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Abstract 
This deliverable D2.3 provides the final specification of the 5G-DIVE solution innovation. An overview 
of the framework governing the solution specification is presented first. This is then followed with 
detailed final specification for each of the targeted vertical pilots, namely Industry 4.0 and Autonomous 
Drone Scout. This deliverable is complemented with the final implementation reported in deliverable 
D2.4.  



D2.3 – Final Specification of 5G-DIVE Innovations  2 
  

H2020-859881 

 

Document properties 
Document number D2.3 
Document title Final specification of 5G-DIVE innovations 
Document editors Timothy William (NCTU) 
Document contributors ADLINK: Ivan Paez, Luca Cominardi 

ASKEY: June Liu, KJ Liu 
IDCC: Filipe Conceição, Ibrahim Hemadeh, Alain Mourad 
AAU: Hergys Rexha, Sebastien Lafond 
III: Tzu-Ya Wang 
ITRI: Andee Lin, Samer Talat 
NCTU: Muhammad Febrian Ardiansyah, Timothy William 
UC3M: Milan Groshev, Carlos Guimarães, Laura Caruso 
TELCA: Aitor Zabala, Javier Sacido, Matteo Pergolesi 
RISE: Luca Mottola, Saptarshi Hazra 
ULUND: Chao Zhang, Per Ödling 
EAB: Chenguang Lu, Gyanesh Patra 

Document reviewers UC3M: Milan Groshev, Carlos Guimarães, Laura Caruso,  
Antonio De La Oliva 
ITRI: Samer Talat 
RISE: Bengt Ahlgren 
NCTU: Timothy William 
IDCC: Filipe Conceição 

Target dissemination level Public 
Status of the document Final 
Version 1.0 
Publication Date June 30 2021 

Disclaimer 
This document has been produced in the context of the 5G Dive Project. The research leading to these 
results has received funding from the European Community's H2020 Programme under grant 
agreement Nº H2020-859881. 

All information in this document is provided “as is" and no guarantee or warranty is given that the 
information is fit for any particular purpose. The user thereof uses the information at its sole risk and 
liability. 

For the avoidance of all doubts, the European Commission has no liability in respect of this document, 
which is merely representing the author’s view. 

   



D2.3 – Final Specification of 5G-DIVE Innovations  3 
  

H2020-859881 

 

Contents 
List of Figures ........................................................................................................................................................ 5 

List of Acronyms .................................................................................................................................................. 7 

Executive Summary ............................................................................................................................................. 9 

1. Introduction ..................................................................................................................................................... 10 

2. 5G-DIVE Solution Design .............................................................................................................................. 11 

2.1. 5G Connectivity ....................................................................................................................................... 11 

2.1.1. 5G NSA .............................................................................................................................................. 12 

2.1.2. 5G SA .................................................................................................................................................. 14 

2.2. DEEP Platform ......................................................................................................................................... 16 

2.2.1. Data Analytics Support Stratum – DASS ...................................................................................... 16 

2.2.2. Business Automation Support Stratum – BASS ........................................................................... 22 

2.2.3. Intelligent Engine Support Stratum – IESS ................................................................................... 38 

3. 5G-DIVE Solution for I4.0 Use Cases ........................................................................................................... 44 

3.1. I4.0 Use Case 1: Digital Twin ................................................................................................................. 44 

3.1.1. Key Module Design .......................................................................................................................... 44 

3.1.2. Mapping to the DEEP Platform ...................................................................................................... 51 

3.2. I4.0 Use Case 2: Zero Defect Manufacturing ....................................................................................... 57 

3.2.1. Key Module Design .......................................................................................................................... 57 

3.2.2. Mapping to the DEEP Platform ...................................................................................................... 58 

3.3. I4.0 Use Case 3: Massive MTC ............................................................................................................... 61 

3.3.1. Key Module Design .......................................................................................................................... 61 

3.3.2. Mapping to the DEEP Platform ...................................................................................................... 68 

4. 5G-DIVE Solution for Disaster Relief Using Autonomous Drone .......................................................... 71 

4.1. ADS Use Case 1: Drone Fleet Navigation ............................................................................................ 71 

4.1.1. Key Module Design .......................................................................................................................... 71 

4.2. ADS Use Case 2: Intelligent Image Processing ................................................................................... 74 

4.2.1. Key Module Design .......................................................................................................................... 75 

4.3. ADS Mapping to the DEEP Platform ................................................................................................... 79 

5. Conclusion ....................................................................................................................................................... 82 

6. References ........................................................................................................................................................ 83 



D2.3 – Final Specification of 5G-DIVE Innovations  4 
  

H2020-859881 

 

7. Appendix ......................................................................................................................................................... 87 

7.1. DLT-Based Federation Support ............................................................................................................. 87 

7.2. BASS and OCS Integration Workflow .................................................................................................. 93 

7.3. Data driven RAN Intelligence ............................................................................................................... 94 

7.3.1. O-RAN architecture ......................................................................................................................... 95 

7.3.2. 3GPP Edge fabric standardization efforts ..................................................................................... 96 

7.3.3. ATSSS xApp ...................................................................................................................................... 97 

 

  



D2.3 – Final Specification of 5G-DIVE Innovations  5 
  

H2020-859881 

 

List of Figures 
FIGURE 2-1 ILLUSTRATION OF 3GPP CONNECTIVITY OPTION 1, 2 AND 3 .................................... 12 

FIGURE 2-2 5G NSA AND EDGE DATA CENTER SOLUTION FOR ADS TRIALTRIAL .................... 13 

FIGURE 2-3 5G SA SOLUTION FOR I4.0 TRIAL .......................................................................................... 15 

FIGURE 2-4: DASS ARCHITECTURE. ............................................................................................................ 17 

FIGURE 2-5: DASS SESSION ESTABLISHMENT USER-PASSWORD AUTHENTICATION ............... 18 

FIGURE 2-6: DASS ZERO-COPY COMMUNICATION ............................................................................... 21 

FIGURE 2-7: ZENOH AND ZENOH.NET PROTOCOL LAYERS. ............................................................. 22 

FIGURE 2-8 BASS UPDATED ARCHITECTURE .......................................................................................... 24 

FIGURE 2-9 CREATION OF A NEW VERTICAL SERVICE FROM A BLUEPRINT ............................... 27 

FIGURE 2-10 VISUALISATION OF THE LIST OF SERVICES .................................................................... 28 

FIGURE 2-11 VISUALISATION OF A RUNNING SERVICE WITH DETAILS ON ITS COMPONENTS
 ............................................................................................................................................................................... 28 

FIGURE 2-12 VISUALISATION OF VERTICAL REGIONS EXAMPLE VIEW ........................................ 29 

FIGURE 2-13 VSD EXAMPLE .......................................................................................................................... 31 

FIGURE 2-14 BASS AND OCS INTEGRATION ............................................................................................ 33 

FIGURE 2-15. ACTIVE MONITORING SIMPLIFIED WORKFLOW ......................................................... 36 

FIGURE 2-16 IESS UPDATED ARCHITECTURE ......................................................................................... 39 

FIGURE 3-1: SYSTEM BLOCK DIAGRAM FOR DIGITAL TWIN ............................................................. 45 

FIGURE 3-2: BASE DIGITAL TWIN SYSTEM MODULE INTERACTIONS ............................................. 46 

FIGURE 3-3 REPLAY FEATURE MODULE DESIGN .................................................................................. 47 

FIGURE 3-4 SLA ENFORCER MODULE DESIGN ....................................................................................... 49 

FIGURE 3-5: MOVEMENT PREDICTION MODULE INTEGRATION OPTIONS .................................. 50 

FIGURE 3-6: DIGITAL TWIN END-TO-END DEPLOYMENT WITH BASS ............................................ 52 

FIGURE 3-7: DIGITAL TWIN DASS-ENABLED REPLAY FEATURE ....................................................... 53 

FIGURE 3-8 DIGITAL TWIN IESS OBSTACLE AVOIDANCE ................................................................... 54 

FIGURE 3-9 SLA ENFORCER E2E MECHANISM ....................................................................................... 55 

FIGURE 3-10: DIGITAL TWIN IESS MOVEMENT PREDICTION ............................................................ 56 

FIGURE 3-11 CUBES AS A PRODUCT OF THE FACTORY ....................................................................... 57 

FIGURE 3-12 ZDM SETUP WITH AWS WAVELENGTH ........................................................................... 58 



D2.3 – Final Specification of 5G-DIVE Innovations  6 
  

H2020-859881 

 

FIGURE 3-13 BASS SERVICE INSTANTIATION ......................................................................................... 59 

FIGURE 3-14 DASS-ENABLED TELEMETRY DATA COLLECTION ....................................................... 60 

FIGURE 3-15 MMTC DEPLOYMENT DIAGRAM ........................................................................................ 63 

FIGURE 3-16 ZMQ PUB/SUB PATTERNS FOR DOWNLINK AND UPLINK SIGNALS ...................... 63 

FIGURE 3-17 AN EXAMPLE OF EXPOSING LORA APPLICATION AS A KUBERNETES SERVICE 64 

FIGURE 3-18 AN EXAMPLE OF KUBERNETES DEPLOYMENT YAML FILE FOR LORA ................. 65 

FIGURE 3-19: COMPARING PACKETS FROM THE SAME DEVICE USING SIAMESE NETWORK 66 

FIGURE 3-20: COMPARING PACKETS FROM THE DIFFERENT DEVICES USING SIAMESE 
NETWORK .......................................................................................................................................................... 66 

FIGURE 3-21: TRAINING PROCESS .............................................................................................................. 67 

FIGURE 3-22: AUTHENTICATION AND PERIODIC UPDATE FRAMEWORK .................................... 68 

FIGURE 3-23 MMTC BASS DEPLOYMENT .................................................................................................. 69 

FIGURE 3-24: RF FINGERPRINTING IESSS MAPPING ............................................................................. 70 

FIGURE 4-1 5G NSA AND EDGE SYSTEM BLOCK DIAGRAM FOR ADS ............................................. 71 

FIGURE 4-2 IDROS ARCHITECTURE ............................................................................................................ 72 

FIGURE 4-3 IDROS ORCHESTRATOR ARCHITECTURE .......................................................................... 74 

FIGURE 4-4 ADS USE CASE 2 SYSTEM OVERVIEW .................................................................................. 75 

FIGURE 4-5 EAGLESTITCH SYSTEM STITCHER MODULE PIPELINE ................................................. 77 

FIGURE 4-6 DRONE DATA PROCESSOR SYSTEM .................................................................................... 77 

FIGURE 4-7 ADS USE CASE MAPPING TO THE DEEP PLATFORM ..................................................... 79 

FIGURE 7-1 SEQUENCE MESSAGE DIAGRAM FOR BASS FEDERATION SMART-CONTRACT 
AND ADMINISTRATIVE DOMAINS DURRING FEDERATION ............................................................. 89 

FIGURE 7-2: FEDERATION USING POA CONSENSUS: (TOP) SUMMARIZED PHASE;  (MIDDLE) 
CONSUMER AD; (BOTTOM) PROVIDED AD; [46] .................................................................................... 91 

FIGURE 7-3: FEDERATION USING POW CONSENSUS: SUMMARIZED TIMES [46] ......................... 91 

FIGURE 7-4 BASS AND OCS INTEGRATION WORKFLOW .................................................................... 94 

 

  



D2.3 – Final Specification of 5G-DIVE Innovations  7 
  

H2020-859881 

 

List of Acronyms 
AD Administrative Domain 
ADS Autonomous Drone Scout 
AI Artificial Intelligence 
API Application Programming Interface 
ATSSS Access Traffic Steering, Splitting and Switching 
BASS Business Automation Support Stratum 
BSSID Basic Service Set Identifiers 
CPE Customer Provided Equipment 
CPU Central Processing Unit 
DASS Data Analytics Support Stratum 
DCAS Drone Collision Avoidance System 
DEEP 5G-DIVE Elastic Edge Platform 
DLT Distributed Ledger Technologies 
EagleEYE Aerial Edge-enabled Disaster Relief Response System; an end-to-end PiH 

detection and localization system 
EagleStitch An end-to-end 2D stitching system 
EFS Edge and Fog Computing System 
EPC Evolved Packet Core 
FDU Fog05 Deployment Unit 
GRU Gated Recurrent Units 
GUI Graphical User Interface 
HTTP Hyper Text Transfer Protocol 
I4.0 Industry 4.0 
IESS Ingellence Engine Support Stratum 
IoT Internet of Things 
KPI Key Performance Index 
LSTM Long Short Term Memory 
LXD Next generation system container manager 
MANO Management and Orchestration 
ML Machine Learning 
MNO Mobile Network Operator 
NBI Northbound Interface 
NDN Named Data Networking 
NR New Radio 
NSA Non-standalone 
NSD Network Service Descriptor 
OCS Orchestration and Control System 
OPTUNS Optical tunnel network system 
PaaS Platform-as-as-Service 
PHY Physical 
PiH Person in need of Help 
PoA Proof-of-Authority 



D2.3 – Final Specification of 5G-DIVE Innovations  8 
  

H2020-859881 

 

PoW Proof-of-Work 
PUB/SUB Publish/Subscribe 
RAM Random Access Memory 
RL Reinforcement Learning 
ROS Robot Operating System 
RPC Remote Procedure Call 
SA Standalone 
SC Federation Smart-contract 
SIM Simulator 
SLA Service Level Agreements 
SLI Service Level Indicator 
SLO Service Level Objective 
TCN Temporal Convolution Network 
TLS Transport Layer Security 
UE User Equipment 
URI Unified Resource Indicator 
UUID Universally Unique Identifier 
VAPs Virtual Access Points 
VAR Vector Autoregression Models 
VIM Virtual Infrastructure Manager 
VSB Vertical Service Blueprint 
VSD Vertical Service Descriptor 
ZDM Zero Defect Manufacturing 

 

  



D2.3 – Final Specification of 5G-DIVE Innovations  9 
  

H2020-859881 

 

Executive Summary 
This deliverable provides the final specification of the 5G-DIVE solution innovation for the targeted 
use cases in the Industry 4.0 (I4.0) and Autonomous Drones Scout (ADS) vertical pilots. The main 
achievements of this deliverable include: 

1) Designed an Service Level Agreement (SLA) enforcement framework for the services deployed 
using the DEEP platform. This framework provides a mechanism to guarantee the fulfilment of 
the negotiated SLAs between the use cases and the platform. 

2) Developed the final design framework governing the 5G-DIVE solution. This final solution was 
built on top of the initial design reported in D2.1. The final solution describes in this deliverable 
includes the underlying 5G connectivity, and the DEEP platform with its three supports systems 
namely BASS (Business Automation Support System), DASS (Data Analytics Support System), 
IESS (Intelligence Engine Support System).  

3) Applied the final design framework to the targeted I4.0 use cases, namely i) digital twinning, ii) 
zero defect manufacturing (ZDM), and iii) massive machine type communications (mMTC). 
With each use case using its own customized design to fulfil the objective. Each customized 
design is applied in the context of specific intelligence engines such as movement prediction 
and replay in digital twinning, object defect detection in ZDM, and RF radio security in mMTC. 

4) Applied the design framework to the targeted ADS use cases, namely i) drones fleet navigation 
and ii) intelligent image processing for Drones. With each use case using its own customized 
design to fulfil the objective. Each customized design is applied in the context of specific 
intelligence engines such as image analytics, geolocation and object detection in  
ADS Use Case 2. 

The final specification in this deliverable served as a basis for the implementations reported in the 
software deliverable D2.4. It is noteworthy that not all specifications in this deliverable are or will be 
implemented. All of the inputs reported in this document will serve as feedback for WP3.  
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1. Introduction 
This deliverable D2.3 is a continuation of the work carried out in D2.1 [1] and targets the final 
specification of the 5G-DIVE solution innovation for each use cases in the I4.0 and ADS vertical pilot. 
In this deliverable, final development results of the DEEP platform are reported. This development 
results include the final specification that serves as a basis for the final implementations which are 
reported in an accompanying software deliverable D2.4. Details on 5G-DIVE solution design tailored 
for each use case are also provided, while experimental results for the final implementations will be 
explored further in WP3. The integration of the 5G-DIVE solution design to each use cases will allow 
for vertical to gain insight from data through the DASS, vertical services management and automation 
through the BASS, and provisioning of AI/ML related services for the vertical through the IESS. The 
organization of this deliverable as well as this deliverable achievement are listed as follows. 

In Section 2, the final 5G-DIVE solution design are presented. This section is further divided into two 
subsections. First, Section 2.1 details the 5G connectivity solution used to support each uses cases. For 
I4.0 use case, 5G SA solution is used. While for ADS use case, 5G NSA solution is used.  
Second, Section 2.2 details the updated DEEP platform design framework, which includes the DASS, 
BASS, and IESS. For the DASS, use cases have already adopted it to perform data preprocessing, 
storage, as well as data dispatching. As for the BASS, each use cases utilizes it to serve as a common 
reference framework for lifecycle management. And lastly, the IESS is used by the use cases for 
facilitating the training and cross-validation of AI/ML models. 

Section 3, and Section 4 details the final sytem design for the I4.0, and ADS use case respectively. In 
these two sections, refinement of the system key modules, as well as addition of new modules are 
reported. In addition, details on how each use case maps to the DEEP platform as well as how each use 
cases interacts with the the DEEP component, namely the DASS, IESS, and BASS are also reported in 
the end of these sections. 

Finally, the conclusions for this deliverable is outlined in Section 5. 

Appendixes are also provided at the end of this deliverable covering the following topics: 

• Section 7.1: DLT-Based Federation Support 
• Section 7.2: BASS and OCS Integration Workflow 

The above appendixes provide feasibility study of DLT-based federation, as well as workflow details 
on the integration of BASS and OCS. These information are deemed valuable for the reader to read in 
conjunction with the innovation specifications in the main body of this deliverable. 
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2. 5G-DIVE Solution Design 
In this section, we describe the final 5G connectivity solution, as well as 5G-DIVE DEEP stratum for 
supporting the I4.0, and ADS verticals. We will be using the edge computing infrastructure to enable 
support for an end-to-end Platform-as-a-Service (PaaS) service model. Details on the edge computing 
infrastructure have been previously reported in D2.1 [1]. However, in an effort to make this document 
self-contained, some of the relevant terminology will be briefly described: 

• Edge and Fog Computing System (EFS): A logical system which serves as an environment for 
hosting virtualized functions, services, and applications. 

• Orchestration and Control System (OCS): A logical system in charge of composing, 
controlling, managing, orchestrating, and federating one or more Edge and Fog Computing 
System. 

The rest of this section are organized as follows. In Section 2.1, we will describe the details on the final 
5G connectivity solution for both use cases. 5G Non-standalone (NSA) setup will be used for 
supporting ADS, while 5G standalone (SA) setup will be used for supporting I4.0. In Section 0, we will 
describe the updates and improvements made to the DEEP strata. 

