

H2020 5G Dive Project
Grant No. 859881

D2.3 Final Specification of
5G-DIVE Innovations

Abstract
This deliverable D2.3 provides the final specification of the 5G-DIVE solution innovation. An overview
of the framework governing the solution specification is presented first. This is then followed with
detailed final specification for each of the targeted vertical pilots, namely Industry 4.0 and Autonomous
Drone Scout. This deliverable is complemented with the final implementation reported in deliverable
D2.4.

D2.3 – Final Specification of 5G-DIVE Innovations 2

H2020-859881

Document properties
Document number D2.3
Document title Final specification of 5G-DIVE innovations
Document editors Timothy William (NCTU)
Document contributors ADLINK: Ivan Paez, Luca Cominardi

ASKEY: June Liu, KJ Liu
IDCC: Filipe Conceição, Ibrahim Hemadeh, Alain Mourad
AAU: Hergys Rexha, Sebastien Lafond
III: Tzu-Ya Wang
ITRI: Andee Lin, Samer Talat
NCTU: Muhammad Febrian Ardiansyah, Timothy William
UC3M: Milan Groshev, Carlos Guimarães, Laura Caruso
TELCA: Aitor Zabala, Javier Sacido, Matteo Pergolesi
RISE: Luca Mottola, Saptarshi Hazra
ULUND: Chao Zhang, Per Ödling
EAB: Chenguang Lu, Gyanesh Patra

Document reviewers UC3M: Milan Groshev, Carlos Guimarães, Laura Caruso,
Antonio De La Oliva
ITRI: Samer Talat
RISE: Bengt Ahlgren
NCTU: Timothy William
IDCC: Filipe Conceição

Target dissemination level Public
Status of the document Final
Version 1.0
Publication Date June 30 2021

Disclaimer
This document has been produced in the context of the 5G Dive Project. The research leading to these
results has received funding from the European Community's H2020 Programme under grant
agreement Nº H2020-859881.

All information in this document is provided “as is" and no guarantee or warranty is given that the
information is fit for any particular purpose. The user thereof uses the information at its sole risk and
liability.

For the avoidance of all doubts, the European Commission has no liability in respect of this document,
which is merely representing the author’s view.

D2.3 – Final Specification of 5G-DIVE Innovations 3

H2020-859881

Contents
List of Figures .. 5

List of Acronyms .. 7

Executive Summary ... 9

1. Introduction ... 10

2. 5G-DIVE Solution Design .. 11

2.1. 5G Connectivity ... 11

2.1.1. 5G NSA .. 12

2.1.2. 5G SA .. 14

2.2. DEEP Platform ... 16

2.2.1. Data Analytics Support Stratum – DASS .. 16

2.2.2. Business Automation Support Stratum – BASS ... 22

2.2.3. Intelligent Engine Support Stratum – IESS ... 38

3. 5G-DIVE Solution for I4.0 Use Cases ... 44

3.1. I4.0 Use Case 1: Digital Twin ... 44

3.1.1. Key Module Design .. 44

3.1.2. Mapping to the DEEP Platform .. 51

3.2. I4.0 Use Case 2: Zero Defect Manufacturing ... 57

3.2.1. Key Module Design .. 57

3.2.2. Mapping to the DEEP Platform .. 58

3.3. I4.0 Use Case 3: Massive MTC ... 61

3.3.1. Key Module Design .. 61

3.3.2. Mapping to the DEEP Platform .. 68

4. 5G-DIVE Solution for Disaster Relief Using Autonomous Drone .. 71

4.1. ADS Use Case 1: Drone Fleet Navigation .. 71

4.1.1. Key Module Design .. 71

4.2. ADS Use Case 2: Intelligent Image Processing ... 74

4.2.1. Key Module Design .. 75

4.3. ADS Mapping to the DEEP Platform ... 79

5. Conclusion ... 82

6. References .. 83

D2.3 – Final Specification of 5G-DIVE Innovations 4

H2020-859881

7. Appendix ... 87

7.1. DLT-Based Federation Support ... 87

7.2. BASS and OCS Integration Workflow .. 93

7.3. Data driven RAN Intelligence ... 94

7.3.1. O-RAN architecture ... 95

7.3.2. 3GPP Edge fabric standardization efforts ... 96

7.3.3. ATSSS xApp .. 97

D2.3 – Final Specification of 5G-DIVE Innovations 5

H2020-859881

List of Figures
FIGURE 2-1 ILLUSTRATION OF 3GPP CONNECTIVITY OPTION 1, 2 AND 3 12

FIGURE 2-2 5G NSA AND EDGE DATA CENTER SOLUTION FOR ADS TRIALTRIAL 13

FIGURE 2-3 5G SA SOLUTION FOR I4.0 TRIAL .. 15

FIGURE 2-4: DASS ARCHITECTURE. .. 17

FIGURE 2-5: DASS SESSION ESTABLISHMENT USER-PASSWORD AUTHENTICATION 18

FIGURE 2-6: DASS ZERO-COPY COMMUNICATION ... 21

FIGURE 2-7: ZENOH AND ZENOH.NET PROTOCOL LAYERS. ... 22

FIGURE 2-8 BASS UPDATED ARCHITECTURE .. 24

FIGURE 2-9 CREATION OF A NEW VERTICAL SERVICE FROM A BLUEPRINT 27

FIGURE 2-10 VISUALISATION OF THE LIST OF SERVICES .. 28

FIGURE 2-11 VISUALISATION OF A RUNNING SERVICE WITH DETAILS ON ITS COMPONENTS
 ... 28

FIGURE 2-12 VISUALISATION OF VERTICAL REGIONS EXAMPLE VIEW .. 29

FIGURE 2-13 VSD EXAMPLE .. 31

FIGURE 2-14 BASS AND OCS INTEGRATION .. 33

FIGURE 2-15. ACTIVE MONITORING SIMPLIFIED WORKFLOW ... 36

FIGURE 2-16 IESS UPDATED ARCHITECTURE ... 39

FIGURE 3-1: SYSTEM BLOCK DIAGRAM FOR DIGITAL TWIN ... 45

FIGURE 3-2: BASE DIGITAL TWIN SYSTEM MODULE INTERACTIONS ... 46

FIGURE 3-3 REPLAY FEATURE MODULE DESIGN .. 47

FIGURE 3-4 SLA ENFORCER MODULE DESIGN ... 49

FIGURE 3-5: MOVEMENT PREDICTION MODULE INTEGRATION OPTIONS 50

FIGURE 3-6: DIGITAL TWIN END-TO-END DEPLOYMENT WITH BASS .. 52

FIGURE 3-7: DIGITAL TWIN DASS-ENABLED REPLAY FEATURE ... 53

FIGURE 3-8 DIGITAL TWIN IESS OBSTACLE AVOIDANCE ... 54

FIGURE 3-9 SLA ENFORCER E2E MECHANISM ... 55

FIGURE 3-10: DIGITAL TWIN IESS MOVEMENT PREDICTION .. 56

FIGURE 3-11 CUBES AS A PRODUCT OF THE FACTORY ... 57

FIGURE 3-12 ZDM SETUP WITH AWS WAVELENGTH ... 58

D2.3 – Final Specification of 5G-DIVE Innovations 6

H2020-859881

FIGURE 3-13 BASS SERVICE INSTANTIATION ... 59

FIGURE 3-14 DASS-ENABLED TELEMETRY DATA COLLECTION ... 60

FIGURE 3-15 MMTC DEPLOYMENT DIAGRAM .. 63

FIGURE 3-16 ZMQ PUB/SUB PATTERNS FOR DOWNLINK AND UPLINK SIGNALS 63

FIGURE 3-17 AN EXAMPLE OF EXPOSING LORA APPLICATION AS A KUBERNETES SERVICE 64

FIGURE 3-18 AN EXAMPLE OF KUBERNETES DEPLOYMENT YAML FILE FOR LORA 65

FIGURE 3-19: COMPARING PACKETS FROM THE SAME DEVICE USING SIAMESE NETWORK 66

FIGURE 3-20: COMPARING PACKETS FROM THE DIFFERENT DEVICES USING SIAMESE
NETWORK .. 66

FIGURE 3-21: TRAINING PROCESS .. 67

FIGURE 3-22: AUTHENTICATION AND PERIODIC UPDATE FRAMEWORK 68

FIGURE 3-23 MMTC BASS DEPLOYMENT .. 69

FIGURE 3-24: RF FINGERPRINTING IESSS MAPPING ... 70

FIGURE 4-1 5G NSA AND EDGE SYSTEM BLOCK DIAGRAM FOR ADS ... 71

FIGURE 4-2 IDROS ARCHITECTURE .. 72

FIGURE 4-3 IDROS ORCHESTRATOR ARCHITECTURE .. 74

FIGURE 4-4 ADS USE CASE 2 SYSTEM OVERVIEW .. 75

FIGURE 4-5 EAGLESTITCH SYSTEM STITCHER MODULE PIPELINE ... 77

FIGURE 4-6 DRONE DATA PROCESSOR SYSTEM .. 77

FIGURE 4-7 ADS USE CASE MAPPING TO THE DEEP PLATFORM ... 79

FIGURE 7-1 SEQUENCE MESSAGE DIAGRAM FOR BASS FEDERATION SMART-CONTRACT
AND ADMINISTRATIVE DOMAINS DURRING FEDERATION ... 89

FIGURE 7-2: FEDERATION USING POA CONSENSUS: (TOP) SUMMARIZED PHASE; (MIDDLE)
CONSUMER AD; (BOTTOM) PROVIDED AD; [46] .. 91

FIGURE 7-3: FEDERATION USING POW CONSENSUS: SUMMARIZED TIMES [46] 91

FIGURE 7-4 BASS AND OCS INTEGRATION WORKFLOW .. 94

D2.3 – Final Specification of 5G-DIVE Innovations 7

H2020-859881

List of Acronyms
AD Administrative Domain
ADS Autonomous Drone Scout
AI Artificial Intelligence
API Application Programming Interface
ATSSS Access Traffic Steering, Splitting and Switching
BASS Business Automation Support Stratum
BSSID Basic Service Set Identifiers
CPE Customer Provided Equipment
CPU Central Processing Unit
DASS Data Analytics Support Stratum
DCAS Drone Collision Avoidance System
DEEP 5G-DIVE Elastic Edge Platform
DLT Distributed Ledger Technologies
EagleEYE Aerial Edge-enabled Disaster Relief Response System; an end-to-end PiH

detection and localization system
EagleStitch An end-to-end 2D stitching system
EFS Edge and Fog Computing System
EPC Evolved Packet Core
FDU Fog05 Deployment Unit
GRU Gated Recurrent Units
GUI Graphical User Interface
HTTP Hyper Text Transfer Protocol
I4.0 Industry 4.0
IESS Ingellence Engine Support Stratum
IoT Internet of Things
KPI Key Performance Index
LSTM Long Short Term Memory
LXD Next generation system container manager
MANO Management and Orchestration
ML Machine Learning
MNO Mobile Network Operator
NBI Northbound Interface
NDN Named Data Networking
NR New Radio
NSA Non-standalone
NSD Network Service Descriptor
OCS Orchestration and Control System
OPTUNS Optical tunnel network system
PaaS Platform-as-as-Service
PHY Physical
PiH Person in need of Help
PoA Proof-of-Authority

D2.3 – Final Specification of 5G-DIVE Innovations 8

H2020-859881

PoW Proof-of-Work
PUB/SUB Publish/Subscribe
RAM Random Access Memory
RL Reinforcement Learning
ROS Robot Operating System
RPC Remote Procedure Call
SA Standalone
SC Federation Smart-contract
SIM Simulator
SLA Service Level Agreements
SLI Service Level Indicator
SLO Service Level Objective
TCN Temporal Convolution Network
TLS Transport Layer Security
UE User Equipment
URI Unified Resource Indicator
UUID Universally Unique Identifier
VAPs Virtual Access Points
VAR Vector Autoregression Models
VIM Virtual Infrastructure Manager
VSB Vertical Service Blueprint
VSD Vertical Service Descriptor
ZDM Zero Defect Manufacturing

D2.3 – Final Specification of 5G-DIVE Innovations 9

H2020-859881

Executive Summary
This deliverable provides the final specification of the 5G-DIVE solution innovation for the targeted
use cases in the Industry 4.0 (I4.0) and Autonomous Drones Scout (ADS) vertical pilots. The main
achievements of this deliverable include:

1) Designed an Service Level Agreement (SLA) enforcement framework for the services deployed
using the DEEP platform. This framework provides a mechanism to guarantee the fulfilment of
the negotiated SLAs between the use cases and the platform.

