1000

0,2000

0,3000

0,4000

0,5000

0,6000

0,7000

0,8000

0,9000

0 2 4 6 8 10 12

Number of services

Maximum CPU usage (%)

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 33

H2020-859881

FIGURE 3-8 Trend visualization of the maximum CPU usage for parallel deployments

The two series of tests, in sequential and in parallel order, have been also used to measure the
deployment time. Table 3-4 reports the measured deployment times for a series of ten sequential
deployments on the BASS.

TABLE 3-4 Deployment time results for 10 sequential deployments on the BASS

Vertical Services Components (total) Deployment time (s)
1 7 56,13
2 14 33,08
3 21 28,36
4 28 33,10
5 35 30,37
6 42 29,54
7 49 28,78
8 56 30,60
9 63 29,37
10 70 31,61

Mean (s) Standard deviation (s) Minimum (s) Maximum (s)

30,48 8,25 28,36 56,13

The first deployment taking a longer time is an expected result, since the BASS needs to transfer the
container images to its local registry via the network. The subsequent deployments show a quite stable
behaviour, with little variations in the elapsed time for the service to be completely running.
The results for deployment time in the series of tests with parallel deployments are reported in Table
3-5.

0,0000

0,2000

0,4000

0,6000

0,8000

1,0000

1,2000

1,4000

1,6000

1,8000

0 1 2 3 4 5 6 7 8 9 10 11

Number of services

Maximum CPU usage (%)

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 34

H2020-859881

TABLE 3-5 Deployment time results for parallel deployments on the BASS

Vertical
Services

Components
(total)

Mean (s) Standard
deviation (s)

Minimum (s) Maximum (s)

1 7 30,4800 0 30,4800 30,4800
2 14 31,4995 4,1019 28,5990 34,4000
4 28 49,6045 18,5656 32,9090 66,5160
6 42 64,2430 17,2051 32,8550 70,0110
8 56 69,9720 32,6310 33,6110 124,4660
10 70 71,5195 39,9318 38,3950 135,3720

The arrival of multiple requests at the same time affects significantly the deployment time. As we can
see by observing the “Minimum (s)” and “Maximum (s)” columns, the BASS manages to parallelize 2
deployments requested at the same time and later on it starts queueing the requests. The plot of the
maximum values, shown in Figure 3-9, confirms this observation.

FIGURE 3-9 Deployment times for parallel deployments

The cause for the increase in steps of two is unknown. Further investigation and tests on different
hardware configurations are required. While the discussed behaviour may look alarming for the
scalability of the system, it is also true that the probability of receiving parallel requests for deployments
decreases with respect to their amount. It is quite unlikely for ten deployment requests to arrive at the
same time, meaning the same second. Despite the performance degradation, the BASS demonstrated
to react without errors to unusual load. Further tests, with more realistic arrival distributions (e.g.,
Poisson) can provide a more representative behaviour of a production-like scenario.
Finally, for what concerns memory consumption, we state that it remained constant throughout all the
tests we performed. Being the BASS developed in Java, we monitored Heap and non-Heap memory.
The only, small, variations we observed were due to the intervention of the garbage collector.

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10 12

Number of services

Deployment time (s)

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 35

H2020-859881

3.1.6. Availability and Reliability
Availability and reliability are KPIs that aim at validating the stability of the BASS and they are
measured on a relatively long period of time of one month. Availability is defined as the probability
that the BASS is operating properly when it is requested for use. We use a self-hosted uptime
monitoring service, Kuma Uptime [5], in order to periodically probe the BASS Northbound Interface.
During the long-term monitoring period, we measured availability of 99.97% for the BASS. The result
is acceptable for a setup in an experimental environment. Figure 3-10 shows the results visualized in
the uptime monitoring service user interface.

FIGURE 3-10 Uptime monitor for the BASS

Anyway, this availability measurement does not give any information about the capacity of the BASS
to correctly perform its functions, e.g., deploy a Vertical Service. Hence, a small software tool has been
developed to deploy and subsequently stop a Vertical Service on the BASS, while validating that the
deployment was successful. The routine is executed twice a day. The collected results show a success
rate of 100%.
Reliability is defined as the probability that the BASS will produce correct outputs up to some given
time. To measure reliability, we use again the aforementioned uptime monitoring service that measures
also the response time for requests to the BASS’ Northbound Interface. Setting a threshold of 100 ms
for the response time (about the limit for having the user feel that the system is reacting instantaneously
(Nielsen, 1993)) we measured reliability of 100% for the BASS.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 36

H2020-859881

3.2. DASS Validation results
The DASS functional and non-functional features have been validated for most of the use cases of the
project during the field trials. The use cases have adopted it to perform data preprocessing, storage, as
well as data dispatching, which are the main functionalities of the DASS.
For the DASS to support a wide heterogeneity of scenarios, networks, and devices, we adopt a two-
level protocol design the Zenoh API and the Zenoh-net API. The data pre-processing and the data
storage components are implemented by the Zenoh layer. The Zenoh layer is a higher-level API
providing the same abstractions as the Zenoh-net API in a simpler and more data-centric oriented
manner as well as providing all the building blocks to create distributed storage. The Zenoh layer is
aware of the data content and can apply content-based filtering and transcoding.
The Zenoh-net layer is a network-oriented API providing the key primitives to allow pub/sub (push)
communications as well as query/reply (pull) communications. The Zenoh-net layer focuses on data
transportation and is agnostic about data content nor storing data. The Zenoh-net layer implements the
data-dispatching functionality.
Besides the functional validation of the DASS in the context of the use cases, the DASS has been
evaluated in terms of scalability and performance. The scalability test was a mesh routing at scale test
and was performed at the Zenoh-net level. The performance tests were carried out in peer-to-peer and
in brokered communication mode, in both the Zenoh API, and Zenoh-net layer.

3.2.1. Scalability measurements
Regarding scalability, we performed a mesh routing at scale test at the Zenoh-net layer. The Zenoh-net
layer was tested on three scenarios: initial setup, router failure, and router insertion. During each of
these scenarios, it was collected the data regarding the number of link-state message, link-state
bandwidth (Kb), link-state alignment time (ms), network trees computation time (ms), routes
computation time (ms) and total alignment time (ms). The total set of mentioned parameters were
calculated for a network graph of 50 nodes, and a graph of 100 nodes. The results are presented in the
following Table 3-6:

TABLE 3-6 Mesh routing at scale test results

 Graph 50 nodes, 99 edges Graph 100 nodes, 121 edges
Initial
setup

Router
failure

Router
insertion

Initial
setup

Router
failure

Router
insertion

Linkstate msgs 13388 567 1841 13544 659 1383
Linkstate
bandwidth (Kb)

918 20 91 1527 23 103

Linkstate alignment
time (ms)

948 222 34 3864 251 66

Trees computation
time (ms)

102 100 92 111 122 112

Routes computation
time (ms)

44 78 81 71 596 630

Total alignment
time (ms)

1094 400 207 4046 969 808

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 37

H2020-859881

3.2.2. Performance measurements
Regarding performance, during the last year of the project, there have been some design improvement
in the DASS implementation with regards to isolating the async code in specific parts of the code,
especially the one interacting with the network, and moving some other parts to the standard sync
library. As a result, Eclipse Zenoh has now a very balanced mix of sync and async code that takes the
best of both worlds. This design improvement allowed us to drastically reduce the stack size of some
critical async futures which immediately reflected in a performance boost as described below in terms
of throughput and latency in two different scenarios: peer-to-peer and brokered communication.

Peer-to-peer communication: throughput

The peer-to-peer communication scenario consists of two Zenoh applications that can directly
communicate with each other without the need for any infrastructure component through a 100GbE
connection, see Figure 3-11.

FIGURE 3-11 Peer-to-peer communication scenario

Figure 3-12 A) presents in the y-axis the number of messages per second, and in the x-axis, the payload
of the messages ranging from 8 bytes to 1 GB. The results are shown in a log scale, in terms of the
number of messages per second. As we can see, Zenoh-net API delivers more than 3.5M msg/s with
an 8 bytes payload. At the same time, Zenoh API delivers 2M msg/s with the same 8 bytes payload.
Figure 3-12 B) presents in the y-axis the bits per second, and in the x-axis, the payload of the messages
ranging from 8 bytes to 1 GB. The results are shown in log scale, in terms of throughput (bit/s) delivered
at API level. We also report the throughput obtained with iperf on the same 100GbE connection as
reference baseline: 60 Gb/s. As it can be seen, a 100 Mb/s connection is already saturated by Zenoh-net
and Zenoh with a payload as little as 8 bytes. A 1 Gb/s connection is then saturated with a payload
of 32 and 64 bytes for Zenoh-net and Zenoh, respectively. A payload of 512 and 1024 bytes is then
sufficient for Zenoh-net and Zenoh to saturate a 10 Gb/s connection. Finally, payloads larger than 128
KB suffice to saturate a 40 Gb/s connection., this is a good indicator because it shows that the data
transmission protocol makes use of most of the existing bandwidth in the infrastructure, even with
small payloads.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 38

H2020-859881

FIGURE 3-12 a) Eclipse Zenoh API messages/seconds in log scale, b) Eclipse Zenoh API bits/seconds in log
scale

Peer-to-peer communication: latency

Latency is the time it takes for data to pass from one point on a network to another. As you can see
from Figure 3-13, in the y-axis we have the time in micro-seconds (µs), and in the x-axis the number of
messages per second, as the number of messages per second increases, latency decreases. This brings
us to the conclusion that latency depends heavily on the load of the system because when messages are
sent at a low rate, the processes are more likely to be descheduled by the operating system. This
operation adds additional latency since the processes need to be rescheduled when messages are sent
and received. This is true for both Zenoh and the classical ping, which is reported as a reference baseline
for latency.

FIGURE 3-13 Eclipse Zenoh API latency on P2P communication

The x-axis of Figure 3-13 shows the number of messages that we configured to be sent in one second,
from 1 to 1 million and beyond. The inf case represents the scenario where messages are sent back-to-

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 39

H2020-859881

back as fast as possible. In such a backlogged scenario, we can see that the latency is as little as 35
µsec for both Zenoh-net and Zenoh APIs. The payload size was constant for this test, and it was 64
bytes, the same as standard ICMP.

Brokered communication scenario: throughput

The brokered communications scenario happens when a Zenoh instance performs as a message broker
and serves for message validation, transformation, and routing. It mediates communication among
applications, minimizing the mutual awareness that participants should have of each other to be able
to exchange messages, effectively implementing decoupling. In this test, one workstation runs the
publisher, a second one runs the Zenoh router and a third one runs the subscriber. All workstations are
connected through a 100GbE connection, see Figure 3-14.

FIGURE 3-14 Brokered communication scenario

Figure 3-15 A) presents in the y-axis the number of messages per second, and in the x-axis, we have the
payload of the messages ranging from 8 bytes to 1 GB. The results are shown in the log scale. We can
observe that Zenoh-net API delivers 3M msg/s with an 8 bytes payload. At the same time, Zenoh API
delivers 1.8M msg/s. Figure 3-15 B presents in log scale, the same results in terms of throughput (bit/s)
delivered at API level, in the y-axis the bits per second, and in the x-axis, the payload of the messages
ranging from 8 bytes to 1 GB. As it can be noticed from the results, a 100 Mb/s connection is still
saturated by Zenoh-net and Zenoh with a payload as little as 8 bytes. A 1 Gb/s connection is then
saturated with a payload of 64 bytes for Zenoh-net and Zenoh. A payload of 1024 bytes is then sufficient
for both Zenoh-net and Zenoh to saturate a 10 Gb/s connection. Finally, larger payloads are forwarded
at 20-30 Gb/s.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 40

H2020-859881

FIGURE 3-15 a) Eclipse Zenoh API messages/seconds in log scale, b) Eclipse Zenoh API bits/seconds in log
scale

Brokered communication: latency

In the brokered communication test, we considered two clients that communicate with each other
through a Zenoh router as an intermediate node. In the brokered test, as you can see in Figure 3-16,
latency is double than the peer-to-peer test: 70 µs. This is due to the fact that an additional network
hop, i.e. the router, has been introduced between the two clients. Nevertheless, it can be noticed that
the router does not add any noticeable latency to the overall communication, being the latency is driven
mainly by the number of hops. The message payload size remains constant at 64 bytes.

FIGURE 3-16 Eclipse Zenoh API latency on brokered communication

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 41

H2020-859881

To summarize, recent work makes Zenoh capable to deliver over 3.5M msg/s for small messages,
over 45 Gb/s for large messages, and latency as little as 35 µsec in the peer-to-peer scenario. These
experiments are relevant as all the use cases require high throughput and lowering latency is an
important part of building a good user experience.

3.3. IESS Validation results
The IESS functional and non-functional features have been validated for most of the use cases of the
project during the field trials. The IESS offers features to facilitate the adoption of AI and ML
functionalities, like automatic management of the model training operations, automatic packaging and
deployment of the inference applications, and storage of pre-trained models in a catalogue. The general
IESS performance has also been evaluated in terms of scalability, availability and reliability.

3.3.1. Model training feature validation
The IESS automatically defines a model training pipeline that includes resource discovery and
allocation, deployment of containers for the training, storage of trained models and other software
artifacts in a catalogue. The IESS does not actually manage any resources, but it interacts with the BASS
that is the component in the DEEP platform responsible for resource management and orchestration.
During the trials at 5TONIC premises, the training feature was validated with the Digital Twin use case
(see Section 5.1). The vertical provided a container image including the code of the algorithm
performing the training (based on statsmodel (statsmodel, n.d.)) and the dataset. The training task is
declared as an AI Component in the use case’s Vertical Service Descriptor. The BASS recognizes these
kinds of components and it forwards all of them to the IESS. Figure 5-5 shows the training of the
movement prediction intelligence engine in the BASS Web User Interface. The other components of the
service are kept in a WAIT TRAINING state while the training of the model is in progress. Indeed, the
BASS waits for an IESS notification before proceeding with the deployment of the Vertical Service.

3.3.2. Inference app packaging and deployment feature validation
A usual problem in machine learning is how to serve prediction results from a trained model. In fact,
trained models can be exported to different binary formats but to be used in order to obtain predictions,
they need to be imported into other applications through the development of additional code. The IESS
provides an automated packaging procedure that, given a trained model as input, generates a web
application with a well-defined and well-documented HTTP REST interface to request and obtain
predictions. The aforementioned application is then deployed by the BASS as a regular component of
the Vertical Service, so that other components have connectivity with the HTTP interface and can all
request and obtain predictions.
During the trials at 5TONIC premises, the packaging and deployment feature for intelligence engines
was validated for the Digital Twin use case. After the training phase is complete (see Figure [above]),
the component used for training is stopped and removed. The IESS packages the Movement Prediction
trained model into a container image and uploads it into the catalog. When the image is available, the
BASS finally starts the deployment of the whole Vertical Service. Figure 5-6 shows the Digital Twin
vertical service successfully deployed with the Movement Prediction intelligence engine. Being the
intelligence engine a regular component of the vertical service, it benefits of all the features available in
the BASS, like optimized placement in the cloud, edge, or fog depending on where the predictions are
requested or monitoring as discussed in Section 3.1.3.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 42

H2020-859881

3.3.3. IESS Catalogue feature validation
The IESS catalogue can store metadata about supported Machine Learning platforms and algorithms,
binary artifacts like trained models, and container images for inference applications. The catalogue has
already been validated in the previous Sections 3.3.1 and 3.3.2) since it acts as a supporting component
for all the other operations.
Another use for the IESS catalog is the possibility for the Vertical to manually upload a pre-trained
model. This can be motivated by the requirement of specific hardware for the model training (i.e., GPU)
that is not available in the regions managed by the BASS, or by a preference for an offline training
procedure in order for data scientists to manually verify the accuracy of the model, or finally by the
preference for a training in a cloud environment with lots of computing resources.
If the pre-trained model is uploaded to the IESS catalogue, at the moment of deploying the service, the
IESS retrieves the model, stores it in a static volume, and mounts the volume into the component that
declares the requirement for the model. With this procedure, the Vertical does not need to include the
model into its component and has the possibility to use a different model for each deployment of the
use case.
Finally, the IESS catalogue can store also datasets for the training and testing of models. They can be
retrieved automatically at deployment time. Figure 3-17 shows the web view for the IESS Datasets
Catalogue, integrated in the BASS User Interface. The vertical can review the available datasets and
upload new ones. The web view for the IESS Models Catalogue is similar.

FIGURE 3-17 IESS catalogue view in BASS User Interface

3.3.4. Offer AutoML service for easy AI adoption
Apart from taking care of the training-packaging-deployment pipeline, the IESS also offers AutoML
services. With this feature, the Vertical does not need to select or develop a machine learning algorithm
in order to produce a trained model for its problem. The only thing needed is a declarative description
of the problem, in the form of a component in the VSD as shown in Figure 3-18.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 43

H2020-859881

FIGURE 3-18 Component descriptor for AutoML with IESS

The problem is described by three main fields:

• aitype: describing the kind of problem to solve, can be “classification” or “regression”
• dataset: a link where to retrieve the dataset for training
• columnPredict: the goal of the prediction, can be a set of classes (classification problem) or a series

of real numbers (regression problem)
The IESS leverages the H2O.ai (H2o.ai, n.d.) platform for training and subsequently, the generated
model follows the pipeline, passing through the packaging and deployment phases.
The AutoML feature has been tested and validated through several demos presented in webinars and
workshops. It has attracted great interest from the audience. For simple problems, like Zoo Animal
Classification from Kaggle (Kaggle), the trained models achieve an accuracy of around 99%. While not
being a complete replacement for custom algorithms, AutoML can result very useful for inexperienced
verticals allowing them to easily integrate machine learning features in their services.