2.1. 5G Connectivity 
There are multiple connectivity options defined in the 3GPP architecture for 5G deployment [2]. As 
shown in as shown in Figure 2-1, 3GPP connectivity option option 3 and option 2 have been adopted 
in the industry to evolve from the baseline option 1 (LTE only) to support 5G NR. Option 3 is referred 
to as 5G NSA (non-standalone), where option 2 is referred as 5G SA (standalone). Option 3 enables a 
rapid introduction of 5G NR to market by  software upgrading the existing 4G EPC (Evolved Packet 
Core) (referred as 5G EPC). 5G SA (option 2) represents the next step of 5G deployment, which requires 
a newly developed 5GC (5G Core). In 5G NSA, it requires an LTE connectivity anchor. The control 
plane and mobility management are done with LTE and EPC. NR connectivity is only used for user 
plane data. Therefore, UEs have dual connectivity connecting both LTE and NR carriers 
.simultaneously. 5G NSA allows new 5G services to be introduced quickly while maximizing the reuse 
of existing 4G networks. With the 4G anchor which UEs always connect to, 5G can be added with spotty 
coverage as a capacity boost for traffic hotspots. It doesn’t require a national deployment of 5G, which 
takes time and costs to deploy. In 5G SA, NR is deployed alone with 5GC without the need for the LTE 
anchor. When a large scale of 5G network is deployed, it is natural to evolve to 5G SA to unlock the full 
potential of 5G connectivity. 5G SA is also suitable to some industrial use cases, where the 5G 
connectivity is locally deployed, e.g. in factories. In case of the mobility handling between 4G and 5G, 
it is done by the 3GPP interworking interface between EPC and 5GC. Other 3GPP connectivity options 
are lack of industry support since supporting so many options simutaneiously increase significantly 
the network and UE operation complexity.  Therefore, in 5G-DIVE project, the main stream options of 
5G NSA (option 3) and 5G SA (option 2) will be trialed, where 5G NSA will be used in the ADS trial, 
while 5G SA will be used for the I4.0 trial. 
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FIGURE 2-1 ILLUSTRATION OF 3GPP CONNECTIVITY OPTION 1, 2 AND 3 

2.1.1. 5G NSA 
For the ADS trial, 5G NSA will use leveraging the developed 5G gNB and 5G EPC supporting NSA. As 
described before, tthis allows for 5G User Equipment (UE) to not only transmit data through 4G eNB 
(both user and control planes) but also additionally through 5G gNB (only user plane). The 
initialization phase for a UE to connect to 5G NSA is described as follows: 

1. When a UE boots up, it will attach log in to the NSA network through the eNB. 
2. During the UE's running time, it will continuously measure for 5G NR Synchronization Signal 

Blocks (SSB) emitted from the gNB, and reports the measurements back to the eNB.  
3. Once the signal strength between the UE and a gNB is sufficiently strong, and the UE's 

throughput requirement demands a 5G connection, the serving eNB starts to signal to target 
gNB, and tells the EPC to modify the data plane bearer of the UE from the current eNB to target 
gNB.  

4. After the modification is done, gNB takes over eNB to continue serving the UE. Since the UE is 
mobile, the UE keeps reporting the gNB signal strength via the LTE connection to eNB, just in 
case that UE moves away from gNB coverage. When it happens, the eNB asks the UE to fall 
backs to LTELTE, and thus the data flows of the UE will not be disconnected. 

The NSA Option 3 grants gNB to set up a split data bearer in both the gNB and eNB. By doing so, a UE 
may attach to both base stations at the same time. This enables the UE to leverage higher aggregated 
bandwidth.  
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Figure 2-2 below depicts the final solution of 5G NSA and edge data centre for ADS deployed at NCTU. 
From the left of the figure, there are the integrated 4G LTE and 5G NR base station from ASKEY, 5G 
EPC from III, iMEC from ITRI, the localized drone application servers developed by NCTU on 
virtualized computing platform (Kubernetes or Openstack), and lastly, OPTUNS [3] optical tunnel 
network system to interconnect all of the components together. 

  

  

FIGURE 2-2 5G NSA AND EDGE DATA CENTER SOLUTION FOR ADS TRIALTRIAL 
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2.1.2. 5G SA 
5G SA is based on 5GC completely redesigned to realize full 5G capablities. Service-based architecture 
(SBA) is adopted, which facilitates the cloud-native design and automation, as well as increasing 
flexibility and scalability. It simplifies network operations, increaseincreases service creation agility, 
supportsupports ultra-low latency features, supportsupports advanced network-slicing functions, and 
facilitates new vertical use cases.

 

Figure 2-3 shows the 5G SA solution which will be used in the I4.0 trial. The RAN part (i.e. gNB) of the 
solution is based on Ericsson Radio Dot System, which is composed of Dot 4489, IRU 8848 and BB 6630. 
Symmetricom Sync Master is used to provide 1 PPS to BB 6630 for synchronization. 5GC is deployed 
remotely, while an UPF function is deployed locally in a server collocated with BB 6630. The UPF breaks 
out the user plane traffic locally to the 5G-DIVE Edge system to minimize the latency. A kickstart and 
application server are also included in the setup. It is used for the UPF installation. After installation, it 
is kept in the setup for maintenance and troubleshooting. A switch (router) is used to provide IP 
connectivity in the setup. It also serves as a firewall for network security. A VPN tunnel will be 
configured between the setup and the 5GC for the core network connectivity. The local equipment is 
installed in a 10U rack, referred to as Flight Rack, which is made for easy transport as a whole. 5G SA 
capable CPEs are used to provide the 5G NR connectivity to the I4.0 testbeds of Digital Twin and ZDM. 
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FIGURE 2-3 5G SA SOLUTION FOR I4.0 TRIAL 
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2.2. DEEP Platform 
The DEEP platform, as designed in D1.3 [4], comprises three main supporting strata: DASS, BASS, and 
IESS. In this section, we present an updated version of the implementation of each supporting stratum. 

2.2.1. Data Analytics Support Stratum – DASS 
Accodring to D2.1 [1], the DASS was conceived in the 5G-DIVE project as a data analytics platform 
suitable for distributed and heterogeneous edge and fog environment. This provides to the vertical 
industries the necessary support for gaining useful insight from the data generated from their business 
processes which can be potentially enriched with a variated set of context information. Moreover, the 
geo-transparent locality offered by the edge and fog system can be exploited to access data with a data-
centric network based on NDN [5] and at the same time process and analyze sensitive data where they 
are generated, thus enabling strict privacy and low latency response for mission critical systems. 
Finally, DASS enhances EFS and OCS operations by providing data analytics tools for the infrastructure 
management. 

2.2.1.1. Architecture 

In Figure 2-4, the second release for the DASS architecture implementation can be seen. Components 
with green background are components already implemented during the first release of the DASS and 
its implementation details defined in D2.1 [1]. Components with a yellow background are component 
which are implemented as part of the second release of the DASS. In the following subsections, we will 
describe in detail each of the newly developed components. 
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FIGURE 2-4: DASS ARCHITECTURE. 

Data Dispatcher 

The data dispatcher element now supports two privacy preserving mechanisms, a basic user-password 
authentication and TLS as a transport protocol. DASS’s clients and peers can use user and password for 
authentication against a router or a peer. The configuration of credentials is done via a configuration 
file defining certain properties. Figure 2-5 shows the session establishment steps with user-password 
authentication. 
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FIGURE 2-5: DASS SESSION ESTABLISHMENT USER-PASSWORD AUTHENTICATION 

At the moment of writing, the only supported TLS authentication mode is server-authentication: clients 
validate the server TLS certificate but not the other way around. That is, the same way of operating in 
the web, where the web browsers validate the identity of the server via means of the TLS certificate. In 
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order to use TLS as a transport protocol, we need first to create the TLS certificates. While multiple 
ways of creating TLS certificates exist, we used Minica [6] for simplicity. 

Data Pre-processing 

Data pre-processing can be achieve by native support of multiple data encoding, such as JSON, 
Properties, Relational, Raw, etc., along with transcoding across supported formats. The DASS encoding 
describes the value format, allowing the DASS to know how to encode/decode the value to/from a bytes 
buffer. By default the DASS is able to transport and store any format of data as long as it’s serializable 
as a bytes buffer. But for advanced features such as content filtering (using selector) or to automatically 
deserialize the data into a concrete type in the client APIs, the DASS require a description of the data 
encoding. The current version of DASS supports the following encodings for filtering and automatic 
deserialization: 

• Raw: the value is a bytes buffer 
• StringUTF8: the value is an UTF-8 string 
• Json: the value is a JSON string 
• Properties: the value is a string representing a list of keys/values separated 

by ';' (e.g. "k1=v1;k2=v2...") 
• Integer: the value is an integer 
• Float: the value is a float 
• Custom: the value is a bytes buffer with a free string allowing for instance to describe its 

encoding. 

The DASS also defines a canonical query syntax based on URIs syntax that enables filtering and 
querying for a particular subset of the data.  The data pre-processing element implements a distributed 
query representation and support the get, subscribe and eval functionalities. The get functionality 
defines a selector which implements a string which is the conjunction of a path expression identifying 
a set of paths and some optional parts allowing to refine the set of paths and associated values. 

The structure of a selector is composed of three parts: 

• expr: is a path expression. 
• filter: a list of predicates separated by '&' allowing to perform filtering on the values associated 

with the matching keys. 
• Each predicate has the form “field-operator-value” where: 

field is the name of a field in the value (is applicable and is existing. otherwise the predicate is 
false) 
operator is one of a comparison operators: < , > , <= , >= , = , != 
value is the the value to compare the field’s value with 

• fragment: a list of fields names allowing to return a sub-part of each value. 
This feature only applies to structured values using a “self-describing” encoding, such as JSON 
or XML. It allows to select only some fields within the structure. A new structure with only the 
selected fields will be used in place of the original value 
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The subscription functionality is implemented via a selector and registers an interest for being notified 
whenever a key/value with a path matching the subscriber’s selector is put, updated or removed on a 
Zenoh infrastructure. The eval functionality is a computation registered at a specific path. An eval 
function can be used to pre-process data on-demand, remove null values, normalize or anonynimize it, 
also it can be used to build a remote procedure call (RPC) system. 

Data Storage 

The DASS also provides a storage backend plug-in API, that facilitates the integration of third parties 
storage technologies. At the moment of writing this deliverable the DASS supports SQL-Based 
backends, in-memory backend, file system backend and time series backends. The DASS’s backends 
are managed via the DASS’s admin space using operations on such a given resource path (e.g. 
/@/router/<router-id>/plugin/storages/backend/<backend-id>). Where <backend-id> is a free 
identifier for the backend (it must be unique per router identified with <router-id>).  

• Adding a backend: this operation implies loading a new backend technology e.g., SQL-Based, 
in-memory, file systems, or time-series backend. Once the backend is created, the 
user/application can create one or several storages of that backend type. 

• Removing a backend: this operation refers to removing a registered backend. This operation 
will delete all the storage within that backend. 

• Checking the status of a backend: this operation will return the description (in JSON format) 
of the available backends and their related storages. 

Other key innovation is that the data storage now supports zero copy by leveraging shared memory. 
Specifically, the Zenoh-based implementation maps a memory segment (/tmp/zenoh/shm/pid) in the 
address space of a process, e.g., App1, so that several processes i.e. App2 can read (and optionally 
write) in that memory segment (/tmp/zenoh/shm/pid) without calling operating system functions. 

Zenoh then uses these shared memory zones to allocate user data and then only exchange with 
processes on the same memory domain the information necessary to access the data. As a consequence 
the overhead of sending large payload becomes constant and equal to sending the addressing 
information, as illustrated in Figure 2-6. 
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FIGURE 2-6: DASS ZERO-COPY COMMUNICATION 

This zero copy mechanism can be used in robotic and autonomous driving domains, where vehicle’s 
applications share large data between processes on the same host. In some cases these large data 
samples are images coming from cameras in other cases are point-clouds coming from 
RADARs/LIDARs. In any case, as these payloads can be several megabytes if not tens of megabytes, 
the transmission delay can become a bottleneck. In several of these applications, ideally we would want 
to pass around "pointers" to the data, but in a safe manner. Likewise, for processes that are remote we 
would want to transparently use the networking stack and send the actual data. 

2.2.1.2. High level API based on NDN 

It is worth noticing that the initial design of the DASS described below has been contributed and 
integrated into the Eclipse Zenoh open source project [7]. The terms DASS and Zenoh are therefore 
used interchangeably below since Zenoh is an actual implementation of DASS.  The DASS functionality 
provides geo-distributed storages, unifying different kind of backed such us SQL-based, non-SQL 
bases, time-series, and file systems. Therefore, DASS provides a data-centric abstraction in which 
applications can read and write data autonomously and asynchronously. The data read and written by 
Zenoh applications are associated with one or more resources identified by a URI. These URIs represent 
a hierarchical organization of data. For example, each region comprises several houses identified by 
unique IDs. This results in a key structure like /factory01/floor01/. Moreover, each data produced by 
each house, can be stored in a specific key, e.g. /factory01/floor01/room01/temperature can be used to 
store the temperature reading of a specific room.  

Data can be transparently accessed by the careful usage of selectors over the key space. For example, 
the wildcards in the key /factory01/*/*/temperature produce as result that the temperature of every 
room of every house in region01 is returned, regardless where they are stored. The routing 
infrastructure takes care of doing the necessary pattern matching between keys, selectors, publishers, 
and subscribers. By properly designing the key space, it is also possible to achieve the desired level of 
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privacy for the data. E.g., data meant to be publicly available could be stored under a specific path (e.g., 
/factory01/*/public/**) and stored only on specific public locations (e.g., regional data centres). Once 
data is successfully retrieved, data analytics can be eventually performed. 

In order to support a wide heterogeneity of scenarios, networks, and devices, we adopt a two-level 
protocol design as illustrated in Figure 2-7. The data pre-processing and the data storage components 
are implemented by the Zenoh layer. The Zenoh layer is a higher level API providing the same 
abstractions as the zenoh-net API in a simpler and more data-centric oriented manner as well as 
providing all the building blocks to create a distributed storage.  

 

 
FIGURE 2-7: ZENOH AND ZENOH.NET PROTOCOL LAYERS. 

The Zenoh layer is aware of the data content and can apply content-based filtering and transcoding. 
The key Zenoh primitives include: 

• put: push live data to the matching subscribers and storages. 
• subscribe: subscriber to live data.  
• get: get data from the matching storages and evals.  
• storage: the combination of a zenoh-net subscriber to listen for live data to store and a zenoh-

net queryable to reply to matching get requests. 
• eval: an entity able to reply to get requests. Typically used to provide data on demand or build 

a RPC system.  

2.2.2. Business Automation Support Stratum – BASS 
According to D2.1 [1], the Business Automation Support Stratum (BASS) has been conceived in the 5G-
DIVE project as an evolution of the current control systems where an operator oversees the business 
processes' administration. The BASS provides the interface to plug OSS/BSS systems into the DEEP 
platform and acts as a gateway to access all of its features. Verticals can integrate their services by 
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describing them with high-level data models (see section 2.2.2.4), manage the lifecycle of their instances 
through the BASS North-Bound Interface (see section 2.2.2.2), and include their own local computing 
and network resources so they are managed by the BASS (see section 2.2.2.5). 

Additionally, the BASS provides novel Management and Orchestration (MANO) automation for 
business processes, with a productionization of a Platform as a Service on the Edge. Some of the benefits 
include: i) not requiring highly skilled operators, ii) seamlessly optimizing the deployed services and 
iii) declarative vertical service control, leveraging the ability to describe desired states, so the vertical 
only needs to know the desired state, not how to deploy and manage it. 

The BASS will automate the orchestration of the resources and their lifecycle. Besides, the BASS in this 
second release will be capable of verifying the end-to-end business process KPIs identifying anomalies 
and minimizing the business impact using the enforcement of service level agreements (SLAs). These 
SLAs can be ensured by leveraging the AI/ML capabilities of the Intelligence Engine Support Stratum 
(IESS). 

Additionally, a study on the applicability of Distributed Leger Technology (DLT) as a mechanism of 
the external federation support element of the BASS is presented in Appendix Section 7.1. 
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2.2.2.1. Architecture 

 
FIGURE 2-8 BASS UPDATED ARCHITECTURE 

In Figure 2-8, the second release for the BASS architecture implementation can be seen. Components 
with green background are components already implemented during the first release of the BASS and 
its implementation details defined in D2.1 [1]. Components with a yellow background are component 
which are implemented as part of the second release of the BASS. In the following subsections, we will 
describe in detail each of the newly developed components. 

SLA & Policy Management 

As part of the second release feature of automatic vertical service life-cycle management through the 
SLA enforcement framework, two architecture components will be implemented from the SLA & Policy 
management, the SLA Enforcement Manager and the SLA Enforcement Closed-Loop.  

According to D2.1 [1], the SLA Enforcement Manager, is responsible for the life-cycle management of 
the SLA enforcement closed-loops, in the second release: 
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- This component will be in charge of identifying any active monitoring requirements, selecting 
the optimum active and passive monitoring probes from the catalogue (according to the SLA 
requirements) and attaching the selected probes to the vertical service deployment. 

- Additionally, it will identify the SLA enforcement capabilities, selecting the appropriate SLA 
enforcement model, and configuring its inputs and outputs. 

- As shown in Figure 2-8 above, and as discussed in D1.3 [4] Section 2.2.3, the SLA Enforcement 
Manager has a privileged connection with the IESS in order to request AI/ML services directly. 

The SLA Enforcement Closed-Loop, according to D2.1 [1], it is responsible of making the auto-scaling 
decisions over a vertical service and enforces the defined SLAs based on the monitoring information 
gathered via the DASS and the active monitoring, in the second release, 

- This component will be capable of performing auto-scaling decisions, by using either heuristics 
or ML/AI based models loaded through the platform. 

o An example of application of AI to SLA enforcement is the exemplary algorithm 
developed for the Digital Twin use case, where through reinforcement learning the 
components of a vertical service can be automatically scaled vertically, to comply with 
the Service Level Objectives (SLOs). In the second release this model will be integrated 
jointly with the evaluation of other models trained to enforce SLOs in most of the pilots. 

- Decision making models will be fed with the required active or passive monitoring information 
from the infrastructure and/or vertical services. 

- The closed-loop action pool will be determined by the Orchestrator driver, for the second 
release there will be support for Kubernetes and Fog05. 

Orchestrator Driver 

For the second release the Orchestrator driver component will be enhanced with the support for 
Kubernetes advanced features and Eclipse Fog05 [8], which is an End-to-End Compute, Storage and 
Networking Virtualisation solution. 