2) Developed the final design framework governing the 5G-DIVE solution. This final solution was
built on top of the initial design reported in D2.1. The final solution describes in this deliverable
includes the underlying 5G connectivity, and the DEEP platform with its three supports systems
namely BASS (Business Automation Support System), DASS (Data Analytics Support System),
IESS (Intelligence Engine Support System).

3) Applied the final design framework to the targeted I4.0 use cases, namely i) digital twinning, ii)
zero defect manufacturing (ZDM), and iii) massive machine type communications (mMTC).
With each use case using its own customized design to fulfil the objective. Each customized
design is applied in the context of specific intelligence engines such as movement prediction
and replay in digital twinning, object defect detection in ZDM, and RF radio security in mMTC.

4) Applied the design framework to the targeted ADS use cases, namely i) drones fleet navigation
and ii) intelligent image processing for Drones. With each use case using its own customized
design to fulfil the objective. Each customized design is applied in the context of specific
intelligence engines such as image analytics, geolocation and object detection in
ADS Use Case 2.

The final specification in this deliverable served as a basis for the implementations reported in the
software deliverable D2.4. It is noteworthy that not all specifications in this deliverable are or will be
implemented. All of the inputs reported in this document will serve as feedback for WP3.

D2.3 – Final Specification of 5G-DIVE Innovations 10

H2020-859881

1. Introduction
This deliverable D2.3 is a continuation of the work carried out in D2.1 [1] and targets the final
specification of the 5G-DIVE solution innovation for each use cases in the I4.0 and ADS vertical pilot.
In this deliverable, final development results of the DEEP platform are reported. This development
results include the final specification that serves as a basis for the final implementations which are
reported in an accompanying software deliverable D2.4. Details on 5G-DIVE solution design tailored
for each use case are also provided, while experimental results for the final implementations will be
explored further in WP3. The integration of the 5G-DIVE solution design to each use cases will allow
for vertical to gain insight from data through the DASS, vertical services management and automation
through the BASS, and provisioning of AI/ML related services for the vertical through the IESS. The
organization of this deliverable as well as this deliverable achievement are listed as follows.

In Section 2, the final 5G-DIVE solution design are presented. This section is further divided into two
subsections. First, Section 2.1 details the 5G connectivity solution used to support each uses cases. For
I4.0 use case, 5G SA solution is used. While for ADS use case, 5G NSA solution is used.
Second, Section 2.2 details the updated DEEP platform design framework, which includes the DASS,
BASS, and IESS. For the DASS, use cases have already adopted it to perform data preprocessing,
storage, as well as data dispatching. As for the BASS, each use cases utilizes it to serve as a common
reference framework for lifecycle management. And lastly, the IESS is used by the use cases for
facilitating the training and cross-validation of AI/ML models.

Section 3, and Section 4 details the final sytem design for the I4.0, and ADS use case respectively. In
these two sections, refinement of the system key modules, as well as addition of new modules are
reported. In addition, details on how each use case maps to the DEEP platform as well as how each use
cases interacts with the the DEEP component, namely the DASS, IESS, and BASS are also reported in
the end of these sections.

Finally, the conclusions for this deliverable is outlined in Section 5.

Appendixes are also provided at the end of this deliverable covering the following topics:

• Section 7.1: DLT-Based Federation Support
• Section 7.2: BASS and OCS Integration Workflow

The above appendixes provide feasibility study of DLT-based federation, as well as workflow details
on the integration of BASS and OCS. These information are deemed valuable for the reader to read in
conjunction with the innovation specifications in the main body of this deliverable.

D2.3 – Final Specification of 5G-DIVE Innovations 11

H2020-859881

2. 5G-DIVE Solution Design
In this section, we describe the final 5G connectivity solution, as well as 5G-DIVE DEEP stratum for
supporting the I4.0, and ADS verticals. We will be using the edge computing infrastructure to enable
support for an end-to-end Platform-as-a-Service (PaaS) service model. Details on the edge computing
infrastructure have been previously reported in D2.1 [1]. However, in an effort to make this document
self-contained, some of the relevant terminology will be briefly described:

• Edge and Fog Computing System (EFS): A logical system which serves as an environment for
hosting virtualized functions, services, and applications.

• Orchestration and Control System (OCS): A logical system in charge of composing,
controlling, managing, orchestrating, and federating one or more Edge and Fog Computing
System.

The rest of this section are organized as follows. In Section 2.1, we will describe the details on the final
5G connectivity solution for both use cases. 5G Non-standalone (NSA) setup will be used for
supporting ADS, while 5G standalone (SA) setup will be used for supporting I4.0. In Section 0, we will
describe the updates and improvements made to the DEEP strata.

2.1. 5G Connectivity
There are multiple connectivity options defined in the 3GPP architecture for 5G deployment [2]. As
shown in as shown in Figure 2-1, 3GPP connectivity option option 3 and option 2 have been adopted
in the industry to evolve from the baseline option 1 (LTE only) to support 5G NR. Option 3 is referred
to as 5G NSA (non-standalone), where option 2 is referred as 5G SA (standalone). Option 3 enables a
rapid introduction of 5G NR to market by software upgrading the existing 4G EPC (Evolved Packet
Core) (referred as 5G EPC). 5G SA (option 2) represents the next step of 5G deployment, which requires
a newly developed 5GC (5G Core). In 5G NSA, it requires an LTE connectivity anchor. The control
plane and mobility management are done with LTE and EPC. NR connectivity is only used for user
plane data. Therefore, UEs have dual connectivity connecting both LTE and NR carriers
.simultaneously. 5G NSA allows new 5G services to be introduced quickly while maximizing the reuse
of existing 4G networks. With the 4G anchor which UEs always connect to, 5G can be added with spotty
coverage as a capacity boost for traffic hotspots. It doesn’t require a national deployment of 5G, which
takes time and costs to deploy. In 5G SA, NR is deployed alone with 5GC without the need for the LTE
anchor. When a large scale of 5G network is deployed, it is natural to evolve to 5G SA to unlock the full
potential of 5G connectivity. 5G SA is also suitable to some industrial use cases, where the 5G
connectivity is locally deployed, e.g. in factories. In case of the mobility handling between 4G and 5G,
it is done by the 3GPP interworking interface between EPC and 5GC. Other 3GPP connectivity options
are lack of industry support since supporting so many options simutaneiously increase significantly
the network and UE operation complexity. Therefore, in 5G-DIVE project, the main stream options of
5G NSA (option 3) and 5G SA (option 2) will be trialed, where 5G NSA will be used in the ADS trial,
while 5G SA will be used for the I4.0 trial.

D2.3 – Final Specification of 5G-DIVE Innovations 12

H2020-859881

FIGURE 2-1 ILLUSTRATION OF 3GPP CONNECTIVITY OPTION 1, 2 AND 3

2.1.1. 5G NSA
For the ADS trial, 5G NSA will use leveraging the developed 5G gNB and 5G EPC supporting NSA. As
described before, tthis allows for 5G User Equipment (UE) to not only transmit data through 4G eNB
(both user and control planes) but also additionally through 5G gNB (only user plane). The
initialization phase for a UE to connect to 5G NSA is described as follows:

1. When a UE boots up, it will attach log in to the NSA network through the eNB.
2. During the UE's running time, it will continuously measure for 5G NR Synchronization Signal

Blocks (SSB) emitted from the gNB, and reports the measurements back to the eNB.
3. Once the signal strength between the UE and a gNB is sufficiently strong, and the UE's

throughput requirement demands a 5G connection, the serving eNB starts to signal to target
gNB, and tells the EPC to modify the data plane bearer of the UE from the current eNB to target
gNB.

4. After the modification is done, gNB takes over eNB to continue serving the UE. Since the UE is
mobile, the UE keeps reporting the gNB signal strength via the LTE connection to eNB, just in
case that UE moves away from gNB coverage. When it happens, the eNB asks the UE to fall
backs to LTELTE, and thus the data flows of the UE will not be disconnected.

The NSA Option 3 grants gNB to set up a split data bearer in both the gNB and eNB. By doing so, a UE
may attach to both base stations at the same time. This enables the UE to leverage higher aggregated
bandwidth.

D2.3 – Final Specification of 5G-DIVE Innovations 13

H2020-859881

Figure 2-2 below depicts the final solution of 5G NSA and edge data centre for ADS deployed at NCTU.
From the left of the figure, there are the integrated 4G LTE and 5G NR base station from ASKEY, 5G
EPC from III, iMEC from ITRI, the localized drone application servers developed by NCTU on
virtualized computing platform (Kubernetes or Openstack), and lastly, OPTUNS [3] optical tunnel
network system to interconnect all of the components together.

FIGURE 2-2 5G NSA AND EDGE DATA CENTER SOLUTION FOR ADS TRIALTRIAL

D2.3 – Final Specification of 5G-DIVE Innovations 14

H2020-859881

2.1.2. 5G SA
5G SA is based on 5GC completely redesigned to realize full 5G capablities. Service-based architecture
(SBA) is adopted, which facilitates the cloud-native design and automation, as well as increasing
flexibility and scalability. It simplifies network operations, increaseincreases service creation agility,
supportsupports ultra-low latency features, supportsupports advanced network-slicing functions, and
facilitates new vertical use cases.

Figure 2-3 shows the 5G SA solution which will be used in the I4.0 trial. The RAN part (i.e. gNB) of the
solution is based on Ericsson Radio Dot System, which is composed of Dot 4489, IRU 8848 and BB 6630.
Symmetricom Sync Master is used to provide 1 PPS to BB 6630 for synchronization. 5GC is deployed
remotely, while an UPF function is deployed locally in a server collocated with BB 6630. The UPF breaks
out the user plane traffic locally to the 5G-DIVE Edge system to minimize the latency. A kickstart and
application server are also included in the setup. It is used for the UPF installation. After installation, it
is kept in the setup for maintenance and troubleshooting. A switch (router) is used to provide IP
connectivity in the setup. It also serves as a firewall for network security. A VPN tunnel will be
configured between the setup and the 5GC for the core network connectivity. The local equipment is
installed in a 10U rack, referred to as Flight Rack, which is made for easy transport as a whole. 5G SA
capable CPEs are used to provide the 5G NR connectivity to the I4.0 testbeds of Digital Twin and ZDM.

D2.3 – Final Specification of 5G-DIVE Innovations 15

H2020-859881

FIGURE 2-3 5G SA SOLUTION FOR I4.0 TRIAL

D2.3 – Final Specification of 5G-DIVE Innovations 16

H2020-859881

2.2. DEEP Platform
The DEEP platform, as designed in D1.3 [4], comprises three main supporting strata: DASS, BASS, and
IESS. In this section, we present an updated version of the implementation of each supporting stratum.

2.2.1. Data Analytics Support Stratum – DASS
Accodring to D2.1 [1], the DASS was conceived in the 5G-DIVE project as a data analytics platform
suitable for distributed and heterogeneous edge and fog environment. This provides to the vertical
industries the necessary support for gaining useful insight from the data generated from their business
processes which can be potentially enriched with a variated set of context information. Moreover, the
geo-transparent locality offered by the edge and fog system can be exploited to access data with a data-
centric network based on NDN [5] and at the same time process and analyze sensitive data where they
are generated, thus enabling strict privacy and low latency response for mission critical systems.
Finally, DASS enhances EFS and OCS operations by providing data analytics tools for the infrastructure
management.

2.2.1.1. Architecture

In Figure 2-4, the second release for the DASS architecture implementation can be seen. Components
with green background are components already implemented during the first release of the DASS and
its implementation details defined in D2.1 [1]. Components with a yellow background are component
which are implemented as part of the second release of the DASS. In the following subsections, we will
describe in detail each of the newly developed components.