3.3.5. Scalability
The scalability of the IESS is defined as the trend of resource consumption under a constantly increasing
amount of load. We also include in this definition the performance trend, measured as the elapsed time
needed to train and deploy an AI component. In the context of the IESS, the load is measured as the
number of simultaneous requests arriving at the same time. We selected a representative intelligence
engine for performing the scalability tests which is the Movement Prediction engine of the Digital Twin
use case. With respect to the tests for the scalability of the BASS, we only observe the effect of parallel
requests for the IESS. Indeed, while the BASS deploys services that stay running for long periods, the
IESS creates jobs (i.e., the training-packaging-deployment pipeline) that terminate after their
completion. For specifications about the hardware configuration for the experiments, please see Table
4-2.
During the tests, we send multiple requests to the IESS, starting from one and stepping up to 6. Table
3-7 reports a summary of the collected results for the CPU usage. During the tests, we send multiple
requests to the IESS, starting from one and stepping up to 6. Table 3-7 reports a summary of the collected
results for the CPU usage.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 44

H2020-859881

TABLE 3-7 CPU usage results for multiple requests on the IESS

Requests for
intelligence engines

Mean (%) Standard
deviation (%)

Minimum (%) Maximum (%)

1 0,0194 0,5679 0,0126 1,5855
2 0,0189 1,5231 0,0168 5,7335
4 0,0188 2,0362 0,0125 9,9859
6 0,0189 2,3920 0,0125 16,4318

On average the CPU usage stays on very low values. This is because the IESS delegates the execution
of the training phase to the BASS. Indeed the BASS can manage large clusters of resources and it is
worth leveraging its functions in order to allocate the proper resources for training (e.g., GPU devices)
and manage the lifecycle of the relevant components. Anyway, we can see significant peak CPU usage
by the IESS by observing the values reported in the “Maximum (%)” column of Table 3-7. By analyzing
the raw experimental results, we identified the cause of the peak in the packaging phase. We can
observe the trend for the Maximum CPU usage in Figure 3-19.

FIGURE 3-19 Trend visualization for the maximum CPU usage

Despite the significant values reported, the trend of the CPU usage is linear, suggesting acceptable
scalability for the IESS. Furthermore, during the trials at 5Tonic premises, the IESS was given a limited
amount of resources. On more powerful hardware, a more representative target for a production-like
configuration, we expect the impact of the packaging phase to be less significant. Table 3-8 reports the
total elapsed time for executing the training-packaging-deployment pipeline against an increasing
number of parallel requests arriving at the IESS.

0,00
2,00
4,00
6,00
8,00
10,00
12,00
14,00
16,00
18,00

0 1 2 3 4 5 6 7

Number of requests

CPU Usage (%)

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 45

H2020-859881

TABLE 3-8 Elapsed time for multiple requests arriving at the IESS

Requests for intelligent engines Deployment time (s) Deployment time (m)
1 242 4m 2s
2 297 4m 57s
4 502 8m 22s
6 627 10m 27s

The majority of the elapsed time for serving a request for an intelligent engine is spent in the training
phase. This is expected as it is well known that training of machine learning models can take a long time
(i.e., from minutes to hours) depending on the algorithm and the size of the dataset. Figure 3-20shows
the trend for the deployment time.

FIGURE 3-20 Elapsed time for multiple requests arriving at the IESS

The elapsed time grows almost linearly with respect to the number of requests arriving at the same
time at the IESS. The experiments demonstrate that the IESS provides good scalability in terms of both
resource usage and requests’ execution time. Furthermore, despite the unusual load, the IESS reacted
without errors and always provided a correct outcome.

Finally, for what concerns memory consumption, we state that it remained constant throughout all the
tests we performed. Being the IESS developed in Java, we monitored Heap and non-Heap memory.
The only, small, variations we observed were due to the intervention of the garbage collector

3.3.6. Availability and Reliability
Availability and reliability are KPIs that aim at validating the stability of the IESS and they are
measured on a relatively long period of time of one month. Availability is defined as the probability
that the IESS is operating properly when it is requested for use. We use a self-hosted uptime monitoring
service, Kuma Uptime [5], in order to periodically probe the IESS Northbound Interface. During the
long-term monitoring period, we measured availability of 99.99% for the IESS. The result is acceptable

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7

Number of requests

Elapsed time (s)

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 46

H2020-859881

for a setup in an experimental environment. Figure 3-21 shows the results visualized in the uptime
monitoring service user interface.

FIGURE 3-21 Uptime monitor for the IESS

Anyway, this availability measurement does not give any information about the capacity of the IESS to
correctly perform its functions, e.g., train, package, and deploy an intelligence engine. Hence, a small
software tool has been developed to periodically send a request for an intelligence engine on the IESS
and validate that the job terminates successfully. The routine is executed twice a day. The collected
results show a success rate of 100%.
Reliability is defined as the probability that the IESS will produce correct outputs up to some given
time. To measure reliability, we use again the aforementioned uptime monitoring service that measures
also the response time for requests to the IESS’ Northbound Interface. Setting a threshold of 100 ms for
the response time (about the limit for having the user feel that the system is reacting instantaneously
(Nielsen, 1993)) we measured reliability of 100% for the IESS.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 47

H2020-859881

4. Final Integration
This section provides, an update on the trial sites of I4.0 trials in Spain and ADS trials in Taiwan. Then
the final use-case integration is presented explaining how all 5G-DIVE use cases in trials are integrated
with one common DEEP platform. In the previous D3.1 (D3.1: Definition and setup of vertical trial sites,
2020)and D3.2 (D3.2, 2021), we provided the initial information regarding the trial sites of I4.0 and ADS.
The ADS trial site is unchanged from the one described in D3.2 [2]. Basically, it has two locations for
ADS uses cases. For ADS-UC1, the trial site is located at the football field of ITRI campus. This trial site
is suitable for developing drone collision avoidance-related applications. For ADS-UC2, the trial is
located at the Microelectronics and Information Systems Research Center (MIRC) building premises.
The MIRC building is an 8-story building located inside of NCTU campus. This trial site is suitable for
developing drone disaster relief missions.

4.1. Trial setup premises and hardware resources
In this section, the details of the final trial site of I4.0 will be elaborated. This final test trials were carried
out in the 5TONIC premises. Figure 4-1 presents the plan of the 5TONIC trial site. The 5TONIC DPC,
in the upper part of the image, hosts the edge side of the use cases located at 5TONIC premises. The
5TONIC Industrial Experiments area, 92 sqm big, was dedicated to hosting the fog side and hardware
devices of the use cases. Here, the devices are connected to the Ericsson 5GC, with the UPF server
placed in 5TONIC, through the Ericsson Radio Dot indoor antenna, which guarantees coverage for half
of the room. The UPF is connected to both the Ericsson 5GC located in Sweden and the servers in the
5TONIC DPC datacentre, where the 5G-DIVE Edge infrastructure is situated.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 48

H2020-859881

FIGURE 4-1 Plan of the 5TONIC Trial site

The following Table 4-1 presents the list of the 5TONIC servers used for the deployment of the DEEP
Platform and the Industry 4.0 use cases. In particular:

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 49

H2020-859881

TABLE 4-1 List of servers available in 5TONIC trial site used for the deployment

Component Details

R430 v3:

Dell PowerEdge R430
processor: Intel(R) Xeon(R) CPU E5-2609 v3 @ 1.90GHz
memory: 16Gb DDR4 2133 Mhz
disc : 1TB (raid 1)
networking: 2x 10Gb (X540-AT2), 4x1Gb (NetXtreme BCM5720) <-
Ethernet

R630:

Dell PowerEdge R630
processor: Intel Xeon E5-2620 v4 processors (16 cores and 32 threads in
total)
memory: 128 GB of RAM
disk: 1TB
networking: 2x X550 10Gbps
networking: 4xI350 1Gbps network interfaces

R630 dual:

Dell PowerEdge R630
processor: 2x Intel Xeon E5-2620 v4 processors (16 cores and 32 threads in
total)
memory: 128 GB of RAM
disk: 1TB
networking: 4xX520 10Gbps network interfaces
networking: 4xI350 1Gbps network interfaces

Eventually, we had the I4.0 use cases present in 5TONIC+ADS fully integrated with the BASS (and
running in the 5G CPE). So basically all containers are present at the BASS, can be instantiated and
deployed using the BASS, and telemetry out of them is being received. In addition, the intelligence
engines are been integrated into the IESS. So we have intelligence engines selected based on a template,
automatic training, and deployment of the trained intelligent engine. For example, the DT movement
prediction has been integrated following this idea.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 50

H2020-859881

4.2. Configuration for DEEP platform and use-cases
For the sake of the trials, hosted both at 5TONIC and remotely connected vertical premises, we created
a scenario with four distinct regions (see Section 3.1.1) managed and orchestrated by a single
deployment of the DEEP platform. A graphical representation of the setup is presented in Figure 4-2,
with each region in a different colour.

FIGURE 4-2 Trial setup at 5TONIC premises

The DEEP platform deployment, the Digital Twin UC Region Edge, the Digital Twin UC Region Fog,
the ZDM UC Region, and the mMTC UC Region are deployed co-located with the resources provided
by 5TONIC. The ZDM UC Region and the ADS UC Region, is are remotely located in London and
Taiwan respectively and orchestrated remotely by the same DEEP instance through a VPN connection.
Each region collects, defines a separated set of resources vertical owned by a single vertical premises,
dedicated to hosting one or more instances of the corresponding I4.0 use case. The Digital Twin UC
Region Edge and the Digital Twin UC Region Fog (green and purple inFigure 4-2) includes a
Kubernetes (K8s) cluster composed of an edge node and a fog node, and a trivial Fog05 cluster
composed of a single node. The ZDM UC Region (light blue inFigure 4-2) is composed of an Edge node
and a Fog node, both controlled by Fog05 resources orchestrator. The mMTC UC Region (light red
inFigure 4-2) includes a K8s cluster composed by three Edge nodes. The Digital Twin use case, the
ZDM use case, and the mMTC use case make use of the 5G-SA network described in Section 2.1. In
particular, the Fog nodes are equipped with 5G UEs and are connected to the radio interface. The ZDM
UC Region (light blue in Figure 4-2) is composed of an Edge node and a Fog node, both controlled by

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 51

H2020-859881

the Fog05 resources orchestrator and it includes a 5G Network deployed at IDCC premises. Finally, the
ADS UC Regioni (light orange in Figure 4-2) includes a single Kubernetes Edge Node and makes use
of the 5G-NSA network solution described in Section 2.2. To implement the nodes shown in Figure 4-2,
both virtual machines and hardware devices have been used. The virtual machines have been created
on top of the hardware resources presented in Table 4-1. Table 4-2 reports all the nodes with their
technical specification.

TABLE 4-2: Resource specification for the trial setup

Role Device Type CPU cores Memory Disk Operating
System

DEEP Platform deployment
K8s Edge Node KVM machine 8 12 GB 300 GB Ubuntu 20.04

Digital Twin UC Region
K8s Edge Node KVM machine 4 8 GB 32 GB Ubuntu 20.04
K8s Fog Node NUC MiniPC 4 8 GB 32 GB Ubuntu 18.04
Fog05 Fog Node RaspberryPi 3 4 1 GB 32 GB Ubuntu 18.04

ZDM UC Region
Fog05 Edge Node Nvidia Xavier 8 32 GB 32 GB Ubuntu 18.04
Fog05 Fog Node Notebook 8 8 GB 500 GB Ubuntu 20.04

mMTC UC Region
K8s Edge Node KVM machine 4 16 50 GB Ubuntu 20.04
K8s Edge Node KVM machine 4 8 50 GB Ubuntu 20.04
K8s Edge Node KVM machine 4 16 50 GB Ubuntu 20.04

ADS UC Region
K8s Edge Node 2U Server w/ GPU

(Tesla V100)
24 128 1TB Ubuntu 18.04

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 52

H2020-859881

5. Final validation results of I4.0 use cases
In this section, we present the final validation results of the three I4.0 use cases, regarding network and
system performances, such as throughput, latency, resource utilization and robot movement accuracy,
etc. In Section 4.1 the general experimental setup is provided for all three use cases. Sections 5.1, 5.2
and 5.3) present the specific testbed setup and experimental results of Digital Twin, ZDM and mMTC
use cases, respectively.

5.1. I4.0-UC1: Digital Twin
The second year was focused on the development of additional AI/ML features for the Digital Twin
use case and their integration in the DEEP platform, namely:
o Movement prediction
o Obstacle avoidance
o SLA Enforcer

As the date of the deliverable, the Replay (already showcased in the 1st year final demo) and the
Movement Prediction features were fully integrated into the DEEP platform.

The DEEP integration validation of the Digital Twin service and the integrated AI feature is presented
more in detail (Section 5.1.1). In the 2nd year, the e2e connectivity was upgraded from 5G-NSA to 5G-
SA, of which we provide profiling network measurements (Section 5.1.2).
Finally, we report experimental results in Section 5.1.3 that validate and evaluate the performance of
the algorithms underlying the additional features.

5.1.1. DEEP Integration Validation
In the trials, the BASS and the IESS are fully integrated with the Digital Twin service. In this section,
we describe in detail the integration with the BASS and the IESS showing that the DEEP works properly
with the Digital Twin Service. Please note that the DASS was successfully integrated into the Digital
Twin service in the first year of the project through the Relay Feature.

5.1.1.1. BASS

The Digital Twin deployment is automated through the BASS using a combination of k3s (lightweight
Kubernetes) driver for the Edge modules and Eclipse Fog05 driver for the Fog nodes. The BASS offers
the benefits of deploying native applications on the physical entities at the factory floor through the
Fog05 driver. This feature of the BASS is useful for Digital Twin applications because very often the
physical devices (e.g. robots, production lines) are customer specific hardware that has very limited
capabilities and programing interfaces that do not support virtualization. In order to deploy the Digital
Twin service, the remote operator will fill in the BASS VSD that contains abstracted information about
the modules that are part of the service. Figure 3-1 shows the VSD section that is related to the Robot
Drivers module.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 53

H2020-859881

FIGURE 5-1 Robot drivers section in the Digital Twin VSD

In addition, it also shows the modules that are composing the Digital Twin service. Besides the
information about the CPU architecture and the amount of ram and storage size that is required, the
VSD contains information about the region and location where you want to deploy the Digital Twin
service and the Driver Type. The region and location fields enable the remote operator to select the
factory location where he wants to run the service and the driver type field allows the operator to select
one of the available drivers in order to control the physical entity. In our example, the factory floor is
5tonic, the location is fog and the driver type is FOG05. In the hypervisorSpecific filed, instead of having
hypervisor-related information, we can notice the cmd parameter that will be used by Fog05 to start
the native application. It is worth mentioning that for every module that part of the Digital Twin service
a section is presented in the VSD with similar information. Table 5-1 presents the modules that are part
of the Base Digital Twin service with their Location and Orchestration Driver that they use.

TABLE 5-1 Digital Twin modules, deployment location and BASS orchestration Driver

Module Location Orchestrator Driver
Drivers Fog Fog05
Control Edge K3s
Motion Edge K3s
Interface Fog K3s
Digital Twin Edge K3s
Replay Edge K3s
Web Edge K3s

Once the VSD is completed and submitted through the BASS web-view, all the modules will be loaded,
deployed and instantiated. Figure 5-2 shows the BASS upon successful deployment and instantiation.
After this step, the Digital Twin service is up and running and the remote operator can start using the
application.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 54

H2020-859881

FIGURE 5-2 BASS Web-view after successful deployment and instantiation

5.1.1.2. IESS

In the second year of the project, we extended the Base Digital Twin service with Movement Prediction
AI/ML feature and we integrate with the DEEP platform. The movement prediction was conceptually
described in D2.3 [7], while the technical details of the implementation are presented in Section 5.1.3.1.1.
The complete integration of the Movement Prediction AI/ML-based model with the DEEP was divided
into three steps.

FIGURE 5-3 Movement prediction section in the VSD

Dataset creation and upload in the DEEP Dataset Catalogue

In order to train and use the Movement Prediction model, we created a dataset by performing pick and
place actions. The pick and place actions were manually repeated 100 times by a human operator to
create a dataset that contains 187108 commands. The dataset was generated in .csv format and
contained the joint states of the robot manipulator under ideal network conditions. The created dataset

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 55

H2020-859881

was then uploaded in the DEEP Dataset Catalogue where the data can be visualized. Figure 5-4 shows
the Dataset Catalogue view of the BASS.

FIGURE 5-4 BASS Dataset catalogue web-view

IESS Training and BASS deployment

Next, the VSD was updated by adding a section related to the Movement Prediction AI/ML module
(see Figure 5-3). During the service loading process, the BASS first will check if there is an AI module
that needs to be trained using the IESS. It will use the dataset that is indicated in the dataset field of the
VSD to train the model.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 56

H2020-859881

FIGURE 5-5 BASS Web-view during IESS training

The AI model type that is desirable for the Movement Prediction is specified in the ai engine field. Figure
5-2 shows the BASS web-view during the IESS training procedure. When the training is done, the IESS
will store the trained model in the IESS catalog (using the name that is indicated in the
trainingImageRepositiry filed) and will inform the BASS that it can proceed with the loading and
deployment process. Figure 5-6 shows the BASS upon successful deployment with the Movement
prediction inference application as part of the Digital Twin service. After this step, the Movement
Prediction service is up and running and Digital Twin can start using the predictions.

FIGURE 5-6 BASS web-view upon successful deployment and instantiation with the movement prediction

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 57

H2020-859881

Command Inference and execution

In the last step of the integration, we developed a simple client that via HTTP was consuming the
predictions in real-time from the deployed Movement Prediction model. Periodically, the client will
send the last 10 successfully executed commands by the robot arm to the Movement Prediction model,
and the model will respond with the predicted command of the next time slot. Whenever a control
command will not arrive in time, the client will execute the predicted command.

5.1.2. End-to-end profiling
Initially, we profiled the network performance of 5G-SA, to see if they were capable of sustaining the
KPIs required for the correct functioning of the Digital Twin use case.
Benchmark results were carried out for the following metrics: throughput, packet loss, latency RTT,
jitter, both uplink and downlink.
We used the commercial 5G CPE provided by Ericsson, ASKEY RTL0330, to connect a PC to the 5GC,
and a VM server in the 5TONIC edge premise connected to the core, then run performance evaluation
with iperf3, sending a UDP stream at 800 Mbit/s in downlink and 100 Mbit/s in the uplink. The results
are reported in the following subparagraphs.

5.1.2.1. Network Measurements

The iperf3 experiments were run for 30 minutes, both for TCP and UDP.
For TCP maximum capacity the mean throughput was 817.05 Mbit/sec in downlink (see Figure 5-7)
and 111.58 Mbit/sec in uplink (see Figure 5-8). The TCP slow start phase is visible in the first graph.