Northbound Interface 

The northbound interface was implicitly presented in the previous version of the architecture and 
included a RPC interface implemented over the HTTP protocol. A Web User interface has been added, 
allowing the vertical to define, manage and monitor their vertical services in a more user-friendly 
environment. Additionally, the RPC API has also been extended to support additional workflows, 
actions, and roles, such as the Vertical Service Blueprints, Descriptors, and authentication and 
authorization different user roles such as the Vertical Service Developer, Operator and the Region 
Operator. 

Business Translator 

The Business translator component has been extended to support the mapping of SLAs to KPIs and the 
ability to Negotiate SLAs from a pool of providers. Additional details of the implementation are 
provided in Section 2.2.2.7. 

Blueprints Catalogue 
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The Blueprints Catalogue has been extended to store and provide i) SLO and SLI blueprints to the 
vertical and the infrastructure providers, ii) Vertical service blueprints. 

Monitoring Catalogue 

The Monitoring Catalogue stores and manages the collection of active monitoring probes, either for 
basic or advanced metrics. Reusable probes are available to Vertical Services in order to collect common 
metrics, while other probes are customizable in order to extract metrics that are more service-specific. 

BASS - IESS interface 

As part of the BASS and IESS interface, the BASS includes additional logic to support the training of 
intelligent components, by means of the AI Component Entity. On the other side, the IESS supports a 
descriptor for defining training jobs and their runtime, called Training Component, and an inference 
descriptor called Inference Application Packaging. All these new entities coordinate the state and data 
exchange between the BASS and the IESS, seamlessly offloading AI decisions to the IESS and 
deployment and business decisions to the BASS. 

2.2.2.2. Northbound Interface 

The BASS Northbound interface offers two ways of interaction: an RPC interface implemented with 
HTTP and a Web interface. While the RPC interface is more suitable for machine-to-machine 
communications and programmatic interactions, the Web User Interface is more pleasant for the 
interaction of human users. Furthermore, the Web User Interface provides an endpoint to the OpenAPI 
document for the RPC interface. 

The Web user interface includes the following features: 

- Vertical Service Blueprint loading. It allows the vertical to load a vertical service blueprint to 
the BASS Vertical Service Blueprint Catalogue. 

- Visualization of the blueprints stored in the Vertical Service Blueprint Catalogue, including 
blueprints shared by other users. 

- Generation of a Vertical Service Descriptor from a Vertical Service Blueprint. It enables the 
vertical service operator to select the corresponding vertical service blueprint, and fill and/or 
override the deployment parameters. 

- Vertical Service life-cycle manager. It allows the vertical service operator to manage the whole 
vertical service states in a declarative way, expressing the next state for the vertical service to 
move. It allows also to manage the vertical service components, individually. Additionally, it 
allows to monitor in real-time the state of every component in the vertical service. 

- Automatic status update for the Vertical Services. 
- Vertical Service Component update. It gives the capability to change or update the vertical 

service component, either to upgrade or downgrade its version, or change its deployment and 
operational parameter. 

- IESS training state monitoring and results 
- Vertical Service AI Component life-cycle management 
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- Login with multiple roles 
- Management of regions 

The Web User Interface is implemented with plain Javascript, HTML and CSS. For the CSS we selected 
the popular Twitter Bootstrap framework [9] providing support for responsive layouts and mobile 
devices out-of-the-box. To interact with the Business Translator the Web UI uses the RPC API 
mentioned above. 

Figure 2-9, Figure 2-10, Figure 2-11, and Figure 2-12 show some screenshots of the Web UI. 

 
FIGURE 2-9 CREATION OF A NEW VERTICAL SERVICE FROM A BLUEPRINT 
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FIGURE 2-10 VISUALISATION OF THE LIST OF SERVICES 

 

 
FIGURE 2-11 VISUALISATION OF A RUNNING SERVICE WITH DETAILS ON ITS COMPONENTS 
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FIGURE 2-12 VISUALISATION OF VERTICAL REGIONS EXAMPLE VIEW 

2.2.2.3. Role Based Access Control 

This section discusses the implementation of the features of vertical service abstraction, designed and 
presented in D1.3 [4] Section 3.1.1. 

The users interacting with the BASS can be assigned one or more roles, determining the resources and 
operations they have access to. There are three main roles in the BASS: 

• Vertical Developer 
• Vertical Operator 
• Region Operator 

The implementation of roles, authentication and authorization in the BASS is implemented with Spring 
Security [10] the de-facto standard way to secure Spring-based applications. According to the 
framework specifications, the entity representing a vertical (any user of the BASS) implements the 
UserDetails interface, establishing generic methods to load user-specific data. The interface enforces 
the inclusion of a username and a password, as well as a collection of authorities, the roles assigned to 
each user. Users’ passwords in the BASS are stored securely by using the bcrypt password hashing 
function. 

For what concerns authentication, the Spring Security framework adds a chain of security filters that 
intercepts all the requests incoming at the BASS NBI. We use the default 
UsernamePasswordAuthenticationFilter for the very first authentication of the user. Username and 
password are provided in the Authorization header of the HTTP request for login, in base64 encoding, 
following the 'Basic' HTTP Authentication Scheme (RFC 7617) [11]. The secure transmission of 
credentials over the wire is realized by means of a TLS connection. After the initial login, the BASS 
generates a JSON Web Token (JWT) (RFC 7519) [12] with a relatively short expiration time to be used 
by the client for subsequent communications. The JWT can be included in the Authorization header if 
the client access programmatically to the NBI or in a cookie if the interactions happen through a 
browser. A custom Spring Security filter validates tokens and manage this kind of authentication 
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method. The JwtTokenFilter takes precedence over the username and password authentication to avoid 
the repeated transmission of the user credentials. 

The authorization to access BASS resources has two control levels on the NBI. At the first level, a role 
check is performed: the user issuing the request must have the appropriate role to access the resource. 
This is implemented by using the ‘@Secured’ annotation (JSR 250) [13] on NBI methods. For example, 
a user which is assigned only the role of Vertical Operator does not have access to write and update 
operations on Vertical Service Blueprints or Vertical Regions. The second control level checks the 
ownership of the resource by the user. Some resources managed by the BASS, like regions and Vertical 
Service Blueprints are accessible from all users for reading, as long as the user has the appropriate role. 
Write and update operations are permitted only if issued by the owner of the resource. 

2.2.2.4. Templating Services with the Vertical Service Blueprint 

This section discusses the implementation of the features of vertical service abstraction, designed and 
presented in D1.3 [4] Section 3.1.2. 

The Vertical Service Blueprint (VSB) is a template of a vertical service that can be partially customized. 
With respect to the Vertical Service Descriptor (VSD), the VSB provides a more generic definition of the 
vertical service in order to separate as much as possible the functional definition of the service from the 
configuration needed to run it on a specific environment. The latter, that we may see as the deployment 
specific configuration, is encoded into the form of a list of parameters. The parameters can have two 
effects: first, they can be used to override some values of the VSD and its components in order to adapt 
it for the specific deployment (e.g., set a URL or a password), second, they can add additional 
information to express qualitative aspects wanted for the service (e.g., quality of service, geographic 
availability). 

The implementation of the first group of parameters, for overriding some parts of a VSD, falls into the 
problem category of data templating. Given a data structure, possibly very complex and nested, there 
is the need to dynamically change some parts of it at runtime. For example, Ansible [14] a configuration 
management software, uses data templating to customize system configurations and perform variable 
substitution right before applying them on the targeted system. Some popular templating solutions we 
can mention are the Jinja templating engine [15], the Jsonnet templating language [16], and YAML 
anchors [17], even if very limited with respect to the previous two. The three technologies just 
mentioned have been evaluated to be applied to the VSB but they have been found unsuitable. Indeed, 
there is a lack of support for the integration with the Java language and moreover, they are focused on 
generating configuration files in plain text adding extra serialization and deserialization operations in 
our use-case. A custom solution has been implemented to enable parameter overriding in the VSB by 
leveraging a powerful feature of Java (provided also by many other programming languages), 
reflection [18] allowing a program to inspect and change the behaviour of its classes, interfaces, 
methods, and fields at runtime. We use these properties of reflection to declare parameters in the VSB 
in the form of formatted string and inspect the VSD model in order to retrieve or set the corresponding 
field values. 
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FIGURE 2-13 VSD EXAMPLE 

Figure 2-13 shows a trivial example of a VSD for a web application, composed of simply two 
components, the web part and a database. A simple parameter to customize this service, by changing 
the image of the web part is “web-ui.imageRepository”. The declaration of the parameter in the VSB 
enables the overriding at deployment time. When the BASS receives the VSD, together with the 
parameter above (and its new values), it inspects the VSD data structure recursively thanks to Java 
reflection, retrieves the corresponding field, and substitutes the value. 

The solution, while being simple, has two main advantages. Potentially, any field of the VSD can be 
parametrized, enabling extreme flexibility and freedom in the VSB definition by the Vertical Service 
Developer. On the other side, once the list of parameters is established, the other fields of the service 
are protected against any change. This prevents the Vertical Service Operator to perform potentially 
destructive changes to the service since their action is limited to the list of declared parameters. 

When a VSB is onboarded, the BASS validates its parameters by checking that they target existing fields. 
The validation logic is integrated into Hibernate [19], a Java framework implementing the Bean 
Validation Reference [20] and reuses the Java reflection features described above. 

The second group of parameters in the VSB includes several qualitative aspects to customize the 
deployment of the service. 

• SLA templates (SLI and SLO) 
• Parameters for AI/ML requests to the IESS 
• Geographic constraints 
• Lifetime settings 

SLA related parameters are described in Section 2.2.2.7. Parameters for the IESS are used to customize 
the AI Component descritptor discussed in Section 2.2.3.2. The geographic constraints allow for the 
selection of the location of the resources targeted for the deployment. The selection is performed by 



D2.3 – Final Specification of 5G-DIVE Innovations  32 
  

H2020-859881 

 

means of human-friendly definitions, like “continent”, “country”, and so on. The BASS selects the 
region that best matches the constraints provided and properly orchestrate its resources, as described 
in Section 2.2.2.5. Finally, the lifetime settings specify the period of time the service should remain 
active. At the end of this period the BASS will automatically stop the Vertical Service in order to release 
allocated resources, but it will leave it in a “loaded” state in order to quickly redeploy it in case of need. 

Since blueprints include a more generic description of the service and hide deployment-specific 
parameters through templating, they can be shared between all the users of the BASS. A trivial Boolean 
field establishes if a VSB is shared or not and it can be changed only by the author. By default, at the 
moment of its creation, a VSB is not shared in order for the Vertical Service Developer to perform 
several iterations of improvements and fixes on its blueprint without worrying about disclosing 
sensitive data. Once the VSB is ready it can be marked as shared to make it available to other users. All 
blueprints are collected in a catalogue at the BASS implemented by means of MongoDB, a popular 
document-oriented database. In fact, being the blueprints encoded as documents in JSON structured 
format, they perfectly fit the document-oriented data model. Furthermore, MongoDB includes 
distribution and replication features that can be used to avoid or mitigate data losses on the blueprint 
catalogue. 

2.2.2.5. Multi-region orchestration 

Support for managing multiple regions in the BASS is implemented by providing drivers for several 
resource orchestrators. Previously, the BASS was only able to be configured to manage one single 
Kubernetes region making use of the driver developed for this resource orchestrator. 

The Region Manager Service oversees managing the different regions instantiated in the BASS. During 
runtime they are stored in-memory but also backed to the internal DB used by the BASS. An initial set 
of regions can be specified in the BASS configuration file. The BASS controller has been extended to 
support the creation and deletion of regions by a Vertical user with the Region Operator role. Offers 
great flexibility as it supports deploying different components of the same Vertical Service to different 
regions, allowing scenarios where different EFS and OCS are involved. 

Additionally, support for Fog05 has also been implemented in the form of a new kind of OCS driver in 
the BASS. Figure 2-14 shows graphically the driver based architecture to manage both K8s and Fog05 
clusters. Each controls its own set of computing, networking and storage resources, used to deploy 
Vertical Services. 
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FIGURE 2-14 BASS AND OCS INTEGRATION 

The descriptor used to create new regions in the BASS is composed of four parameters: 

• Name: unique identifier of the region 
• Region Type: refers to the driver needed to manage this region, now there is support for 

Kubernetes and Fog05 regions. 
• Region Config: parameters needed to configure and manage the region, related to the driver 

used to manage the OCS like, for example, connection related parameters. 
• Geographic information: location of the resources managed by this region in terms of 

continent, country, city. 
The “Region Config” parameter has been implemented using polymorphism. This means that there 
can be different types of descriptors that conform the configuration of a region, in this case there are 
two types of region configurations, one for Kubernetes and the other one for Fog05. 

Nevertheless, both regions share these parameters, related to BASS configuration for that region: 

• maxWaitTime: time in seconds that the BASS will wait until a Vertical Service Component is 
reported as “ready” status once its deployed in the EFS. 

• maxRetries: max number of times that the BASS will redeploy a Vertical Service Component in 
case a “soft error” is reported by the OCS. 

• backoffTime: time in seconds that the BASS will wait to redeploy a Vertical Service Component 
in case of “soft error”. 

For Kubernetes regions these are the parameters that can be used to configure the driver: 

• URL: address of the Kubernetes API of target cluster. 
• User: user who will be used to authenticate with the Kubernetes API. 
• Password: password used to authenticate. 
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• Kubeconfig: location of the “kubeconfig” file with all the connection details of the target 
cluster, including certificates for secure connection. 

• SSL: indicates whether to validate cluster certificates or not. 
• Debug: indicates if extra logs will be captured in the driver connections to the Kubernetes 

cluster. 
• ConnectionTimeout: time in milliseconds to wait for stale connections to the target cluster. 
• ReplicaMinAvailability: percent of available replicas that should be atleast running before 

marking the deployment as “failed”. 
• InCluster: special parameter that tells the BASS to try to connect the Kubernetes cluster using 

the “serviceaccount” provided in the BASS deployment. This is only for the case when the BASS 
is deployed in the same Kubernetes cluster to manage as a region. 

Meanwhile, for Fog05 there is only one customizable parameters, host and port, that point to the Fog05 
instance HTTP endpoint available for the BASS to connect to. 

Internally, the BASS uses a different data structure to store and manage the regions. The structure for 
a region is composed of these attributes: 

• Id: internal identifier of the region. 
• Name: name of the region. 
• Type: type of the region, e.g., either Kubernetes or Fog05. 
• Driver: instance of the orchestrator driver object, used to manage the VS deployments in the 

region’s OCS. 
• AffinityLabels: additional information or metadata about the region. 

During runtime, additional information is probed from the regions. This information allows the BASS 
to have an idea about the capabilities of the regions regarding the workloads that can be deployed there 
and can be mapped to a set of affinities that the Vertical can impose in the Vertical Services to deploy. 
An example would be a Vertical Service requiring specific hardware requirement like processor 
architecture or making use of a particular device. This information is stored in the “AffinityLabels” 
attribute of the region object. Additional details on the BASS and OCS integration workflow can be 
found in the Appendix Section 7.2. 

2.2.2.6. Active Monitoring Framework 

The Active Monitoring framework provides full monitoring pipeline support to the Vertical Services 
deployed by the BASS. The BASS will leverage the ingestion of application metrics of a Vertical Service 
deployed, storing the data in the DASS, and offering the data stored to the Vertical. Ingested data can 
also be provided to the SLA enforcement framework to enforce the negotiated SLAs by considering the 
extracted Vertical Service metrics. 

The BASS exposes the Monitoring Catalog to the Vertical, containing all the metrics and information 
that can be automatically extracted from the applications.  
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The catalog is divided in two parts: 

• Basic metrics: the common infrastructure metrics are automatically available to all verticals 
interacting with the BASS and the set of probes available depends on the capability of the 
resource orchestrator. Some of the metrics that these probes can capture are: 

o CPU usage 
o RAM usage 
o Network usage 
o GPU usage 

• Advanced metrics: in this case the captured metrics depends on the deployed application. 
These metrics involve target different application technologies or metrics exposed by the 
application itself. The Vertical can also specify custom metrics that can be gathered from its 
application and which type of probe is needed to extract that information. 
Some examples are: 

o Metrics exposed by the application using the available Prometheus client libraries [21]. 
o Database applications like MongoDB, Redis, MySQL, etc. 
o Messaging applications like RabbitMQ, Kafka, etc. 
o Latency between different application or services. 

 
The metrics to collect are defined in the Vertical Service Descriptor in a per-component basis. Only 
some of the “basic” metrics, like CPU and RAM usage, can be defined at a higher level, in that case the 
metric will be collected for each of the components inside the Vertical Service. 
The monitoring stack, deployed initially by the BASS operator because its dependant on the Region 
Operator is composed of these services: 

• Vector [22]: Used to recollect application logs. 
• Telegraf [23]: Collects metrics at EFS level with enriched information about the running 

services, for example, Kubernetes related metadata. 
• InfluxDB [24]: Stores the collected metrics and logs. Belongs to the DASS. 

This stack is used for recollecting most of the “basic” metrics, for the “advanced” metrics specific probes 
are then deployed and configured by the BASS to recollect metrics in a custom and in a per-specific-
component way. 

Then, the BASS interacts with the DASS to extract the recollected data and make it accessible to the 
Vertical or to the SLA Enforcement framework. 

For deploying the advanced probes in Kubernetes regions, the sidecar pattern [25] is used, this pattern 
involves deploying multiple containers in a same deployment, with the extra containers fulfilling 
specific functions, like monitoring the main container. To deploy this monitoring sidecars BASS makes 
use of Telegraf Operator [26], that takes care to manage and instantiate this extra monitoring containers 
based on metadata configured by the BASS for the main container, mapped from the Vertical Service 
Component. In Figure 2-15 the architecture and a simplified general workflow for the Active 
Monitoring component are represented: 
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FIGURE 2-15. ACTIVE MONITORING SIMPLIFIED WORKFLOW 

2.2.2.7. SLA Negotiation and Management 

The Blueprints Catalogue offers a collection of generic and reusable SLO and SLI. As discussed in D1.3 
[4] Section 3.2.2, the Vertical Service Blueprint includes the list of SLI and the relevant set of SLO defined 
on top of them. SLI and SLO are hence usually very specific to the service they are defined to. Anyway, 
the BASS offers a catalogue of generic SLO and SLI that can be potentially applied to any service, in 
order to support the developer in the definition of the Vertical Service Blueprint. For example, a generic 
SLI applicable to many vertical services can be based on the CPU usage of one component and it could 
include the following information: 

• Name: Service Load 
• Component: Component A 
• Metric: CPU usage 
• Formula: Average of CPU usage over 1 minute 
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The Vertical Developer can customize the SLI in order to target is component. The catalogue can then 
offer a set of generic SLO defined on top of the previous SLI. For example, we can define the following 
two SLO: 

• Name: Critical Service 
• SLI: Service Load 
• Target: < 70 % 
• Name: Regular Service 
• SLI: Service Load 
• Target: < 90% 

The first SLO defines a more demanding target with respect to the second one. The Vertical Developer 
can directly reuse the SLOs proposed by the catalogue, customize them, or even define new ones. 