D2.3 – Final Specification of 5G-DIVE Innovations 17

H2020-859881

FIGURE 2-4: DASS ARCHITECTURE.

Data Dispatcher

The data dispatcher element now supports two privacy preserving mechanisms, a basic user-password
authentication and TLS as a transport protocol. DASS’s clients and peers can use user and password for
authentication against a router or a peer. The configuration of credentials is done via a configuration
file defining certain properties. Figure 2-5 shows the session establishment steps with user-password
authentication.

D2.3 – Final Specification of 5G-DIVE Innovations 18

H2020-859881

FIGURE 2-5: DASS SESSION ESTABLISHMENT USER-PASSWORD AUTHENTICATION

At the moment of writing, the only supported TLS authentication mode is server-authentication: clients
validate the server TLS certificate but not the other way around. That is, the same way of operating in
the web, where the web browsers validate the identity of the server via means of the TLS certificate. In

D2.3 – Final Specification of 5G-DIVE Innovations 19

H2020-859881

order to use TLS as a transport protocol, we need first to create the TLS certificates. While multiple
ways of creating TLS certificates exist, we used Minica [6] for simplicity.

Data Pre-processing

Data pre-processing can be achieve by native support of multiple data encoding, such as JSON,
Properties, Relational, Raw, etc., along with transcoding across supported formats. The DASS encoding
describes the value format, allowing the DASS to know how to encode/decode the value to/from a bytes
buffer. By default the DASS is able to transport and store any format of data as long as it’s serializable
as a bytes buffer. But for advanced features such as content filtering (using selector) or to automatically
deserialize the data into a concrete type in the client APIs, the DASS require a description of the data
encoding. The current version of DASS supports the following encodings for filtering and automatic
deserialization:

• Raw: the value is a bytes buffer
• StringUTF8: the value is an UTF-8 string
• Json: the value is a JSON string
• Properties: the value is a string representing a list of keys/values separated

by ';' (e.g. "k1=v1;k2=v2...")
• Integer: the value is an integer
• Float: the value is a float
• Custom: the value is a bytes buffer with a free string allowing for instance to describe its

encoding.

The DASS also defines a canonical query syntax based on URIs syntax that enables filtering and
querying for a particular subset of the data. The data pre-processing element implements a distributed
query representation and support the get, subscribe and eval functionalities. The get functionality
defines a selector which implements a string which is the conjunction of a path expression identifying
a set of paths and some optional parts allowing to refine the set of paths and associated values.

The structure of a selector is composed of three parts:

• expr: is a path expression.
• filter: a list of predicates separated by '&' allowing to perform filtering on the values associated

with the matching keys.
• Each predicate has the form “field-operator-value” where:

field is the name of a field in the value (is applicable and is existing. otherwise the predicate is
false)
operator is one of a comparison operators: < , > , <= , >= , = , !=
value is the the value to compare the field’s value with

• fragment: a list of fields names allowing to return a sub-part of each value.
This feature only applies to structured values using a “self-describing” encoding, such as JSON
or XML. It allows to select only some fields within the structure. A new structure with only the
selected fields will be used in place of the original value

D2.3 – Final Specification of 5G-DIVE Innovations 20

H2020-859881

The subscription functionality is implemented via a selector and registers an interest for being notified
whenever a key/value with a path matching the subscriber’s selector is put, updated or removed on a
Zenoh infrastructure. The eval functionality is a computation registered at a specific path. An eval
function can be used to pre-process data on-demand, remove null values, normalize or anonynimize it,
also it can be used to build a remote procedure call (RPC) system.

Data Storage

The DASS also provides a storage backend plug-in API, that facilitates the integration of third parties
storage technologies. At the moment of writing this deliverable the DASS supports SQL-Based
backends, in-memory backend, file system backend and time series backends. The DASS’s backends
are managed via the DASS’s admin space using operations on such a given resource path (e.g.
/@/router/<router-id>/plugin/storages/backend/<backend-id>). Where <backend-id> is a free
identifier for the backend (it must be unique per router identified with <router-id>).

• Adding a backend: this operation implies loading a new backend technology e.g., SQL-Based,
in-memory, file systems, or time-series backend. Once the backend is created, the
user/application can create one or several storages of that backend type.

• Removing a backend: this operation refers to removing a registered backend. This operation
will delete all the storage within that backend.

• Checking the status of a backend: this operation will return the description (in JSON format)
of the available backends and their related storages.

Other key innovation is that the data storage now supports zero copy by leveraging shared memory.
Specifically, the Zenoh-based implementation maps a memory segment (/tmp/zenoh/shm/pid) in the
address space of a process, e.g., App1, so that several processes i.e. App2 can read (and optionally
write) in that memory segment (/tmp/zenoh/shm/pid) without calling operating system functions.

Zenoh then uses these shared memory zones to allocate user data and then only exchange with
processes on the same memory domain the information necessary to access the data. As a consequence
the overhead of sending large payload becomes constant and equal to sending the addressing
information, as illustrated in Figure 2-6.

D2.3 – Final Specification of 5G-DIVE Innovations 21

H2020-859881

FIGURE 2-6: DASS ZERO-COPY COMMUNICATION

This zero copy mechanism can be used in robotic and autonomous driving domains, where vehicle’s
applications share large data between processes on the same host. In some cases these large data
samples are images coming from cameras in other cases are point-clouds coming from
RADARs/LIDARs. In any case, as these payloads can be several megabytes if not tens of megabytes,
the transmission delay can become a bottleneck. In several of these applications, ideally we would want
to pass around "pointers" to the data, but in a safe manner. Likewise, for processes that are remote we
would want to transparently use the networking stack and send the actual data.

2.2.1.2. High level API based on NDN

It is worth noticing that the initial design of the DASS described below has been contributed and
integrated into the Eclipse Zenoh open source project [7]. The terms DASS and Zenoh are therefore
used interchangeably below since Zenoh is an actual implementation of DASS. The DASS functionality
provides geo-distributed storages, unifying different kind of backed such us SQL-based, non-SQL
bases, time-series, and file systems. Therefore, DASS provides a data-centric abstraction in which
applications can read and write data autonomously and asynchronously. The data read and written by
Zenoh applications are associated with one or more resources identified by a URI. These URIs represent
a hierarchical organization of data. For example, each region comprises several houses identified by
unique IDs. This results in a key structure like /factory01/floor01/. Moreover, each data produced by
each house, can be stored in a specific key, e.g. /factory01/floor01/room01/temperature can be used to
store the temperature reading of a specific room.

Data can be transparently accessed by the careful usage of selectors over the key space. For example,
the wildcards in the key /factory01/*/*/temperature produce as result that the temperature of every
room of every house in region01 is returned, regardless where they are stored. The routing
infrastructure takes care of doing the necessary pattern matching between keys, selectors, publishers,
and subscribers. By properly designing the key space, it is also possible to achieve the desired level of

D2.3 – Final Specification of 5G-DIVE Innovations 22

H2020-859881

privacy for the data. E.g., data meant to be publicly available could be stored under a specific path (e.g.,
/factory01/*/public/**) and stored only on specific public locations (e.g., regional data centres). Once
data is successfully retrieved, data analytics can be eventually performed.

In order to support a wide heterogeneity of scenarios, networks, and devices, we adopt a two-level
protocol design as illustrated in Figure 2-7. The data pre-processing and the data storage components
are implemented by the Zenoh layer. The Zenoh layer is a higher level API providing the same
abstractions as the zenoh-net API in a simpler and more data-centric oriented manner as well as
providing all the building blocks to create a distributed storage.

FIGURE 2-7: ZENOH AND ZENOH.NET PROTOCOL LAYERS.

The Zenoh layer is aware of the data content and can apply content-based filtering and transcoding.
The key Zenoh primitives include:

• put: push live data to the matching subscribers and storages.
• subscribe: subscriber to live data.
• get: get data from the matching storages and evals.
• storage: the combination of a zenoh-net subscriber to listen for live data to store and a zenoh-

net queryable to reply to matching get requests.
• eval: an entity able to reply to get requests. Typically used to provide data on demand or build

a RPC system.

2.2.2. Business Automation Support Stratum – BASS
According to D2.1 [1], the Business Automation Support Stratum (BASS) has been conceived in the 5G-
DIVE project as an evolution of the current control systems where an operator oversees the business
processes' administration. The BASS provides the interface to plug OSS/BSS systems into the DEEP
platform and acts as a gateway to access all of its features. Verticals can integrate their services by

D2.3 – Final Specification of 5G-DIVE Innovations 23

H2020-859881

describing them with high-level data models (see section 2.2.2.4), manage the lifecycle of their instances
through the BASS North-Bound Interface (see section 2.2.2.2), and include their own local computing
and network resources so they are managed by the BASS (see section 2.2.2.5).

Additionally, the BASS provides novel Management and Orchestration (MANO) automation for
business processes, with a productionization of a Platform as a Service on the Edge. Some of the benefits
include: i) not requiring highly skilled operators, ii) seamlessly optimizing the deployed services and
iii) declarative vertical service control, leveraging the ability to describe desired states, so the vertical
only needs to know the desired state, not how to deploy and manage it.

The BASS will automate the orchestration of the resources and their lifecycle. Besides, the BASS in this
second release will be capable of verifying the end-to-end business process KPIs identifying anomalies
and minimizing the business impact using the enforcement of service level agreements (SLAs). These
SLAs can be ensured by leveraging the AI/ML capabilities of the Intelligence Engine Support Stratum
(IESS).

Additionally, a study on the applicability of Distributed Leger Technology (DLT) as a mechanism of
the external federation support element of the BASS is presented in Appendix Section 7.1.

D2.3 – Final Specification of 5G-DIVE Innovations 24

H2020-859881

2.2.2.1. Architecture

FIGURE 2-8 BASS UPDATED ARCHITECTURE

In Figure 2-8, the second release for the BASS architecture implementation can be seen. Components
with green background are components already implemented during the first release of the BASS and
its implementation details defined in D2.1 [1]. Components with a yellow background are component
which are implemented as part of the second release of the BASS. In the following subsections, we will
describe in detail each of the newly developed components.

SLA & Policy Management

As part of the second release feature of automatic vertical service life-cycle management through the
SLA enforcement framework, two architecture components will be implemented from the SLA & Policy
management, the SLA Enforcement Manager and the SLA Enforcement Closed-Loop.

According to D2.1 [1], the SLA Enforcement Manager, is responsible for the life-cycle management of
the SLA enforcement closed-loops, in the second release:

D2.3 – Final Specification of 5G-DIVE Innovations 25

H2020-859881

- This component will be in charge of identifying any active monitoring requirements, selecting
the optimum active and passive monitoring probes from the catalogue (according to the SLA
requirements) and attaching the selected probes to the vertical service deployment.

- Additionally, it will identify the SLA enforcement capabilities, selecting the appropriate SLA
enforcement model, and configuring its inputs and outputs.

- As shown in Figure 2-8 above, and as discussed in D1.3 [4] Section 2.2.3, the SLA Enforcement
Manager has a privileged connection with the IESS in order to request AI/ML services directly.

The SLA Enforcement Closed-Loop, according to D2.1 [1], it is responsible of making the auto-scaling
decisions over a vertical service and enforces the defined SLAs based on the monitoring information
gathered via the DASS and the active monitoring, in the second release,

- This component will be capable of performing auto-scaling decisions, by using either heuristics
or ML/AI based models loaded through the platform.

o An example of application of AI to SLA enforcement is the exemplary algorithm
developed for the Digital Twin use case, where through reinforcement learning the
components of a vertical service can be automatically scaled vertically, to comply with
the Service Level Objectives (SLOs). In the second release this model will be integrated
jointly with the evaluation of other models trained to enforce SLOs in most of the pilots.

- Decision making models will be fed with the required active or passive monitoring information
from the infrastructure and/or vertical services.

- The closed-loop action pool will be determined by the Orchestrator driver, for the second
release there will be support for Kubernetes and Fog05.

Orchestrator Driver

For the second release the Orchestrator driver component will be enhanced with the support for
Kubernetes advanced features and Eclipse Fog05 [8], which is an End-to-End Compute, Storage and
Networking Virtualisation solution.