FIGURE 5-7 TCP downlink throughput

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 58

H2020-859881

FIGURE 5-8 TCP uplink throughput

The same experiments were run with UDP using 800 Mbit/sec in downlink and 100 Mbit/sec (the TCP
reference values) in uplink to measure the packet loss and obtain insights about the reliability of the
wireless link. Mean packet loss in downlink was 0.027 %, while in uplink 0.0304 %, due to the links
working at almost full capacity. No significant difference was found with the 5G-NSA connectivity in
comparison, as the data rate boost is mainly granted by the NR technology. We could not calculate the
theoretical data rate achievable due to missing parameters. As for the latency and the jitter, we report
the results of the pings over 240s in Table 5-2, with the latency values in ms and the CDF of the pings
in Figure 5-9 and Figure 5-10.

TABLE 5-2 Ping results

 Min (ms) Avg (ms) Max (ms) Mdev Jitter
(ms)

Uplink (RTT) 13.082 19.149 59.272 3.741 3
Downlink (RTT) 7.547 16.584 28.095 4.036 4.4

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 59

H2020-859881

FIGURE 5-9 Downlink latency

FIGURE 5-10 Uplink latency

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 60

H2020-859881

5.1.3. Experimental Results

5.1.3.1.1. Experiment A: Movement Prediction

As described in D2.3 (D2.3: Final Specification of 5G-DIVE Innovations, 2021), the Movement Prediction
feature can predict a robot command that is missing due to packet loss, based on the historical records
of the movements.
At first, a dataset of commands (in this context, the sequence of x, y, z Cartesian coordinates given to
the robot) was built manually, controlling the robotic arm with the joystick to perform the same task
several times. This is what happens in real scenarios: the robot is operated by a human who uses a
controller to make the robot perform the same task over time. Thus, the resulting sequence of
commands is something that can be predicted, as the task is repetitive per se and the commands are
stochastic.
Initially, to validate the solution the Digital Twin stack was deployed in an Edge environment
equivalent to that of D3.2 (D3.2, 2021): 1 vCPUs and 2 GB of RAM in an Edge Server (Dell PowerEdge
R430). Still, the Robot Drivers were kept locally on the robotic arm. Then, the intelligence engine with
the actual Movement Prediction module was deployed directly in the Niryo One robotic arm, using a
TPU accelerator for ML inferring.
Performance comparison of the algorithm was conducted with respect to 3 approaches:

1. Vector Autoregressive (VAR): AI/ML algorithm, statsmodel library
2. Sequence-to-Sequence Neural network (seq2seq) [ref]: AI/ML, Tensorflow, 200 LSTM units,
163200 parameters.
3. Moving Average (MA), no AI/ML.

The dataset consists of 4 tasks/actions, executed 20 times. Commands were issued every 20ms, as usual.
Packet-loss was set at 5% over Wi-Fi.
The training of the algorithm was realized using 80% of the dataset, the remaining 20% was used to test
the prediction accuracy.
The Root Mean Square Error (RMSE) was adopted to estimate the accuracy of each algorithm, thus a
preliminary performance comparison was carried out in Figure 5-11. The error in question is the
difference between the predicted robot coordinate and what would be the real one.
Performance is affected by the size of the window of commands to be predicted. The algorithm accuracy
was first evaluated for several window sizes of commands (5, 10, 50, etc.).
In Figure 5-12 and Figure 5-13, it can be noticed the difference between predictions of different actions
with a window size of 5 (100 ms) and 50 (1000 ms) movements, respectively. As one can see, VAR
performs the best. VAR is known to work well with correlated signals, as this was the case.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 61

H2020-859881

FIGURE 5-11 Comparison of movement prediction algorithms (training set).

FIGURE 5-12 Movement predictions for different actions and different algorithms (5 movements).

FIGURE 5-13 Movement predictions for different actions and different algorithms (50 movements).

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 62

H2020-859881

Finally, the algorithms were tested with the physical robot evaluating, introducing a packet loss of 5%
in a Wi-Fi link issuing the commands to the tele operated robotic arm, for time-spans of 200 ms
(corresponding to a window size of 10 movements where predictions need to happen).
Qualitatively, the robot experienced more stable and less jerky movements when the VAR algorithm
was applied, w.r.t other algorithms or no AI/ML at all, as shown in the performance representation of
Figure 5-14.

FIGURE 5-14 Performance of movement prediction when applied to the physical robot

As the Digital Twin use case in practice utilizes a close-by fog module (Raspberry Pi3), where the
Drivers are deployed for optimal control-loop time and commands’ latency (around 2ms), and the
movement prediction needs to act promptly with comparable latency times, further experiments were
conducted by running the training of the algorithms and the inference of the command directly in this
constrained device, serving closely the robot. The RPi proved to be suitable to sustain the needs of the
use case, carrying out the training in a reasonable amount of time (around 6ms) and predicting a
missing command in less than 2 ms (see Table 5-3). Nevertheless, training is a sporadic event to be
performed for building the model from scratch or when updating. For the sake of comparison, the time
performance of more powerful hardware is reported in Table 5-4.

TABLE 5-3 Inference times of the movement prediction module in the Raspberry pi

 Load Data (s) Down Sampling
(s)

Check Quality (s) Training Model
(s)

Raspberry Pi3
(Robot)

1.95 ± 0.02 0.26 ± 0.007 306.38 ± 3.15 50.98 ± 0.54

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 63

H2020-859881

TABLE 5-4 Hardware performance comparison

 Training (min) Inference (ms)
Raspberry Pi3 (Robot) 5.99 ± 0.06 1.60 ± 0.16
NVIDIA Jetson Nano (Robot) 1.31 ± 0.01 0.61 ± 0.28
Laptop (UE) 0.36 ± 0.01 0.22 ± 0.10
Local Server (Edge) 0.23 ±0.007 0.0001 ± 0.00003

5.1.3.1.2. Experiment B: Obstacle Avoidance

As explained in D2.3 (D2.3: Final Specification of 5G-DIVE Innovations, 2021), the obstacle avoidance
feature allows the robot to calculate the motion plan to move an object from a source point to a
destination, avoiding an obstacle. Thus, as a first step, the 2D coordinates that the end effector has to
follow to perform the pick-and-place task, were evaluated using the popular reinforcement learning
algorithm Q-Learning.
The algorithm was first designed and then evaluated in a virtual Python environment representing the
robot reachability workspace, an anulus of radii R and r with the robot placed in the middle of the inner
circle, with the following characteristics:
• R = 40 cm, outer radius
• r = 10 cm, inner radius
• Δ = 4 cm, discretization step of the environment
• a set of 8 possible actions, Α = {up, right, left, down, up-right, up-left, down-right, down-left}

A parallelepiped, whose base is a square of size (𝑅 − 𝑟)/𝑟 and arbitrary height, short enough so that
the robot can overcome it from above, representing the bounding box of a potential obstacle impeding
the robot movements was added to the virtual environment for every possible position within the
discretized workspace. For a taller obstacle, the inference of 2D coordinates would not have been
enough, also joint collision must have been considered. Actually, this would be the case of a real
application, but for the sake of simplicity we carried out initial results with the obstacle being way
shorter than the robot, so that collision could be neglected in the learning phase.
Q-Learning was used to calculate the 2D trajectory coordinates that the end effector of the robot had to
follow to move an object from fixed source to fixed destination position for every possible position of
the obstacle, a total of 238 sub episodes with the given Δ.
In QL an “episode” is the set of states (positions in the workspace) that the learning agent has to follow
to move from the initial state (source) to the final state (destination). Throughout its movements, the
agent gains a reward inversely proportional to the distance of the destination, a negative reward if it
hits an obstacle, and a greater positive reward when it reaches the destination. In fact, the reward
function R was chosen as follows, depending on the state observed by the agent:

'
𝑅 = −1000, 𝑖𝑓	𝑠𝑡𝑎𝑡𝑒	 ∈ 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒

𝑅 = 1000, 𝑖𝑓	𝑠𝑡𝑎𝑡𝑒 = 𝑑
𝑅 = 	80 − ‖𝑥 − 𝑑‖

Where d is the destination where 80 was chosen as it is the maximum distance in the environment
corresponding to the diameter of the circular workspace.
Every time the agent hits an obstacle, it is restarted, so a complete episode corresponds to full agent
travel from source to destination. The Q-Learning training consists in updating a Bellman equation
stored in a q-table for each state/action pair [complete here].

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 64

H2020-859881

We called “sub episode” the Q-Learning training related to a particular permutation of the
environment, i.e., a specific obstacle position. The algorithm was run over these sub episodes for
N=4000 episodes, a number that was found to be adequate for the algorithm to reach reward
convergence for each possible sub episode/environment configuration. Also, the ε-greedy strategy was
implemented, where the agent could choose between exploration and exploitation with probability ε,
representing the balance between the two policies. Moreover, the parameter ε was decayed
exponentially by a decaying factor of 0.95 (ε(n) = 0.95!, where n is the episode number), so that after
approximately 200 episodes ε was almost zero, and a longer phase of exploitation could start. Actually,
when the algorithm is run, pure exploitation is what is adopted (always the best action according to
the q-table is selected).
Overall training time over all the sub episodes and for the chosen number of episodes was 23 minutes.
Below, in Figure 5-15, you can find the plot of the average cumulative reward per episode on a
logarithmic scale exhibiting the desired convergence behaviour after episode 120.

FIGURE 5-15 Average cumulative reward during training

In Figure 5-16, the virtual environment is displayed with the coordinates steps representing the travel
the end effector of the robot has to make to pick up an object from the source and drop it at the
destination.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 65

H2020-859881

Figure 5-16 Virtual environment for the training of the algorithm representing the robot workspace
Finally, the solution was validated in the simulated robot, using rviz, the robot visualizer, and moveit,
the ROS Motion Planning calculating the inverse kinematics transformation between the coordinates of
the robot end-effector, calculated with Q-Learning, and the joint state movements. The feature was not
validated with the physical robot, due to time constraints, but it laid the premises for further
development and integration in more advanced proof of concepts of the Digital Twin use case.

5.1.3.1.3. Experiment C: SLA Enforcer

An SLA Enforcer proof-of-concept was realized for the Digital Twin use case. The e2e application
latency was the metric identified as the most impacting the QoE, as it affects the control loop of the
robot and can easily produce a loss in the precision of the synchronization with the digital replica.
Latency thresholds were set as possible SLA requirements not to be violated, for which two digital twin
SLOs were set:

1. Precision task: maximum e2e latency allowed 500 ms
2. Screening task: maximum e2e latency allowed 1000 ms

The parameters influencing the latency performance were found to be mainly the CPU and memory
utilization.

The SLA enforcer's overall workflow is presented in Figure 5-17. During the service creation, the DEEP
platform configures the SLA Enforcer based on the vertical intend:

1. The Vertical Service Coordinator extracts any intend-based SLA from the vertical oriented
descriptor, forwarding them to the SLA & Policy Management.

2. The SLA & Policy Management validates the intend, translating them into a set of policies
that identify their scope, thresholds and validation data.

3. Based on the extracted policies, the SLA & Policy Management requests an AI/ML model
from the IESS and the deployment of the monitoring probes towards the Active Monitoring

4. Using AutoAI, the IESS selects the AI/ML model from its catalogue, performs its training
and cross-validation, delivering the trained model to the SLA & Policy Management.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 66

H2020-859881

Finally, the SLA & Policy Management triggers new instance of SLA Enforcer tied to the vertical service
SLAs.

The modules are deployed as Docker containers. The Monitoring Probe in-between the robot and the
service stack relays the data to the DRL SLA Enforcer model through the DASS/Zenoh router. Then the
SLA Enforcer can scale the desired resources using the Docker orchestrator.

FIGURE 5-17 Overall workflow of the SLA enforcer

A Deep Reinforcement Learning (DRL) algorithm was developed to evaluate the optimal minimum
MEM and CPU allocation for the system in order not to violate the system above.
The following experiment was performed: commands were exchanged between the Digital Twin stack
and the Robotic Arm, in both directions. A module referred to as Monitoring Probe was placed in
between to inspect the E2E latency of these commands, which is the time from when commands are
sent and it is executed by the robot. As commands are processed by the Robotic Stack (Control, Motion,
Interface), the resources associated with this module were found to be the ones affecting the
performance and the ones to be scaled accordingly.
In the training of the algorithm, the latency values were constantly monitored to see if they violated the
thresholds. When this would happen, the associated reward penalized the associated CPU and MEM
percentage utilization. At the end of the training, the RL algorithm was able to carry out optimal CPU
and MEM allocations for meeting the e2e application latency requirements.
The training phase required approximately 14.500 steps for the algorithm to be able to learn, as can be
noticed in Figure 5-18 and Figure 5-19, picturing the learning behaviour in the two SLOs cases. After

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 67

H2020-859881

that number of steps, the CPU and MEM predicted limit percentages with the associated reward values
settled at a level that could guarantee the required latencies (see Response Times pictured in grey).

FIGURE 5-18 Learning behaviour of SLA enforcer algorithm for precision tasks (500 ms)

FIGURE 5-19 Learning behaviour of SLA enforcer algorithm for screening tasks (1000ms)

5.1.4. Scalability
In this section we will have a look into the vertical scaling of the Digital Twin service and how does the
increase of resource consumption in an edge server can directly impact the service performance. This
analysis aims to characterize the main resource usage of the designed Digital Twin service and help the

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 68

H2020-859881

potential AI-based scaling algorithms that can be implemented in the DEEP as part of the BASS. It is
worth mentioning that the experimental evaluation of this section is performed over wired technology
(Ethernet). The main reason is that when investigating the resource consumption of the Digital Twin
service, the bottleneck is not on the communication technology.

5.1.4.1. CPU and RAM consumption

In this first set of experiments, we used the Base Digital Twin modules that were introduced in Section
3.1.1.1 in D2.3 (D2.3: Final Specification of 5G-DIVE Innovations, 2021) The Niryo One robotic arm is
connected to the Digital Twin using a 10Gb Ethernet connection. The robot is equipped with Raspberry
Pi 3 with a 1.2 GHz 64-bit CPU and 1GB RAM. Each experimental run consists of the Digital Twin
controlling 1-axis of the robot arm for 30 seconds and a moving offset of 0.01 rad. The experiments
consider the following on-device configurations: i) Robot Drivers VNF, ii) Robot Drivers and Control
VNF, ii) Robot Drivers, Control and Motion Planning VNFs, and iv) full Robot Stack. The experiments
were repeated 10 times for each deployment, being presented the average values and their standard
deviation. In the robot arm we obtained data for CPU and MEM consumption using the psutil (Psutil
cros-platform python library) cros-platform python library.

FIGURE 5-20 CPU and RAM usage for the Digital twin modules when deployed on the robot

Figure 5-20 presents the average CPU and RAM usage for all the deployment configurations while
processing navigation commands. It can be seen that the CPU consumption of the whole Robot Stack
(Control, Motion and Interface) is approximately 30% of the total CPU consumption on the Raspberry
Pi 3 with a 1.2 GHz CPU. In particular, 23% of the CPU is being used by Interface VNF, around 5% by
the Motion Planning VNF and 2% by the Control VNF. The Interface VNF has the highest
computational requirements needed to perform the command translation, validation and real-time

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 69

H2020-859881

synchronization between the Digital Twin and the ROS system. For what concerns the Motion planning
VNF, the low CPU consumption is because of the simple path planning in our experiments. Finally, the
Control VNF CPU consumption is mainly due to the controllers that it implements to run a control loop
towards the Robot Drivers.
Regarding the MEM usage, the Interface VNF consumes approximately 16% of the total RAM usage,
while the Motion Planning and Control VNFs around 4% and 7% respectively. The 16% of MEM used
by the Interface VNF is partially due to the robot action server that handles the Digital Twin concurrent
requests, checks if the command can be processed, validate parameters and calls required controllers
(e.g., Motion Planning VNF or Control VNF). The MEM usage of Motion Planning and Control VNF is
smaller since the robotic arm receives simplified navigation commands (small offset of 0.01 between
two separate commands) from the Interface VNF.

5.1.4.2. Control VNF scaling

In the second set of experiments, we focused on the Control VNF because it is the most time-sensitive
function that implements a generic control-loop feedback mechanism used for robot manipulation. We
investigated how does the CPU usage of the Edge node that hosts the Control VNFs, influences the
Digital Twin performance.

FIGURE 5-21: Testbed setup

Figure 5-21 shows the experimental testbed that we created in 5TONIC. The testbed is composed of: i)
1 Fog node (Fog1), equipped with 2nd gen Intel Core i7 and 6GB RAM, ii) 3 Edge nodes (Edge2, Edge3
and Edge4) implemented as virtual machines equipped with 3vCPUs and 8GB of RAM and iii) 1 Edge

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 70

H2020-859881

node (Edge1) implemented as a virtual machine equipped with 1vCPU and 8GB of RAM. All the nodes
are interconnected with 1Gb Ethernet connection and are configured to be part of a Docker swarm.
Fog1 node hosts the Simulated Robot Drivers VNF, while Edge1, Edge2, Edge3 and Edge4 host the
Control, Motion Planning, Interface and Digital Twin VNFs respectively. The VNFs are implemented
as Docker containers.
The experiment starts when an application logic that is hosted in the Fog node deploys a Digital Twin
instance over the Docker swarm. Once the Digital Twin instance is deployed the Digital Twin VNF will
start controlling the simulated robot in a closed-loop fashion as presented in Figure 5-21. (Red arrows).
(1) The Digital Twin sends a control command with offset of 0.01 rad and command execution time of
20ms to the Control VNF of the Robot Stack. (2) The Control VNF translates the control command into
position commands and sends them towards the Robot Driver VNF. The Robot Driver VNF executes
the received position command, moves to the instructed position and generates a joint state message
that through the Control VNF (3) is propagated to the Digital Twin (4) as a validation for successfully
executed command. It is worth mentioning that the messages of the joint state are generated in an open
loop fashion every 20ms independently if the robot changed the position or not. The application logic
adds a new Digital Twin instance every 5 minutes and each instance is following the described
workflow.
Throughout the duration of the experiment, in the Edge4 node, we obtained the Digital Twin control-
loop time, Digital Twin update time and Digital Twin command loss rate, while in the Edge1 node we
obtained the CPU load. Finally, in the Fog node the Digital Twin command time. The collected metrics
are defined as follows:

• The Digital Twin control loop is the time elapsed from when the Digital Twin VNF sends a
control command until the corresponding joint state message that validates the successful
command execution is received in the Digital Twin VNF.

• Digital Twin update time is the time elapsed from when a joint state message is generated by
the Robot drivers until the message is received by the Digital Twin VNF.