The catalogue of SLO and SLI implements a catalogue of SLA Templates pre-negotiated between the 
DEEP platform and the providers of the computing, network and storage resources. In the case of 
customization or definition of new SLI and SLO, a further iteration of the negotiation process with the 
providers may be required. See also D1.3 [4] Section 3.2.1. 

When the SLI and SLO have been defined, and included in a Vertical Service Blueprint, several 
instances of the same service can be created, each one with its own SLA. The Vertical Service Operator, 
in charge of deploying and managing vertical service, simply selects the set of SLO that best fit the 
performance requirements and budget availability of the service instance to be created. The Vertical 
Operator is not required to deal with the technical details of the service components and their related 
metrics. They simply defines the business objectives for the service deployment and the Business 
Translator (see Figure 2-8) takes care of mapping and translating the request into technical 
requirements for the infrastructure. See also D1.3 [4] Section 3.2.2. 

2.2.2.8. SLA Enforcement Framework 

As introduced in D1.3 [4] Section 3.2.3 the SLA Enforcement framework is implemented in the BASS as 
a mechanism to guarantee the fulfilment of the negotiated SLAs between the Vertical and the platform. 

Implementation wise a new component has been defined, the SLA Manager, in charge of the following 
tasks: 

• Tracking the available SLIs, region aware, that can be used to create and define a SLA for an 
specific application, using the Active Monitoring component to achieve this. 

• Negotiation of the SLAs with the Vertical while considering region capabilities and metrics. 
• Manage the lifecycle of implemented SLA Enforcers, providing the complete SLA enforcing 

closed-loop and configuring them. 
• Application of enforcing actions, dictated by the deployed SLA Enforcers through the Vertical 

Service Coordinator and the Orchestrator Driver components. 
• Tracking the fulfilment status of the negotiated SLAs, providing the data to the Verticals 

through the BASS web GUI 
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Regarding the framework for the SLA Enforcer component, the one with the real logic of enforcing the 
SLOs and choosing enforcing actions, two different interfaces have been defined, which support the 
main enforcing component: 

• Input interface: provides the retrieved SLIs of the target SLOs to be enforced from the SLA 
Manager. 

• Action interface: provides the valid set of enforcing actions that can be done at a time. 

Both interfaces are built as REST interfaces, using the OpenAPI v3 specification [27] and Swagger [28] 
for generating the documentation, leveraging and making it easier to build a middleware between both 
interfaces with the enforcing logic, retrieving and applying actions based on the technical requirements 
and capabilities of the enforced application. 

2.2.3. Intelligent Engine Support Stratum – IESS 
The Intelligence Engine Support Stratum (IESS) is an Artificial Intelligence Platform which uses data-
driven algorithms to make predictions, classifications, and decisions. This provides a tool kit to develop 
and train intelligent models at the Edge/Fog. 

The IESS offers AI/ML related services for the vertical services managed by the BASS. It manages both 
the training of the model, as well as the packaging of the latter into a minimal application (microservice) 
capable of serving prediction results. 

For model training, the IESS abstracts the interaction with several AutoML engines and AI frameworks 
and it automatically selects the proper engine or framework based on contextual information in the 
received request from the BASS. When trained, the model is packaged and stored in a catalogue in 
order to be reused for future deployments of the same vertical service. If retraining is requested, a new 
model is going to be trained and stored. 

To the best of our knowledge, there is no automated flow of AutoML/AutoAI against target accuracies 
or losses in the market, and the possibilities of offering distributed training on integrated software is 
very limited. The IESS provides a pluggable AutoML/AI platform to that integrates into the DEEP 
platform enriching its features. 

In the following subsections we discuss in more details the several features offered by the IESS. 
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2.2.3.1. Architecture 

 

FIGURE 2-16 IESS UPDATED ARCHITECTURE 

Since the first release, presented in D2.1 [1], minor modifications have been applied to the IESS 
architecture in order to simplify the interactions between the logical entities of the IESS and make it 
better understandable for the reader. The functional features of the IESS have not be changed. 
Components with a yellow background are component which are implemented as part of the second 
release of the IESS. 

With respect to the architecture presented in Figure 2-24 in D2.1 [1], the IESS Manager retains its role 
of main entity inside the IESS, in charge of controlling and coordinating all of the operations and 
interactions of the other entities. The IESS Manager directly interacts with the IESS Catalogue in order 
to persistently store and retrieve information, such as the supported AI Frameworks and AutoML 
engines together with their features, pre-trained models to be reused, packaged inference applications. 
As we can see from the figure, it controls the two main areas of operation of the IESS (shown as big 
grey boxes): 

• IESS Model Training: the logical portion of the IESS related to the training of AI/ML models. 
• IESS Execution Environment: the logical portion of the IESS related to the packaging of 

inference applications and their offering to the BASS. 
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In the previous version of the architecture presented in D2.1 [1], the IESS Model Training part was 
managed by a dedicated, more specialized component. The development process suggested that 
having the IESS Manager as a single controller simplified the whole operation and workflow. The IESS 
manager manages a set of IESS Training Plugins, selecting the most appropriate one for each request 
received by the BASS and makes use of each plugin features to deploy the corresponding IESS Training 
Engine, in charge of actually carry on the training of a model. The IESS does not manage any computing 
or networking resources: training engines as well as inference apps are deployed by the BASS 
leveraging resources managed by the latter. In fact, the BASS offers advanced orchestration features 
(i.e., distributed deployments) and specialized resources (i.e., GPU equipped nodes for faster machine 
learning training). The interaction between IESS and BASS is then bi-directional, with each component 
offering its services and features to the other and avoiding duplication of functionalities and over-
complication. 

With respect to the architecture presented in D2.1 [1], it has been made clear that the IESS Manager also 
controls the portion of the IESS Execution Environment, that offers features to package trained AI/ML 
models into inference applications and offering them to the BASS for deployment, alongside of the 
vertical service requesting them. 

2.2.3.2. Serving Intelligence Requests From the BASS 

The BASS uses two different kind of descriptors to define the components inside of a VSD, one for 
regular (non-AI powered) components and the other one for AI components. The AI component 
descriptor requires the BASS to interact with the IESS and to employ more complex workflows in order 
to achieve the deployment.  

The descriptor for an AI Component contains these extra parameters with respect to a regular 
component: 

• Dataset: Endpoint to download the dataset from. 
• AutoAIPlatform: AutoML platform to use, for now only H2O.ai is supported. 
• AI Type: type can be either “classification” or “regression”. 
• Selected algorithm: specific algorithm to use from the pool of algorithms provided by the 

AutoML platform. 
• Min Loss: minimal loss the model needs to have to be deemed a valid model, if invalid the 

model will be retrained. 
• Min Accuracy: minimal accuracy the model needs to have to be deemed a valid model, if invalid 

the model will be retrained. 
• Column Predict: target column of the dataset used for the prediction. 
• Max seconds training: max number of seconds that the model can be trained. 
• Max training retries: max amount of training attempts until the model’s loss or accuracy meets 

the vertical’s requirements. 
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The full pipeline of an AI component consists of three main phases: training, packaging and inference. 
The BASS interacts with the IESS to create the request to manage these AI Components. The full 
workflow consists of the following steps: 

1. The BASS forwards the AI Component descriptor to the IESS. 
2. The IESS maps the request and prepares a training component in order to train the AI model. 

The IESS sends back to the BASS a request to instantiate the training component. 
3. The BASS instantiates the training component and notifies the IESS when is ready. 
4. The IESS sends the training request to the deployed training component and waits until training 

finishes. 
5. Once training is finished, the produced model is uploaded to the catalog and the training 

component is uninstalled.  
6. The IESS creates the inference application from the trained model. Also the application is 

uploaded to the catalog. 
7. The IESS notifies the BASS that the training and packaging phases have completed successfully 

and that the inference application is ready to be deployed. 
8. The BASS deploys the inference application which contains the trained model and API 

endpoints to generate predictions by the Vertical or by another application. This realizes the 
inference phase. 

2.2.3.3. Supported ML Platforms 

The IESS includes a plugin system to support the interaction of several AutoML engines and AI 
frameworks. The system is designed to be easily extensible, in order to enable the future addition of 
new engines and hence new features to the IESS. 

As explained in D2.1 [1], in its first version, IESS supports only the H2O.ai AutoML platform [29]. 
During the second release the support for two additional training engines have been added, YOLOv3 
in Pytorch [30] and Keras (with Tensorflow as backend) [31]. The selection of the new engines has been 
dictated by the requirements of the use cases (see Section 3 and Section 4). 

When a request for an AI/ML service arrives at the IESS Manager, the latter selects the most appropriate 
engine to serve the request. The selection is based on contextual information included in the request 
and describing the AI/ML problem to be solved. Anyway, if more advanced control is needed, the 
selection can also be overridden. For example, for a classification or regression problem on tabular data, 
the IESS Manager selects the H2O.ai framework that provides an automated procedure to build an 
optimized model. The model is a combination of many models trained by the AutoML engine and 
combined together to give the best results in the resolution of the problem. On the other hand, YOLOv3 
is used for problems of object recognition on datasets of images, while Keras is left for the resolution of 
other problems, like time series forecasting. In the latter case, the model definition should be provided 
to the IESS by onboarding it in the IESS catalogue. The IESS takes care of packaging the model into a 
training runtime container (the training component mentioned in the workflow of Section 2.2.3.2), 
deploy it on the BASS, run it, and collect the results. 
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The IESS does not manage any resources on its own. The deployment and execution of the engines is 
demanded to the BASS, since the latter provides powerful orchestration features that can cover all of 
the IESS requirements. In a sense, the BASS and IESS are peers in the DEEP platform since one uses the 
services of the other and vice-versa. During the second release this interaction have been greatly 
improved and the IESS can request the deployment of training engines with advanced configurations. 

For example, the H2O.ai training engine is deployed as a distributed cluster and, depending on the 
number of resources available, the cardinality of nodes can be increased or decreased. On the other 
side, the training of the YOLOv3 model works better on GPU and the IESS can request the BASS to 
deploy the engine on nodes equipped with GPU. 

2.2.3.4. IESS Catalogue 

The IESS catalogue is dedicated to persistently store data and artifacts related to the services offered by 
the IESS. The type of the data elements managed by the catalogue is very heterogeneous and includes: 

• Supported AI frameworks and ML Engines together with their characteristics, features, 
metadata and implementation. 

• AI/ML pre-trained models, both in binary or serialized format in order to be reused without the 
need for retraining. 

• Runtime environment artifacts for supporting and enabling the execution of model training and 
model serving (inference). 

Given the different characteristics of the data elements to store in the IESS catalogue, we have built a 
storage stack composed of several technologies, each one dedicated to a specific type of data. MongoDB 
[32], a document-based database, stores metadata and pointers to frameworks and engines, pre-trained 
models, and runtime environments. It is used as a main knowledge base by the IESS Manager and as 
an index to retrieve other data elements. Minio [33], an object storage server compatible with Amazon 
S3 API [34], is dedicated to store binary artifacts, such as trained models, build files for runtime 
environments. Finally, a Docker Registry [35] is dedicated to the storage and distribution of runtime 
environments in the form of container images. The IESS Manager is capable of building container 
images, push them to the registry, and instruct the BASS to retrieve them in order to deploy new 
components for both training and inference serving. 

2.2.3.5. Packaging and Deploying Inference Apps 

For packaging the application BentoML [36] is used, BentoML supports a lot of different ML framework 
and models, for example H2O.ai specific models. Based on the input and the model type BentoML 
autogenerates a docker image with a REST API that will provide inference or predictions results on 
response. 

For each supported model in the IESS, a template docker image is created and made available to the 
IESS. The templates are built by using BentoML as a dependency in a custom Python script. 
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Because of the difficulty of building a new Docker image or OCI compliant image without using the 
Docker daemon, which limits the environments where the IESS can be deployed, there are also template 
images for the inference applications, built based on the original BentoML generated inference image 
template. 

Once the model is trained and retrieved in the IESS, the inference template image is downloaded, and 
the trained model artifacts are added as a new layer in the image using Jib [37] in a docker daemon-less 
way. The new image is then uploaded to the catalogue and made it available to the BASS.  
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3. 5G-DIVE Solution for I4.0 Use Cases 
This section provides the refined and final key modules design for I4.0. This will include updates and 
refinements on the modules already introduced in D2.1 [1], as well as the addition of new modules in 
Use Case 1 Digital Twin, Use Case 2 Zero Defect Manufacturing, as well as Use Case 3 Massive MTC. 
Details on Use Case 1 will be described in Section 3.1. Details on Use Case 2 will be described in Section 
3.2. Details on Use Case 3 will be described in Section 0. Finally, but yet importantly, the mapping of 
the three use cases to the DEEP platform will be presented in the end of the respective subsections. 

3.1. I4.0 Use Case 1: Digital Twin 
The Digital Twin, widely presented in D2.1 [1], is one of the key I4.0 use cases, which consists of a 
unified system mapping the physical world of an industrial machinery into a virtual world. In the scope 
of the 5G-DIVE project, we are focusing on robotic systems, namely on a robotic arm manipulator. 

This section is structured as follows. First, in Section 3.1.1 we present a refined and final version of the 
Digital Twin  system design, including the updates on its key modules design. Second, in Section 3.1.2 
we detail the main workflows of Digital Twin operation as well as its integration with the DEEP 
platform. 

3.1.1. Key Module Design 
According to our system architecture design, the EFS for this use case is composed of three parts: i) 
edge servers; ii) robotic arm; and iii) remote operator user equipment. Thus, the modules comprising 
the Digital Twin system are distributed over this infrastructure composed by Edge and Fog resources. 
Notwithstanding, the IESS modules implementing more computational demanding AI/ML tasks (e.g., 
training of the AI/ML models) that, ideally, could be also further spread to Cloud servers leveraging 
on Training-as-a-service platforms, wherever the computational power of the edge is believed to be 
insufficient.   

This section provides the refined and final Digital Twin service design (Figure 3-1). In Section 3.1.1.1 
we first provide the updates and interactions of the base modules already introduced in D2.1 [1]. In 
Section 3.1.1.2 we then provide the design of the intelligent modules such as Replay, Movement 
Prediction, Obstacle avoidance and SLA enforcement that aim to provide enhancements for the Digital 
Twin system. 
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FIGURE 3-1: SYSTEM BLOCK DIAGRAM FOR DIGITAL TWIN 

3.1.1.1. Base Digital Twin modules 

Figure 3-2 shows the Base Digital Twin modules interactions that were introduced in D2.1 [1]. 
Accordingly, each of the modules has the following functionality: 

• Drivers: directly interact with the physical object hardware and are responsible for: (i) making 
available sensor data and operational states to the other layers, and (ii) executing instructions 
or navigation commands received from the Control layer. The drivers are available for both the 
physical (PHY) or simulated (SIM) robotic arms. 

• Control: is defined as an abstraction layer that allows physical object manipulation. It receives 
a navigation command or instructions and runs them in a control loop towards the Drivers. The 
loop is then closed by the physical object continuously sending-back the current state. 

• Motion Planning: is responsible for finding inverse kinematics and building a path for the 
robot. The path created consists of a series of navigation commands sent to the control layer. 

• Interface: is the User Interface module, it enables the interaction with the Digital Twin user 
features. 

• Digital Twin Application: implements 3D models and control mechanisms to visualize the 
variations of the physical object while the control mechanism enables remote control and 
maintenance. 

• Remote Controller: in the first release, the Remote Controller was part of the Digital Twin 
application module, allowing the robot to be controlled using the graphical interface located in 
the Edge server. However, the need to plug the remote controller hardware (e.g., joystick) to the 
machine running the Digital Twin Application make this non-feasible in a real scenario. Thus, the 
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Remote Controller is now decoupled from the Digital Twin Application made available as a 
standalone module to be deployed preferentially in the operator user equipment. 

• Web Interface: implements a high-level abstraction for the core controlling functionalities, such 
as moving any of the joints of the robotic arm, calibration or failure debugging features. Along 
with the Remote Controller, it is another interfacing option between the operator and the physical 
robot. 

Figure 3-2 depicts the interactions between the different modules of the Edge Robotics Digital Twin 
service. When a user needs to remotely control a robotic arm, it issues a move joints (step 1) 
manipulation command using the Remote Control or Web Interface module. The move joints 
command is sent to the Interface module which offers a custom-made interface (e.g., Python or REST 
API), translating it in a robot specific movement command. Then, the Interface module sends the 
movement command (step 2) to the Motion Planning module. When the movement command is 
received, the Motion Planning module performs several command validations and generates the 
trajectory path consisting of an array of position commands. For each position command, each 
joint is given a specific position, velocity, and acceleration. Once the Control module receives the 
trajectory path (step 3), it runs a control-loop against the Robot Drivers module. The control-loop 
starts with the Robot Drivers sending the joint states (step 4) of the robotic arm to the Control module. 
This information is also propagated to the Digital Twin in order to update the virtual model. Next, 
the Control module interpolates the received trajectory path to get the next position command. The 
control-loop is then closed when the Control module sends the position command (step 5) to the 
Robot Drivers. Note that the Remote Control and Web interface modules can also be configured to send 
actions to the robotic arm directly via the Motion planning or Control modules (steps 2 and 3). 

 

FIGURE 3-2: BASE DIGITAL TWIN SYSTEM MODULE INTERACTIONS 
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3.1.1.2. Intelligent Digital Twin modules 

To enhance the Base Digital Twin system, 4 new intelligent modules, namely Replay, Movement 
Prediction, Obstacle avoidance and SLA enforcer are introduced, and their design is described in the 
following sections.  

1. Replay Module Design 

By the Replay feature, we refer to a digital twin replica that re-plays the movements performed by the 
physical robotic arm, during a given time interval (e.g., look-back on the last 30s) and at a specified 
movement speed. This feature is useful for failure analysis and debugging in I4.0 environments, 
allowing an operator to carefully review the past robot movement that led to a malfunction. This feature 
implements a publish/subscribe mechanism for storing and distributing the robot joint state sequences, 
which can be then queried by the Replay module based on time-series and pushed to the Digital Twin 
app for the replay visualization. 

The Replay feature module design is depicted in Figure 3-3. In a real case scenario, the robot is 
controlled by an operator. The joint states being produced are continuously pushed from the Master 
node to a Pub/sub module, that stores their timeseries in a database. Using the Web interface of the Digital 
Twin service, the operator can trigger the Replay module to fetch the most recent sequence of joint states, 
which is published to the topic of a digital replica in charge of replaying the movements in the Digital 
Twin app.  