Northbound Interface

The northbound interface was implicitly presented in the previous version of the architecture and
included a RPC interface implemented over the HTTP protocol. A Web User interface has been added,
allowing the vertical to define, manage and monitor their vertical services in a more user-friendly
environment. Additionally, the RPC API has also been extended to support additional workflows,
actions, and roles, such as the Vertical Service Blueprints, Descriptors, and authentication and
authorization different user roles such as the Vertical Service Developer, Operator and the Region
Operator.

Business Translator

The Business translator component has been extended to support the mapping of SLAs to KPIs and the
ability to Negotiate SLAs from a pool of providers. Additional details of the implementation are
provided in Section 2.2.2.7.

Blueprints Catalogue

D2.3 – Final Specification of 5G-DIVE Innovations 26

H2020-859881

The Blueprints Catalogue has been extended to store and provide i) SLO and SLI blueprints to the
vertical and the infrastructure providers, ii) Vertical service blueprints.

Monitoring Catalogue

The Monitoring Catalogue stores and manages the collection of active monitoring probes, either for
basic or advanced metrics. Reusable probes are available to Vertical Services in order to collect common
metrics, while other probes are customizable in order to extract metrics that are more service-specific.

BASS - IESS interface

As part of the BASS and IESS interface, the BASS includes additional logic to support the training of
intelligent components, by means of the AI Component Entity. On the other side, the IESS supports a
descriptor for defining training jobs and their runtime, called Training Component, and an inference
descriptor called Inference Application Packaging. All these new entities coordinate the state and data
exchange between the BASS and the IESS, seamlessly offloading AI decisions to the IESS and
deployment and business decisions to the BASS.

2.2.2.2. Northbound Interface

The BASS Northbound interface offers two ways of interaction: an RPC interface implemented with
HTTP and a Web interface. While the RPC interface is more suitable for machine-to-machine
communications and programmatic interactions, the Web User Interface is more pleasant for the
interaction of human users. Furthermore, the Web User Interface provides an endpoint to the OpenAPI
document for the RPC interface.

The Web user interface includes the following features:

- Vertical Service Blueprint loading. It allows the vertical to load a vertical service blueprint to
the BASS Vertical Service Blueprint Catalogue.

- Visualization of the blueprints stored in the Vertical Service Blueprint Catalogue, including
blueprints shared by other users.

- Generation of a Vertical Service Descriptor from a Vertical Service Blueprint. It enables the
vertical service operator to select the corresponding vertical service blueprint, and fill and/or
override the deployment parameters.

- Vertical Service life-cycle manager. It allows the vertical service operator to manage the whole
vertical service states in a declarative way, expressing the next state for the vertical service to
move. It allows also to manage the vertical service components, individually. Additionally, it
allows to monitor in real-time the state of every component in the vertical service.

- Automatic status update for the Vertical Services.
- Vertical Service Component update. It gives the capability to change or update the vertical

service component, either to upgrade or downgrade its version, or change its deployment and
operational parameter.

- IESS training state monitoring and results
- Vertical Service AI Component life-cycle management

D2.3 – Final Specification of 5G-DIVE Innovations 27

H2020-859881

- Login with multiple roles
- Management of regions

The Web User Interface is implemented with plain Javascript, HTML and CSS. For the CSS we selected
the popular Twitter Bootstrap framework [9] providing support for responsive layouts and mobile
devices out-of-the-box. To interact with the Business Translator the Web UI uses the RPC API
mentioned above.

Figure 2-9, Figure 2-10, Figure 2-11, and Figure 2-12 show some screenshots of the Web UI.

FIGURE 2-9 CREATION OF A NEW VERTICAL SERVICE FROM A BLUEPRINT

D2.3 – Final Specification of 5G-DIVE Innovations 28

H2020-859881

FIGURE 2-10 VISUALISATION OF THE LIST OF SERVICES

FIGURE 2-11 VISUALISATION OF A RUNNING SERVICE WITH DETAILS ON ITS COMPONENTS

D2.3 – Final Specification of 5G-DIVE Innovations 29

H2020-859881

FIGURE 2-12 VISUALISATION OF VERTICAL REGIONS EXAMPLE VIEW

2.2.2.3. Role Based Access Control

This section discusses the implementation of the features of vertical service abstraction, designed and
presented in D1.3 [4] Section 3.1.1.

The users interacting with the BASS can be assigned one or more roles, determining the resources and
operations they have access to. There are three main roles in the BASS:

• Vertical Developer
• Vertical Operator
• Region Operator

The implementation of roles, authentication and authorization in the BASS is implemented with Spring
Security [10] the de-facto standard way to secure Spring-based applications. According to the
framework specifications, the entity representing a vertical (any user of the BASS) implements the
UserDetails interface, establishing generic methods to load user-specific data. The interface enforces
the inclusion of a username and a password, as well as a collection of authorities, the roles assigned to
each user. Users’ passwords in the BASS are stored securely by using the bcrypt password hashing
function.

For what concerns authentication, the Spring Security framework adds a chain of security filters that
intercepts all the requests incoming at the BASS NBI. We use the default
UsernamePasswordAuthenticationFilter for the very first authentication of the user. Username and
password are provided in the Authorization header of the HTTP request for login, in base64 encoding,
following the 'Basic' HTTP Authentication Scheme (RFC 7617) [11]. The secure transmission of
credentials over the wire is realized by means of a TLS connection. After the initial login, the BASS
generates a JSON Web Token (JWT) (RFC 7519) [12] with a relatively short expiration time to be used
by the client for subsequent communications. The JWT can be included in the Authorization header if
the client access programmatically to the NBI or in a cookie if the interactions happen through a
browser. A custom Spring Security filter validates tokens and manage this kind of authentication

D2.3 – Final Specification of 5G-DIVE Innovations 30

H2020-859881

method. The JwtTokenFilter takes precedence over the username and password authentication to avoid
the repeated transmission of the user credentials.

The authorization to access BASS resources has two control levels on the NBI. At the first level, a role
check is performed: the user issuing the request must have the appropriate role to access the resource.
This is implemented by using the ‘@Secured’ annotation (JSR 250) [13] on NBI methods. For example,
a user which is assigned only the role of Vertical Operator does not have access to write and update
operations on Vertical Service Blueprints or Vertical Regions. The second control level checks the
ownership of the resource by the user. Some resources managed by the BASS, like regions and Vertical
Service Blueprints are accessible from all users for reading, as long as the user has the appropriate role.
Write and update operations are permitted only if issued by the owner of the resource.

2.2.2.4. Templating Services with the Vertical Service Blueprint

This section discusses the implementation of the features of vertical service abstraction, designed and
presented in D1.3 [4] Section 3.1.2.

The Vertical Service Blueprint (VSB) is a template of a vertical service that can be partially customized.
With respect to the Vertical Service Descriptor (VSD), the VSB provides a more generic definition of the
vertical service in order to separate as much as possible the functional definition of the service from the
configuration needed to run it on a specific environment. The latter, that we may see as the deployment
specific configuration, is encoded into the form of a list of parameters. The parameters can have two
effects: first, they can be used to override some values of the VSD and its components in order to adapt
it for the specific deployment (e.g., set a URL or a password), second, they can add additional
information to express qualitative aspects wanted for the service (e.g., quality of service, geographic
availability).

The implementation of the first group of parameters, for overriding some parts of a VSD, falls into the
problem category of data templating. Given a data structure, possibly very complex and nested, there
is the need to dynamically change some parts of it at runtime. For example, Ansible [14] a configuration
management software, uses data templating to customize system configurations and perform variable
substitution right before applying them on the targeted system. Some popular templating solutions we
can mention are the Jinja templating engine [15], the Jsonnet templating language [16], and YAML
anchors [17], even if very limited with respect to the previous two. The three technologies just
mentioned have been evaluated to be applied to the VSB but they have been found unsuitable. Indeed,
there is a lack of support for the integration with the Java language and moreover, they are focused on
generating configuration files in plain text adding extra serialization and deserialization operations in
our use-case. A custom solution has been implemented to enable parameter overriding in the VSB by
leveraging a powerful feature of Java (provided also by many other programming languages),
reflection [18] allowing a program to inspect and change the behaviour of its classes, interfaces,
methods, and fields at runtime. We use these properties of reflection to declare parameters in the VSB
in the form of formatted string and inspect the VSD model in order to retrieve or set the corresponding
field values.

D2.3 – Final Specification of 5G-DIVE Innovations 31

H2020-859881

FIGURE 2-13 VSD EXAMPLE

Figure 2-13 shows a trivial example of a VSD for a web application, composed of simply two
components, the web part and a database. A simple parameter to customize this service, by changing
the image of the web part is “web-ui.imageRepository”. The declaration of the parameter in the VSB
enables the overriding at deployment time. When the BASS receives the VSD, together with the
parameter above (and its new values), it inspects the VSD data structure recursively thanks to Java
reflection, retrieves the corresponding field, and substitutes the value.

The solution, while being simple, has two main advantages. Potentially, any field of the VSD can be
parametrized, enabling extreme flexibility and freedom in the VSB definition by the Vertical Service
Developer. On the other side, once the list of parameters is established, the other fields of the service
are protected against any change. This prevents the Vertical Service Operator to perform potentially
destructive changes to the service since their action is limited to the list of declared parameters.

When a VSB is onboarded, the BASS validates its parameters by checking that they target existing fields.
The validation logic is integrated into Hibernate [19], a Java framework implementing the Bean
Validation Reference [20] and reuses the Java reflection features described above.

The second group of parameters in the VSB includes several qualitative aspects to customize the
deployment of the service.

• SLA templates (SLI and SLO)
• Parameters for AI/ML requests to the IESS
• Geographic constraints
• Lifetime settings

SLA related parameters are described in Section 2.2.2.7. Parameters for the IESS are used to customize
the AI Component descritptor discussed in Section 2.2.3.2. The geographic constraints allow for the
selection of the location of the resources targeted for the deployment. The selection is performed by

D2.3 – Final Specification of 5G-DIVE Innovations 32

H2020-859881

means of human-friendly definitions, like “continent”, “country”, and so on. The BASS selects the
region that best matches the constraints provided and properly orchestrate its resources, as described
in Section 2.2.2.5. Finally, the lifetime settings specify the period of time the service should remain
active. At the end of this period the BASS will automatically stop the Vertical Service in order to release
allocated resources, but it will leave it in a “loaded” state in order to quickly redeploy it in case of need.

Since blueprints include a more generic description of the service and hide deployment-specific
parameters through templating, they can be shared between all the users of the BASS. A trivial Boolean
field establishes if a VSB is shared or not and it can be changed only by the author. By default, at the
moment of its creation, a VSB is not shared in order for the Vertical Service Developer to perform
several iterations of improvements and fixes on its blueprint without worrying about disclosing
sensitive data. Once the VSB is ready it can be marked as shared to make it available to other users. All
blueprints are collected in a catalogue at the BASS implemented by means of MongoDB, a popular
document-oriented database. In fact, being the blueprints encoded as documents in JSON structured
format, they perfectly fit the document-oriented data model. Furthermore, MongoDB includes
distribution and replication features that can be used to avoid or mitigate data losses on the blueprint
catalogue.

2.2.2.5. Multi-region orchestration

Support for managing multiple regions in the BASS is implemented by providing drivers for several
resource orchestrators. Previously, the BASS was only able to be configured to manage one single
Kubernetes region making use of the driver developed for this resource orchestrator.

The Region Manager Service oversees managing the different regions instantiated in the BASS. During
runtime they are stored in-memory but also backed to the internal DB used by the BASS. An initial set
of regions can be specified in the BASS configuration file. The BASS controller has been extended to
support the creation and deletion of regions by a Vertical user with the Region Operator role. Offers
great flexibility as it supports deploying different components of the same Vertical Service to different
regions, allowing scenarios where different EFS and OCS are involved.

Additionally, support for Fog05 has also been implemented in the form of a new kind of OCS driver in
the BASS. Figure 2-14 shows graphically the driver based architecture to manage both K8s and Fog05
clusters. Each controls its own set of computing, networking and storage resources, used to deploy
Vertical Services.