• Digital Twin command loss is the ratio of total number of commands send and the total number
of commands that are not executed by the Robot Drivers. A command is considered to be lost if
a joint state message is not received in the period of 400ms.

• Digital Twin command time is the time elapsed from when a command is sent from the Digital
Twin VNF until the command is received by the Robot Driver VNF.

The obtained data from the first Digital Twin instance is analysed and aggregated to generate the results
presented in Figure 5-22 Note that the application logic was adding a Digital Twin instance every 5
minutes until 20 instances were present in the system.
The top graph shows the average CPU load of the Edge1 node that hosts the Control VNFs. A first
observation is that the average CPU load increases linearly by approximately 7% when a new instance
enters the system. It can be seen that for up to 11 robots (61% of the average CPU load of Edge1), the
Digital Twin instance works correctly reporting stable average values of around 40ms (20ms for
command execution + 20ms for generating a joint state update) for the control-loop, and 1ms for the
update and command time with 0.04% of command loss. The update and command time are 1ms due
to the fact that we are using Ethernet as our underlying technology. Please note that update and
command time values do not represent the frequency at which joint states and commands are being
generated. These values are the propagation and processing delay of the service upstream and
downstream.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 71

H2020-859881

As we continue to increase the Digital Twin instances in the system, in the interval from 11 to 15 Digital
Twin instances, we can notice an increase in the update and command time that also result in increased
variability of the control-loop of and increased number of lost commands. This is due to the fact that as
the CPU load of the Edge1 increases, the processing latency of the Control VNF will increase and this
will result in increased update and command times. The increased number of lost commands is because
the Robot Drivers VNF will discard all the delayed control commands and with this degrade the
performance of the Digital Twin service.

FIGURE 5-22: Edge node overall CPU usage, Digital Twin control loop, update and command time and

command loss rate

Finally, when the CPU load of the Edge1 node is above 80% (from 15 to 20 Digital Twin instances) we
can notice that the command loss starts to increase exponentially with command and updates times
riching values of up to 200ms. In this interval, the Digital Twin service is completely degraded resulting
in frequent stop and move behaviour of the robot.
As concluding remarks, the results show how the CPU load of the Edge node that hosts the Control
VNF have direct implications on the Digital Twin control-loop, update time, command time and
command loss rate. The results give hints into how the Control VNF does behaves under different
CPU loads and they can be used by the SLA manager in the BASS in order to trigger scaling of the
Edge resources or even migration of the Control VNF.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 72

H2020-859881

5.2. I4.0-UC2: ZDM
The ZDM use case evolution from its initial stages has been reported in D2.3 [7]. A new object detection
engine has been described and the ZDM use case has been integrated with AWS Wavelength, Amazon’s
Edge Computing services (telco-Edge), where the ZDM object detection runs. In this section, the final
ZDM setup is described, as well as the setup of the different experiments to evaluate it, and the
experimental results obtained, both for the use case and for the DEEP integration. The DEEP integration
subsection describes the integration of the ZDM functionalities with the DEEP platform. Finally,
present a summary of the section, scalability aspects of the ZDM are addressed.

5.2.1. DEEP Integration Validation
The ZDM deployment is automated through the BASS using Eclipse Fog05 driver for the Fog and Edge
nodes. The BASS offers the benefits of deploying native applications on the physical entities at the
factory floor through the Fog05 driver. This feature of the BASS is useful for the ZDM use case
applications because the physical devices, i.e., the robots and components of the factory, are customer-
specific hardware that has proprietary libraries and programing interfaces that do not support
virtualization. In order to deploy the ZDM services, a remote operator fills the BASS VSD that contains
abstracted information about the modules that is part of the service. Screen capture of the vertical
service descriptor is seen in Figure 5-23.

Once the VSD is completed and submitted through the BASS web-view, all the applications will be
instantiated. Figure 3-1 shows the BASS upon successful deployment and instantiation. After this step

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 73

H2020-859881

the Digital Twin service is up and running and the remote operator can start using the application.

FIGURE 5-23. ZDM use case VSD file

5.2.2. Experimental Results
In D3.2 (D3.2, 2021), the connection between the production line and the edge side was reported for
two connectivity options, namely Wi-Fi and 4G LTE. The main measurements carried for both
connectivity options covered the bandwidth and latency measurements. In this deliverable, E2E 5G
connectivity between the Fog node and the Edge node is reported. These results are taken from a pilot

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 74

H2020-859881

reported in the project with Vodafone Uk and Amazon Web services, where the Edge computing
resources are located within the Vodafone UK CN (telco-edge). Specifically, the Fog node is directly
connected to the 5G modem at the production line side, whereas the Edge node is directly connected
to the Vodafone 5G network. Two main measurements are performed:

Network-Layer Measurements

In this deliverable, E2E 5G connectivity between the Fog node and the Edge node is reported.
Specifically, the Fog node will be directly connected to the 5G modem at the production line side,
whereas the Edge node will be directly connected to the 5TONIC 5G network. Two main measurements
will be performed:

• Bandwidth measurements: using the IPERF tool (GUEANT, 2021) both in the DL (Edge to Fog)
and in the UL (Fog to Edge). This provides the measurements of the available BW for the video
stream in the UL and the control signalling in the DL:

o Uplink: Iperf
o Downlink: Iperf

• Latency measurements: Using the PING tool between the Fog and Edge nodes.
o Ping (Fog-Edge)

Application-Layer Measurements

In addition to the connectivity measurements, the application-level communication between the edge
and the fog side is further investigated in this deliverable. The ZDM use case relies on video streaming
and an object detection engine at the edge. The application layer protocol used in the ZDM is NDI. NDI
requires extra time for particular tasks to be executed before a video frame can be transmitted over a
network. There are, therefore, task-related factors that can influence the latency of video streams, on
top of the delivery network used itself. These factors include video encoding pipeline duration,
ingestion and packaging operations, video segment length, user policies on buffering and resilience,
video codec used, compression and decompression of the video frames, the number of frames per
second, etc. The added latency of these factors needs to be factored in in a use case like ZDM that relies
on fast defect detection and consequent automated actions.
Specifically on the ZDM setup, measurement software is employed at both the fog and edge nodes,
where both devices are time-synchronized via time input from the same NTP server. Additionally, the
measurement software has in built functions where both fog and edge nodes communicate and
synchronize their CPU time further. The measurement software is executed using two devices, local
and remote, where the local device is the fog device located at the production line, while the remote
device is the edge side, as shown in Figure 5-24.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 75

H2020-859881

FIGURE 5-24. Application-level measurement software

The camera employed in the ZDM use case uses a specific network protocol to convey the video that is
the Network Device Interface (NDI). This allows the high-definition video to be streamed over the
network in real-time. The software uses fog and edge devices in order to monitor the NDI video frames
streamed from the production line side to the edge side over the 5G network. Using this software, the
main KPI of interest to the ZDM use case was measured, the latency of the video. The achieved results
are summarized in Table 5-5.

TABLE 5-5 Network and Application layer measurement

Measured
KPI

Video settings
720p50 1080p60

Network layer Latency 11ms
Throughput 35.5Mbps

Application Layer Latency 473.6ms 564.7ms

The results from the pilot validate the ZDM use case and were taken over intervals of 5 minutes over
different days. At the network layer, 11ms latency is a very good latency for tasks performed in the
ZDM. The measured throughput in the uplink meets and exceeds the requirement in D1.1 (D1.1: 5G-
DIVE architecture and detailed analysis of vertical use cases, 2020). The Application layer latency is
sufficient because every object is monitored over a few seconds.

5.2.2.1. Experiment A: Bandwidth usage optimization: Adaptive video settings

The ZDM use case relies very strongly on the transmission of the video stream from the ZDM factory,
towards the Edge side. The camera used in the setup is capable of outputting a full High Definition
(HD) video stream. The quality associated with HD video has a 5 Mbps UL Bandwidth requirement.
This requirement is indicative of factors that can influence the required bandwidth such as the number
of frames per second (fps), video encoding method, etc. . It is, therefore, an important challenge to meet
this requirement in a 5G network – the network could easily provide the required bandwidth if the
video stream was the only traffic running through it. Because other services and traffic are served by
the same network, and because the ZDM relies on the video stream reception at the Edge side, it makes
sense to address bandwidth consumption aspects in the context of the ZDM.

Fog Device

Camera

Production line Edge

NDI Video
Stream

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 76

H2020-859881

To address the scalability aspects of the ZDM use case, a simulated, larger factory environment is
envisioned. In this scenario, multiple stages in a production line process are considered. The monitoring
of all the production stages is an effective way of improving predictive maintenance aspects. Predictive
maintenance reduces maintenance frequency to certain minimum values and keeps resources in good
condition, leading to cost savings (Mohammed M. Mabkhot, 2018) Besides this, a failure in the
production line equipment at the earlier stages of the process might cause a halt to the entire production
line – factory production lines are usually a sequential process (Mohammed M. Mabkhot, 2018) .In
smart factories, data is collected about the resources and products, to then be analysed in real-time, at
all stages of the production process (Mohammed M. Mabkhot, 2018). As a result, equipment status and
failures can be forecasted, patterns can be drawn, and a suitable maintenance strategy can be tested
and evaluated.

Predictive maintenance is therefore a key aspect of smart factories and the ZDM scalability study relates
to it. There are, however, some limitations on the ZDM use case. Its simulated factory environment can
be seen as the output or the last stage of the production process of the factory. Obviously, in a real
factory environment setup, the production process would have more steps involved, and the steps can
also be monitored via filming and streaming of video. Hence, in this section, scaling up on the factory
process via video monitoring is addressed. It would be unfeasible to increase the number of cameras
in the real ZDM setup. Therefore, a study is presented simulating a larger factory environment, where
multiple steps in a production line are being filmed and their video feed is being streamed towards the
Edge.

For the bandwidth evaluation, the ZDM use case makes use of InterDigital’s proprietary software that
is able to measure packet statistics between two ends connected with a Content Delivery Network
(CDN). The SW measures statistics at the application layer, providing an understanding of the QoE for
the measured traffic. This is an important aspect to be measured because of the need for the Yolo [12]
detection engine to receive the video packets properly, which can only be considered after the packets
become an input to the engine. Bandwidth measurements were performed for different video settings
in the camera and are presented in Figure 5-25. The measurements were performed for four different
camera settings for resolution and fps. The x-axis represents relative time starting from the initial video
stream capture moment by the receiving end SW component, in minutes.

FIGURE 5-25 ZDM video stream initial throughput assessment

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 77

H2020-859881

The presented results show two lines per video setting. The NDI library allows choosing a "high" or
"low" bandwidth setting. In practice, this means that a high setting will try to encode and transmit the
desired video settings (the ones represented in the figure). The low setting is an NDI feature that will
automatically set the video settings to a certain resolution and number of frames per second, that the
NDI protocol deems suitable, given the current network conditions, in order to maximize the video
experience. The figure shows this very clearly, as the red line displays a much lower throughput than
the high setting for all four possibilities. It can be seen as well that, when the number of fps is set to 30
and 50, higher throughput results are achieved with the “low” adaptive setting. The highest quality
setting provided by the camera is 1080p60. The results obtained for this particular setting show that
there is a throughput degradation, implying that the connection can sustain the video in the uplink,
but there are video frames dropped, which is much less noticeable with any of the other three video
settings.

This is a very important aspect to look further into when considering the scalability aspects of the ZDM
use case. Its setup is designed so that cubes with a defect mark are placed in the conveyor belt (D2.3:
Final Specification of 5G-DIVE Innovations, 2021), on their way to a) out of the factory or b) to a disposal
bin. Because of the nature of this design, and as previously shown in the available 5G-DIVE ZDM
demonstrations, the camera is placed in a way that it can capture part of the conveyor belt, and the
cubes themselves while running on top of it. In practice, this results in just a few moments when the
cube is captured in the video when it is running on a specific area of the conveyor belt to where the
camera points to, as illustrated in Figure 5-26.

FIGURE 5-26 Defective object on displayed on the edge screen

In practice, the specific small time window where the cube is captured on the conveyor belt is the only
important part of the video stream, because those are effectively the only video frames that are relevant

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 78

H2020-859881

for the Yolo object detection. When there is no cube being captured by the camera, the Yolo engine will
not be able to perform any detection, because it doesn’t have any relevant frames (with cubes) to work
with. This realization allows concluding immediately that the ZDM use case (and any other similar
application relying on a video stream), has a very high unnecessary bandwidth consumption,
considering all the time that there is no object being captured on the video and the video stream still
remains with a very high-quality setting. Ideally, the camera would have its video quality settings
tuned to the highest possible setting when an object is captured only (and the video stream is
transmitted to the Yolo engine), and set to the lowest possible settings (or even switched off), when
there is no cube being captured. This would allow for significant bandwidth, energy, and generalized
network resource savings.

To address the bandwidth usage, a new IE has been developed for the ZDM. The telemetry framework
in place for the use case allows for the collection of several telemetry parameters from several setup
components (D2.3: Final Specification of 5G-DIVE Innovations, 2021). Part of the telemetry data
collected from the Yolo engine was recorded and used to create a dataset where an example entry is
given in Table 5-6.

TABLE 5-6 Yolo engine telemetry collection example data point

Parameter Value
Time 25/05/2021 09:40:48,600454
Detection result & confidence NON-DEFECTIVE & 99%
Bounding box coordinates in the frame x : 758 || y : 3 || w : 517 || h : 312
Input timestamp 25/05/2021 09:40:48,610139
Required Detection time (s) 0.020067453384399414
Detection timestamp 25/05/2021 09:40:48,630243
Number of objects detected 1

The telemetry framework records amongst others, the input timestamp, that reflects the timestamp
when the first frame used for object detection was used by the Yolo engine. It records as well the
required detection time, i.e., the time that was required for the Yolo engine to conclude on the detection
result, also shown in the above table. The recorded value (in Table 5-6) is 0.020067453384399414 s, and
the average on the entire recorded dataset is 0.020s. The availability of these two telemetry parameters
on the dataset was used to train an ML model that is capable of predicting the next timestamps for the
first frame of a given object to reach the Yolo engine from the factory. The training of the model is based
on a time series forecasting approach where the confidence values of the telemetry collected from the
Yolo engine were used as the predicted feature – detection confidence values are high when the engine
is performing detection (i.e. when the object is displayed on the screen at the Edge), and low when there
is no object present. Figure 5-27 shows the time series predictions on the test set in purple and the
predicted future confidence values.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 79

H2020-859881

FIGURE 5-27 Training and predicted object detection confidence values

As mentioned, the best way to scale up the ZDM use case is by envisioning a larger scale factory.
However, the HW limitations are obvious. This IE has therefore been developed to demonstrate that
the underlying 5G connectivity needs re-dimensioning for a larger scale factory. The recorded
measurements show that high-definition video can be close to the limits of a commercial 5G connection
and that transmitting video streams with these fixed settings constantly is a waste of resources that will
lead to a much denser deployment of the 5G infrastructure. With adaptive settings from the camera
side, and ML predictions to assess when there is a need for high-quality video (20ms as input for Yolo),
and low settings (or even video off) for the remainder of the time, large energy and bandwidth savings
can be achieved, and the dimensioning of the 5G connectivity for a large scale factory would be
executed with generalized lower requirements, resulting in the same QoE levels.

5.2.2.2. Experiment B: Access Traffic Steering, Spliting and Switching xApp

In D2.3 (D2.3: Final Specification of 5G-DIVE Innovations, 2021), an ATSSS xApp has been described
to enhance the available throughput for the camera to transmit its video without risking dropped
frames that can be important for a defect detection or predictive factory maintenance aspects. This
section describes how the xApp works and some achieved results that were obtained with its usage.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 80

H2020-859881

The results obtained with the xApp consider that both 3GPP and non-3GPP access traffic are available
at all times. Two machine learning models have been trained based on telemetry collected from a Wi-
Fi router and a 5G UE.
The Wi-Fi router used was a Belkin RT3200 with an Open source, linux based OS named OpenWRT
(OpenWRT, n.d.) flashed into it. OpenWRT allows for telemetry data collection from the router,
collecting statistic related to CPU load, quality of the radio signals, available throughput, amongst
others. This data has been collected and used to train a model that predicts future available Wi-Fi
throughput. Figure 5-28 future available wi-fi throughput shows the predicted future Wi-Fi available
throughput for a 10 seconds time window.

FIGURE 5-28 FUTURE AVAILABLE WI-FI THROUGHPUT

The 5G UE telemetry was obtained from a dataset available online in (5Gdataset, n.d.). The model also
predicts future throughput, but in this instance for a 5G cell. Figure 5-29 FUTURE AVAILABLE 5G
THROUGHPUT shows the predicted future available throughput from a 5G cell for the same 10
seconds time window.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 81

H2020-859881

FIGURE 5-29 FUTURE AVAILABLE 5G THROUGHPUT

As both models can predict the future available throughput for a 10 seconds window, these predictions
are then fed into the ATSSS xApp, that then has all the information to decide on e.g., the splitting rules
in case of overlapping coverage of both 5G and Wi-Fi. Figure 5-30 Example output of ATSSS decision
making shows an example output of the ATSSS decision making, where the predict throughput values
for both Wi-Fi and 5G are displayed, along with the actual or true values, for performance assessment,
and the final splitting rule, i.e., the traffic percentage allocation that is done for 5G and the same for Wi-
Fi.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 82

H2020-859881

FIGURE 5-30 EXAMPLE OUTPUT OF ATSSS DECISION MAKING

The models have then been given as input data, data that is part of the same dataset, but that hasn’t
been used for training purposes. The performance of the xApp has then been evaluated and it is
depicted in Figure 5-31 achieved ATSSS xApp throughput for different splitting rules.

FIGURE 5-31 ACHIEVED ATSSS XAPP THROUGHPUT FOR DIFFERENT SPLITTING RULES

LEFT: ACHIEVED THROUGHPUT FOR DIFFERENT SPLITTING RULES

RIGHT: BOX PLOTS OF THE ACHIEVED THROUGHPUT FOR DIFFERENT SPLITTING RULES

The experiment was executed over 400 time steps. Every 10 time steps, the predictions from the trained
models for Wi-Fi and 5G are generated and fed into the xApp that then dictates the splitting of the
traffic. The achieved throughput is then measured and compared over different splitting rules, namely
a fixed 50%-50% split, and a fixed 75%-25% split, where 75% of the traffic is allocated to the 5G cell. The
baseline for the performance benchmark is the “5G only” split, where there is no traffic directed via the
Wi-Fi access point. The Figure on the left shows as well results obtained with “our prediction models”,

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 83

H2020-859881

and the “perfect prediction models”. The former represents the enhancements introduce by the xApp,
while the latter represents the possible achievable performance, in case both the 5G and Wi-Fi models
had a 100% prediction accuracy. The baseline results obtained for the 5G only split are around 40 Mbps
for the duration of the simulation. This has been chosen in the dataset to match the reported throughput
at the network layer, reported in Table 5-5 Network and Application layer measurement, to match the
experiment and demonstrated executed in partnership with Vodafone UK and Amazon. It is also a
borderline available bandwidth for a 4K video streaming, which has a typical bandwidth requirement
of 35 Mbps.