 
FIGURE 3-3 REPLAY FEATURE MODULE DESIGN 

2. Obstacle Avoidance Module Design 

The Obstacle Avoidance module enables the robotic arm to learn on how to move from an initial position 
to a target destination, avoiding an obstacle potentially impeding its movements. The solution 
leverages on Reinforcement Learning (RL)-based algorithms. Traditionally, the moving of objects is 
either performed by a human operator controlling the robot coherently or by pre-calculating the 
trajectory of the robotic arm. Automating this task in presence of obstacles require some trajectory 
planning, which is not possible in dynamic industrial environments with frequently changing obstacles 
and target locations. An example for a typical scenario is a logistics robot, transporting things from one 
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destination to another in an ever-changing environment full of misplaced objects. In this sense, this 
feature represents a fundamental step for the development of more complex automated pick-and-place 
tasks performed by robotic arms in real industrial environments. 

The trajectory planning can be inferred using Q-Learning, similarly to what has been frequently used 
for mobile robots.   

In concrete, the implementation design of the feature consists in the following steps: 

1. The obstacle is identified whether it is in the real world (then a camera is needed to calculate its 
relative position and its dimension) or it is virtually generated in the Digital Twin simulated 
environment.  

2. The robot’s field of action is discretized into a set of possible states, i.e., the positions that the 
robot manipulator, our RL agent, can cover in a discretized 3D-space, reproduced in a Python 
environment. The discretization step affects the training time and, as it can be easily imagined, 
the granularity of the trajectory. The agent is allowed to move from one state to another, 
according to a policy composed of a finite set of actions (“up”, “down”, “left”, “right”, “up-left”, 
etc.). A source state and a destination state are chosen and a random obstacle, a parallelepiped, 
which can represent the bounding box of any physical object, is placed in between. 

3. Q-Learning is run in the IESS module. After a given number of episodes where the robot/agent 
keeps trying to move from the initial state to the destination without hitting the obstacle 
following the policy (otherwise the episode ends and the agent must restart from the source 
position), the trajectory is output.  

4. The inferred trajectory is mapped to the real or simulated environment coordinates and 
translated into a joint state sequence using a module which calculates the inverse kinematics. 
The robot is fed with the sequence, so that it can perform the pick-and-place task accordingly. 

The validity of the procedure listed above is currently under investigation. Traditional Q-Learning is 
not suitable to be used in dynamic environments where the obstacles may continuously change, as the 
training happens online and strictly depends on the environment.  Another option would be to train a 
Deep Q-Learning Network (DQN), with several environment permutations: different positions of 
source, destination and obstacle, multiple obstacles with variable shapes, etc. By this, the training of 
the neural network could be performed offline, and the robot would be able to re-plan its trajectory on-
the-fly, whenever a change in the environment is detected by a camera in physical world or the action 
field of the robot simulator is re-arranged. 

3. SLA Enforcer Module Design 

The SLA Enforcer implements AI/ML or heuristic-based mechanisms to guarantee that the SLA 
requirements for the Digital Twin service are met. The feature monitors a set of meaningful indicators 
(SLI) of the service. For example, the application latency time between the issue of a command and its 
execution in the physical robot is a key metric for a real-time remotely control of physical robot through 
its digital twin replica. If these SLIs do not meet an agreed objective (SLO), e.g. to keep a certain metric 
below a certain threshold, then the SLA is violated, leading to costly business implications. To prevent 
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this from happening, the SLA enforcer mechanism optimizes the resource utilization by performing 
e.g., resource scaling or service migration. 

This module (see Figure 3-4) is as well split into a set of submodules: the Monitoring Probe submodule 
reads the SLI data from the Digital Twin Application, extracting, for example the times of the: 

• Actuation: amount of time required for the robot arm to begin movement after a new command 
is received 

• Synchronization: accuracy of synchronization between digital twin and physical robot 
• Automated job execution: amount of time required for a robot to complete an automated job 

(e.g. pick-and-place)  

and the network parameters on which the actions listed above depend consistently:  

• Latency 
• Bandwidth 
• Jitter 
• Packet loss 

This data is pushed to a Pub/Sub module which relays it to the SLA Enforcer, where the AI/ML algorithm 
training takes place and the model is continuously updated with up-to-date data. The model 
parameters and the SLA parameters are passed to another submodule which is in charge of detecting 
the violations of the SLO. If the SLO threshold is crossed, the algorithm running in this module will 
predict the optimal hardware (CPU, memory, etc.) configuration that the infrastructure must adopt to 
prevent the violation of the SLA and then trigger the scaling of resources.    

 
FIGURE 3-4 SLA ENFORCER MODULE DESIGN 

4. Movement Prediction Module Design 

By being continuously fed with the command history required to execute a given task, the Movement 
Prediction creates AI/ML-based models for movement prediction. In doing so, it can infer the next 
movement command upon disrupted connectivity between the physical system and digital replica, 
triggering its execution in order to guarantee an uninterrupted flow of commands. Finally, a feedback 
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loop between the robotic arm and this module is established so that the AI/ML-based model is 
iteratively refined to reach optimality. 

More in detail, the Movement Prediction module is designed to support the plug and play of any kind of 
AI/ML algorithms, such as VAR, LSTM, TCN or GRU, given that they get as input a list containing the 
historic of commands and produce as the output the predicted next command(s) to be executed. In this 
sense, depending on the number of commands predicted by the AI/ML algorithm, the Movement 
Prediction module is flexible to adapt the rate at which predictions are requested. As part of the 
Movement Prediction module, it supports the training of AI/ML models using the historic of commands 
to execute one or more tasks. However, already trained AI/ML can be given to the Movement Prediction 
module, being used solely for inference tasks. 

Different options for the integration of the Movement Prediction module were studied, as depicted in 
Figure 3-5. After assessing the pros and cons, Option 1 was selected due to its less disruptive approach, 
allowing not only a seamless integration with the Digital Twin service but also the possibility to enable 
or disable this feature without impacting the vanilla Digital Twin service. Moreover, it fully relies on 
the ROS communication capabilities, already exploited by the vanilla Digital Twin service. 

                         
(a) Option 1                                                                                    (b) Option 2 

FIGURE 3-5: MOVEMENT PREDICTION MODULE INTEGRATION OPTIONS 
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A step-by-step description of Option 1 is described as follows: 

1. Movement instructions are issued by the Digital Twin controlling interfaces (e.g., Remote 
Controller or Web Interface modules), which are forwarded across the robotic stack (i.e., Interface, 
Motion Planning, Control modules). 

2. When the Control module sends the movement instructions to the Drivers, so that they are 
executed in the robotic arm, the Movement Prediction module is able to intercept those same 
messages. To do so, the Movement Prediction module is subscribed to the same ROS topics as the 
Drivers, making the whole process transparent. 

3. The Movement Prediction module stores the received movement commands in a circular buffer, 
so that only the required look-back commands are stored (i.e., history of commands used for 
computing the predictions). 

4. Whenever the Movement Prediction module receives a movement command, it restarts an 
internal timer. An eventual timeout means that a command is lost and, therefore, a prediction 
must be computed. 

a. The computed movement prediction is sent (i.e., injected) to the Drivers, being executed 
in the robotic arm. Even though this command was issued by the Movement Prediction, 
it is fed back with it due to the way ROS communications are handled. 

5. If the real movement instruction is delayed, it is discarded by the Drivers since its lifespan will 
be already expired. 

Using the previous procedure, predicted movements are only issued if a missing command is detected. 
Therefore, the Movement Prediction module does not impact or interfere with the normal operation of 
the Digital Twin service, if the latency requirements are met. 

Apart from the robot drivers, which are intended to run directly on the robotic arm, and from the Digital 
Twin application, which can be either edge functionality or an application running directly in the 
operator user equipment, the remaining modules can be deployed on both fog devices and on edge 
servers. 

In the preliminary integration stages, we found out that distributing part of the modules to the Edge 
server, as envisioned here, did not degraded the performance of the Digital Twin system in terms of 
accuracy, reliability, and bandwidth utilization, with respect to a localized robot-based solution. 
Moreover, the offloading of many of these modules represented savings in terms of the robot 
computational and power resources. 

3.1.2. Mapping to the DEEP Platform 
This section presents mapping of Digital Twin use case to the DEEP platform, being presented several 
workflows of its integration with the BASS, DASS and IESS. Section 3.1.2.1 presents the workflow for 
an end-to-end deployment of the Digital Twin solution over a distributed EFS using the BASS. Section 
3.1.2.2 depicts the workflow for the DASS-enabled Replay feature. Lastly, Sections 3.1.2.3, 3.1.2.4 and 
3.1.2.5 present the workflow for the Obstacle Avoidance, SLA Enforcer and Movement Prediction 
intelligence engines provided by the IESS. 
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3.1.2.1. End-to-End Digital Twin Service Instantiation 

Figure 3-6 shows the mapping of the designed Digital Twin use case with the BASS for end-to-end 
deployments of the Digital Twin service. In the Digital Twin use case, the BASS is used to ease the 
service creation, deployment, instantiation, and management tasks over the EFS infrastructure on 
behalf of the Remote Operator. By making use of BASS GUI described in details in Section 2.2.2.2, the 
Remote Operator fills in a Vertical Service Blueprint with business-oriented parameters, which is then 
used to request the Digital Twin Service deployment (step 1). The Vertical Service Descriptor holds 
information related to the Digital Twin key modules such as type of remote-control mechanism that 
the operator intends to use (e.g., joystick, web interface, etc), type of robot, type of operation to perform, 
etc. Next, the BASS translates the business-oriented parameters also included in the descriptor into one 
or more network service descriptors that holds detailed deployment and management information, 
such as image location, IP addresses and ports of each module, deployment location (e.g., fog, edge or 
cloud) and dependencies between the modules. Once the network service descriptors are available, the 
BASS requests their deployment and instantiation through the Orchestrator Driver (step 2). The OCS 
receives this request and through the VIM deploys each module of the Digital Twin service in the 
distributed EFS (step 3). Each node that is involved in the deployment (e.g., robot arm, user device, 
edge server) reports back to the OCS the status of Digital Twin module (deploying, running, stopped, 
error, etc) (step4). This status information is propagated back to the BASS (step 5), being presented to 
the Remote Operator through the BASS GUI (step 6). When all the modules have the status running, 
the Remote Operator can start using the Digital Twin service. 

 
FIGURE 3-6: DIGITAL TWIN END-TO-END DEPLOYMENT WITH BASS 
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3.1.2.2. DASS-enabled Replay 

Figure 3-7 shows the mapping of the Digital Twin Replay feature that exploits the functionalities made 
available by the DASS. The Remote Operator, with the help of the Digital Twin application and a 
remote-control mechanism (e.g.:  joystick , web interface), can remotely control the physical robotic arm 
(step 1). Consequently, the robot arm in real time updates the Digital Twin to keep a tight 
synchronization between the physical and digital worlds (step 2). Simultaneously, the Replay feature 
continuously collects in real time the Digital Twin states from the corresponding application using the 
DASS Data Dispatcher, storing them in the DASS Data Storage (step 3).  In a specific moment of the 
remote operation (e.g., due to robot misbehaviour), the Remote Operator can request for a replay of a 
past sequence of movements through the Web Interface GUI by specifying the desired time interval 
(step 4). The Replay module queries the DASS Data Storage about the Digital Twin states associated to 
requested time interval (step 5).  Once the past sequence data is obtained (step 6), the Replay module 
starts to playback the data in a loop fashion. The Remote Operator is informed that the action replay is 
ready (step 7) via the Web Interface GUI and in that moment, he can add a new virtual replica in the 
Digital Twin application in order to visualise the replay data. 

 
FIGURE 3-7: DIGITAL TWIN DASS-ENABLED REPLAY FEATURE 

3.1.2.3. IESS Automation for Obstacle Avoidance 

Figure 3-8 shows the mapping of the Obstacle Avoidance module with the IESS platform. In Step 1 the 
Obstacle Avoidance communicates to the IESS the positions of the source and the destination, as well as 
the position and the shape of the obstacle. The RL algorithm is run in the IESS to compute the trajectory 
the robot has to follow to move an object from A to B without hitting the obstacle. This trajectory path 
is passed back to the Obstacle Avoidance (step 2), that computes the inverse kinematics of the 
coordinates, yielding the corresponding sequence of robot joint states. The corresponding commands 
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are published to a topic of the module of the robot stack (Interface, Motion or Control, step 3). Eventually, 
the commands are executed by the Drivers (step 4) of the robot.  

 
FIGURE 3-8 DIGITAL TWIN IESS OBSTACLE AVOIDANCE 

3.1.2.4. DEEP Integration for SLA Enforcer 

Figure 3-9 shows the mapping of the SLA Enforcer module with the IESS, the DASS and the BASS. The 
Monitoring Probe module continuously extracts the SLIs values (actuation, synchronization times, etc.)  
from the Digital Twin Application and monitors the network parameters (latency, bandwidth, jitter, 
packet loss), pushing this data to the DASS (step 1).  The DASS relays the data to 1) the BASS, so that it 
can check if the thresholds associated to the SLOs are met, 2) to the IESS so that the AI/ML model can 
be updated (step 2, 3). The SLA Enforcer in the BASS continuously predict the optimal configuration. 
When the BASS detects a violation, it triggers the OCS Orchestrator to scale resources . This translates 
into a change in the Network Service Descriptor (NSD) file for adapting the resource allocation. The 
BASS pushes the new configuration file in the Orchestrator that can enact the scaling of the EFS virtual 
hardware (step 4). Eventually, the VIM executes the new configuration (step 5). Also, the BASS checks 
if the SLIs value get back below a lower-threshold, to enact the same mechanism but this time to scale 
resources down, so that the initial EFS hardware configuration can be restored back.   
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FIGURE 3-9 SLA ENFORCER E2E MECHANISM 

3.1.2.5. IESS Automation for Movement Prediction 

Figure 3-10 shows the mapping of the Movement Prediction module with the IESS. The Remote Operator 
remotely controls the physical robotic arm (step 1). Consequently, the robotic arm updates the Digital 
Twin application in real time (step 2). Simultaneously, the Digital Twin application uses the DASS Data 
Dispatcher and Data Storage to collect and store the joint states of the virtual replica (step 3). The stored 
robot data is continuously used by the IESS Model Training to train a movement prediction AI/ML 
model (step 4). When this AI/ML model is trained and after passing all the cross-validation tests, the 
IESS stores the model in its catalogue (step 4) and sends it back to the BASS to be loaded and included 
in the Digital Twin service (step 5). The BASS interacts with the OCS through the Orchestration Driver, 
requesting the instantiation of the Movement Prediction module (step 6). The OCS performs the robot 
on-device deployment (step 7) with the status of the operation sent back to the OCS (step 8). Finally, 
the BASS GUI presents the status of the deployment (step 9 and 10), informing the Remote Operator 
that the Movement Prediction module has been added to the Digital Twin service. 
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FIGURE 3-10: DIGITAL TWIN IESS MOVEMENT PREDICTION 
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3.2. I4.0 Use Case 2: Zero Defect Manufacturing 
The Zero Defect Manufacturing (ZDM) used case has been presented in D2.1 [1]. The goal of the use 
case is to attain automatic remote control of a factory. The factory is producing goods that are being 
monitored as they leave the production line for possible defects.  

This section presents the most recent developments in the ZDM use case. First, we present the updates 
on the use case and its key modules design. Second, we detail the main workflows of ZDM operation 
as well as its integration with the DEEP platform. 

3.2.1. Key Module Design 
This section focuses on describing the latest evolution for the Zero Defect Manufacturing (ZDM) use 
case, which relates to a new defect detection engine and the setup adaptation to use with a new Edge 
node, the AWS Wavelength. 

3.2.1.1. Defect Detection Engine 

Defect detection is becoming an increasingly important task during a manufacturing process. The early 
detection of faults or defects and the removal of the elements that may produce them are essential to 
improve product quality and reduce the economic impact caused by discarding defective products. 
This point is especially important in the case of products that are very expensive to produce [38]. In 
order to simulate a more realistic factory environment, a new object detection engine has been trained 
using Yolov3 [39]. In the newly trained engine, circular black marks were chosen as defects for the 
objects. Figure 3-11 shows the cubes that are placed in the production line. The mono-coloured cube is 
considered as a non defective object. The cubes with circular black marks are considered defective 
objects.  

 
FIGURE 3-11 DEFECTIVE AND NON-DEFECTIVE CUBES AS A PRODUCT OF THE FACTORY 
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3.2.1.2. AWS Wavelength 

AWS Wavelength is an AWS Infrastructure offering optimized for mobile edge computing 
applications. Wavelength Zones are AWS infrastructure deployments that embed AWS compute and 
storage services within a mobile network operator’s datacenters at the edge of the 5G network. By 
deploying computing resources co-located with a Mobile Network Operator (MNO)’s Core Network, 
application traffic from 5G devices can reach application servers running in Wavelength Zones without 
leaving the telecommunications network. This eliminates the latency that would result from application 
traffic having to traverse multiple hops across the Internet to reach their destination, enabling 
customers to take full advantage of the latency and bandwidth benefits offered by modern 5G 
networks. 

The ZDM setup has been tested with an Edge Node compute capabilities located at a Wavelength zone 
and the setup is as depicted in Figure 3-12. 

 
FIGURE 3-12 ZDM SETUP WITH AWS WAVELENGTH 

The presented setup is similar to what has been presented in D2.1 [1] for the ZDM use case, with the 
difference that the Edge node has been replaced by computing resources located in the AWS 
Wavelength zone, that is located inside a MNO’s domain. The new object detection engine has been 
trained using Yolov3 and deployed within these computing resources.  

The newly trained defect detection engine and its deployment at AWS Wavelength complete the latest 
ZDM use case setup that has been integrated with the DEEP Platform components. The next subsections 
describe the workflows of this setup with the DEEP Platform components. 

3.2.2. Mapping to the DEEP Platform 
In this section, a mapping of the Zero Defect Manufacturing use case to the DEEP platform is presented, 
along with the workflows of its integration with the BASS and DASS.  
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3.2.2.1. BASS Service Instantiation for ZDM 

Figure 3-13 shows the mapping of the BASS component in the ZDM use case, with the workflow steps 
for initiating the service and checking its status during the execution.  