D2.3 – Final Specification of 5G-DIVE Innovations 33

H2020-859881

FIGURE 2-14 BASS AND OCS INTEGRATION

The descriptor used to create new regions in the BASS is composed of four parameters:

• Name: unique identifier of the region
• Region Type: refers to the driver needed to manage this region, now there is support for

Kubernetes and Fog05 regions.
• Region Config: parameters needed to configure and manage the region, related to the driver

used to manage the OCS like, for example, connection related parameters.
• Geographic information: location of the resources managed by this region in terms of

continent, country, city.
The “Region Config” parameter has been implemented using polymorphism. This means that there
can be different types of descriptors that conform the configuration of a region, in this case there are
two types of region configurations, one for Kubernetes and the other one for Fog05.

Nevertheless, both regions share these parameters, related to BASS configuration for that region:

• maxWaitTime: time in seconds that the BASS will wait until a Vertical Service Component is
reported as “ready” status once its deployed in the EFS.

• maxRetries: max number of times that the BASS will redeploy a Vertical Service Component in
case a “soft error” is reported by the OCS.

• backoffTime: time in seconds that the BASS will wait to redeploy a Vertical Service Component
in case of “soft error”.

For Kubernetes regions these are the parameters that can be used to configure the driver:

• URL: address of the Kubernetes API of target cluster.
• User: user who will be used to authenticate with the Kubernetes API.
• Password: password used to authenticate.

D2.3 – Final Specification of 5G-DIVE Innovations 34

H2020-859881

• Kubeconfig: location of the “kubeconfig” file with all the connection details of the target
cluster, including certificates for secure connection.

• SSL: indicates whether to validate cluster certificates or not.
• Debug: indicates if extra logs will be captured in the driver connections to the Kubernetes

cluster.
• ConnectionTimeout: time in milliseconds to wait for stale connections to the target cluster.
• ReplicaMinAvailability: percent of available replicas that should be atleast running before

marking the deployment as “failed”.
• InCluster: special parameter that tells the BASS to try to connect the Kubernetes cluster using

the “serviceaccount” provided in the BASS deployment. This is only for the case when the BASS
is deployed in the same Kubernetes cluster to manage as a region.

Meanwhile, for Fog05 there is only one customizable parameters, host and port, that point to the Fog05
instance HTTP endpoint available for the BASS to connect to.

Internally, the BASS uses a different data structure to store and manage the regions. The structure for
a region is composed of these attributes:

• Id: internal identifier of the region.
• Name: name of the region.
• Type: type of the region, e.g., either Kubernetes or Fog05.
• Driver: instance of the orchestrator driver object, used to manage the VS deployments in the

region’s OCS.
• AffinityLabels: additional information or metadata about the region.

During runtime, additional information is probed from the regions. This information allows the BASS
to have an idea about the capabilities of the regions regarding the workloads that can be deployed there
and can be mapped to a set of affinities that the Vertical can impose in the Vertical Services to deploy.
An example would be a Vertical Service requiring specific hardware requirement like processor
architecture or making use of a particular device. This information is stored in the “AffinityLabels”
attribute of the region object. Additional details on the BASS and OCS integration workflow can be
found in the Appendix Section 7.2.

2.2.2.6. Active Monitoring Framework

The Active Monitoring framework provides full monitoring pipeline support to the Vertical Services
deployed by the BASS. The BASS will leverage the ingestion of application metrics of a Vertical Service
deployed, storing the data in the DASS, and offering the data stored to the Vertical. Ingested data can
also be provided to the SLA enforcement framework to enforce the negotiated SLAs by considering the
extracted Vertical Service metrics.

The BASS exposes the Monitoring Catalog to the Vertical, containing all the metrics and information
that can be automatically extracted from the applications.

D2.3 – Final Specification of 5G-DIVE Innovations 35

H2020-859881

The catalog is divided in two parts:

• Basic metrics: the common infrastructure metrics are automatically available to all verticals
interacting with the BASS and the set of probes available depends on the capability of the
resource orchestrator. Some of the metrics that these probes can capture are:

o CPU usage
o RAM usage
o Network usage
o GPU usage

• Advanced metrics: in this case the captured metrics depends on the deployed application.
These metrics involve target different application technologies or metrics exposed by the
application itself. The Vertical can also specify custom metrics that can be gathered from its
application and which type of probe is needed to extract that information.
Some examples are:

o Metrics exposed by the application using the available Prometheus client libraries [21].
o Database applications like MongoDB, Redis, MySQL, etc.
o Messaging applications like RabbitMQ, Kafka, etc.
o Latency between different application or services.

The metrics to collect are defined in the Vertical Service Descriptor in a per-component basis. Only
some of the “basic” metrics, like CPU and RAM usage, can be defined at a higher level, in that case the
metric will be collected for each of the components inside the Vertical Service.
The monitoring stack, deployed initially by the BASS operator because its dependant on the Region
Operator is composed of these services:

• Vector [22]: Used to recollect application logs.
• Telegraf [23]: Collects metrics at EFS level with enriched information about the running

services, for example, Kubernetes related metadata.
• InfluxDB [24]: Stores the collected metrics and logs. Belongs to the DASS.

This stack is used for recollecting most of the “basic” metrics, for the “advanced” metrics specific probes
are then deployed and configured by the BASS to recollect metrics in a custom and in a per-specific-
component way.

Then, the BASS interacts with the DASS to extract the recollected data and make it accessible to the
Vertical or to the SLA Enforcement framework.

For deploying the advanced probes in Kubernetes regions, the sidecar pattern [25] is used, this pattern
involves deploying multiple containers in a same deployment, with the extra containers fulfilling
specific functions, like monitoring the main container. To deploy this monitoring sidecars BASS makes
use of Telegraf Operator [26], that takes care to manage and instantiate this extra monitoring containers
based on metadata configured by the BASS for the main container, mapped from the Vertical Service
Component. In Figure 2-15 the architecture and a simplified general workflow for the Active
Monitoring component are represented:

D2.3 – Final Specification of 5G-DIVE Innovations 36

H2020-859881

FIGURE 2-15. ACTIVE MONITORING SIMPLIFIED WORKFLOW

2.2.2.7. SLA Negotiation and Management

The Blueprints Catalogue offers a collection of generic and reusable SLO and SLI. As discussed in D1.3
[4] Section 3.2.2, the Vertical Service Blueprint includes the list of SLI and the relevant set of SLO defined
on top of them. SLI and SLO are hence usually very specific to the service they are defined to. Anyway,
the BASS offers a catalogue of generic SLO and SLI that can be potentially applied to any service, in
order to support the developer in the definition of the Vertical Service Blueprint. For example, a generic
SLI applicable to many vertical services can be based on the CPU usage of one component and it could
include the following information:

• Name: Service Load
• Component: Component A
• Metric: CPU usage
• Formula: Average of CPU usage over 1 minute

D2.3 – Final Specification of 5G-DIVE Innovations 37

H2020-859881

The Vertical Developer can customize the SLI in order to target is component. The catalogue can then
offer a set of generic SLO defined on top of the previous SLI. For example, we can define the following
two SLO:

• Name: Critical Service
• SLI: Service Load
• Target: < 70 %
• Name: Regular Service
• SLI: Service Load
• Target: < 90%

The first SLO defines a more demanding target with respect to the second one. The Vertical Developer
can directly reuse the SLOs proposed by the catalogue, customize them, or even define new ones.

The catalogue of SLO and SLI implements a catalogue of SLA Templates pre-negotiated between the
DEEP platform and the providers of the computing, network and storage resources. In the case of
customization or definition of new SLI and SLO, a further iteration of the negotiation process with the
providers may be required. See also D1.3 [4] Section 3.2.1.

When the SLI and SLO have been defined, and included in a Vertical Service Blueprint, several
instances of the same service can be created, each one with its own SLA. The Vertical Service Operator,
in charge of deploying and managing vertical service, simply selects the set of SLO that best fit the
performance requirements and budget availability of the service instance to be created. The Vertical
Operator is not required to deal with the technical details of the service components and their related
metrics. They simply defines the business objectives for the service deployment and the Business
Translator (see Figure 2-8) takes care of mapping and translating the request into technical
requirements for the infrastructure. See also D1.3 [4] Section 3.2.2.

2.2.2.8. SLA Enforcement Framework

As introduced in D1.3 [4] Section 3.2.3 the SLA Enforcement framework is implemented in the BASS as
a mechanism to guarantee the fulfilment of the negotiated SLAs between the Vertical and the platform.

Implementation wise a new component has been defined, the SLA Manager, in charge of the following
tasks:

• Tracking the available SLIs, region aware, that can be used to create and define a SLA for an
specific application, using the Active Monitoring component to achieve this.

• Negotiation of the SLAs with the Vertical while considering region capabilities and metrics.
• Manage the lifecycle of implemented SLA Enforcers, providing the complete SLA enforcing

closed-loop and configuring them.
• Application of enforcing actions, dictated by the deployed SLA Enforcers through the Vertical

Service Coordinator and the Orchestrator Driver components.
• Tracking the fulfilment status of the negotiated SLAs, providing the data to the Verticals

through the BASS web GUI

D2.3 – Final Specification of 5G-DIVE Innovations 38

H2020-859881

Regarding the framework for the SLA Enforcer component, the one with the real logic of enforcing the
SLOs and choosing enforcing actions, two different interfaces have been defined, which support the
main enforcing component:

• Input interface: provides the retrieved SLIs of the target SLOs to be enforced from the SLA
Manager.

• Action interface: provides the valid set of enforcing actions that can be done at a time.

Both interfaces are built as REST interfaces, using the OpenAPI v3 specification [27] and Swagger [28]
for generating the documentation, leveraging and making it easier to build a middleware between both
interfaces with the enforcing logic, retrieving and applying actions based on the technical requirements
and capabilities of the enforced application.

2.2.3. Intelligent Engine Support Stratum – IESS
The Intelligence Engine Support Stratum (IESS) is an Artificial Intelligence Platform which uses data-
driven algorithms to make predictions, classifications, and decisions. This provides a tool kit to develop
and train intelligent models at the Edge/Fog.

The IESS offers AI/ML related services for the vertical services managed by the BASS. It manages both
the training of the model, as well as the packaging of the latter into a minimal application (microservice)
capable of serving prediction results.

For model training, the IESS abstracts the interaction with several AutoML engines and AI frameworks
and it automatically selects the proper engine or framework based on contextual information in the
received request from the BASS. When trained, the model is packaged and stored in a catalogue in
order to be reused for future deployments of the same vertical service. If retraining is requested, a new
model is going to be trained and stored.

To the best of our knowledge, there is no automated flow of AutoML/AutoAI against target accuracies
or losses in the market, and the possibilities of offering distributed training on integrated software is
very limited. The IESS provides a pluggable AutoML/AI platform to that integrates into the DEEP
platform enriching its features.

In the following subsections we discuss in more details the several features offered by the IESS.

D2.3 – Final Specification of 5G-DIVE Innovations 39

H2020-859881

2.2.3.1. Architecture

FIGURE 2-16 IESS UPDATED ARCHITECTURE

Since the first release, presented in D2.1 [1], minor modifications have been applied to the IESS
architecture in order to simplify the interactions between the logical entities of the IESS and make it
better understandable for the reader. The functional features of the IESS have not be changed.
Components with a yellow background are component which are implemented as part of the second
release of the IESS.

With respect to the architecture presented in Figure 2-24 in D2.1 [1], the IESS Manager retains its role
of main entity inside the IESS, in charge of controlling and coordinating all of the operations and
interactions of the other entities. The IESS Manager directly interacts with the IESS Catalogue in order
to persistently store and retrieve information, such as the supported AI Frameworks and AutoML
engines together with their features, pre-trained models to be reused, packaged inference applications.
As we can see from the figure, it controls the two main areas of operation of the IESS (shown as big
grey boxes):

• IESS Model Training: the logical portion of the IESS related to the training of AI/ML models.
• IESS Execution Environment: the logical portion of the IESS related to the packaging of

inference applications and their offering to the BASS.