Results validate the predictive models for both 5G and Wi-Fi as the result of the steering rules with
both trained and perfect models are very similar, and both outperform the 5G connectivity only option
by a maximum of 45%. The 50%-50% split always performs worse than the baseline. The 75%-25% split
sometimes outperforms the baseline but almost never outperforms our xApp. In roughly the same
proportion, this split also performs worse than the baseline, achieving less throughput than the 5G cell
only option. In addition to this, the right hand side figure also shows a much higher variance between
minimum and maximum achieved throughput than the ATSSS xApp.

These results validate the idea that the ATSSS xApp can improve RAN functions and achieve higher
available throughput for the camera, enabling better quality video streaming, higher reliability, and
general QoE improvements.

5.3. I4.0-UC3: massive MTC
Figure 5-32 shows the system setup for the mMTC trial. We deploy one radio-head which connects to
7 IoT devices/nodes. The radio head connects to the 5TONIC Edge Data Center via a Gigabit Ethernet
link or a 5G connectivity. In the 5TONIC Edge Data centre, 3 VMs are provided for mMTC use case.
We configured the 3 VMs as a Kubernetes cluster hosting with 3 nodes (1 Master node and 2 Worker
nodes), which host the edge services of mMTC use cases. The DEEP platform is also deployed in the
same data centre, where the services of other use cases are also deployed. Therefore, all three I4.0 use
cases are integrated in the same data centre infrastructure using the same DEEP platform for
management and coordination, as well as performance monitoring. Specifically, in mMTC trial, we use
BASS in DEEP, to manage the mMTC service comprising three microservices/containers, namely
Contiki, RAN, and Fingerprinting, deployed in the Kubernetes cluster.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 84

H2020-859881

 FIGURE 5-32 5TONIC trial setup of massive MTC use case

In the following, the functionality of each microservice deployed in the Kubernetes cluster is briefly
described.

• RAN: The RAN instantiates an IEEE 802.15.4 O-QPSK 250kbps physical layer, which modulates
and demodulates packets to and from the radio-head. It uses the ZMQ PUSH-PULL message
pattern to communicate to the Contiki and the Radiohead.

• Contiki: As described in D 2.3 (D2.3: Final Specification of 5G-DIVE Innovations, 2021), Contiki
acts as the IoT networking stack. In our experiments, we use our asynchronous MAC as our
MAC protocol. We use RPL (RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks)
as our routing protocol. We configure the nodes to only act as leaf nodes to create a star topology
network. The IP layer connects via a TUN interface to the host networking stack. We also
integrated a modified Leshan (OMA Lightweight M2M server and client in Java) server as our
LWM2M server that connects to the Contiki stack through the TUN interface. It manages the
registration of the IoT nodes and subsequent application-layer communication to the IoT nodes.
It also provides an HTTP server that translates HTTP requests to LWM2M requests.

• Fingerprinting: The fingerprinting module uses our Siamese network architecture introduced
in D2.3 to identify the sender (IoT node) based on the IQ samples to enhance device-level
security. The Fingerprinting module collects IQ samples from the radio head using ZMQ TCP.
We use the RAN microservice (i.e. IEEE 802.15.4 PHY) to identify the starting and ending of a
single packet from the IQ samples. Next, we parse the demodulated packet to collect the MAC
address of the sending node from the received packet. We also check for the correctness of the
data packet using the CRC. The fingerprinting module has a dictionary of reference samples for
the nodes used in the trial. We collect the reference samples in our office in Stockholm by placing
each node next to a USRP. Hence, they can be assumed to be free from noise and multi-path
effects. An AI model based on deep neural network is trained in our office in Stockholm using
IQ samples from the nodes in the experiments, using the training process outlined in D 2.3 (D2.3:
Final Specification of 5G-DIVE Innovations, 2021). Once the samples corresponding to a packet

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 85

H2020-859881

are identified, the model compares the IQ samples with the reference samples corresponding to
the MAC address identified in the packet. It outputs a similarity score which highlights how
similar the radio characteristic of the sender is to the sender of the reference packet.

In the setup, we have a radio head comprising a USRP and a mini-PC. The radio head transmits and
receives IQ samples using a USRP B210 software-defined radio (SDR). It acts as a forwarder of the IQ
samples to and from the RAN microservice in the mMTC service deployed at the edge. We use
NodePort in Kubernetes to expose the mMTC service to external network. In the mini-PC, we
implemented a preamble detection function in the receive chain to reduce the amount of data sent to
the RAN microservice. The radio head is not managed by the BASS as this will be placed in the industry
premises and not at the edge. It is connected to the mMTC service through a Gigabit Ethernet link or a
5G link using a 5G CPE connected to the 5G system used in the trial.

Figure 5-33 shows the actual trial deployment in 5TONIC. Seven IoT nodes are deployed at three
locations where each of them are powered by a USB hub. The radio head is deployed on one table,
where the connectivity to the edge data centre is provided via a RJ45 socket on the wall or the 5G-CPE
on the same table.

FIGURE 5-33 mMTC trial setup deployment in 5TONIC

5.3.1. DEEP Integration Validation
In the trial, the BASS is fully integrated with the mMTC service. In this section, we describe details of
the integration with the DEEP platform, showing that DEEP works properly with the mMTC service.
In (D2.3: Final Specification of 5G-DIVE Innovations, 2021) we presented the Kubernetes deployment
scripts and explained the mapping of mMTC use case to the DEEP platform, focusing on BASS service
instantiation and IESS automation.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 86

H2020-859881

Figure 5-34 illustrates the BASS VSD file for the mMTC use case. We deploy three microservices in the
cluster and expose them with an external IP address. The BASS descriptor is expressed in JSON format,
compared with Kubernetes deployment YAML file. In (D2.3: Final Specification of 5G-DIVE
Innovations, 2021), we discussed that for each microservice deployed in the vertical service, we need
to create the corresponding Deployment to provide declarative updates for Pods and ReplicaSets
configurations. Besides, we also need to create the Service which defines a policy to access the Pods
inside the cluster. In Section 3.1.2, the LOC for Kubernetes deployment files and BASS VSD are
compared to show the low complexity as well as easy management with BASS deployment.

FIGURE 5-34 BASS VSD for the mMTC use case

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 87

H2020-859881

After the VSD file is created and deployed by the BASS, we observe a service list from the web GUI
with details on components for the mMTC use case, as shown in Figure 5-35. The web GUI offers easy
life-cycle management of the vertical service, i.e., it allows the vertical service operator to start and stop
the service in a declarative way. Each time a vertical service is deployed, the BASS will generate a new
namespace in the Kubernetes cluster and the components from the vertical service will be deployed
therein. Figure 5-36 shows the screenshot of the microservices deployed in the Kubernetes cluster using
BASS.

FIGURE 5-35 BASS web view of mMTC use case with details on its components

FIGURE 5-36 mMTC Kubernetes cluster deployed using BASS

To visualize the system metrics of the mMTC use case, we then integrate the use case with BASS active
monitoring feature. As explained in Section 3.1.3, the BASS automatically supports the monitoring of
basic metrics, e.g., CPU usage, memory usage, etc. for each component deployed using a Kubernetes
cluster. A Dashboard, as shown in Figure 5-37, has been established to monitor system metrics. It is
worth mentioning that for other customized metrics such as latency and data loss rate, we use log data
to save the metrics for post-processing.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 88

H2020-859881

FIGURE 5-37 Influxdb monitoring dashboard for mMTC use case

5.3.2. Experimental Results
Three types of Experiments, i.e. Experiments A, B and C, have been performed in the trial. Experiment
A is to measure application layer performance. Experiment B is to measure RF fingerprinting
performance. Experiment C is to measure the performance of orchestration and automation features.
Each type of experiment comprises several measurements to cover different aspects. For example,
Experiment A has 4 measurements labeled as Experiment A.1, A.2, A.3 and A.4.

5.3.2.1. Experiment A: Application Layer Performance

In the experiments of Experiment A, we evaluate the performance of our mMTC service with an
application that periodically collects temperature measurements from the IoT nodes. The
implementation of experiments is shown in Figure 5-38. We developed a control and measurement
module which acts like an application. It sends HTTP GET requests to the Leshan server to collect
temperature data from all the connected IoT nodes. The Leshan server translates the HTTP GET
request to a CoAP (Constrained Application Protocol) GET request. We modify the Leshan server to
measure the round-trip time for data retrieval.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 89

H2020-859881

FIGURE 5-38 Implementation of Experimental Setup for experiment A

5.3.2.1.1. Methodology

The following describes the basic steps of performing the experiment.

1. Instantiate the mMTC service using the BASS of DEEP
2. Power up the IoT nodes which have been programed with a LWM2M client.
3. Wait for the clients to connect to the gateway.
4. Using the control and measurement module:

a. Set a collection frequency for all nodes (reading of all nodes, scheduled sequentially or
asynchronously by Leshan server)

b. Request the IoT nodes for temperature sensor data (logged by the control and
measurement module). Measure application data integrity or losses. Data losses signify
the time-out of the HTTP response.

5. Measure the round-trip time for the response (logged by the control and measurement module
together with sensor data simultaneously with step 4).

a. LWM2M RTT: Measures the round-trip time (RTT) for each LWM2M request. It is
measured by the Leshan server.

b. Application RTT: Measures the RTT for each application (HTTP) request. The Leshan
server uses synchronous requests and sends the subsequent request on successful
reception of the current request by the target IoT node. This results in a queuing delay
of a request at the Leshan server. So, the Application RTT includes LWM2M RTT,
queuing delay at the Leshan server, and the HTTP request to CoAP request translation
time.

&RQWLNL

5$1

&RQWURO�DQG
0HDVXUHPHQW

/HVKDQ�6HUYHU

5DGLRKHDG

'HYLFH

&R$3
*(7

&R$3
*(7

5HVSRQVH

+773
*(7

5HVSRQVH
+773
*(7

/:0�0
577

$SSOLFDWLRQ
577

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 90

H2020-859881

5.3.2.1.2. Experiment A.1: Asynchronous Message Collection

IoT nodes with a specified message frequency can wake up and send the data asynchronously at
random intervals. To model this messaging pattern, we set the control module to enable asynchronous
polling of the nodes. The control module instantiates threads for polling each connected IoT node. Each
thread sleep for a random delay between 0 and 20 seconds before sending the HTTP request for data
collection from its designated client. The collection frequency is set to 1 data reading per minute for
each node. We collected the data for 10 days.

5.3.2.1.2.1. Results

Figure 5-39 shows the CDF of the measured round-trip times (RTT) from all the clients. We receive a
response to over 90% of requests within 400 ms. The application RTT closely follows the LWM2M RTT
with a slight delay incurred by HTTP to CoAP translation and queuing delay. The DLR (data loss rate)
for application data retrieval is 1.039% for close to 86000 application requests. Our application does not
have a retransmission mechanism and relies on link-layer retransmissions. Due to the asynchronous
nature of the responses from the IoT nodes for message requests with random delay initialization, over-
the-air collisions are probable. This leads to link failure and failure of the application data retrieval.
Some performance degradation is also due to the IoT node behavior. The 5 newly bought IoT nodes
didn’t perform as well as the 2 nodes we have used for a long time. This phenomenon is also shown in
Figure 5-40, which will be discussed there. Nevertheless, we can further improve the reliability of our
application by using application-layer retransmissions. For example, by one retransmission on the
application layer by request again the data if no response received on the first request, the DLR can be
reduced to less than 0.011%. Further reduction can be done with more retransmissions on the
application layer

FIGURE 5-39 CDF of RTT for asynchronous requests

Figure 5-40 shows the application performance per node. We use boxplots to show the distribution of
the LWM2M RTT for each node. The nodes have similar RTT distribution with a median of
approximately 250 ms. However, the DLR for each node varies considerably. The nodes with the
nRF52840 platform (A527, B60E, F16B, 5105, EDA1 in the figure) which were newly bought show higher

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 91

H2020-859881

DLR than nodes with the Zolertia Firefly platform (B16D, B4D4 in the figures) which we have used for
a long time. The nodes with the nRF52840 platform also have lower LWM2M RTT than the nodes with
the Zolertia Firefly platform. It points to a failure of our MAC retransmissions on the nodes to send the
requested data. Basically, B16D and B4D4 have been more robust than the other 5 nodes, which
represents more the normal performance expected. It can be due to RF compatibility issues or an issue
regarding configuration optimization between our SDR receiver and the nRF52840 platform.

FIGURE 5-40: Result of application performance per node for asynchronous requests

5.3.2.1.3. Experiment A.2: Scheduled Message Collection

In an application-driven architecture, the application schedules the data retrieval from the IoT nodes.
We model this messaging pattern by using the control module to schedule the requests to the IoT nodes.
The collection frequency is set to 1 data reading per minute per node. The control module instantiates
threads for data retrieval from each connected IoT node. The control module instructs the threads to
sleep for a particular delay. On waking up from sleep, each thread sends an HTTP request for data
collection from its designated IoT node. For this measurement, the control module schedules data
collection every 5 seconds. The data are collected for 7 days.

5.3.2.1.3.1. Results

Figure 5-41 shows the CDF of the measured RTT from all the clients. Similar to the asynchronous
polling case, we receive a response to over 90% requests before 400 ms with a slight difference between
the application RTT and the LWM2M RTT. We achieve a lower DLR of 0.639% with scheduled requests
than 1.039% with asynchronous requests. The scheduling of data retrieval by the control module
reduces the chances of over-the-air collision between packets from different nodes. This results in better
reliability, as demonstrated by the lower DLR.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 92

H2020-859881

FIGURE 5-41 CDF of RTT for scheduled requests

We show the LWM2M RTT and DLR for each node in Figure 5-42. For LWM2M RTT distribution, we
observe similar results to the asynchronous case. The DLR across different IoT nodes once again
highlights the discrepancy between nodes with different platforms. The Zolertia Firefly nodes have
only one data loss event for the duration of this experiment. However, scheduling requests to the nodes
reduces the DLR from each node. It means the actual performance in practice with good IoT nodes
should perform as well as the Zolertia Firefly nodes.

FIGURE 5-42 Application performance of different nodes with scheduled requests

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 93

H2020-859881

5.3.2.1.4. Experiment A.3: Performance over 5G

In this experiment, we connect the radio-head to our mMTC service using 5G instead of the 1Gbps
ethernet link. We use asynchronous polling with a collection frequency of 1 message per minute for
each node. The data is collected for 1 hour.

5.3.2.1.4.1. Results

Figure 5-43 shows the CDF of the RTT with a 5G connectivity. We observe a higher RTT (about 100 ms
in average) as compared to the results with the Ethernet link. This is mainly because of a higher 5G
latency than the Ethernet link. However, we observe a DLR of 0.621%, similar to the scheduled message
collection results. Hence, the higher latency of the 5G link does not impact the reliability of our data
collection application.

FIGURE 5-43 CDF of RTT with 5G connectivity

Figure 5-44 shows the breakdown of the LWM2M RTT and DLR per node. We observe a median
LWM2M RTT of slightly over 300ms. Like our previous experiments, the nodes with the nRF52840
platform have higher DLR as compared to the nodes with Zolertia firefly platform. Overall, the results
show that we can use a 5G connectivity to support our mMTC service. This is useful in cases where the
radio-heads do not have access to a fixed network in an environment that requires high security or is
in a remote area too costly to access a fixed network.

FIGURE 5-44 Application performance per node with 5G connectivity

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 94

H2020-859881

5.3.2.1.5. Experiment A.4: Impact of Collection Frequency

In this experiment, we measure the impact of collection frequency on performance. We select the
collection frequency of 5 and 10 messages per minute for each node. The data is collected for 30 minutes.
The parameters used in the control module for the asynchronous message pattern and the scheduled
message pattern are shown in Table 5-7.

TABLE 5-7 Parameters for different message patterns

Message Pattern Packets per minute per
node

Random Delay (async)/
Interval between requests
(scheduled)

Async 5 0-5 seconds
10 0-2.5 seconds

Scheduled 5 1.5 seconds
10 700 milliseconds

5.3.2.1.5.1. Results

Table 5-8 shows the LWM2M RTT and DLR results for the two tested message frequencies for the
asynchronous and the scheduled message patterns. We observe an increase in the DLR with increased
message frequency for both the message patterns. However, due to higher chances of collision in the
asynchronous message pattern, we observe significant degradation in the DLR with a message
frequency of 10 packets per minute to each node. We also notice the impact of the over-the-air collisions
in the 95th percentile value for the LWM2M RTT. The high RTT for this case, which indicates the
application needed multiple MAC layer retransmissions for successful data retrieval. The scheduled
message pattern achieves a 95th percentile value below 1000 ms with a PER of 1.5%, which is
considerably better than the asynchronous message pattern.

We also evaluate the impact of collection frequency with a 5G connectivity. In this case, we use the
scheduled message pattern. For both the collection frequencies, we observe DLRs comparable to the
scheduled case. The higher 5G-link latency is highlighted in the mean, 5th percentile and 95th percentile
values of the LWM2M RTT. However, given the low DLR for high collection frequency of 10 messages
per node, we can argue that with application layer reliability we can also use 5G connectivity for high
frequency message collection with our mMTC service.

TABLE 5-8 Impact of collection frequency on application performance

Message
Pattern

Packets per
minute per

node

LWM2M RTT
(50th

percentile) in
ms

LWM2M RTT
(5th percentile)

in ms

LWM2M RTT
(95th

percentile) in
ms

DLR (%)

Async with
Ethernet

5 233.00 81.00 868.75 1.06
10 235.00 84.00 2419.50 3.40

Scheduled
with Ethernet

5 241.50 85.35 398.55 0.70
10 238.00 84.80 826.80 1.50

Scheduled
with 5G

5 388.03 181.67 709.55 0.38
10 446.61 158.50 1225.00 1.37

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 95

H2020-859881

5.3.2.2. Experiment B: RF Fingerprinting Performance

In this experiment, we evaluate the functionality of our RF Fingerprinting module. IoT networks can
be attacked by intruder nodes. The intruder nodes disguise their identify and communicate with the
gateway. Our RF Fingerprinting module identifies nodes based on their signal characteristics and hence
can be an effective solution to intrusion attacks at the gateway. We evaluate its performance in a longer
running experiment for 18 days.