 
FIGURE 3-13 BASS SERVICE INSTANTIATION 

 
The service initiation process is started by the operator (step 1), which can fill the parameters of the 
Vertical Service Blueprint in the GUI console of the BASS. The Vertical Service Descriptor holds 
configuration parameters of the service which are specific to the components needed for running the 
application. After the vertical service descriptor is defined the BASS uses the orchestrator driver (step 
2) to command the orchestrator to start the components in the EFS (step 3). These components are the 
defect detection application, the fog device control software, the driver controlling the robotic arm, and 
the telemetry agent. Once the components are deployed the camera can start streaming (step 4) and the 
factory service can start (step 5). The EFS deployed components report their status to the orchestrator 
(step 6) which updates the service status in the BASS (step 7). This way the service cycle is complete 
and the operator (step 8) monitors the result of the vertical started. 
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3.2.2.2. DASS Enabled Telemetry Data Collection 

In the ZDM use case, various forms of telemetry data are collected, as reported in D2.1 [1]. Fig. 3-13 
shows the mapping of the BASS component in the ZDM use case, with the workflow steps for initiating 
the data collection, posting, getting and subscribing for the collected telemetry data. 
 

 
FIGURE 3-14 DASS-ENABLED TELEMETRY DATA COLLECTION 

 
The service flows for telemetry data collection start in step 1, when the factory for the ZDM use case 
starts working. The camera starts streaming the video towards the Edge node and the factory starts 
working, with the cubes being placed on the running conveyor belt. The telemetry agent in the EFS 
uses the Zenoh protocol to communicate with the Zenoh router located at the DASS core (step 2). Next, 
the Zenoh router within the DASS core synchronizes with the Zenoh router located at a Cloud Services 
Provider. This synchronization is followed by a link establishment between the routers that uses the 
Zenoh protocol (step 3) to correctly direct the telemetry data into a Zenoh storage unit, located in the 
Cloud.  
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3.3. I4.0 Use Case 3: Massive MTC 
In this section, we present the key module design of the current massive MTC system and how it maps 
to the DEEP platform. In Section 3.3.1, we explore the updated system design with Kubernetes 
integration and then present the RF fingerprinting module. In Section 3.3.2, we show the mapping of 
mMTC use case to the DEEP platform by elaborating the workflow of the use case. 

3.3.1. Key Module Design 
In D2.1 [1] we incorporated cloud native design methodologies to the development of our virtualized 
IoT network stacks, i.e., LoRa and IEEE 802.15.4. The baseband functions were offloaded from the radio 
heads to virtualized software functions in the edge. In this section, we first present some updates on 
the modules developed in D2.1 [1]. Then we elaborate on the current system design with Kubernetes 
to further explore the orchestration features and to integrate with BASS.   

To enhance the mMTC system, we updated several modules designed in first release and also added 
two new modules. For LoRa emulation testbed, i) we updated the packet generator module which was 
used to emulate cell traffic. The updated packet generator module aims to reduce the complexity for 
deploying large LoRa networks. In the first release, one packet generator block was developed to 
emulate one cell. With the new module, we can use one packet generator block to emulate multi-cell 
traffic by configuring the number of cells and traffic pattern. ii) We adopted ZMQ PUB/SUB sockets 
instead of packet aggregation function for packet reassembling. The system achieves better 
performance regarding throughput as well as latency. Measurement results show that the maximum 
supported full-traffic cells for one communication stack increases significantly from 9 to 57. iii) We 
integrated the system to the Kubernetes framework for orchestration and automation of the Docker 
containers. iiii) We also use open-source database and visualization tools, i.e., Telegraf, InfluxDB and 
Grafana to visualize and record the system metrics such as resource utilization, latency, and throughput. 
Further,For IEEE 802.15.4 testbed, i) an improved RF fingerprinting algorithm was designed with 
improved performance and scalability. ii) A software module for simulating 802.15.4 devices were 
developed to facilitate system testing and scalability study. In the following, we will focus on the two 
jormajor updates for the mMTC use case, i.e. Kubernetes integration and intelligent application for RF 
fingerprinting. 

3.3.1.1. System Design with Kubernetes 

In D2.1 [1] we explored a vRAN architecture for IoT networks where IoT baseband functions are 
virtualized in Docker containers. The Docker containers are deployed on a single mini PC with a 
command line interface (CLI). However, when it comes to running containers in real cloud native 
networks, service providers can end up with manymany containers. These containers need to be 
deployed, managed, connected, monitored and updated, and this is where a container orchestration 
tool, e.g., Kubernetes, comes to playplay an important role. In this section, we will address the concepts 
of Kubernetes and how it is implemented in mMTC use case. 
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Kubernetes is an open-source orchestration software that provides an API to control how and where 
the containers will run [40]. In Kubernetes, application software resides in containers as a service and 
runs in pods which are the smallest deployable units created by service providers. A desired state of 
the application/service is described in a Kubernetes Deployment file. The deployment could be scaled 
verticallyvertically and horizontally, and pods could be replicated as configured to provide 
redundancy. Furthermore, to enable network access to the services, a Kubernetes Service is defined to 
expose the service with IP addresses and ports. Bringing Kubernetes into our work benefits us in several 
aspects: 

• Availability: Instead of deploying IoT communication stacks on one node, Kubernetes uses a 
ingmultiplecluster consisting multiple nodes for running containerized applications. A cluster 
contains at least one master node and several worker nodes, providing fault tolerance and high 
availability. A master node manages the worker nodes and scheduling of the applications. A 
worker node hosts the pods that run the component of the application workload.  

• Networking: Kubernetes allows cluster components to communicate with each other (internal) 
and with other applications outside the cluster (external). There are typically four types of 
networking for a Kubernetes cluster, i.e., container-to-container communication, pod-to-pod 
communication, pod-to-service communication, and external-to-service communication. For 
each type of communication, Kubernetes offers ways to handle the traffic routing automatically. 

• Elasticity/scalability: With billions of devices connect to the network, the data is created at an 
unprecedented rate and is also hard to predict. All of these require the system’s ability to handle 
elastic demand and shifting workloads. Kubernetes offers an infrastructure that can scale 
horizontally/vertically which scales the system resources according to the workload, to meet 
the end user demand. Furthermore, the scaling of the services can be easily done across network 
clusters without any impact on the services. 

For a better understanding of how Kubernetes manages the containers in our use case, we show in 
Figure 3-15 the mMTC deployment diagram where a three-node Kubernetes cluster is deployed. Three 
services, i.e., LoRa decoding function, IEEE 802.15.4 decoding function and RF fingerprinting are 
running on each worker node. To receive/send data from/to outside the cluster, we expose LoRa and 
IEEE 802.15.4 services with external IP addresses and ports. For example, in uplink, ttraffic data from 
IoT devices is received by the radio head and then published to the worker nodes using ZMQ. Note 
that we use MetalLB [41] as our load balancer..Kubernetes is able to load balance and distribute the 
network traffic across the nodes according to the policy applied. In the rest of this section, we present 
aa key part of the Kubernetes configuration, i.e., communication between the radio head and pods as 
well as how services are connected. Then the scripts for LoRa Kubernetes deployment are provided as 
an deployment example. Details regarding the integration with the DEEP are addressed in Section 
3.3.2.1.. 
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FIGURE 3-15 MMTC DEPLOYMENT DIAGRAM 

Normally, Kubernetes pods are created and destroyed to match the state of the cluster. However, each 
pod gets its own IP address and the set of pods running in one moment in time could be different from 
the set of pods running that application a moment later. To handle this, we expose the deployment as 
a Service. In Kubernetes, a Service is an abstraction which defines a logical set of pods and the policy 
defining the access rules. After the services, i.e. LoRa and 802.15.4,  in Kubernetes clusters areare 
exposed, we use two ZMQ PUB/SUB patterns for the connection between the radio head and the 
Kubernetes services as shown in Figure 3-16. For downlink signals, edge containers (pods) work as 
publishers and the radio head works as a subscriber. Edge containers (pods) will bind the 
corresponding service internal IP address and port, while the radio head will connect to the service 
external IP address and port. A Kubernetes Service is used to map the two sets of IP addresses and 
ports so that traffic can be load balanced across the pods. For the uplink signal, on the contrary, the 
radio head works as a publisher and edge containers work as subscribers. In this case, the radio head 
publishes the received IoT data to the edge by connecting to service external IP address and port. 
Meanwhile, edge containers (pods) bind to the corresponding internal IP address and port to receive 
data. utilizeWe utilize these two patterns in different directions since we want one service can support 
multiple radio heads (cells). Otherwise, with an increasing number of cells connected to the system, 
pods in the edge need to connect to hundreds or thousands of IP addresses and ports to receive data 
from radio heads. The system would be much more complex and difficult to deploy. 

 

 
FIGURE 3-16 ZMQ PUB/SUB PATTERNS FOR DOWNLINK AND UPLINK SIGNALS 
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Further, we take LoRa deployment as an example to show how we expose the service with an external 
IP address and port. Figure 3-17 illustrates the LoRa service configuration scripts of the .yaml file which 
specifies the configuration of the Kubernetes Service deployment. From the scripts, we observe that we 
create a new Service object named ‘lora-service-edge’, which targets TCP port 8088 on any pod with 
the ‘app=lora-edge’ label. In addition, Kubernetes assigns this Service an IP address which can be used 
to communicate with the devices outside the cluster. It is worth mentioning that we herein expose the 
Service externally using MetalLB, which is a load-balancer implementation using standard routing 
protocols [41]. Once the Service is deployed, we can publish data to the edge by connecting to the 
external IP address and the exposed port. The data then will be distributed to the specific pods using 
predefined load balancing policies. 

 

 
FIGURE 3-17 AN EXAMPLE OF EXPOSING LORA APPLICATION AS A KUBERNETES SERVICE 

Figure 3-18 presents the Kubernetes deployment scripts for LoRa Service. From the figure, we see that 
a deployment named ‘lora-deployment-edge’ is created, indicated by the metadata.name field. The 
deployment creates two replicated pods labelled as ‘lora-edge’. Having two pods running the same 
instance in the system adds the redundancy, such that oneone can take over the traffic in case the other 
fails. Each pod runs one container, i.e., edge, which runs the Docker Hub image ‘eabsics/5g-
dive:edge_v2.1.8’ to decode LoRa packets. The pods listen on port 8088 using TCP by default. Note that 
in this deployment, we set environment variables for the container IP address and port that run in the 
pod. Thus, when the pod restarts, the application will automatically connect to the newly assigned IP 
address and receive data from radio heads.  
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FIGURE 3-18 AN EXAMPLE OF KUBERNETES DEPLOYMENT YAML FILE FOR LORA 

3.3.1.2. Intelligent Application of RF Fingerprinting 

Internet of Things (IoT) devices are becoming pervasive in closed-loop control of different 
environments such as Industry, Home, Cities, etc. We need to ensure the secure connectivity of such 
devices to maintain the integrity of the sensor data and prevent undesirable data leaks. However, the 
low-power nature of the sensors limits the use of complex cryptographic functions for secure 
authentication of the devices. As an added security mechanism for these devices, RF fingerprinting can 
be used to verify the source of the received signal without extra energy and computing overhead on 
the IoT devices. RF fingerprinting uses the minute differences in the received signal caused by 
hardware impairments in the analog component of the particular device to identify that device. 

Traditionally RF fingerprinting is performed for fixed networks, where the devices in the network is 
known apriori, which limits the scalability of networks. In D2.1 [1], we showed the feasibility of using 
RF fingerprinting with fixed IoT networks. However, this method limits the adaptability of RF 
fingerprinting in dynamic networks, where new IoT devices can join the network by performing a 
registration handshake. So, we propose an alternative design for RF fingerprinting using supervised 
contrastive learning to improve the adaptability of RF fingerprinting in dynamic IoT networks. As we 
need access to the radio signals, we consider single-hop networks with our virtualized IoT gateways. 
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We store the network association packet from the devices in our IoT network as a reference packet for 
that device. We use a deep neural network to learn the mapping from radio signals to unique set of 
features using supervised contrastive learning. By comparing the set of features for an incoming test 
message from a device with the reference packet for that device, we can verify the transmitter of a 
packet. We use a Siamese network which computes the difference between the sets of features for two 
inputs to authenticate an incoming packet. Siamese network is contrastive learning based deep neural 
network archirecture. It consists of twin identical subnetworks which share the same parameters and 
weights. The set of features for radio signals from the same device would be similar. Hence the 
difference between the set of features should ideally be close to zero as shown in Figure 3-19.  Similarly, 
the set of features for radio signals from different devices would be dissimilar, the difference between 
the set of features would be large as shown in Figure 3-20. This approach is transferable to any new 
network with new devices by reusing the same neural network structure with minimal data to adapt 
for new IoT network.  

 
FIGURE 3-19: COMPARING PACKETS FROM THE SAME DEVICE USING SIAMESE NETWORK 

 
FIGURE 3-20: COMPARING PACKETS FROM THE DIFFERENT DEVICES USING SIAMESE NETWORK 

Offline Training 

Initially, we deploy M IoT sensors in a single hop network with 1 gateway in a laboratory environment. 
We collect radio signals corresponding to N packets from each of these M devices at the gateway. The 
gateway sends these radio signals to the cloud where we train the deep neural network to extract the 
set of features from these radio signals. Each packet is sliced up into smaller slices, with a sliding 
window operation for making the learned features shift-invariant. We term this collection of M*N 
signals as our dataset. 

We randomly sample a pair of slices from the training dataset and tag an ideal output for the pair. For 
generating the ideal output, we check if the random slices originate from the same device. For slices 
originating from the same device, we label the output for the pair of input slices as one, otherwise it is 
tagged as zero. 

'LVWDQFH
0HWULF

1HXUDO
1HWZRUN

3DFNHW'HYLFH�$ )HDWXUHV�$

1HXUDO
1HWZRUN )HDWXUHV�$

a�

3DFNHW'HYLFH�$

'LVWDQFH
0HWULF

1HXUDO
1HWZRUN )HDWXUHV�$

1HXUDO
1HWZRUN )HDWXUHV�%

aGPD[

3DFNHW'HYLFH�$

3DFNHW'HYLFH�%



D2.3 – Final Specification of 5G-DIVE Innovations  67 
  

H2020-859881 

 

We structure the deep neural network as a stack of feature extraction layers followed by a sequential 
representation layer as shown in Figure 3-21. The feature extraction layers extract the local temporal 
features embedded in the slices. The sequential representation layer learns the sequential characteristics 
of the local features extracted by the feature extraction layers over a whole slice. The sequential 
representation layer outputs the vector of extracted features for each input slice. We compute a L1 norm 
of the output vectors for both the inputs and compare it with the labelled output using a contrastive 
loss function. Contrastive loss is best suited for our model as it minimizes the difference for similar sets 
of features and maximizes the difference for dissimilar sets of features. The calculated loss is 
backpropagated to the layers of the neural network to adjust their parameters (weights and biases) with 
respect to the loss. Please note, in Figure 3-21, we update and propagate the loss to only one neural 
network as the same neural network is instantiated twice for two inputs. This training process 
continues until the training loss becomes stable. 

 

 
FIGURE 3-21: TRAINING PROCESS 

Device Authentication 

Once the model has been trained, it can be deployed at the IoT gateway. We use the authentication 
framework shown in Figure 3-22. 

We store the reference packet from all the devices. in the IoT network in the reference sample database, 
which is indexed by the MAC ID of the device. Note here the MAC ID is just an example. Any unique 
ID e.g., digital certificate keys, sim card info etc, can be used to index the reference packet of a device 
in the database. We first process an incoming packet to obtain the MAC ID of the transmitter. Next, we 
randomly sample an ensemble of n slices from that node’s reference packet and the incoming packet. 
We compare the output sets of features across the n slices using our Siamese network (neural network 
followed by L1 norm). If the L1 norm is less than a predefined threshold, we verify that the transmission 
is from the same node from which the reference packet is extracted. Hence the packet is now 
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authenticated and can be processed by the protocol stack. If the packet has a higher L1 norm than the 
threshold, we can discard the packet and send warning to the management system.  

 

 
FIGURE 3-22: AUTHENTICATION AND PERIODIC UPDATE FRAMEWORK 

We store all incoming authentic packets in our online training database. Each packet in the database is 
indexed by their ID. We periodically transfer the database to the cloud to retrain and update the deep 
neural network  

3.3.2. Mapping to the DEEP Platform 
This section presents mapping of mMTC use case to the DEEP platform, focusing on BASS service 
instantiation and IESS automation. In Section 3.3.2.1, we show the workflow for deployments of LoRa 
service and IEEE 802.15.4 service using BASS for service deployment, instantiation and management. 
In Section 3.3.2.2, we present the workflow for mapping RF fingerprinting to the IESS for model 
training. 

3.3.2.1. BASS Service Instantiation for mMTC 

Figure 3-23 illustrates the mapping of mMTC use case to the BASS. In the mMTC use case, the BASS is 
used on the edge to deploy and manage mMTC system which comprises a business translator, a vertical 
service manager and an orchestrator driver. During runtime, remote administrator can interact with 
the BASS and request mMTC service deployment provided by VSB as discussed in Section 2.2.2.4 (step 
1). To integrate the BASS and the OCS, a translation from the VSD to Kubernetes deployment is done 
via a Kubernetes driver. Then, the BASS instantiates the mMTC service with the customized 
configuration (step 2). The instantiation request is received by the VIM and the OCS deploys the mMTC 
service in the EFS (step 3). For IoT devices, the status of the devices (e.g. on/off status) is reported to the 
OCS (step 4). Besides, communication stack information (e.g. deployment running status, error, etc.) is 
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also reported to the OCS (step 4). The BASS collects the status information and transmit the data to the 
remote administrator (step 5 and 6). 

 
FIGURE 3-23 MMTC BASS DEPLOYMENT 

3.3.2.2. IESS Automation for RF Fingerprinting Module 

We show the IESS mapping of the RF Fingerprinting module in Figure 3-24. All IoT devices send their 
packets to their local radiohead (gateway). The radio signals corresponding to these packets are sent to 
the IoT communication stack to be processed (step 1). The IoT communication stack processes the radio 
signals and provides the processed data to the IoT application. Consequently, it also stores the radio 
signals in the DASS data storage (step 2). The stored radio signals are used for IESS model training 
using the process of offline training described previously (step 3).  The trained model is stored in the 
model catalogue (step 3) and is sent to the BASS to be loaded and included in the mMTC service (step 
4). The BASS interacts with the OCS through the Orchestration Driver, requesting the instantiation of 
the RF Fingerprinting module (step 5). The OCS deploys the RF Fingerprinting module at the EFS (step 
6) with the status of the operation sent back to the OCS (step 7). The OCS updates the RF Fingerprinting 
Module status to the BASS (step 8). 