D2.3 – Final Specification of 5G-DIVE Innovations 40

H2020-859881

In the previous version of the architecture presented in D2.1 [1], the IESS Model Training part was
managed by a dedicated, more specialized component. The development process suggested that
having the IESS Manager as a single controller simplified the whole operation and workflow. The IESS
manager manages a set of IESS Training Plugins, selecting the most appropriate one for each request
received by the BASS and makes use of each plugin features to deploy the corresponding IESS Training
Engine, in charge of actually carry on the training of a model. The IESS does not manage any computing
or networking resources: training engines as well as inference apps are deployed by the BASS
leveraging resources managed by the latter. In fact, the BASS offers advanced orchestration features
(i.e., distributed deployments) and specialized resources (i.e., GPU equipped nodes for faster machine
learning training). The interaction between IESS and BASS is then bi-directional, with each component
offering its services and features to the other and avoiding duplication of functionalities and over-
complication.

With respect to the architecture presented in D2.1 [1], it has been made clear that the IESS Manager also
controls the portion of the IESS Execution Environment, that offers features to package trained AI/ML
models into inference applications and offering them to the BASS for deployment, alongside of the
vertical service requesting them.

2.2.3.2. Serving Intelligence Requests From the BASS

The BASS uses two different kind of descriptors to define the components inside of a VSD, one for
regular (non-AI powered) components and the other one for AI components. The AI component
descriptor requires the BASS to interact with the IESS and to employ more complex workflows in order
to achieve the deployment.

The descriptor for an AI Component contains these extra parameters with respect to a regular
component:

• Dataset: Endpoint to download the dataset from.
• AutoAIPlatform: AutoML platform to use, for now only H2O.ai is supported.
• AI Type: type can be either “classification” or “regression”.
• Selected algorithm: specific algorithm to use from the pool of algorithms provided by the

AutoML platform.
• Min Loss: minimal loss the model needs to have to be deemed a valid model, if invalid the

model will be retrained.
• Min Accuracy: minimal accuracy the model needs to have to be deemed a valid model, if invalid

the model will be retrained.
• Column Predict: target column of the dataset used for the prediction.
• Max seconds training: max number of seconds that the model can be trained.
• Max training retries: max amount of training attempts until the model’s loss or accuracy meets

the vertical’s requirements.

D2.3 – Final Specification of 5G-DIVE Innovations 41

H2020-859881

The full pipeline of an AI component consists of three main phases: training, packaging and inference.
The BASS interacts with the IESS to create the request to manage these AI Components. The full
workflow consists of the following steps:

1. The BASS forwards the AI Component descriptor to the IESS.
2. The IESS maps the request and prepares a training component in order to train the AI model.

The IESS sends back to the BASS a request to instantiate the training component.
3. The BASS instantiates the training component and notifies the IESS when is ready.
4. The IESS sends the training request to the deployed training component and waits until training

finishes.
5. Once training is finished, the produced model is uploaded to the catalog and the training

component is uninstalled.
6. The IESS creates the inference application from the trained model. Also the application is

uploaded to the catalog.
7. The IESS notifies the BASS that the training and packaging phases have completed successfully

and that the inference application is ready to be deployed.
8. The BASS deploys the inference application which contains the trained model and API

endpoints to generate predictions by the Vertical or by another application. This realizes the
inference phase.

2.2.3.3. Supported ML Platforms

The IESS includes a plugin system to support the interaction of several AutoML engines and AI
frameworks. The system is designed to be easily extensible, in order to enable the future addition of
new engines and hence new features to the IESS.

As explained in D2.1 [1], in its first version, IESS supports only the H2O.ai AutoML platform [29].
During the second release the support for two additional training engines have been added, YOLOv3
in Pytorch [30] and Keras (with Tensorflow as backend) [31]. The selection of the new engines has been
dictated by the requirements of the use cases (see Section 3 and Section 4).

When a request for an AI/ML service arrives at the IESS Manager, the latter selects the most appropriate
engine to serve the request. The selection is based on contextual information included in the request
and describing the AI/ML problem to be solved. Anyway, if more advanced control is needed, the
selection can also be overridden. For example, for a classification or regression problem on tabular data,
the IESS Manager selects the H2O.ai framework that provides an automated procedure to build an
optimized model. The model is a combination of many models trained by the AutoML engine and
combined together to give the best results in the resolution of the problem. On the other hand, YOLOv3
is used for problems of object recognition on datasets of images, while Keras is left for the resolution of
other problems, like time series forecasting. In the latter case, the model definition should be provided
to the IESS by onboarding it in the IESS catalogue. The IESS takes care of packaging the model into a
training runtime container (the training component mentioned in the workflow of Section 2.2.3.2),
deploy it on the BASS, run it, and collect the results.

D2.3 – Final Specification of 5G-DIVE Innovations 42

H2020-859881

The IESS does not manage any resources on its own. The deployment and execution of the engines is
demanded to the BASS, since the latter provides powerful orchestration features that can cover all of
the IESS requirements. In a sense, the BASS and IESS are peers in the DEEP platform since one uses the
services of the other and vice-versa. During the second release this interaction have been greatly
improved and the IESS can request the deployment of training engines with advanced configurations.

For example, the H2O.ai training engine is deployed as a distributed cluster and, depending on the
number of resources available, the cardinality of nodes can be increased or decreased. On the other
side, the training of the YOLOv3 model works better on GPU and the IESS can request the BASS to
deploy the engine on nodes equipped with GPU.

2.2.3.4. IESS Catalogue

The IESS catalogue is dedicated to persistently store data and artifacts related to the services offered by
the IESS. The type of the data elements managed by the catalogue is very heterogeneous and includes:

• Supported AI frameworks and ML Engines together with their characteristics, features,
metadata and implementation.

• AI/ML pre-trained models, both in binary or serialized format in order to be reused without the
need for retraining.

• Runtime environment artifacts for supporting and enabling the execution of model training and
model serving (inference).

Given the different characteristics of the data elements to store in the IESS catalogue, we have built a
storage stack composed of several technologies, each one dedicated to a specific type of data. MongoDB
[32], a document-based database, stores metadata and pointers to frameworks and engines, pre-trained
models, and runtime environments. It is used as a main knowledge base by the IESS Manager and as
an index to retrieve other data elements. Minio [33], an object storage server compatible with Amazon
S3 API [34], is dedicated to store binary artifacts, such as trained models, build files for runtime
environments. Finally, a Docker Registry [35] is dedicated to the storage and distribution of runtime
environments in the form of container images. The IESS Manager is capable of building container
images, push them to the registry, and instruct the BASS to retrieve them in order to deploy new
components for both training and inference serving.

2.2.3.5. Packaging and Deploying Inference Apps

For packaging the application BentoML [36] is used, BentoML supports a lot of different ML framework
and models, for example H2O.ai specific models. Based on the input and the model type BentoML
autogenerates a docker image with a REST API that will provide inference or predictions results on
response.

For each supported model in the IESS, a template docker image is created and made available to the
IESS. The templates are built by using BentoML as a dependency in a custom Python script.

D2.3 – Final Specification of 5G-DIVE Innovations 43

H2020-859881

Because of the difficulty of building a new Docker image or OCI compliant image without using the
Docker daemon, which limits the environments where the IESS can be deployed, there are also template
images for the inference applications, built based on the original BentoML generated inference image
template.

Once the model is trained and retrieved in the IESS, the inference template image is downloaded, and
the trained model artifacts are added as a new layer in the image using Jib [37] in a docker daemon-less
way. The new image is then uploaded to the catalogue and made it available to the BASS.

D2.3 – Final Specification of 5G-DIVE Innovations 44

H2020-859881

3. 5G-DIVE Solution for I4.0 Use Cases
This section provides the refined and final key modules design for I4.0. This will include updates and
refinements on the modules already introduced in D2.1 [1], as well as the addition of new modules in
Use Case 1 Digital Twin, Use Case 2 Zero Defect Manufacturing, as well as Use Case 3 Massive MTC.
Details on Use Case 1 will be described in Section 3.1. Details on Use Case 2 will be described in Section
3.2. Details on Use Case 3 will be described in Section 0. Finally, but yet importantly, the mapping of
the three use cases to the DEEP platform will be presented in the end of the respective subsections.

3.1. I4.0 Use Case 1: Digital Twin
The Digital Twin, widely presented in D2.1 [1], is one of the key I4.0 use cases, which consists of a
unified system mapping the physical world of an industrial machinery into a virtual world. In the scope
of the 5G-DIVE project, we are focusing on robotic systems, namely on a robotic arm manipulator.

This section is structured as follows. First, in Section 3.1.1 we present a refined and final version of the
Digital Twin system design, including the updates on its key modules design. Second, in Section 3.1.2
we detail the main workflows of Digital Twin operation as well as its integration with the DEEP
platform.

3.1.1. Key Module Design
According to our system architecture design, the EFS for this use case is composed of three parts: i)
edge servers; ii) robotic arm; and iii) remote operator user equipment. Thus, the modules comprising
the Digital Twin system are distributed over this infrastructure composed by Edge and Fog resources.
Notwithstanding, the IESS modules implementing more computational demanding AI/ML tasks (e.g.,
training of the AI/ML models) that, ideally, could be also further spread to Cloud servers leveraging
on Training-as-a-service platforms, wherever the computational power of the edge is believed to be
insufficient.

This section provides the refined and final Digital Twin service design (Figure 3-1). In Section 3.1.1.1
we first provide the updates and interactions of the base modules already introduced in D2.1 [1]. In
Section 3.1.1.2 we then provide the design of the intelligent modules such as Replay, Movement
Prediction, Obstacle avoidance and SLA enforcement that aim to provide enhancements for the Digital
Twin system.

D2.3 – Final Specification of 5G-DIVE Innovations 45

H2020-859881

FIGURE 3-1: SYSTEM BLOCK DIAGRAM FOR DIGITAL TWIN

3.1.1.1. Base Digital Twin modules

Figure 3-2 shows the Base Digital Twin modules interactions that were introduced in D2.1 [1].
Accordingly, each of the modules has the following functionality:

• Drivers: directly interact with the physical object hardware and are responsible for: (i) making
available sensor data and operational states to the other layers, and (ii) executing instructions
or navigation commands received from the Control layer. The drivers are available for both the
physical (PHY) or simulated (SIM) robotic arms.

• Control: is defined as an abstraction layer that allows physical object manipulation. It receives
a navigation command or instructions and runs them in a control loop towards the Drivers. The
loop is then closed by the physical object continuously sending-back the current state.

• Motion Planning: is responsible for finding inverse kinematics and building a path for the
robot. The path created consists of a series of navigation commands sent to the control layer.

• Interface: is the User Interface module, it enables the interaction with the Digital Twin user
features.

• Digital Twin Application: implements 3D models and control mechanisms to visualize the
variations of the physical object while the control mechanism enables remote control and
maintenance.

• Remote Controller: in the first release, the Remote Controller was part of the Digital Twin
application module, allowing the robot to be controlled using the graphical interface located in
the Edge server. However, the need to plug the remote controller hardware (e.g., joystick) to the
machine running the Digital Twin Application make this non-feasible in a real scenario. Thus, the

D2.3 – Final Specification of 5G-DIVE Innovations 46

H2020-859881

Remote Controller is now decoupled from the Digital Twin Application made available as a
standalone module to be deployed preferentially in the operator user equipment.

• Web Interface: implements a high-level abstraction for the core controlling functionalities, such
as moving any of the joints of the robotic arm, calibration or failure debugging features. Along
with the Remote Controller, it is another interfacing option between the operator and the physical
robot.

Figure 3-2 depicts the interactions between the different modules of the Edge Robotics Digital Twin
service. When a user needs to remotely control a robotic arm, it issues a move joints (step 1)
manipulation command using the Remote Control or Web Interface module. The move joints
command is sent to the Interface module which offers a custom-made interface (e.g., Python or REST
API), translating it in a robot specific movement command. Then, the Interface module sends the
movement command (step 2) to the Motion Planning module. When the movement command is
received, the Motion Planning module performs several command validations and generates the
trajectory path consisting of an array of position commands. For each position command, each
joint is given a specific position, velocity, and acceleration. Once the Control module receives the
trajectory path (step 3), it runs a control-loop against the Robot Drivers module. The control-loop
starts with the Robot Drivers sending the joint states (step 4) of the robotic arm to the Control module.
This information is also propagated to the Digital Twin in order to update the virtual model. Next,
the Control module interpolates the received trajectory path to get the next position command. The
control-loop is then closed when the Control module sends the position command (step 5) to the
Robot Drivers. Note that the Remote Control and Web interface modules can also be configured to send
actions to the robotic arm directly via the Motion planning or Control modules (steps 2 and 3).