5.3.2.2.1. Methodology:

In our RF Fingerprinting module, we compare an incoming message from the node with MAC address
“ID” to a reference signal from that node. The steps are highlighted below.

Identifying nodes based on their radio characteristics:

1. For every incoming packet, we collect the MAC address and verify the packet is correctly
decodable (eliminates corrupted packets)

2. We randomly sample radio chunks of window size of 128 I/Q samples from the reference signals
for that node.

3. We compare the incoming packet with the radio chunks and get a similarity score.
4. We log the similarity score for each packet along with the node details for post-processing.

5.3.2.2.2. Results:

We have 7 IoT nodes, comprising of 6 original nodes and 1 intruder node. We program the intruder
node with the same MAC ID as one of our trained nodes (not used in the experiments). We log the
similarity scores per-packet identification and then post-process the identification results. The data is
collected for 18 days. In total, we collected 528928 packets, out of which 89058 packets are from the
intrusion node.

Figure 5-45 shows the Receiver Operating Characteristics (ROC) curve for the duration of the
experiment. The X-axis shows the false positive rate i.e., the fraction of the intrusion messages that get
misidentified as messages from the correct devices. The Y-axis shows the true positive rate i.e., the
fraction of messages from the correct devices getting identified as correct messages. Both the X-axis and
Y-axis are normalized to the total number of messages from the intrusion node and the correct nodes.

The ROC curve shows the true positive rate and false positive rate that can be achieved by tuning the
threshold on the similarity score. Ideally, we would like to find a threshold that enables the RF
Fingerprinting module to correctly identify all messages from the correct nodes accurately, while
flagging all messages from the intruder node as an intrusion. This scenario would be depicted by a
straight line that has a Y value of 1 for an X value of 0. With our RF-Fingerprinting module, we can
achieve a Y value of over 0.85 for an X value of 0. This means we can accurately identify 85% of messages
from the correct devices when it flags all intrusion messages as an intrusion. Moving along the X-axis
signifies a lowering of the threshold on the similarity score. A lower threshold would allow messages
that have a lower similarity score to be identified as a correct message. This leads to an increase in the
false-positive rate i.e. the number of intrusion messages identified as correct. We achieve a true positive
rate of 1 i.e., all messages from correct devices get correctly classified at X < 0.1. So, our fingerprinting

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 96

H2020-859881

module can correctly identify all correct messages when we allow misidentification of around 10% of
intruder messages.

For reference, we show the ROC curve for a random classifier as a dotted blue line. We observe that we
can achieve a high true-positive rate for even a low false-positive rate signifying our model manages to
differentiate the correct messages from the intrusion messages. The ROC Area under the Curve (ROC-
AUC) measures the area under the ROC curve for our classifier. Our model achieves a high ROC-AUC
of 0.9966 (ROC-AUC for the perfect classifier is 1) and signifies that we can find a threshold with our
model that differentiates between correct and intruder nodes significantly well.

FIGURE 5-45 ROC curve for RF Fingerprinting

5.3.2.3. Experiment C: Orchestration and Automation Performance

In previous sections, we verify the functional features of the BASS and test the performance of our
mMTC system. However, due to the heterogeneity of edge sites, e.g., using different types of CPUs,
different CPU clock frequency, and memory footprint, varying background load, network interrupts,
etc., the services deployed may experience unexpected slow execution, even crash in runtime (H. Zhao,
2020). The hardware nodes used in an Edge data centre, e.g. servers, are usually less robust than
telecom-grade equipment, which can experience HW issues more often. Thus, it is important to
understand the performance impact of such failures that may happen to the system and how these
failures can be mitigated in mMTC use case.

In this section, we discuss the self/healing capability of Kubernetes and the life cycle management of
the BASS. More specifically, we measured the performance of the mMTC service when pod/node
failure happens. We have four test scenarios, i.e., no failure scenario (baseline scenario), pod failure
scenario, pod failure with redundancy scenario, and node failure with redundancy scenario. For each
measurement, we run the test for 10 minutes with the node traffic of 10 requests /min/IoT node.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 97

H2020-859881

5.3.2.3.1. Experiment C.1: Pod failure without redundancy

In this part, four experiments are conducted to analyse the performance impact of the pod failure. In
all four experiments, we have the ‘replicas’ value set to 1 for ‘Contiki-PHY’ microservice
(corresponding to the RAN microservice) in our VSD file, i.e., we have one RAN instance running in
the edge. For the baseline case, there is no human intervention and for the failure test, we manually
delete the pod which is running ‘Contiki-PHY’ microservice. It is worth mentioning that Kubernetes
implements graceful termination by applying a default grace period of 30 seconds. In our experiments,
we set the grace period value to 0 in order to achieve immediate pod termination to emulate the pod
failure event.

Table 5-9 reports the measurement results for the pod failure without redundancy scenario. We observe
that we receive 695 and 697 response packets for the two measurements, respectively, when no pod
restart happens for the baseline case. The data loss rates for the two measurements are 1.44% and 1.58%
respectively. For the pod failure case, we receive 596 and 589 response packets for the two
measurements, respectively. This is due to that two nodes were disconnected from the Leshan LWM2M
server when pod failure happens. We can also observe that the pod restart time is around 3.5 seconds
which means that the service outage lasts for at least 3.5s and response data from the IoT devices during
that period will be lost. For the two measurements, we got 28 and 29 data losses due to the pod failure.

TABLE 5-9 Comparison results for the Pod failure without redundancy scenario

Measurement

Data
received Pod

restart
times

Pod restart
time [s]

Data
loss
rate

Data loss
due to
pod
failure

RTT Leshan
Server
(mean) [ms]

RTT
application
(mean) [ms]

1 695 0 - 1.44% - 362.20 368.16
2 697 0 - 1.58% - 351.58 357.61
3 596 1 3.4 5.87% 28 334.81 341.06
4 589 1 3.6 6.28% 29 412.13 418.46

Figure 5-46 shows the application performance per node for the pod failure test. We use the results of
measurement 3 to show the average server RTT as well as application RTT in the left figure. There are
four nodes with average RTT values below 300ms. The overall RTT values vary from 268ms to 391ms.
However, in the right figure which shows the data loss rate for each node, we observe the great
disparity between the nodes. The two nodes (node ‘B16D’ and ‘B4D4’) with the Zolertia Firefly platform
only receive around 60 data packets as both nodes disconnect from the server when pod failure happens.
The nodes located farthest from the receiver (node ‘D60E’ and ‘F16B’) introduce more data losses
compared with the rest nodes. It is also worth mentioning that these two nodes have higher data loss
in the baseline case also, as seen in Experiment A.1 and A.2.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 98

H2020-859881

FIGURE 5-46 Results of application performance per node for pod failure scenario

5.3.2.3.2. Experiment C.2: Pod-level redundancy

In this part, we have 2 more measurements done with pod failure. However, we set the ‘replicas’ value
to 2 instead of 1 to have redundancy in the system. By doing this, we have two ‘Contiki-PHY’ pods in
our cluster and Kubernetes will route the traffic to either pod. During the measurement, we still
manually delete one pod from the cluster, and Kubernetes will automatically start a new pod to meet
the ‘replicas’ value set for the ‘Contiki-PHY’ deployment.

Table 5-10 reports the measurement results for the pod redundancy scenario. We observe from the table
that the Leshan LWM2M server received nearly the same amount of response data in all four
measurements. Besides, for the pod redundancy cases, no data loss due to the pod failure is observed,
leading to data loss rates of 0.43% and 1.15% respectively. However, there is no data loss observed
during the pod failure. The value is still reasonable since we know that some nodes may have unstable
performance regarding data loss rate. Furthermore, with a redundant pod, we also obtain similar
average server/application RTT for the measurements. It shows having a replica is an effective solution
to increase the availability and reliability of the mMTC service.

TABLE 5-10 Measurement results for POD redundancy scenario

Measurement

Packet
received

Pod
restart
times

Data
loss rate

Data loss
due to Pod
failure

RTT Leshan
Server (mean)
[ms]

RTT
application
(mean) [ms]

1 695 0 1.44% - 362.20 368.16
2 697 0 1.58% - 351.58 357.61
3 696 1 0.43% 0 365.55 372.79
4 697 1 1.15% 0 323.39 329.51

Figure 5-47 illustrates the application performance of each IoT node for pod redundancy scenario. We
use measurement 3 as an example to show the node behaviour when failure happens in pod
redundancy scenario. It is shown in the right figure that we haven’t got a service outage during the
whole measurement. All nodes are connected stably and only node ‘D60E’ introduces some data losses.
In the left figure, we observe the average RTT for all nodes varies between 263ms to 567ms, with the
highest value also from the node ‘D60E’.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 99

H2020-859881

FIGURE 5-47 Results of application performance per node for POD redundancy scenario

5.3.2.3.3. Experiment C.3: Node-level redundancy

In this measurement, we have two ‘Contiki-PHY’ pods deployed on two worker nodes. Instead of
manually deleting the pod, we reboot the worker node 1 where only ‘Contiki-PHY’ pod is running on.
Thus, we can explore the performance impact of having node redundancy without harming other pods
inside the cluster. Below we show what happens inside the cluster when a node failure happens.

• When the node fails, it becomes unreachable and the master sets the node to the ‘NotReady’
state.

• The master waits for ‘pod-eviction-timeout’ before taking any action. The default value is 5
minutes.

• After ‘pod-eviction-timeout’ time, the master sets the partitioned node’s pod to ‘Terminating’
state and creates new instances of pods on different nodes.

For our case, we have two pods on two different worker nodes. After we manually reboot one node,
there is only one other pod left in the cluster that takes over the traffic. The new pod will not be created
until the default ‘pod-eviction-timeout’ time is up.

Table 5-11 reports the measurement results for the node redundancy scenario. It is worth mentioning
that the measurement time for measurement 3 is 8 minutes 30 seconds, so we have fewer data received
compared with the baseline case. We observe that with node redundancy, we manage to obtain a
similar data loss rate compared with the baseline case. Furthermore, we observe zero data loss when
the node failure happens, indicating a graceful handover of the traffic from one node to the other node.
It shows that node-level redundancy is an effective way to protect the system from node failure events
and therefore further enhance increase the availability and reliability of the mMTC service.

TABLE 5-11 Measurement results for node redundancy scenario

Measurement

Packet
received

Node
restart
times

Data
loss rate

Data loss
due to node

failure

RTT Leshan
Server (mean)

[ms]

RTT
application
(mean) [ms]

1 695 0 1.44% - 362.20 368.16
2 697 0 1.58% - 351.58 357.61
3 582 1 1.20% 0 346.70 353.06

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 100

H2020-859881

5.3.3. Scalability
In an IoT application where the amount of data can be unpredictable on occasion, it is important to
have the ability to assign more resources when needed and withdraw the resources after the surge ends.
One of the major capabilities of Kubernetes as an orchestrator lies in its ability to dynamically manage
and respond to varying network traffic by performing effective auto scaling. In this section, we evaluate
the scalability (in terms of resource utilization) of the mMTC microservices, i.e., RAN and Contiki
microservices that are deployed in the edge under different traffic loads. We first present the evaluation
utilizing the test node simulator (D2.3: Final Specification of 5G-DIVE Innovations, 2021) we developed
in the project, with which we can emulate a large number of nodes to investigate the scalability. Then
we present the results measured in the I4.0 trial in 5TONIC. This section is concluded with the
discussions regarding the two service auto scaling approaches, i.e., horizontal scaling and vertical
scaling that are supported by Kubernetes.

5.3.3.1. Simulation results with emulated test nodes

Figure 5-48 shows the experimental setup with emulated test nodes. The test node acts as a fully
functional Contiki-based LWM2M Client. We create a Docker network and deploy our Contiki and
PHY functions. We allocate one CPU core to Contiki and the two RAN functions. Next, we instantiate
the test nodes and wait for the registration of these nodes. On successful registration of these nodes, we
schedule ping to each of these nodes with an interval of 1 minute like our long-term measurements.
The experiments were conducted on an Apple MacBook Pro equipped with an 8-core Intel i9 processor
with hyper-threading which effectively gives us 16 cores. We measure the resource utilization of the
Contiki and PHY instances using Docker stats every second.

FIGURE 5-48 Experimental setup with emulated test nodes

We conduct two experiments to study the scaling behaviour of the mMTC components. As our Contiki
and RAN functions are CPU-intensive processes, in these experiments we examine the CPU utilization
with the varying number of test nodes.

Experiment 1: CPU Resource utilization with varying number of nodes

In this experiment, we initially instantiate 20 test nodes and measure the CPU utilization under ping
load. We collect the measurements for 10 minutes. Then we instantiate 10 more test nodes and repeat
the measurement process. We could emulate up to 40 nodes due to CPU resource limitation in this

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 101

H2020-859881

experiment setup, which is already much more than the number of nodes we could deploy in the trial
field.

Figure 5-49 shows the variation of CPU utilization with the increase in the number of test nodes. The
Y-axis shows the mean percentage of CPU utilization of one core assigned to the Contiki and RAN
microservices. The error bars show the 95% confidence interval of the mean CPU utilization. For this
experiment, all the test nodes are connected to ‘RAN #1’. We observe that both the ‘Contiki’ and ‘RAN
#1’ microservices scale with the number of the test nodes. Since the RAN must perform heavier signal
processing operations, its CPU utilization increases at a higher rate compared to the Contiki. Broadcast
packets are still sent over ‘RAN #2’, hence resulting in a small CPU utilization. From the trend, it can
be estimated that one CPU core used in this experiment can support more than 100 IoT nodes under
the test traffic pattern. Then it will scale with the number of CPU cores when even more IoT nodes are
connected.

FIGURE 5-49 CPU utilization with respect to the number of test nodes

Experiment 2: Balancing the load across multiple RAN microservices

In this experiment, we examine if handling traffic from multiple RAN microservices impacts the
resource utilization of the Contiki microservices. We instantiate 40 test nodes and distribute them
equally among both the RAN microservices. Figure 5-50 shows the impact of balancing the nodes across
the two RAN microservices. We observe that distributing the load evenly among the RAN
microservices results in lower overall CPU utilization. This is because that the load balancing also
makes the system more robust such that the number of retransmissions is reduced, which reduces the
actual processing load. The CPU utilization of the Contiki microservice remains the same for both cases,
highlighting there is no significant overhead for handling traffic from multiple RAN microservices.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 102

H2020-859881

FIGURE 5-50 Impact of balancing the load across two RAN microservices

5.3.3.2. Trial results in 5TONIC

Using the BASS active monitoring, we measure the resource utilization of the mMTC microservices
during the trial. Since the nodes are physically deployed at 5TONIC lab, we herein increase the traffic
loads by sending more requests to the nodes. Figure 5-51 shows the CPU utilization of the RAN and
Contiki microservices (or pods). The Y-axis shows the CPU utilization of one core assigned to the
corresponding instance. We use boxplots to show the distribution of the CPU utilization under different
traffic loads. We have tested with seven different traffic loads which vary from 1 data requested per
minute per node to 25 data requested per minute per node. We observe that the average CPU utilization
increases with more traffic loads for both RAN and Contiki microservices, as expected. For the RAN
microservice, the median CPU utilization values of all test cases are 2.92%, 3.78%, 5.58%, 7.32%, 8.76%
and 9.12%, respectively. The results show a significant scaling of CPU consumption for the RAN
microservice and thus we can use it as an effective metric to scale out/in the service.

For the Contiki microservice, the median CPU utilization values for all test cases are 5.18%, 5.28%,
5.37%, 5.45%, 5.51% and 5.52%, respectively. Under the case of 25 data requested per minute, the
median CPU utilization of Contiki microservice is 5.52% compared with 9.12% of RAN microservice,
indicating that one Contiki instance can handle much more traffic than one RAN microservice. In
addition, the slower trend of the increase in CPU utilization for Contiki further proves this. It is also
worth mentioning that our use case is not memory demanding, and the average memory usage is
always below 1%. Thus, we don’t use memory usage as criteria for the scaling of the services.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 103

H2020-859881

FIGURE 5-51 CPU utilization for PHY and Contiki under different traffic loads

5.3.3.3. Discussion regarding autoscaling

From the simulation results, for the RAN microservice, we get a mean CPU utilization of 28.13% for
one CPU core with 40 test nodes under load. For the traffic pattern tested, considering the increasing
trend in the CPU utilization with the number of test nodes, the RAN microservice will be able to
support more than 100 IoT devices with one CPU core. Similarly, the Contiki microservices will be able
to support more than 150 IoT devices with one CPU core. Taking this into account, we also discuss
scaling strategies using horizontal and/or vertical scaling to dynamically scale the resources to the RAN
and Contiki microservices according to the processing load.

Horizontal Pod Autoscaler (HPA)

Horizontal scaling allows Kubernetes administrators to automatically increase or decrease the number
of running pods (or microservices) when the level of resource usage changes. The horizontal pod
autoscaling controller periodically adjusts the desired scale of its target, e.g., a Deployment, to match
observed metrics such as average CPU utilization, average memory utilization, etc. If the operator
configures a workload to autoscale based on multiple metrics, the HPA evaluates each metric
separately and uses the scaling algorithm to determine the new workload scale based on each one. The
largest scale is selected for the autoscale action. The horizontal scaling doesn’t interrupt the traffic
processing thanks to load balancing used which automatically routes the traffic to the available pods.

Vertical Pod Autoscaler (VPA)

Instead of changing the number of pods in the cluster, vertical scaling set limits on container resources
based on the actual level of resource usage. A VPA allows the operator to scale a given service vertically
within a cluster. It is more applicable for the cases where some services are not possible or not ideal to
scale horizontally due to some constraint. It is also worth mentioning that VPA destroys a pod and
recreates it with a new resource limit to vertically scale the resources allocated. Due to this, it is
recommended to use VPA for more stable updates of pods over a longer period.