D2.3 – Final Specification of 5G-DIVE Innovations  70 
  

H2020-859881 

 

 
FIGURE 3-24: RF FINGERPRINTING IESSS MAPPING 

 

  

5DGLRKHDG

,R7�&RPPXQLFDWLRQ�6WDFN

5)�)LQJHUSULQWLQJ�0RGXOH

,R7�$SSOLFDWLRQ

()6

'DWD�'LVSDWFKHU

'DWD
3UHSURFHVVLQJ

'DWD�6WRUDJH

'$66

0RGHO�7UDLQLQJ

0RGHO�&DWDORJXH

,(66

%XVLQHVV
7UDQVODWRU

9HUWLFDO�6HUYLFH
0DQDJHU

2UFKHVWUDWRU
'ULYHU¬

%$66

2UFKHVWUDWRU
'ULYHU¬

2UFKHVWUDWRU
'ULYHU¬

2UFKHVWUDWRU

9,0

2&6

¬6HQG
SDFNHW

�5DGLR
VLJQDO�LV

FROOHFWHG�DQG
VWRUHG

�7UDLQ�PRGHO
DQG�VDYH�WR
FDWDORJXH

�/RDG�5)
)LQJHUSULQWLQJ

0RGXOH¬,QVWDQWLDWH�5)
)LQJHUSULQWLQJ

0RGXOH

¬'HSOR\�5)
)LQJHUSULQWLQJ

0RGXOH

¬5)
)LQJHUSULQWLQJ
0RGXOH�6WDWXV

¬5)
)LQJHUSULQWLQJ
0RGXOH�6WDWXV



D2.3 – Final Specification of 5G-DIVE Innovations  71 
  

H2020-859881 

 

4. 5G-DIVE Solution for Disaster Relief Using Autonomous 
Drone 

This section provides the refined and final key modules design for Disaster Relief Using Autonomous 
Drone Scouts (Figure 4-1). This will include updates and refinements on the modules already 
introduced in D2.1 [1], as well as the addition of new modules in both ADS, Use Case 1 Drones Fleet 
Navigation, and ADS Use Case 2 Intelligent Image Processing for Drones. Details on Use Case 1 will 
be described in Section 4.1. Details on Use Case 2 will be described in Section 4.2. And finally, yet 
importantly, the mapping of ADS Use Case 1, and ADS Use Case 2 to the DEEP platform will be 
presented in Section 4.3. 

 
FIGURE 4-1 5G NSA AND EDGE SYSTEM BLOCK DIAGRAM FOR ADS 

4.1. ADS Use Case 1: Drone Fleet Navigation 
Drone fleet navigation is important functionality needed during a disaster relief mission. In this part, 
we will introduce the enhanced feature which will allow a smooth drone flight and resource 
management.  

4.1.1. Key Module Design 
During the disaster relief mission of the drone fleet, the drone navigation server and drone collision 
avoidance system (DCAS) function is applied to support drones for executing missions. However, the 
initial design of DCAS handles the computing in the fog. In this deliverable, we considered the DCAS 
to be adopted at the edge. This will be part of improving the drone navigation server software which 
can view and control multiple drones at the same console simultaneously.  The new drone navigation 
software will facilities the adoption of DCAS at the edge. On the other side, the benefits of iDrOS 
(Internet Drone Operating System) to support drone fleet navigation functionalities will be quite 
important. The iDrOS will enable the modules to run on the drone itself or at the edge.  Consequently, 
this section focuses on two systems namely DCAS and iDrOS. 
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4.1.1.1. DCAS 

During the disaster relief mission of the drone fleet, the drone navigation server at the edge and DCAS 
at the fog (i.e. drone) are applied to support drones for executing missions. The design of DCAS will 
remain the same as introduced in D2.1 [1]. In this deliverable, DCAS will be adopted in the edge as 
elaborated earlier. In particular,  we will take advantage of the 5G-Connectivity to provide low latency 
to adopt drone avoidance functionality at the edge. Also, this means utilizing the computing 
capabilities at the edge. Basically, the drones will transmit the GPS information and drone ID back to 
the navigation server at the edge over the 5G network. The new design of the navigation server is 
capable of monitoring several drones at the same time and detect collision. The current design for 
DCAS at the edge will only hoover the drone and send the request for the mission operator to handle 
this situation. In near future, the DCAS at the edge will react automatically and fly drones in a different 
pattern to avoid the collision. One of the candidate designs is to fly in a swapping pattern similar to the 
model adopted in DCAS.    

4.1.1.2. iDrOS 

iDrOS (Internet Drone Operating System) is a system support layer simplifying the development of 
drone applications implemented as a pipeline of data processing components. A component here is to 
be considered as an individual functionality in charge of a specific step in the data processing pipeline; 
for example, performing filtering of input image frames or relaying the results of object detection 
functionality to the backend. iDrOS facilitates implementing these applications by equipping 
programmers with an actor-based programming model. Single components are mapped to software 
actors. Actors are loosely coupled and interact via a data bus layer, shown in Figure 4-2 iDros 
architecture, accessed via pattern matching.  

 

FIGURE 4-2 IDROS ARCHITECTURE 
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The distinctive feature of iDrOS components is the programmers’ ability to migrate individual 
functionality across different devices. Programmers can tag part of a component state as non-volatile, 
which causes iDrOS to migrate the state along with the code corresponding to the functionality to be 
migrated. The original implementation of iDrOS, however, assumed the availability of a previously 
configured iDrOS instance whenever the functionality was to be migrated.  

Within 5G-DIVE, we furthered both the programming model and the underlying implementation of 
iDrOS to cater to high resource mobility and volatility. We have, in particular, added the ability to 
migrate entire iDrOS instances in addition to the existing functionality to migrate individual 
component functions. We leverage fog05 to this end and implement a custom orchestrator that, based 
on a given objective function that represents the desired performance, dynamically monitors the 
network conditions and accordingly adjusts the deployment configuration. 

Orchestrator: Requirements 

The design of the orchestrator has been shaped around three objectives that it must achieve. First, the 
orchestrator must capture and store data about the current network conditions. This data includes the 
number of nodes in the network, network performance, etc. Application developers who develop 
applications that are to be deployed using the orchestrator should be able to add the custom data they 
need to be recorded. Second, the orchestrator must utilize this data to make decisions on whether and 
how to modify the deployment configuration. Those decisions take the form of actions to instantiate a 
new iDrOS instance on a particular node, stop an instance that is currently running on a node, or 
migrate an instance from one node to another.  

The orchestrator must generate those actions to convert the current deployment configuration to an 
optimized one. That is generated from analysing the current data about the network and also 
application-specific data that has been added by the application developers. Third, the orchestrator 
must be able to perform the conversion of the current deployment to the optimized deployment that 
has been previously generated. This means that the orchestrator must be able to interface with the edge 
deployment platform, which is Fog05 in this case, to modify the current edge deployment to match the 
intended deployment. 

Orchestrator: Architecture 

As shown in Figure 4-3 iDrOS Orchestrator architecture, the iDrOS orchestrator architecture is based 
on three modules: Surveying, Analysis, and Execution.  

• The Surveying Module is responsible for gathering data from nodes in the network.  
• The Analysis Module is responsible for utilizing that data to scrutinize the current deployment 

configuration and generate an optimized deployment configuration.  



D2.3 – Final Specification of 5G-DIVE Innovations  74 
  

H2020-859881 

 

• The Execution Module is responsible for turning the current deployment configuration into the 
optimized one.  

FIGURE 4-3 IDROS ORCHESTRATOR ARCHITECTURE 

The deployment configuration refers to a graph of all the nodes in the network, which includes aerial 
and edge nodes. Edges in this graph represent the distance between the nodes, based on a conceptual 
notion of distance that is generally application-specific. The 3 modules are each running periodically 
so that updated information is constantly being factored into the orchestration. It is important to 
mention that the Monitoring Module is an additional module that is not strictly part of the orchestrator 
but rather runs on each node in the network to gather important monitoring data that will be sent to 
the orchestrator.  

The architecture of the orchestrator was based on maintaining a continuous flow of data. The flow of 
data goes from all the Monitoring Modules to the Metric object. Those Metric objects are collected by 
the Surveying Module and passed to the Graph Interface. The Graph Interface uses those Metrics to 
update the Network Graph object stored in the Analysis Module. The Analysis Module passes the 
Network Graph object to the highest priority Optimization Strategy that meets its execution conditions. 
The Optimization Strategy passes back an optimized intended deployment graph to the Analysis 
Module, which forwards along with the current deployment graph to the Action Interface. The Action 
Interface generates a list of Actions necessary to convert the Network Graph to the optimized intended 
graph. This list of Actions is passed to the Execution Module which executes those actions on the nodes 
that require any changes. 

4.2. ADS Use Case 2: Intelligent Image Processing 
Intelligent Image Processing provides the capability to locate PiH in a disaster-impacted area in real-
time based on aerial drone video surveillance. The detection and localization of PiH will be done by 
the EagleEYE system. For the final design, we updated a couple of modules in EagleEYE system. 
Namely Data Offloader module, Dual Object Detection module, and Visualizer module. In addition, 
we are also adding the EagleStitch system and the Drone Data Processor system.  
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Details on the additions are as follow: 

1. We added the EagleStitch image stitching system which gives us the capability to perform 
panorama stitching of a disaster-impacted area. This will help the rescue team in assessing the 
disaster impacted area during the rescue mission. 

2. We added the Drone Data Processor system which gives us the capability to inject metadata 
information to a drone stream. This is crucial as it allows us to differentiate between multiple 
drone source inputs. In addition, the Drone Data Processor system  uses Zenoh [7] as the DASS 
platform which will take care of data exchange efficiently and has several capabilities such as 
data storage and data pre-processing.  

4.2.1. Key Module Design 
For the final design of intelligent image processing system, we have EagleEYE system for performing 
PiH detection and localization, EagleStitch system for performing 2D stitching of an area, and a Drone 
Data Processor system for drone data pre-processing. Overview of the whole system can be seen in 
Figure 4-4. 

4.2.1.1. Data Offloader (EagleEYE system) 

In the first release, traditional round-robin technique is utilized to offload data (in this case image 
frame) to an available dual object detection worker. However, in our testing, we find out that the 

FIGURE 4-4 ADS USE CASE 2 SYSTEM OVERVIEW 
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traditional round-robin technique is not very efficient. It will stall frame offloading to a busy worker 
until it is available. This causes a lot of delays and makes available worker utilization low. For the final 
solution, we updated the round robin technique to be a little bit more dynamic. With this, the offloader 
will be able to offload frames to any available dual object detection worker (e.g.: worker-1 à worker-3 
à worker-2 à worker-1). Compare this to the traditional round-robin technique that can only offload 
frame to available dual object detection worker that is in order (e.g.: worker-1 à worker-2 à worker-3 
à worker-1). 

4.2.1.2. Dual Object Detection (EagleEYE system) 

In the first release, the dual object detection module consists of 3 workers to handle all of the detection 
tasks coming from a single drone. In the final solution, we update the dual-object-detection module to 
contain more workers to handle all of the detection tasks coming from multiple drones. The number of 
workers can be set according to the available GPU resources as well as the number of drones currently 
under operation. Ideally, the number of workers will be scaled up/down automatically to handle the 
processing load. 

4.2.1.3. Visualizer System 

In the first release, RTSP server is utilized to visualize the output of EagleEYE PiH detection. However, 
we find out that using RTSP to visualize the output can incur extra latency. This extra latency comes 
from the extra processes that happen inside RTSP as it is aimed more for media streaming. For the final 
solution, we will visualize the output directly on a frame-by-frame basis to display the output of both 
EagleEYE and EagleStitch system. 

4.2.1.4. Sorter (EagleEYE system) 

The sorter module is a new module placed after the dual object detection and PiH candidate selection 
module. The sorter module inputs are jumbled data coming from previous modules. Sorter is required 
so that the other modules after it (PiH persistence validation, and visualizer module) can function 
properly as they rely on a sorted data. Sorter will sort data according to frame sequence and drone ID. 
The sorting itself is based on the sorting network technique [42]. Then, the sorter will output the sorted 
data to the PiH persistence validation module. 
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4.2.1.5. EagleStitch System 

EagleStitch system is a new addition for ADS Use Case 2. EagleStitch system itself consists of a 

single Stitcher module. The EagleStitch system will be installed and run on the edge. The stitcher 
module input is images of the trial site's surrounding area. The stitcher module performs 2D-
Stitching on those images. In our design, we are using the stitching algorithm proposed in [43]. The 
number of images to be stitched will depend on the target area, as well as the flying characteristic 
of the drone. The processing pipeline of the stitching algorithm can be seen in Figure 4-5. A brief 
overview of the pipeline is the following: 

1. Feature Matching 
To detect features in an image (e.g.: corner, curves). 

2. Image Matching 
To match for images that have the same features. 

3. Bundle Adjustment 
To bundle all images with the same features. 

4. Panorama Straightening 
To align the bundled images so that they are not slanted or rotated. 

5. Blending 
To adjust and correct the gain (brightness) of the images being stitched as well as to remove 
the seams (edges) in the stitched images. 

4.2.1.6. Drone Data Processor System 

The drone data processing system is a new addition to ADS Use Case 2. This system will be 
installed and run on a fog device onboard the drone. The drone data processor is used to inject 

FIGURE 4-6 DRONE DATA PROCESSOR SYSTEM 

FIGURE 4-5 EAGLESTITCH SYSTEM STITCHER MODULE PIPELINE 
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metadata onto the captured images before sending them to the edge. This metadata information 
offers a simple way to differentiate the data that is coming from different drone sources. The 
workflow of the drone data processor can be seen in Figure 4-6. 
The drone data processing workflow is as follows: 

1. The drone starts to capture Full HD video using the onboard drone camera. From the video, 
raw image frames are then extracted. In our case, we will extract 30 image frames per 
second. These raw image frames are then converted into a 3D Numpy array. At this step, 
the images are still in their original resolution. 

2. The 3D Numpy array of the image frames are then compressed and flattened into a 1D 
Numpy array. The compression is meant to reduce the size of the image frame and to save 
network bandwidth during transmission. For the compression, we are using lossy JPEG 
compression. 

3. The 1D Numpy array is then injected with information such as Drone ID, timestamp, frame 
sequence, and any other relevant information. The information will be injected at the end 
of the 1D Numpy array. 

4. The 1D Numpy array is then encoded into bytes for transmission. 
5. The bytes are then published to the Edge using Zenoh-net. 



D2.3 – Final Specification of 5G-DIVE Innovations  79 
  

H2020-859881 

 

4.3. ADS Mapping to the DEEP Platform 
Figure 4-7 shows the complete mapping of ADS Use Cases to the DEEP platform. In ADS Use Case 1, 
the DASS is used for the fog device.  In ADS Use Case 2, the DASS is used on both the fog device as 
well as the edge. DASS is used to perform data pre-processing and data storage tasks. The BASS is used 
on the edge for the deployment and management of EagleEYE and EagleStitch system. Apart from 
deployment and management, the BASS is also used for active monitoring. This active monitoring is 
especially useful in the management of key modules that benefit greatly from scaling, such as 
EagleEYE’s dual object detection module. Finally, the IESS is used on the edge for the automatic 
training and storing of the trained model for EagleEYE’s dual object detection module. Details on the 
object detection algorithm, object of interest for detection (e.g.: ‘person’, ‘flag’), as well as the desired 
precision level will be input to the IESS for an automated training process. The different trained models 
can also be stored in IESS for future use.  

  

FIGURE 4-7 ADS USE CASE MAPPING TO THE DEEP PLATFORM 
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The flow for ADS Use Case 1 is from Step A to Step C, while the flow for ADS Use Case 2 is from Step 
1 to Step 15. 

The complete workflow of the ADS Use Case 1 are as follows: 

A. Exchange flight status: based on Zenoh, the EFS, DASS stores the drone data such as Drone ID 
and GPS. Then, each drone broadcasts the trajectory repetitively.  

B. Collision detection: Each drone location is used by drone fleet navigation software to decide the 
drone mission at the edge. Where the done automation path is sent to the edge, Based on the 
DCAS detection mechanism [1]. 

C. Collision avoidance: DCAS will use the automation path and the stored data to trace any risk 
and then change the drone path if collision risk is detected in the previous step. 

The complete workflow of the ADS Use Case 2 are as follows: 

1. The IESS first retrieves the dataset from the DASS for training. This dataset will be a collection 
of images that contain person and flag objects. The dataset can be a custom dataset or sourced 
from the publicly available repository. 

2. The IESS then trains object detection models based on the dataset provided in Step 1. After 
training, the trained models are stored in the IESS model catalogue for future use and reference. 
After being stored in the IESS model catalogue, the trained model will also be available for other 
verticals to use. 

3. The BASS then reads the VSB and VSD to prepare for the instantiation of EagleEYE and 
EagleStitch. The VSB and VSD will contain all of the necessary parameters for the instantiation. 
In the case of EagleEYE instantiation, the BASS will load the previously trained model from the 
IESS. After reading the VSB and VSD, the BASS performs the actual instantiation through the 
help of the OCS. 

4. The OCS instantiates EagleEYE and EagleStitch with the instruction provided by the BASS. Both 
EagleEYE and EagleStitch will be instantiated as an EFS component on the edge. A monitoring 
probe will also be installed in both EagleEYE and EagleStitch for telemetry data collection. 

5. The BASS subscribes to the telemetry data stored at the DASS. Based on this telemetry data, the 
BASS will be able to perform management activities such as scaling up/down system 
deployment. 

6. The drone then starts publishing data to the edge through the Radio Access Network (RAN). 
The published data is a pre-processed data by the drone data processor. 

7. At the edge, the DASS consumes the published data and store them. 
8. EagleEYE and EagleStitch consume the pre-processed drone data stored in the DASS 

simultaneously. 
9. EagleEYE and EagleStitch perform computation. EagleEYE will perform PiH detection, while 

EagleStitch will perform 2D-Stitching. 
10. EagleEYE and EagleStitch publish the collected telemetry data to the DASS. For EagleEYE, an 

example of the telemetry data is per frame inference time latency, the number of image frames 
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processed, worker utilization. For EagleStitch, an example of the telemetry data is stitching 
latency and stitching status. 

11. Both EagleEYE and EagleStitch results are visualized for the operator. In the case of EagleEYE, 
it will be a video that is marked with the bounding boxes of PiH detection, as well as PiH GPS 
location. For EagleStitch, it will be a stitched image of the target area. 

12. Based on the PiH detection result, EagleEYE will send the PiH GPS location information to the 
drone navigation for drone trajectory update. 

13. The Drone navigation calculates waypoints for drone automatic navigation based on the PiH 
GPS location information received in the previous step. These waypoints are then sent to the 
drone through the RAN. 
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5. Conclusion 
This deliverable presents the final specification of the 5G-DIVE solution for the use cases targeted in 
the I4.0 and ADS vertical pilots. 

Section 2 presented the final design framework for the solution targeted in 5G-DIVE. It first describes 
the 5G connectivity solution used to support the verticals. Next, 5G-DIVE DEEP platform was 
presented. Describing in details the update and improvement made compared to the previous design 
reported in D2.1 [1]. 

Section 3 describe in details the final system design for each use cases. Building on top of the design 
framework in Section 2. Elaboration on how each use case maps to the DEEP platform, as well as how 
each use cases interacts with the DASS, BASS, and IESS are also presented. 