FIGURE 3-2: BASE DIGITAL TWIN SYSTEM MODULE INTERACTIONS

D2.3 – Final Specification of 5G-DIVE Innovations 47

H2020-859881

3.1.1.2. Intelligent Digital Twin modules

To enhance the Base Digital Twin system, 4 new intelligent modules, namely Replay, Movement
Prediction, Obstacle avoidance and SLA enforcer are introduced, and their design is described in the
following sections.

1. Replay Module Design

By the Replay feature, we refer to a digital twin replica that re-plays the movements performed by the
physical robotic arm, during a given time interval (e.g., look-back on the last 30s) and at a specified
movement speed. This feature is useful for failure analysis and debugging in I4.0 environments,
allowing an operator to carefully review the past robot movement that led to a malfunction. This feature
implements a publish/subscribe mechanism for storing and distributing the robot joint state sequences,
which can be then queried by the Replay module based on time-series and pushed to the Digital Twin
app for the replay visualization.

The Replay feature module design is depicted in Figure 3-3. In a real case scenario, the robot is
controlled by an operator. The joint states being produced are continuously pushed from the Master
node to a Pub/sub module, that stores their timeseries in a database. Using the Web interface of the Digital
Twin service, the operator can trigger the Replay module to fetch the most recent sequence of joint states,
which is published to the topic of a digital replica in charge of replaying the movements in the Digital
Twin app.

FIGURE 3-3 REPLAY FEATURE MODULE DESIGN

2. Obstacle Avoidance Module Design

The Obstacle Avoidance module enables the robotic arm to learn on how to move from an initial position
to a target destination, avoiding an obstacle potentially impeding its movements. The solution
leverages on Reinforcement Learning (RL)-based algorithms. Traditionally, the moving of objects is
either performed by a human operator controlling the robot coherently or by pre-calculating the
trajectory of the robotic arm. Automating this task in presence of obstacles require some trajectory
planning, which is not possible in dynamic industrial environments with frequently changing obstacles
and target locations. An example for a typical scenario is a logistics robot, transporting things from one

D2.3 – Final Specification of 5G-DIVE Innovations 48

H2020-859881

destination to another in an ever-changing environment full of misplaced objects. In this sense, this
feature represents a fundamental step for the development of more complex automated pick-and-place
tasks performed by robotic arms in real industrial environments.

The trajectory planning can be inferred using Q-Learning, similarly to what has been frequently used
for mobile robots.

In concrete, the implementation design of the feature consists in the following steps:

1. The obstacle is identified whether it is in the real world (then a camera is needed to calculate its
relative position and its dimension) or it is virtually generated in the Digital Twin simulated
environment.

2. The robot’s field of action is discretized into a set of possible states, i.e., the positions that the
robot manipulator, our RL agent, can cover in a discretized 3D-space, reproduced in a Python
environment. The discretization step affects the training time and, as it can be easily imagined,
the granularity of the trajectory. The agent is allowed to move from one state to another,
according to a policy composed of a finite set of actions (“up”, “down”, “left”, “right”, “up-left”,
etc.). A source state and a destination state are chosen and a random obstacle, a parallelepiped,
which can represent the bounding box of any physical object, is placed in between.

3. Q-Learning is run in the IESS module. After a given number of episodes where the robot/agent
keeps trying to move from the initial state to the destination without hitting the obstacle
following the policy (otherwise the episode ends and the agent must restart from the source
position), the trajectory is output.

4. The inferred trajectory is mapped to the real or simulated environment coordinates and
translated into a joint state sequence using a module which calculates the inverse kinematics.
The robot is fed with the sequence, so that it can perform the pick-and-place task accordingly.

The validity of the procedure listed above is currently under investigation. Traditional Q-Learning is
not suitable to be used in dynamic environments where the obstacles may continuously change, as the
training happens online and strictly depends on the environment. Another option would be to train a
Deep Q-Learning Network (DQN), with several environment permutations: different positions of
source, destination and obstacle, multiple obstacles with variable shapes, etc. By this, the training of
the neural network could be performed offline, and the robot would be able to re-plan its trajectory on-
the-fly, whenever a change in the environment is detected by a camera in physical world or the action
field of the robot simulator is re-arranged.

3. SLA Enforcer Module Design

The SLA Enforcer implements AI/ML or heuristic-based mechanisms to guarantee that the SLA
requirements for the Digital Twin service are met. The feature monitors a set of meaningful indicators
(SLI) of the service. For example, the application latency time between the issue of a command and its
execution in the physical robot is a key metric for a real-time remotely control of physical robot through
its digital twin replica. If these SLIs do not meet an agreed objective (SLO), e.g. to keep a certain metric
below a certain threshold, then the SLA is violated, leading to costly business implications. To prevent

D2.3 – Final Specification of 5G-DIVE Innovations 49

H2020-859881

this from happening, the SLA enforcer mechanism optimizes the resource utilization by performing
e.g., resource scaling or service migration.

This module (see Figure 3-4) is as well split into a set of submodules: the Monitoring Probe submodule
reads the SLI data from the Digital Twin Application, extracting, for example the times of the:

• Actuation: amount of time required for the robot arm to begin movement after a new command
is received

• Synchronization: accuracy of synchronization between digital twin and physical robot
• Automated job execution: amount of time required for a robot to complete an automated job

(e.g. pick-and-place)

and the network parameters on which the actions listed above depend consistently:

• Latency
• Bandwidth
• Jitter
• Packet loss

This data is pushed to a Pub/Sub module which relays it to the SLA Enforcer, where the AI/ML algorithm
training takes place and the model is continuously updated with up-to-date data. The model
parameters and the SLA parameters are passed to another submodule which is in charge of detecting
the violations of the SLO. If the SLO threshold is crossed, the algorithm running in this module will
predict the optimal hardware (CPU, memory, etc.) configuration that the infrastructure must adopt to
prevent the violation of the SLA and then trigger the scaling of resources.

FIGURE 3-4 SLA ENFORCER MODULE DESIGN

4. Movement Prediction Module Design

By being continuously fed with the command history required to execute a given task, the Movement
Prediction creates AI/ML-based models for movement prediction. In doing so, it can infer the next
movement command upon disrupted connectivity between the physical system and digital replica,
triggering its execution in order to guarantee an uninterrupted flow of commands. Finally, a feedback

D2.3 – Final Specification of 5G-DIVE Innovations 50

H2020-859881

loop between the robotic arm and this module is established so that the AI/ML-based model is
iteratively refined to reach optimality.

More in detail, the Movement Prediction module is designed to support the plug and play of any kind of
AI/ML algorithms, such as VAR, LSTM, TCN or GRU, given that they get as input a list containing the
historic of commands and produce as the output the predicted next command(s) to be executed. In this
sense, depending on the number of commands predicted by the AI/ML algorithm, the Movement
Prediction module is flexible to adapt the rate at which predictions are requested. As part of the
Movement Prediction module, it supports the training of AI/ML models using the historic of commands
to execute one or more tasks. However, already trained AI/ML can be given to the Movement Prediction
module, being used solely for inference tasks.

Different options for the integration of the Movement Prediction module were studied, as depicted in
Figure 3-5. After assessing the pros and cons, Option 1 was selected due to its less disruptive approach,
allowing not only a seamless integration with the Digital Twin service but also the possibility to enable
or disable this feature without impacting the vanilla Digital Twin service. Moreover, it fully relies on
the ROS communication capabilities, already exploited by the vanilla Digital Twin service.

(a) Option 1 (b) Option 2

FIGURE 3-5: MOVEMENT PREDICTION MODULE INTEGRATION OPTIONS

D2.3 – Final Specification of 5G-DIVE Innovations 51

H2020-859881

A step-by-step description of Option 1 is described as follows:

1. Movement instructions are issued by the Digital Twin controlling interfaces (e.g., Remote
Controller or Web Interface modules), which are forwarded across the robotic stack (i.e., Interface,
Motion Planning, Control modules).

2. When the Control module sends the movement instructions to the Drivers, so that they are
executed in the robotic arm, the Movement Prediction module is able to intercept those same
messages. To do so, the Movement Prediction module is subscribed to the same ROS topics as the
Drivers, making the whole process transparent.

3. The Movement Prediction module stores the received movement commands in a circular buffer,
so that only the required look-back commands are stored (i.e., history of commands used for
computing the predictions).

4. Whenever the Movement Prediction module receives a movement command, it restarts an
internal timer. An eventual timeout means that a command is lost and, therefore, a prediction
must be computed.

a. The computed movement prediction is sent (i.e., injected) to the Drivers, being executed
in the robotic arm. Even though this command was issued by the Movement Prediction,
it is fed back with it due to the way ROS communications are handled.

5. If the real movement instruction is delayed, it is discarded by the Drivers since its lifespan will
be already expired.

Using the previous procedure, predicted movements are only issued if a missing command is detected.
Therefore, the Movement Prediction module does not impact or interfere with the normal operation of
the Digital Twin service, if the latency requirements are met.

Apart from the robot drivers, which are intended to run directly on the robotic arm, and from the Digital
Twin application, which can be either edge functionality or an application running directly in the
operator user equipment, the remaining modules can be deployed on both fog devices and on edge
servers.

In the preliminary integration stages, we found out that distributing part of the modules to the Edge
server, as envisioned here, did not degraded the performance of the Digital Twin system in terms of
accuracy, reliability, and bandwidth utilization, with respect to a localized robot-based solution.
Moreover, the offloading of many of these modules represented savings in terms of the robot
computational and power resources.

3.1.2. Mapping to the DEEP Platform
This section presents mapping of Digital Twin use case to the DEEP platform, being presented several
workflows of its integration with the BASS, DASS and IESS. Section 3.1.2.1 presents the workflow for
an end-to-end deployment of the Digital Twin solution over a distributed EFS using the BASS. Section
3.1.2.2 depicts the workflow for the DASS-enabled Replay feature. Lastly, Sections 3.1.2.3, 3.1.2.4 and
3.1.2.5 present the workflow for the Obstacle Avoidance, SLA Enforcer and Movement Prediction
intelligence engines provided by the IESS.

D2.3 – Final Specification of 5G-DIVE Innovations 52

H2020-859881

3.1.2.1. End-to-End Digital Twin Service Instantiation

Figure 3-6 shows the mapping of the designed Digital Twin use case with the BASS for end-to-end
deployments of the Digital Twin service. In the Digital Twin use case, the BASS is used to ease the
service creation, deployment, instantiation, and management tasks over the EFS infrastructure on
behalf of the Remote Operator. By making use of BASS GUI described in details in Section 2.2.2.2, the
Remote Operator fills in a Vertical Service Blueprint with business-oriented parameters, which is then
used to request the Digital Twin Service deployment (step 1). The Vertical Service Descriptor holds
information related to the Digital Twin key modules such as type of remote-control mechanism that
the operator intends to use (e.g., joystick, web interface, etc), type of robot, type of operation to perform,
etc. Next, the BASS translates the business-oriented parameters also included in the descriptor into one
or more network service descriptors that holds detailed deployment and management information,
such as image location, IP addresses and ports of each module, deployment location (e.g., fog, edge or
cloud) and dependencies between the modules. Once the network service descriptors are available, the
BASS requests their deployment and instantiation through the Orchestrator Driver (step 2). The OCS
receives this request and through the VIM deploys each module of the Digital Twin service in the
distributed EFS (step 3). Each node that is involved in the deployment (e.g., robot arm, user device,
edge server) reports back to the OCS the status of Digital Twin module (deploying, running, stopped,
error, etc) (step4). This status information is propagated back to the BASS (step 5), being presented to
the Remote Operator through the BASS GUI (step 6). When all the modules have the status running,
the Remote Operator can start using the Digital Twin service.