For mMTC, the RAN microservice is suitable for horizontal scaling as it is more sensible to the traffic
loads. Besides, by enabling horizontal scaling for the RAN, the system will also benefit from having
pod redundancy when the service scales out. Meanwhile, vertical scaling is recommended as a scaling
strategy for the Contiki service as it is less sensitive to the traffic loads. Use of a single Contiki
microservice to manage the overall IoT network leads to more optimized networking decision making,

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 104

H2020-859881

e.g which radio-head is better suited for a particular IoT node. Furthermore, it makes it enables the
application developers to have a unified access and control interface for the entire network. In our
current implementation, the MAC layer is located in the Contiki microservice. But, from the autoscaling
perspective, it may be more suitable to have the MAC layer in the RAN microservice as this layer is
more suitable for horizontal scaling.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 105

H2020-859881

6. Final validation results of ADS use cases
In this section, we presented the final validation results for ADS use cases. This will cover the
connectivity. Where ADS replaced the 4G network solution with 5G-NSA solution. Also, it over new
features added for ADS implementation. In particular, ADS performed the following implementations.
First, the addition of a drone charging spot for the multiple drone trial and Internet Drone Operating
System (IDrOS) validations. Second, Zenoh (Zenoh, n.d.) integration as a data transmission protocol
for streaming data from the drone to the edge. And third, update of EagleEYE (Ardiansyah,
Muhammad Febrian and William, Timothy and Abdullaziz, Osamah Ibrahiem and Wang, Li-Chun and
Tien, Po-Lung and Yuang, Maria C, 2020) processing pipeline to better support multiple drone trials.

6.1. Experimental setup
The edge data center as well as the gNB/eNB combo small cell are located in the MIRC building. The
MIRC building is an 8 floors high-rise building located inside the NCTU campus. The gNB/eNB combo
small cell is mounted on the sixth floor of the MIRC building, while the edge data center is located in
the basement of the MIRC building. In Figure 6-1 above, the complete connectivity mapping at the edge
in support of the ADS mission is depicted. The edge data center is also connected with the BASS
instance in 5TONIC lab in Spain for edge infrastructure management and orchestration. At the edge, is
where all of the components supporting the disaster relief response system are deployed. More details
on each of the components have been previously reported in D2.3 (D2.3: Final Specification of 5G-DIVE
Innovations, 2021), and D3.2 (D3.2, 2021).

FIGURE 6-1 ADS Network connectivity mapping

Also, the utilized drone model is shown in Figure 6-2 and Figure 6-3. In Figure 6-2, the drone support
5G-NSA and Ubiquiti connectivity. 5G-NSA is mainly used to send sensory data and video streaming
(i.e. range from 848x480 to 1920x1080 full HD based on drone camera) from drones to edge. While the
Ubiquiti is useful to share information among drones whenever needed (see Figure 6-3). More details
of drone hardware including the battery, weight, and camera are provided in D3.2 (D3.2, 2021).

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 106

H2020-859881

FIGURE 6-2 ADS drone connectivity mapping

FIGURE 6-3 ADS Utilized drone

6.2. ADS-UC1: Drone Fleet Navigation
For ADSUC1, we present early results on the performance of the iDrOS drone operating system. We
specifically focus on iDrOS’ ability to migrate application components from drone to edge. In addition,
we present the updated DCAS adopted at the edge with the new drone navigation server.
For IDrOS, we take as an example the migration of an application component implementing a dummy
image processing functionality for object detection. We emulate the behaviour of a companion
computer running onboard a drone using a RaspberryPI 4 device and simulate an edge installation
using an Intel Canyon NUC i7 running at 3.4GHz. The Raspberry PI is connected to a wireless network

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 107

H2020-859881

created by a Netgear 5G mobile router. The 5G network is the one of Vodafone Italia (5G trial in Milano).
The Intel Canyon NUC is connected to the Vodafone backbone network via Ethernet. The average
round-trip time between the Raspberry PI and the Intel Canyon NUC is 3.8ms before the start of the
experiments. We use mahimahi (Mahimahi) to emulate different degrees of packet losses.
Figure 6-4 shows the experimental setup. The image processing components migrate from the “Data
Processing” package on board the drone to the same class on the edge device. We measure the execution
time of the image processing functionality as a function of the number of executions per minute and
the times for performing the offloading, that is, from the drone to the edge, and inloading, that is, from
the edge to the drone of the component from/to the drone as a function of the number of state variables
storing the component state, which we call “state variables” from now on, that need to be migrated.

FIGURE 6-4: iDrOS experimental setup

As a baseline for comparison, we build a functionally equivalent implementation that uses the Python
library Pyro4 (Python libarary Pyro4) to remotely expose the image processing functionality and we
test the same range of queries per time unit.

For DCAS, the experimental setup is shown in Figure 6-5 for two drones. Basically, multiple drones are
monitored at the same time to support collision avoidance between drones. In-flight, when the distance
between drones is too short, the system will automatically issue avoiding commands. DCAS
mechanism is exactly the same as elaborated in D3.2 (D3.2, 2021) but we move it to edge within the
drone navigation server. This will allow us to utilize 5G-NSA and improve the visibility of drones by
human operators.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 108

H2020-859881

FIGURE 6-5 DCAS experimental setup

6.2.1. Mission Scenario and Flow
In ADS-UC1, the mission operation operators three drones. The drone navigation client is connected to
the Drone navigation server through the mobile network. This will allow for drone monitoring and
dynamic control as shown in Figure 6-5. Besides, DCAS functionality is available on each drone and
can connect it to the drone navigation client and have been tested previously as elaborated in D3.2.
Now, DCAS functionality is adopted in drone navigation servers and it was tested in and will be
elaborated in this section.

FIGURE 6-6: DCAS validation setup

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 109

H2020-859881

 In our validation, the drones fly on the ITRI campus. The Drone Navigation Server controls the drones
to take off and sets them to fly to different destinations. During the flight, if the drones are too close to
one another as depicted in Figure 6-7, the DCAS on the edge will detect potential collisions and
eventually will take over the control of the affected drones for a limited period of time. This period is
function of collision risk, as there is no risk, the control will be again with the drone navigation server.
After the potential collision is resolved, the drone control returns to the Drone Navigation Server in
order to continue the mission. During the field trial, three drones (i.e. Drone #1, Drone #2, and Drone
#3) will be part of the drone fleet required to fly to certain locations as the relief mission required.
Initially, two drones (Drone #1 and Drone #2) fly to perform this mission, and collision is detected and
then the drone navigation server will perform DCAS. The mission still running, but Drone #1 was
detected with a low battery by the drone navigation server. The drone navigation server will request
Drone#3 to fly autonomously to replace Drone#1. Hence, Drone #3 will fly in the shortest path using
DCAS to replace Drone #1 and continue the mission as shown in Figure 6-7.

FIGURE 6-7 ADS-UC1 mission timing sequence

6.2.2. Experimental Results
In this section, the experimental results for Drone to Drone (Section 6.2.2.1), and IDroS System (Section
6.2.2.2) are reported.

6.2.2.1. Experiment A: Drone to Drone Communication

The evaluation is conducted on ITRI campus football field, the distance used between drones is
approximately 7 meters and 15 meters, respectively. With respect to the latency performance
evaluation, the system achieves an average of less than 3.2ms RTT (ping test; 100 samples). The results
are collected for different drone arrangements as shown in Figure 6-8, Table 6-1 and
Table 6-2. The results show that the drone-to-drone communication system can support the packet
transmission of DCAS in real-time. Having the DCAS deployed at the edge or the fog does not affect
performance significantly. Also, the scalability test has been performed as shown in Section 6.2.3.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 110

H2020-859881

FIGURE 6-8: DCAS latency measurement setup

TABLE 6-1 DCAS RTT latency measurements with 7 meter spacing

 Arrangement 1 Arrangement 2
Drone_A~Drone_B 3.352ms 2.478ms

Drone_B~Drone_C 1.963ms 1.177ms

Drone_C~Drone_A 1.635ms 1.522ms

TABLE 6-2 DCAS RTT latency measurements with 15 meter spacing

 Arrangement 1 Arrangement 2
Drone_A~Drone_B 2.976ms 2.913ms

Drone_B~Drone_C 1.519ms 1.545ms

Drone_C~Drone_A 1.624ms 1.365ms

6.2.2.2. Experiment B: iDrOS Migration

The results of the comparison between IDrOS and Pyro4 experiments are reported in Figure 6-9: the
performance of IDrOS is slightly better than the one of Pyro4. On average, the execution time of IDrOS
is ∼450 milliseconds shorter than the execution time of the Pyro4 implementation. We repeated the
experiment 10 times and averaged the results. The standard error of IDrOS means is 0.169 seconds, the
standard error of Pyro4 means is 0.33 seconds.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 111

H2020-859881

FIGURE 6-9 IDRoS execution times when migrating components

Figure 6-10 reports the results when migrating components to and from the edge. From the graphs, we
can derive the following conclusions:

• The number of state variables (see Section 6.2) in the range we tested does not significantly
affect the in loading and offloading times, since there is no increasing trend in the average times.

• The average in loading time (see Section 6.2) is higher than the average offloading time because
it is influenced by the time needed to restore the variables, and in our experiments, it is driven
by the performance of the Raspberry.

• The packet loss rate in the interval we evaluated does not significantly affect the in loading and
offloading times, because the network transfer time, including TCP retransmissions, is
negligible with respect to the time needed to serialize, deserialize, and restore the state.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 112

H2020-859881

FIGURE 6-10 IDRoS migration performance

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 113

H2020-859881

6.2.3. Scalability
For the drone fleet, it is important to be able to serve multiple drones while utilizing 5G-DIVE platform
and passing traffic from drone to edge with 5G-NSA connectivity. Taking that into consideration, we
observe that the navigation server sends and receives information normally including DCAS messages
using 20 emulated drones and 50 emulated drones as shown in Figure 6-11 and Figure 6-12,
respectively. Where the time displayed in the red box is the latency from the control webpage to the
navigation server. Also, the green box shows information about the navigation server interface. The
results run for more than 20 minutes (i.e. expected fly time of the drones) and the drone navigation
server has the connection established with all the drones during this stress test. This means the drone
navigation server is scalable to perform the drone fleet navigation during the disaster mission.

FIGURE 6-11 Scalability testing with 20 emulated drones

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 114

H2020-859881

FIGURE 6-12 Scalability testing with 50 emulated drones

Besides, during this scalability test, the control webpage can be displayed. In particular, the webpage
can control up to 4 drones at a time. Each control page controls 4 drones taking into account the safety
(elaborated in D3.1 (D3.1: Definition and setup of vertical trial sites, 2020)) considerations for the naked
eye of the drone operator. The 20 drones are controlled in multiple pages as shown in Figure 6-13.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 115

H2020-859881

FIGURE 6-13 Control webpage of 20 emulated drones

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 116

H2020-859881

6.3. ADS-UC2: Intelligent Image Processing for Drones

FIGURE 6-14 Overview of ADS-UC2 system

Figure 6-14 above provides an overview of the disaster relief response system for ADS-UC2. The system
consists of three main components, which are the aerial drones, 5G connectivity solution, as well as
edge. In the edge is where all of the intelligent application is deployed and run. In this section, the
mission scenario and flow (Section 6.3.1), results on the key modules (Section 6.3.2), DEEP integration
experiences (Section 6.3.3), as well as key modules scalability (Section 6.3.4) are of focus. Results on 5G
connectivity solution can be found in Section 2.2. The key modules involved in the disaster relief
response system involved are the Drone Data Processor system, the EagleEYE system, as well as the
EagleStitch System.

6.3.1. Mission Scenario and Flow
In ADS-UC2, the goal of the disaster relief response system is to detect and localize Persons in need of
Help (PiH), as well as to provide a view of the surrounding area. In the mission, 3 aerial drones are
utilized to perform aerial scouting around the MIRC high-rise building located inside NCTU. In the
mission, the PiH is located on the 6th floor and the right side of the MIRC building.

FIGURE 6-15 ADS-UC2 mission scenario and flow

When the mission starts, 3 drones are dispatched to the area. Drone-1, and Drone-2 are dispatched to
perform aerial building surveillance. Drone-1 will perform aerial surveillance on the left side of the

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 117

H2020-859881

building, while Drone-2 performs aerial scouting on the right side of the building. The scouting is
performed by continuously flying in a zig-zag pattern, floor-by-floor. Drone-1, and drone-2
continuously perform surveillance until the key modules running at the edge (EagleEYE) detect and
localize PiH in the building (Figure 6-15a). When a PiH is detected, drone-1 and drone-2 will be
instructed to update their trajectory and then perform landing or continue performing PiH detection
and localization at other parts of the building. During the surveillance mission, drone-3 is also
dispatched at the same time, but with a different goal. The drone-3 goal is to perform panorama image
2D stitching of the surrounding mission area, as well as to perform extended aerial surveillance.
Providing a better view of the surrounding area for the rescue team. The 2D stitching mission is
executed first, and then when drone-3 finishes this mission it will land and is set on standby mode. In
standby mode, drone-3 waits for PiH location from the edge. When a PiH is successfully located,
waypoints will be sent to drone-3 by the drone navigation server running at the edge. Drone-3 will then
autonomously fly to the location of drone-3 to perform extended aerial surveillance (Figure 6-15b). This
is to provide the rescue team with live streaming of the PiH to further assess the situation, to
communicate with the PiH, or to deliver a first aid kit to the PiH.
During the runtime of the mission, aerial surveillance video will be streamed directly from the drone
to the edge via the 5G wireless communication medium. The resolution of the streamed video varies
from 848x480 up to 1920x1080, depending on the wireless network quality as well as the drone camera.
In the trial itself, the 5G gNB is installed on the 6th floor of the building. The gNB itself is directly
connected to the edge located in the basement of the building. In the real world, the gNB will be the
one located at the perimeter of the area, while the edge can be any edge located closest to the disaster
impacted area. In general, the mission usually lasts around 15-20 minutes. Figure 6-16 below showcases
the breakdown of the trial mission performed by drone-1, drone-2, and drone-3 as well as its timing
sequence. Note that the timing numbers are for simulation purposes and this number will change
during the execution in the real world.

FIGURE 6-16 ADS-UC2 mission timing sequence

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 118

H2020-859881

6.3.2. Experimental Results
In this section, the experimental results for the Drone Data Processor system (Section 6.3.2.3), EagleEYE
system (Section 6.3.2.1), as well as EagleStitch System (Section 6.3.2.1) are reported. A brief overview
of each system is also provided in the respective sub-section.

6.3.2.1. Experiment A: Processing Latency of EagleEYE System

In Figure 6-17, an overview of EagleEYE key modules is shown. EagleEYE system is used to perform
Person in need of Help (PiH) detection. The goal of the PiH detection is to detect and locate PiH in a
disaster-impacted area. A short overview of each of the EagleEYE key modules are the following:

1. Data Offloader: A round-robin based algorithm used to offload incoming image frames to any
available Dual Object Detection module.

2. Dual Object Detection: CNN-based algorithm to detect ’Person’ & ‘Flag’ objects
3. PiH Candidate Selection: Heuristic algorithm to check if the correlation between ‘Person’ &

‘Flag’ objects meets a set of criteria of a PiH object.
4. Sorter: Sort data according to frame sequence and drone ID
5. PiH Persistence Validation: Sliding window-based algorithm to determine if PiH object appear

across a consecutive number of frames persistently.

FIGURE 6-17 Overview of EagleEYE key modules

Further details on each of the EagleEYE key modules have been previously reported in D2.3 (D3.1:
Definition and setup of vertical trial sites, 2020). The processing latency of each key module is
summarized in Table 6-3. The processing latency is for the inference of a single image frame. In
summary, 47.14 ms is needed to perform inferencing to detect and localize for PiH in a single image
frame. Note that during system deployment, several modules in EagleEYE (e.g.: the Dual Object
Detection module) are run in parallel to reduce the overall processing latency and to achieve real-time
performance (<33 ms per image frame processing latency). Apart from that, the pipelining technique is
also used to further reduce the processing latency. Figure 6-18 below showcases the output of EagleEYE
system processing 2 drone input streams at once in real-time.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 119

H2020-859881

TABLE 6-3: EagleEYE key modules processing latency

EagleEYE Key Modules Processing Latency
1. Data Offloader 1.873ms; std dev 2.008ms

2. Dual Object Detection 34.184ms; std dev 8.425ms

3. PiH Candidate Selection 6.778ms; std dev 3.764ms

4. Sorter 0.273ms; std dev 0.526ms

5. PiH Persistence Validation 4.032ms; std dev 1.984ms

Total 47.14 ms

FIGURE 6-18 EagleEYE output

6.3.2.2. Experiment B: Processing Latency of EagleStitch System

In Figure 6-19, an overview of EagleStitch key modules is shown. EagleStitch system is used to perform
2D stitching of drone imagery gathered around the mission area. A short overview of each of the
EagleStitch key modules are the following:

1. Feature Matching: To detect features in an image (e.g.: corner, curves).
2. Image Matching: To match for images that have the same features.
3. Bundle Adjustment: To bundle all images with the same features.
4. Panorama Straightening: To align the bundled images so that they are not slanted or rotated.
5. Blending: To adjust and correct the gain (brightness) of the images being stitched as well as to

remove the seams (edges) in the stitched images.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 120

H2020-859881

FIGURE 6-19 Overview of EagleStitch key modules

Further details on EagleStitch key modules can be found in D2.3 (D2.3: Final Specification of 5G-DIVE
Innovations, 2021). The processing latency of each key module is summarized in Table 6-4.

TABLE 6-4 EagleStitch key modules processing latency

EagleStitch Modules Processing Latency (ms)
1. Feature Matching 329

2. Image Matching 33

3. Bundle Adjustment 11

4. Panorama Straightening 95

5. Blending 289

Total 757 ms

The processing latency results are for the stitching of 2 image frames. In summary, 0.757s is needed to
stitch for 2 image frames. Figure 6-20 below showcases the EagleStitch system output stitching 2 images
taken by the drone of the surrounding trial area.

FIGURE 6-20 EagleStitch output

6.3.2.3. Experiment C: Processing Latency and Network Performance Metrics for Drone Data
Processor System

 The drone data processing system is used to inject metadata onto the captured images before sending
them to the edge. This metadata information is used to differentiate between data coming from multiple

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 121

H2020-859881

drones. Apart from that, the drone data processor is also used to compress the captured images, reduce
image file size, and save bandwidth. Table 6-5 provides a breakdown of the processing latency as well
as network bandwidth consumption metrics for the drone data processor. The data transmission is
done using Zenoh net via the pub/sub-publishing method.