The final specification described in this deliverable served as a basis for the implementations. The 
achievement for this deliverable are as follows. 5G Connectivity solution of each use cases, final design 
of the DEEP platform, as well as a complete solution tailored for each use cases that utilizes the DEEP 
platform. Evaluation on the implementations in each use cases will be reported in WP3. 
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7. Appendix 
In this section feasibility study of DLT-based federation, as well as workflow details on the integration 
of BASS and OCS are provided respectively in Section 7.1, and Section 7.2. 

7.1. DLT-Based Federation Support 
This section presents the applicability of Distributed Leger Technology (DLT) as a mechanism of the 
external federation support element of the BASS. The goal of the DLT-based federation support is to 
improve the orchestration and control processes by automating the service federation across multiple 
administrative domains (ADs). Federation has been described as a concept for integrating multiple ADs 
at a different granularity into a unified open platform where the federated resources can trust each 
other at a certain degree. The federation of resources between ADs was introduced in 5G Coral 
Deliverable 3.2 [44] here we analysed the profit-maximized federations and advanced resource 
provisioning. In this section, we will focus on the federation of services between ADs, where network 
services deployment is extended over the infrastructure of an external domain. First, we will describe 
the service federation procedures. Then, we will elaborate on how the external federation support element 
of the BASS applies DLT for service federation. Finally, we will show experimental validation based on 
Edge robotics use case and summarize the obtained results.  

Service Federation 

Service federation is a concept where a consumer domain through its orchestrator requests an 
extension of a service (or part of a service) to be deployed over a provider domain. The orchestrator of 
the provider domain monitors the complete deployment process of the service extension. In order to 
successfully complete a service federation [45] [46], there are several steps that are executed in 
sequence: 

• Registration: initial step in which the ADs that are involved in the service federation establish 
a peer-to-peer interconnectivity or register to a central entity. The registration step defines the 
type of federation, which can be open or closed. As an open service federation can be considered 
when external new domains are more easily establish the interconnectivity. The closed 
federation includes pre-defined participants with strict policies and rules that are set and 
defined by the ADs. 

• Discovery: in this step the involved ADs exchange information on their computing and 
capabilities to provide services or resources. Each AD holds and periodically updates a global 
view of the available services at the external ADs. 

• Announcement: the consumer domain initiates this step once it has been decided the need to 
federate a service (or part of a service) in an external domain. An announcement is broadcasted 
to all the potential provider ADs. The announcement is composed of the requirements for a 
given services. 

• Negotiation: all the potential provider ADs receive the announced offer and sends back an 
answer including the pricing of the service. 
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• Acceptance and deployment: The consumer AD collects all the responses from the potential 
provider ADs and selects a single offer that is most suitable for him. The selection process is 
entirely dependent on the consumer AD internal policies and preferences. The consumer AD 
sends back an acceptance reply and starts the deployment of the requested federated service. 

• Usage & Charging: once the service is deployed in the providers domain, the provider notifies 
the consumer AD and sends all the necessary information for the consumer AD to include the 
federated service as part of its end-to-end service chain. From that moment, the provider AD 
starts charging the federated service during its lifecycle, until it is terminated.  

We would like to stress out that security, privacy, and trust among the participating ADs in the service 
federation is crucial in all the previous steps. Due to competitive reasons, different ADs would not 
reveal much information regarding the underlying infrastructure or the full capabilities for service 
deployment.    

Applying DLT for Federation 

The sequential execution of the service federation steps can take from more than a minute to over an 
hour depending on how they are implemented. In a fog environment that is dynamic and 
heterogenous, the underlying infrastructure of each AD is continuously changing, and the state of a 
resource can change in order of seconds.  To improve the federation process in a secure manner, the 
BASS through the external federation support element offers the service federation process to run over 
DLT. More specifically, the federation procedures to be executed on a Federation smart-contract (SC) 
which is running on top of a permissioned blockchain. The focus of the SC design is to maintain 
neutrality and privacy while overseeing the federation procedures that involve all ADs. 

Each AD sets up a single node as part of the peer-to-peer blockchain network. The distributed nature 
of blockchain allows scalability while maintaining the security. The ADs communicate with the 
Federation SC through transactions and every transaction is recorded in the blocks. The generation of 
blocks depends on the consensus protocol. The choice of the consensus protocol would determine the 
speed and the security level of the federation process. For example, the Proof-of-Authority consensus 
increases the speed, while the Proof-of-Work mechanism increases the security of the blockchain.  

Each AD that wants to join establishes connectivity with at least a single node in the blockchain network 
using a new and locally deployed node. It registers to the Federation SC with a single transaction using 
its unique blockchain address. In the registration transaction the Federation SC records the relevant 
information of the registering AD and its service footprint. This process is equivalent to the registration 
step explained before and it is relatively simple to be realized. Once the registration is completed, the 
AD is ready to consume or provide federated services. 

Figure 7-1 shows the interactions of the consumer and provider domains Orchestrators with the BASS 
Federation SC for a single service federation process. When a consumer AD needs a federated service, 
it creates a federation announcement (step 1). The announcement is sent as a transaction to the 
Federation SC which records the announcement as a new auction process on the blockchain (step 2).  
Then, the Federation SC broadcasts the announcement to all registered ADs (step 3). Please note that 
the discovery step is omitted in the design of the Federation SC because the privacy and security of the 
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ADs are protected by hiding their address in the broadcast announcement. Once the broadcasted 
announcement is received, the potential providers analyse the requirements and place a bid offer to the 
Federation SC (step 4 & 5). Each offer is recorder by the Federation SC (step 6). In our vision the 
consumer domain oversees the negotiation and acceptance steps. In that way, the consumer AD has 
full control and freedom to apply any selection policies. Consequently, the consumer AD is notified for 
any new bidding offer and polls the Federation SC to obtain information of each bidding offer (step 7,8 
& 9). Once the consumer AD selects a winning provider AD, it closes the auction in the Federation SC 
(step 10 & 11).  The winning provider is recorded in the Federation SC and a message is broadcasted to 
all the participating ADs that the auction has finished, and a winner is chosen (step 12 & 13). Each of 
the participating ADs attempts to find out if he is the chosen winner in order to deploy the service. As 
shown in Figure 7-1 only the winning provider AD is granted access to the information (step 14 & 15). 
At this point the negotiation and acceptance steps are completed and the deployment of the federated 
service has started (step 16). Once the deployment is finished, the provider AD confirms the operation 
by sending transaction to the Federation SC (step 17). The Federation SC records the successful 
deployment and starts charging for the federated service (step 18). Finally, the Federation SC notifies 
the consumer AD of successful federated service deployment (step 19 & 20) so the consumer AD can 
start using it. 

 
FIGURE 7-1 SEQUENCE MESSAGE DIAGRAM FOR BASS FEDERATION SMART-CONTRACT AND ADMINISTRATIVE 

DOMAINS DURRING FEDERATION 

Experimental Validation 

To prove the feasibility of the DLT service federation concept we deployed a trusty and untrusty 
experimental scenario where we performed federation over an Edge robotics use case. The presented 
DLT-based federation can be useful in Edge robotics scenarios [47] here highly mobile robots demand 
frequent change of point service in the access network which is currently feasible within single AD. 
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Often, and Edge robotics service require fast and short-lasting expansion of the access point service 
footprint over multiple administrative domains.  

The consumer AD infrastructure in our testbed consists of a host that runs LXD virtualization on top. 
The host is orchestrated by the consumer orchestrator which is a simple custom developed orchestrator 
that uses fog05 as distributed Virtual Infrastructure Manager (VIM) to deploy virtual Access Points 
(vAPs).  The provider AD is isolated from the customer domain. Contains a single host and a Provider 
orchestrator orchestrates the virtualized LXD infrastructure through a new isolated instance of fog05. 
The BASS external federation support is implemented as two instances of Ethereum blockchain. The 
instances are deployed over virtual machine on a server. Both instances contain the Federation SC 
described before. The first instance is running Proof-of Authority (PoA) consensus for trusty 
communication, and the second instance Proof-of-Work (PoW) for untrusty communication.  

The experimental scenario is mimicking a real use-case where mobile robot is instructed to deliver 
goods in an area. In order to finalize the task, the robot needs to drive from the consumer domain 
covered area to the area of coverage of the provider domain. Based on the real-time robot location the 
consumer orchestrator knows when the robot is about to leave the coverage area and triggers the 
federation procedure. After the triggering, the consumer orchestrator proceeds with the federation 
procedure as described. The provider domain is selected as winner, establishes an overlay inter-domain 
link to the consumer domain and deploys the federated vAP. After the deployment of the federated 
vAP has finished, the provider orchestrator confirms the deployment to the Federation SC by storing 
the BSSID of the deployed AP. The consumer orchestrator will use this information to perform 
handover to the federated AP. 
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FIGURE 7-2: FEDERATION USING POA CONSENSUS: (TOP) SUMMARIZED PHASE;  

(MIDDLE) CONSUMER AD; (BOTTOM) PROVIDED AD; [48] 

We evaluated the time performance of the Edge robotics federation for each of the PoA-based and PoW-
based scenarios. To that end the bottom graph on Figure 7-2 presents the accumulated times for the 
federation procedures in both consumer and provider domain using PoA consensus. The average 
federation time is 12.97 seconds for the consumer domain and 3.98 seconds for the provider domain. 
Figure 7-2 in the middle breaks down all the phases in the consumer domain that occur within the 
previously mentioned 12.97 seconds and are needed for the consumer domain to retrieve the BSSID of 
the federated vAP in the provider domain.  

Figure 7-2 on the top breaks down all the phases in the provider domain where we can see that the 
negotiation and bidding process until the provider domain is elected as winning provider takes 3.98 
seconds. More specifically, it takes 3.98 seconds from the time the provider receives the broadcast 
announcement until the deployment is ready to start.  

 
FIGURE 7-3: FEDERATION USING POW CONSENSUS: SUMMARIZED TIMES [48] 
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The results of the PoW-based scenario and untrusty communication are shown in Figure 7-3. The graph 
shows only the accumulated times for both domains. Compared to the PoA-based solution, the PoW-
based solution takes significantly more time to negotiate and complete the federation process using the 
DLT. Due to the PoW consensus mechanism the federation completed phase is completed within 24.3 
seconds, nearly double the time of the PoA-based solution. 
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7.2. BASS and OCS Integration Workflow 
Figure 7-4 presents the BASS and OCS integration workflow steps. In the first step the Vertical service 
Coordinator (a.k.a BASS Controller) trigger the funtioncality of creating a vertical service on the 
Fog05Driver that was development for this purpose. Then the Fog05Driver is in charge of translating 
the generic Vertical service descriptor file to a specific Fog05 descriptor that is called FDU (Fog05 
Deployment Unit) descriptor. If it’s necessary an specific  Fog05DriveConfig class contains 
configuration options for the Fog05 Region/Driver. One example would be connection details, 
credentials, etc. Then the Fog05Driver issues a “on-board” POST request to the fog05-rest-server by 
passing in the body the FDU in json format. The fog05-rest-server will then validate it and on-board 
the FDU in Fog05 server. The response is an OK message and the poputalte FDU including the UUID 
of the newly created descriptor. Step two refers the instantiation of the onboarded FDU, this is achieved 
by sending an “instantiate” POST request to the fog05-rest-server including the created UUID. The 
response is a descriptor’s instance UUID and a OK status. 

Step three of the workflow refers to triggering the “delete” vertical service, the Fog05Driver will send 
a DEL request to the fog05-rest-server by passing the UUID of the FDU descriptor’s instance. The 
response will be an OK status. Finally, step four of the workflow deals with removing “off-loading” 
the vertical service descriptor from the Fog05 Server. The Fog05Driver will send a DEL request to the 
fog05-rest-server by passing the UUID of the FDU descriptor. The response will be an OK status. 
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FIGURE 7-4 BASS AND OCS INTEGRATION WORKFLOW 

 

7.3. Data driven RAN Intelligence  
The 5G-DIVE project relies on Edge computing resources to assist the different use cases in improving 
their performance on different aspects, the majority of improvements being use case specific, i.e., at the 
application layer. However, an Edge computing fabric or, in the case of Open-Radio Access Network 
(O-RAN) standards, an O-RAN Radio Intelligent Controller (RIC), can also serve the 5G network to 
provide improvements at the Network Layer. The ways to achieve this are to either deliver an 
intelligent engine to an edge fabric node or to a RIC node. The intelligent engine will run as an Over-
the-Top application (OTT), and will be able to improve network layer functions.  
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The ZDM use case relies on a video stream to detect defective objects. Preliminary tests on the 5G 
connectivity have shown that a commercial 5G deployment may have difficulties sustaining a 
continuously reliable video stream. This is an important finding that becomes even more relevant if the 
required stream quality for detection is a higher resolution setting than the currently used camera, that 
is HD, such as 2K, 4K or 8K (keeping sustained quality). It becomes therefore important for the ZDM 
use case to address throughput improvement strategies in order to improve the QoE of the video being 
streamed. This is done in the following couple of sections. Next section provides an introduction to the 
O-RAN architecture and the current 3GPP standardization work for 3GPP networks Edge access. The 
following section describes the concept of Intelligent engine that will be used in the ZDM use case to 
achieve higher available throughput. 

7.3.1. O-RAN architecture 
Some of the latest mobile network developments of the past years have included work on aspects 
around an open and virtualized RAN. In virtue of control and user plane separation (CUPS) in 5G 
service-based architecture (SBA), the functions that derive policies can be located apart from main 5G 
core network functions, opening the door for more virtualized functionalities.  

The O-RAN Alliance has been driving the standardization efforts to achieve this vision. The concept of 
an open RAN translates into an open hardware and cloud platform, that telecom manufacturers, 
suppliers and operators can use to deploy their networks. The goal of such open platforms is to reduce 
the current number of proprietary product architectures and vendor specific Operations and 
Management (O&M), with the goal of increasing efficiency of both deployments and operations. To 
deploy and operate on open platforms, virtualization of network functions is a key aspect.  

Besides the increased efficiency of both deployments and operations, virtualized network deployments 
in open platforms provide an easier infrastructure for embedded AI-enabled RAN control. Figure 7-5 
Open RAN architecture depicts the basic architecture for Open RAN.  
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FIGURE 7-5 OPEN RAN ARCHITECTURE 

Besides the separation of control and user planes by introducing new interfaces and functional base 
station components, the figure depicts two RAN Intelligent Controllers (RICs), one for near-real time, 
and another for non-real time intelligence. As depicted as well in the figure, there are a number of RAN 
functions that are controlled at the RICs. It is important to note that, because these functions pertain to 
the application layer, whether they relate to mobility, QoS, interference management, or any other 
function, they are OTT. As the architecture is compliant and complementary to 3GPP (and other bodies) 
standards, the RIC can be seen as a deployment node for any kind of RAN intelligence, especially via 
AI/ML. Key enablers for data driven intelligence are databases that keep storing useful telemetry data 
to serve a specific intelligent application purpose.  

7.3.2. 3GPP Edge fabric standardization efforts 
RAN deployments that follow a pure 3GPP architecture can also have many of their functions 
optimized via Edge nodes. Current standardization efforts in 3GPP include works from almost all 
Service and System Aspects (SA) working groups, namely from SA2-SA6. SA2 is covering core network 
enhancements. A mapping between the 3GPP CN architecture including the enhancements specified 
in SA2 and the 5G-DIVES solution was presented in D1.3 [zz]. SA3 is covering security aspects while 
SA4 conducts works on media processing, and SA5 is responsible for general management aspects.  

In SA6, the working group responsible for the application layer architecture, normative specification 
work has been initiated for enabling Edge Applications. The objective of this work is to define an 
enabling layer to facilitate communication between the Application Clients (AC) running on the UE 
and the Edge Application Servers (EAS) deployed on the Edge Data Network. 

The support of interworking between the Edge fabric and 3GPP networks is therefore a very active 
effort, and this effort will pave the way towards a global adoption of Edge Computing fabric and 
pervasive deployments of Edge Networks that can serve both the end consumers and industry 
verticals. 
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Both the RICs defined in the O-RAN architecture and the Edge fabric supporting pure 3GPP networks 
can therefore be seen as hosts for OTT applications that can control and improve a number of aspects 
and functions in the RAN.  

Particularly in the case of RIC deployments, intelligent control applications are named xApps or rApps, 
depending on whether they are deployed at the near-real time RIC or non-real time RIC. xApps can be 
deployed at the Edge in private premises or environments. The benefit of deploying xApps in private 
networks is twofold. Firstly, the telemetry data is stored within the private network, not leaving a 
public domain, enhancing security aspects. Secondly, the latency associated with an Edge node or RIC 
controller deployed in-premise is necessarily lower. 

One example of an OTT application that can be deployed at any RIC or at the Edge fabric is for Access 
Traffic Sterring, Splitting and Switching (ATSSS), and its conceptual functionality is detailed in the next 
section.  

7.3.3. ATSSS xApp 
An ATSSS xApp can be utilized in access traffic steering decisioning. If such an xApp is deployed at 
the edge, the latency associated with pushing access traffic steering rules is lower when compared to 
having SMF/PCF inside the mobile network operator. An AI/ML model trained with the available 
telemetry at the host node can be incorporated in the traffic steering decisioning. This can be considered 
as an enhancement to 3GPP Rel-17 ATSSS framework which provides flexibility to both the UE and the 
UPF on the traffic splitting control over 3GPP and non-3GPP access networks in order to maximize the 
bandwidth/throughput. It is worth to note that in Rel-17 ATSSS framework, the link performance 
measurements provided by Performance Measurement Function (PMF) is used. However, in the 
proposed ATSSS xApp, in addition to link performance measurements, access network telemetry can 
be used. Therefore, any AI/ML-based prediction on the access link status, user mobility, gNB/AP load 
status can be used to enhance the access traffic steering decisioning. 

The main motivation of the considered ATSSS xApp is to react to sudden/predicted changes on the link 
and/or network status in order to efficiently use 3GPP and non-3GPP access networks. The ATSSS xApp 
gathers access network telemetry including 3GPP and non-3GPP accesses, link performance 
measurements from PMF, and modifies the access traffic steering rules, in other words access traffic 
weight factors for 3GPP and non-3GPP access networks. As an example, a steering rule with access 
traffic weight factors of 30% onto 3GPP and 70% onto non-3GPP can be set by the network operator. 
When the 3GPP access network gets congested, assigning 30% of the ongoing traffic for a UE may not 
achieve the throughput requirements. In this case, ATSSS xApp makes use of RAN telemetry to 
understand/predict load status of 3GPP and non-3GPP access networks and modifies the weight factors 
i.e., 10% onto 3GPP and 90% onto non-3GPP to maximize the achievable throughput. 

 