TABLE 6-5 Drone data processor system performance metrics

Performance Metrics Results
Processing latency (tagging, compression) 31.63 ms / image frame
Bandwidth consumption 1.1 MB / image frame

6.3.2.4. Experiment D: Stress Test of EagleEYE System and 5G-NSA solution

 For stress testing the EagleEYE system, multiple tests of non-stop 2 hour PiH detection, and
localization mission are executed. In the tests, drones footage of different locations is fed to the
EagleEYE system to perform the PiH detection and localization. During the tests, EagleEYE system can
work reliably and is able to detect and locate PiH. The stress testing is done with the complete setup as
shown in Figure 6-14. In the real world, a drone-related mission can only last for about 20 minutes as
the drone is limited by the battery capacity and the payload that the drone is carrying. In the stress test,
we make sure that the complete system can run for far longer than 20 minutes and with that, a 2 hour
test duration is picked. Figure 6-21 shows the visualization of EagleEYE, as well as the visualization
from the drone navigation server during the 2 hour stress test. Notable, the results prove that EagleEYE
is capable of detecting the PiH without any service interruption. Also, 5G-NSA solution is reliable to
deliver HD images of the video stream without any interruption.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 122

H2020-859881

FIGURE 6-21 Visualization output of ADS-UC2 during two hours stress test

Furthermore, we also test the end-to-end solution in ASKEY labs for two hours with the setup as shown
in Figure 6-22. The speed test runs for two hours without any interruption. In this setup, a downlink
speed of up to 740Mbps, and an uplink speed of up to 88Mbps is recorded.

FIGURE 6-22 Stress test setup at ASKEY's lab

6.3.3. DEEP Integration Validation
In this section, a description on the DEEP platform integration experiences is detailed. The integration
experiences for DASS, BASS, and IESS are detailed in Section 6.3.3.1, Section 6.3.3.2, and Section 6.3.3.3
respectively.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 123

H2020-859881

6.3.3.1. DASS

In general, with the integration of DASS, enhanced functionality in terms decentralized data
dispatching and collection can be achieved. The DASS provides for a lightweight and efficient data
transmission protocol for streaming data from the drones to the edge. With the DASS, the data
collection process, posting, getting and subscribing to the collected data is simplified. In ADS-UC2, the
DASS is extensively used by the Drone Data Processor system to perform data publishing from the
drone to the edge. With results for the network bandwidth consumption listed in Table 6-5. In the ADS-
UC2, the network bandwidth consumption will be limited by the frame rate of the camera mounted on
the drone, as well as the image resolution of the camera. More details on the advantages of each feature
of the DASS can be found in Section 3.2.

6.3.3.2. BASS

In general, with the integration of BASS, enhanced functionality in terms of application lifecycle
management can be achieved. The BASS enables automatic and rapid service deployment of the ADS
vertical service in the field. As a plus, deployment of the service in multiple different regions is also
possible. Apart from that the BASS also provides for a common general user interface that is compatible
across different resource orchestrators while also simplifying the descriptor file used to deploy for
multiple system modules. And finally, the BASS provides for easy and ready-to-use monitoring probes
that if combined with SLA enforcer will allow for automatic scaling of system modules. More details
on the advantages of each feature of the BASS can be found in Section 3.1.

Figure 6-23 below captures the deployment of EagleEYE system via the BASS. The BASS is running at
the 5TONIC lab in Spain, and it is deploying the EagleEYE system at the edge infrastructure that we
have in Taiwan.

FIGURE 6-23 EagleEYE System Deployment with BASS

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 124

H2020-859881

6.3.3.3. IESS

At this moment, the integration with IESS is not yet complete. However, with the integration of IESS,
we can expect for enhanced functionality in terms of automatic AI model training. The IESS, via
AutoML, allows for automatic training of AI models for use in vertical service specific missions. For
example, in ADS-UC2, the AI model is used to perform object detection. During the mission, there is a
possibility that the object to be detected can change. And with that, the IESS can come in handy to help
with automatic retraining of AI model to suit the mission needs. Apart from that, IESS also able to
package the trained model for easy transport across regions for use in a similar mission in different
regions. Previously trained models are also stored in a catalogue that future missions can utilize. More
details on the advantages of each feature of the IESS can be found in Section 3.3.

6.3.4. Scalability
For EagleEYE, an architecture design that is capable of supporting multiple drone input streams is
proposed. This proposed architecture is designed based on the incapability of the previous design to
handle multiple drone streams. Two main concerns are observed in this work, first, when multiple
streams are being offloaded and processed, the edge system was unable to distinguish the stream
sources of the drones. Second, the processing is working asynchronously, while the system requires to
visualize the processed image frames in order. As described in Figure 6-24, the blue blocks represent
the new component in EagleEYE design. First, we introduced a data tagging approach on the drone
side, where the image frames are pre-processed and are tagged with insightful information before being
sent to the edge, such as drone ID, frame ID, and other important information. On the edge, we
introduce the Data Offloader service to capture and pre-process the incoming image frames, while
keeping the tuple of information sent by the drones. As for the Dual Object Detection (DoD) service, a
new sub-module is added to map each image frame from different drones and make sure to process
them to the correct next coming PiH Candidate Selection services. Afterward, for each processed image
frame, it will be sorted out as a batch into Sorter service before finally are being sent to the Visualizer
service. Finally, the end-users will be able to monitor the real-time results of each drone stream.

FIGURE 6-24 EagleEYE scalable architecture for multiple drone inputs

To validate our design, we performed a scalability test with six drone streams in an indoor
environment. In this test, we pre-initialized EagleEye system with multiple Dual Object Detection
services ready and prepared multiple JetsonNano which has a camera attached. Each camera will
stream the pre-recorded video to visualize see whether the system can handle a real-time input stream

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 125

H2020-859881

or not. As shown in Figure 6-25, our new proposed EagleEYE design can smoothly handle multiple
drone streams with no overlapping image frames from different drone sources.

FIGURE 6-25 EagleEYE scalability test with 6 drones Input

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 126

H2020-859881

7. Conclusions
This deliverable has presented a detailed view of the final validation results of different 5G-DIVE use
cases. We have elaborated on the setup of Digital Twin (DT), Zero Defect Manufacturing (ZDM) and
Massive Machine-Type-of-Communication (mMTC) use cases for Industry 4.0 (I4.0) trial. Also, the set
of ADSUC1 and ADSUC2 remain unchanged. Then, mission scenarios and flows are presented for all
the aforementioned use cases of I4.0 and ADS pilot. Indeed, the experiment results depicted how I4.0
and ADS pilots utilize the DEEP, fog and edge computing platform, and 5G connectivity in different
levels toward better and reliable services. In addition, the integration for a single platform (in particular,
BASS of DEEP) has been achieved. In summary, the achievements are summarised in Table 7-1.

TABLE 7-1: Final achievement per use case

Use Case Main Achievements

DT

Developed a Movement Prediction AI model that recovers
Digital Twin control commands. The Digital Twin use case
was integrated with BASS of the DEEP for exploiting the
SLA enforcement feature in order to allocate the optimal
minimum amount of resources for the service. The use case
was also integrated with the IESS for auto-packaging and
auto-deployment of the Movement Prediction inference
application. Finally, the use case was installed and
deployed in the 5TONIC 5G trials where measurements
were performed regarding application performance,
Movement Prediction performance for commands
predictions and vertical resource scaling.

ZDM

Integrated the testbed with 5G SA network, as well as other
elements of the DEEP platform, namely the DASS and the
BASS. Designed, developed and tested of an edge
intelligent for the ZDM use case. A new object detection
engine has been integrated with AWS Wavelength,
Amazon’s Edge Computing services (telco-Edge), where
the ZDM object detection runs. An ATSSS xApp has been
developed and performance results show 45% gains in
achieved throughput at the network layer.

mMTC

Integrated the mMTC testbed with BASS of DEEP, further
development and optimization of mMTC service implementation
for trial measurements, installed and deployed the mMTC trial
setup in 5TONIC integrated with DEEP, performed long-term
mMTC trial regarding application layer performance with
Ethernet and 5G, RF fingerprinting performance for intruder
detection, orchestration and automation performance for
enhanced system robustness, and scalability with resource

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 127

H2020-859881

utilization. The trial results show that the development of the
mMTC use case achieves the objectives set in the project.

ADS-UC1

Integrated 5G-NSA solution for wireless communication
from drone to edge. Utilized DCAS in the edge with newly
developed drone navigation server. Executed drone fleet
navigation with multiple drones using DCAS and
considering a drone charging spot for the multiple drone
trial. Demonstrated IDrOS software mobility features.

ADS-UC2

Integrated 5G-NSA solution for wireless communication
from drone to edge. Integrated Zenoh as data transmission
protocol for drone-to-edge data streaming. Integrated BASS
for automatic service deployment and lifecycle
management. Updated Drone Data Processor Module to
better support multiple drone trials. Updated EagleEYE
processing pipeline to better support scalability in handling
multiple drone inputs. Completed EagleStitch development
to provide panorama 2D stitching of the mission area.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 128

H2020-859881

8. Annex A- VSD in YAML format for mMTC

Representative example of the definition of a Vertical Service in the BASS. Can be codified both in JSON
and YAML. This is the Vertical Service Descriptor for the mMTC use-case in YAML format.

name: mmtc
region: 5tonic-mmtc
components:
 - name: contiki-deployment
 numReplicas: 1
 imageRepository: docker.io/ericssonsics/5g-dive:contiki
 maxWaitTime: 1200
 exposedPorts:
 - 52001
 - 52002
 - 8080
 driverSpecific:
 type: KUBERNETES
 env:
 podIP: $ComponentIP
 networkPrivileged: true
 - name: contiki-phy
 numReplicas: 1
 imageRepository: eabsics/5g-dive:contiki_phy_test2
 maxWaitTime: 3600
 exposedPorts:
 - 52001
 - 52002
 - 53001
 - 53002
 driverSpecific:
 type: KUBERNETES
 env:
 contikiclusterip: contiki-deployment
 IID: '1'
 PUB_PORT: '53001'
 CONTIKI: contiki-deployment
 PULL_PORT: '53002'
 - name: fingerprinting
 numReplicas: 1
 imageRepository: ericssonsics/5g-dive:finger
 maxWaitTime: 1800
 exposedPorts:
 - 55002
 driverSpecific:
 type: KUBERNETES
 env:
 contikiclusterip: contiki-deployment
 THRESHOLD: '0.7'

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 129

H2020-859881

9. References
GUEANT, V. (2021). Iperf - The TCP, UDP And SCTP Network Bandwidth Measurement Tool. Retrieved

from https://iperf.fr/.

O. Liberg etal. (2017). Cellular Internet of Things: Technologies, Standards, and Performance. Elsevier
Science Publishing Co Inc.

3GPP. (n.d.). TS 22.104 v17.2.0: Service requirements for cyber-physical control applications in vertical
domains, 2019-12.

GNURadio webpage. (n.d.). Retrieved from https://www.gnuradio.org/

LoRa webpage. (n.d.). Retrieved from https://www.semtech.com/lora

Pycom Fipy webpage. (n.d.). Retrieved from https://docs.pycom.io/index.html

Vijayendra Walvekar, P. (2019). Virtualizing LoRa baseband functionalities to the Edge.

GitHub/gr-lora. (2021, 01 17). Retrieved from https://github.com/rpp0/gr-lora

Docker documentation. (2021, 01 17). Retrieved from https://docs.docker.com/get-started/

ZMQ documentation. (2021, 02 01). Retrieved from https://zeromq.org/get-started/

Telegraf documentation. (2021, 01 17). Retrieved from https://docs.influxdata.com/telegraf/v1.17/

InfluxDB documentation. (2020, 02 10). Retrieved from https://docs.influxdata.com/influxdb/v2.0/get-
started/

Grafana documentation. (2020, 02 06). Retrieved from https://grafana.com/docs/grafana/latest/getting-
started/

5G-DIVE Innovations Specification. (2020, 06 10). Retrieved from https://5g-dive.eu/wp-
content/uploads/2021/01/D2.1-5G-DIVE-innovations-specification_v1.0_compressed.pdf

Contiki-NG webpage. (2021, 02). Retrieved from https://github.com/contiki-ng/contiki-ng

Bloessl, B. (2021). GNURadio IEEE 802.15.4 Source Code. Retrieved from https://github.com/bastibl/gr-
ieee802-15-4

Ettus Reasearch. (2021). Retrieved from https://www.ettus.com/

Zoleria Firefly. (2021). Retrieved from https://zolertia.io/product/firefly/

D1.1: 5G-DIVE architecture and detailed analysis of vertical use cases. (2020). Retrieved from https://5g-
dive.eu/wp-content/uploads/2021/01/D1.1_Final.pdf

D3.1: Definition and setup of vertical trial sites. (2020). Retrieved from https://5g-dive.eu/wp-
content/uploads/2020/05/D3.1.pdf

Big Data IoT WebPage. (n.d.). Retrieved from https://5g-dive.bigdataiot.com.tw/

D2.1: 5G-DIVE Innovations Specification. (2020). Retrieved from https://5g-dive.eu/wp-
content/uploads/2021/01/D2.1-5G-DIVE-innovations-specification_v1.0_compressed.pdf

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 130

H2020-859881

Mongo Database. (n.d.). Retrieved 9 23, 2020, from https://www.mongodb.com/

Redis Database. (n.d.). Retrieved 9 23, 2020, from https://redis.io/

EasyDarwin. (n.d.). Retrieved 9 23, 2020, from https://github.com/EasyDarwin/EasyDarwin

NetPipe. (n.d.). Retrieved 12 1, 2020, from https://www.ameslab.gov/scl/netpipe.

DroneKit. (n.d.). Retrieved 12 3, 2020, from https://dronekit-
python.readthedocs.io/en/latest/develop/sitl_setup.html

Zenoh. (n.d.). Retrieved 12 2, 2020, from http://zenoh.io/

Microelectronics and Information System Research (MIRC-NCTU). (n.d.). Retrieved 12 5, 2020, from
https://eic2.nctu.edu.tw/

Ardiansyah, Muhammad Febrian and William, Timothy and Abdullaziz, Osamah Ibrahiem and
Wang, Li-Chun and Tien, Po-Lung and Yuang, Maria C. (2020). EagleEYE: Aerial Edge-
enabled Disaster Relief Response System. 2020 European Conference on Networks and
Communications (EuCNC).

Yuang, M., Tien, P.L., Ruan, W.Z., Lin, T.C., Wen, S.C., Tseng, P.J., Lin, C.C., Chen, C.N., Chen, C.T.,
Luo, Y.A. and Tsai, M.R. (2020). OPTUNS: Optical intra-data center network architecture and
prototype testbed for a 5G edge cloud. Journal of Optical Communications and Networking, 12(1),
A28--A37.

Redmon, Joseph and Farhadi, Ali. (2018). Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767.

Kuznetsova, Alina and Rom, Hassan and Alldrin, Neil and Uijlings, Jasper and Krasin, Ivan and
Pont-Tuset, Jordi and Kamali, Shahab and Popov, Stefan and Malloci, Matteo and Duerig,
Tom and others. (2018). The open images dataset v4: Unified image classification, object
detection, and visual relationship detection at scale. arXiv preprint arXiv:1811.00982.

Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and
Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence. (2014). Microsoft coco:
Common objects in context. European conference on computer vision.

5TONIC Lab. (n.d.). Retrieved from https://www.5tonic.org/

5TONIC Lab, Madrid, Spain. (n.d.). Retrieved from https://www.5tonic.org/

DELL PowerEdge R430 Rack Server. (n.d.). Retrieved from
https://www.dell.com/dm/business/p/poweredge-r430/pd

Redmon, J. (n.d.). YOLO: Real-Time Object Detection. Retrieved from
https://pjreddie.com/darknet/yolo/

D2.3: Final Specification of 5G-DIVE Innovations. (2021). Retrieved from https://5g-dive.eu/wp-
content/uploads/2021/06/D2.3.pdf

H. Zhao, S. D. (2020). Distributed Redundancy Scheduling for Microservice-based Applications at the
Edge. IEEE Transactions on Services Computing.

D3.3 KPI and Performance Evaluation of 5G-DIVE Platform in Vertical Field Trials 131

H2020-859881

D1.3 . (2021). Retrieved from https://5g-dive.eu/wp-content/uploads/2021/11/D3-DIVE.pdf

D3.2. (2021). Retrieved from https://5g-dive.eu/wp-content/uploads/2021/05/D3.2-final.pdf

Kuma Uptime. (n.d.). Retrieved December 2021, from https://github.com/louislam/uptime-kuma

Nielsen, J. (1993). Chapter 5. In Usability Engineering.

InfluxDB. (n.d.). Retrieved December 2021, from https://www.influxdata.com/products/influxdb/

Telegraf plugins. (n.d.). Retrieved December 2021, from
https://docs.influxdata.com/influxdb/v2.0/reference/telegraf-plugins/

statsmodel. (n.d.). Retrieved December 2021, from https://www.statsmodels.org/stable/index.html

H2o.ai. (n.d.). Retrieved December 2021, from https://www.h2o.ai/

Mohammed M. Mabkhot, A. M.-A. (2018). Requirements of the Smart Factory System: A Survey and
Perspective . Machines.

Raspberry Pi HAT. (n.d.). Retrieved from https://www.waveshare.com/sim8200ea-m2-5g-hat.htm

RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks. (n.d.). Retrieved from
https://datatracker.ietf.org/doc/html/rfc6550

OMA Lightweight M2M server and client in Java. (n.d.). Retrieved from https://www.eclipse.org/leshan/

Kaggle. (n.d.). Retrieved from https://www.kaggle.com/uciml/zoo-animal-classification

5G trial in Milano. (n.d.). Retrieved from https://vodafone5g.it/en/sperimentazione-milano.php

Python libarary Pyro4. (n.d.). Retrieved from https://pyro4.readthedocs.io/en/stable

Mahimahi. (n.d.). Retrieved from http://mahimahi.mit.edu

Psutil cros-platform python library . (n.d.). Retrieved from https://pypi.org/project/psutil/

OpenWRT. (n.d.). Retrieved from https://openwrt.org/start

OpenWRT. (n.d.). Retrieved from https://openwrt.org/start

5Gdataset. (n.d.). Retrieved from https://github.com/uccmisl/5Gdataset