FIGURE 3-6: DIGITAL TWIN END-TO-END DEPLOYMENT WITH BASS

D2.3 – Final Specification of 5G-DIVE Innovations 53

H2020-859881

3.1.2.2. DASS-enabled Replay

Figure 3-7 shows the mapping of the Digital Twin Replay feature that exploits the functionalities made
available by the DASS. The Remote Operator, with the help of the Digital Twin application and a
remote-control mechanism (e.g.: joystick , web interface), can remotely control the physical robotic arm
(step 1). Consequently, the robot arm in real time updates the Digital Twin to keep a tight
synchronization between the physical and digital worlds (step 2). Simultaneously, the Replay feature
continuously collects in real time the Digital Twin states from the corresponding application using the
DASS Data Dispatcher, storing them in the DASS Data Storage (step 3). In a specific moment of the
remote operation (e.g., due to robot misbehaviour), the Remote Operator can request for a replay of a
past sequence of movements through the Web Interface GUI by specifying the desired time interval
(step 4). The Replay module queries the DASS Data Storage about the Digital Twin states associated to
requested time interval (step 5). Once the past sequence data is obtained (step 6), the Replay module
starts to playback the data in a loop fashion. The Remote Operator is informed that the action replay is
ready (step 7) via the Web Interface GUI and in that moment, he can add a new virtual replica in the
Digital Twin application in order to visualise the replay data.

FIGURE 3-7: DIGITAL TWIN DASS-ENABLED REPLAY FEATURE

3.1.2.3. IESS Automation for Obstacle Avoidance

Figure 3-8 shows the mapping of the Obstacle Avoidance module with the IESS platform. In Step 1 the
Obstacle Avoidance communicates to the IESS the positions of the source and the destination, as well as
the position and the shape of the obstacle. The RL algorithm is run in the IESS to compute the trajectory
the robot has to follow to move an object from A to B without hitting the obstacle. This trajectory path
is passed back to the Obstacle Avoidance (step 2), that computes the inverse kinematics of the
coordinates, yielding the corresponding sequence of robot joint states. The corresponding commands

D2.3 – Final Specification of 5G-DIVE Innovations 54

H2020-859881

are published to a topic of the module of the robot stack (Interface, Motion or Control, step 3). Eventually,
the commands are executed by the Drivers (step 4) of the robot.

FIGURE 3-8 DIGITAL TWIN IESS OBSTACLE AVOIDANCE

3.1.2.4. DEEP Integration for SLA Enforcer

Figure 3-9 shows the mapping of the SLA Enforcer module with the IESS, the DASS and the BASS. The
Monitoring Probe module continuously extracts the SLIs values (actuation, synchronization times, etc.)
from the Digital Twin Application and monitors the network parameters (latency, bandwidth, jitter,
packet loss), pushing this data to the DASS (step 1). The DASS relays the data to 1) the BASS, so that it
can check if the thresholds associated to the SLOs are met, 2) to the IESS so that the AI/ML model can
be updated (step 2, 3). The SLA Enforcer in the BASS continuously predict the optimal configuration.
When the BASS detects a violation, it triggers the OCS Orchestrator to scale resources . This translates
into a change in the Network Service Descriptor (NSD) file for adapting the resource allocation. The
BASS pushes the new configuration file in the Orchestrator that can enact the scaling of the EFS virtual
hardware (step 4). Eventually, the VIM executes the new configuration (step 5). Also, the BASS checks
if the SLIs value get back below a lower-threshold, to enact the same mechanism but this time to scale
resources down, so that the initial EFS hardware configuration can be restored back.

D2.3 – Final Specification of 5G-DIVE Innovations 55

H2020-859881

FIGURE 3-9 SLA ENFORCER E2E MECHANISM

3.1.2.5. IESS Automation for Movement Prediction

Figure 3-10 shows the mapping of the Movement Prediction module with the IESS. The Remote Operator
remotely controls the physical robotic arm (step 1). Consequently, the robotic arm updates the Digital
Twin application in real time (step 2). Simultaneously, the Digital Twin application uses the DASS Data
Dispatcher and Data Storage to collect and store the joint states of the virtual replica (step 3). The stored
robot data is continuously used by the IESS Model Training to train a movement prediction AI/ML
model (step 4). When this AI/ML model is trained and after passing all the cross-validation tests, the
IESS stores the model in its catalogue (step 4) and sends it back to the BASS to be loaded and included
in the Digital Twin service (step 5). The BASS interacts with the OCS through the Orchestration Driver,
requesting the instantiation of the Movement Prediction module (step 6). The OCS performs the robot
on-device deployment (step 7) with the status of the operation sent back to the OCS (step 8). Finally,
the BASS GUI presents the status of the deployment (step 9 and 10), informing the Remote Operator
that the Movement Prediction module has been added to the Digital Twin service.

D2.3 – Final Specification of 5G-DIVE Innovations 56

H2020-859881

FIGURE 3-10: DIGITAL TWIN IESS MOVEMENT PREDICTION

D2.3 – Final Specification of 5G-DIVE Innovations 57

H2020-859881

3.2. I4.0 Use Case 2: Zero Defect Manufacturing
The Zero Defect Manufacturing (ZDM) used case has been presented in D2.1 [1]. The goal of the use
case is to attain automatic remote control of a factory. The factory is producing goods that are being
monitored as they leave the production line for possible defects.

This section presents the most recent developments in the ZDM use case. First, we present the updates
on the use case and its key modules design. Second, we detail the main workflows of ZDM operation
as well as its integration with the DEEP platform.

3.2.1. Key Module Design
This section focuses on describing the latest evolution for the Zero Defect Manufacturing (ZDM) use
case, which relates to a new defect detection engine and the setup adaptation to use with a new Edge
node, the AWS Wavelength.

3.2.1.1. Defect Detection Engine

Defect detection is becoming an increasingly important task during a manufacturing process. The early
detection of faults or defects and the removal of the elements that may produce them are essential to
improve product quality and reduce the economic impact caused by discarding defective products.
This point is especially important in the case of products that are very expensive to produce [38]. In
order to simulate a more realistic factory environment, a new object detection engine has been trained
using Yolov3 [39]. In the newly trained engine, circular black marks were chosen as defects for the
objects. Figure 3-11 shows the cubes that are placed in the production line. The mono-coloured cube is
considered as a non defective object. The cubes with circular black marks are considered defective
objects.

FIGURE 3-11 DEFECTIVE AND NON-DEFECTIVE CUBES AS A PRODUCT OF THE FACTORY

D2.3 – Final Specification of 5G-DIVE Innovations 58

H2020-859881

3.2.1.2. AWS Wavelength

AWS Wavelength is an AWS Infrastructure offering optimized for mobile edge computing
applications. Wavelength Zones are AWS infrastructure deployments that embed AWS compute and
storage services within a mobile network operator’s datacenters at the edge of the 5G network. By
deploying computing resources co-located with a Mobile Network Operator (MNO)’s Core Network,
application traffic from 5G devices can reach application servers running in Wavelength Zones without
leaving the telecommunications network. This eliminates the latency that would result from application
traffic having to traverse multiple hops across the Internet to reach their destination, enabling
customers to take full advantage of the latency and bandwidth benefits offered by modern 5G
networks.

The ZDM setup has been tested with an Edge Node compute capabilities located at a Wavelength zone
and the setup is as depicted in Figure 3-12.

FIGURE 3-12 ZDM SETUP WITH AWS WAVELENGTH

The presented setup is similar to what has been presented in D2.1 [1] for the ZDM use case, with the
difference that the Edge node has been replaced by computing resources located in the AWS
Wavelength zone, that is located inside a MNO’s domain. The new object detection engine has been
trained using Yolov3 and deployed within these computing resources.

The newly trained defect detection engine and its deployment at AWS Wavelength complete the latest
ZDM use case setup that has been integrated with the DEEP Platform components. The next subsections
describe the workflows of this setup with the DEEP Platform components.

3.2.2. Mapping to the DEEP Platform
In this section, a mapping of the Zero Defect Manufacturing use case to the DEEP platform is presented,
along with the workflows of its integration with the BASS and DASS.

Fog Device

HD Camera

Disposal Bin Arm Robot

Sliding Rail

Conveyor Belt

Objects

Factory

Live Video Stream

Factory control

Modem

Wavelength
Edge Computing

MNO Core Network

Remote access

D2.3 – Final Specification of 5G-DIVE Innovations 59

H2020-859881

3.2.2.1. BASS Service Instantiation for ZDM

Figure 3-13 shows the mapping of the BASS component in the ZDM use case, with the workflow steps
for initiating the service and checking its status during the execution.

FIGURE 3-13 BASS SERVICE INSTANTIATION

The service initiation process is started by the operator (step 1), which can fill the parameters of the
Vertical Service Blueprint in the GUI console of the BASS. The Vertical Service Descriptor holds
configuration parameters of the service which are specific to the components needed for running the
application. After the vertical service descriptor is defined the BASS uses the orchestrator driver (step
2) to command the orchestrator to start the components in the EFS (step 3). These components are the
defect detection application, the fog device control software, the driver controlling the robotic arm, and
the telemetry agent. Once the components are deployed the camera can start streaming (step 4) and the
factory service can start (step 5). The EFS deployed components report their status to the orchestrator
(step 6) which updates the service status in the BASS (step 7). This way the service cycle is complete
and the operator (step 8) monitors the result of the vertical started.

D2.3 – Final Specification of 5G-DIVE Innovations 60

H2020-859881

3.2.2.2. DASS Enabled Telemetry Data Collection

In the ZDM use case, various forms of telemetry data are collected, as reported in D2.1 [1]. Fig. 3-13
shows the mapping of the BASS component in the ZDM use case, with the workflow steps for initiating
the data collection, posting, getting and subscribing for the collected telemetry data.

FIGURE 3-14 DASS-ENABLED TELEMETRY DATA COLLECTION

The service flows for telemetry data collection start in step 1, when the factory for the ZDM use case
starts working. The camera starts streaming the video towards the Edge node and the factory starts
working, with the cubes being placed on the running conveyor belt. The telemetry agent in the EFS
uses the Zenoh protocol to communicate with the Zenoh router located at the DASS core (step 2). Next,
the Zenoh router within the DASS core synchronizes with the Zenoh router located at a Cloud Services
Provider. This synchronization is followed by a link establishment between the routers that uses the
Zenoh protocol (step 3) to correctly direct the telemetry data into a Zenoh storage unit, located in the
Cloud.

D2.3 – Final Specification of 5G-DIVE Innovations 61

H2020-859881

3.3. I4.0 Use Case 3: Massive MTC
In this section, we present the key module design of the current massive MTC system and how it maps
to the DEEP platform. In Section 3.3.1, we explore the updated system design with Kubernetes
integration and then present the RF fingerprinting module. In Section 3.3.2, we show the mapping of
mMTC use case to the DEEP platform by elaborating the workflow of the use case.

3.3.1. Key Module Design
In D2.1 [1] we incorporated cloud native design methodologies to the development of our virtualized
IoT network stacks, i.e., LoRa and IEEE 802.15.4. The baseband functions were offloaded from the radio
heads to virtualized software functions in the edge. In this section, we first present some updates on
the modules developed in D2.1 [1]. Then we elaborate on the current system design with Kubernetes
to further explore the orchestration features and to integrate with BASS.

To enhance the mMTC system, we updated several modules designed in first release and also added
two new modules. For LoRa emulation testbed, i) we updated the packet generator module which was
used to emulate cell traffic. The updated packet generator module aims to reduce the complexity for
deploying large LoRa networks. In the first release, one packet generator block was developed to
emulate one cell. With the new module, we can use one packet generator block to emulate multi-cell
traffic by configuring the number of cells and traffic pattern. ii) We adopted ZMQ PUB/SUB sockets
instead of packet aggregation function for packet reassembling. The system achieves better
performance regarding throughput as well as latency. Measurement results show that the maximum
supported full-traffic cells for one communication stack increases significantly from 9 to 57. iii) We
integrated the system to the Kubernetes framework for orchestration and automation of the Docker
containers. iiii) We also use open-source database and visualization tools, i.e., Telegraf, InfluxDB and
Grafana to visualize and record the system metrics such as resource utilization, latency, and throughput.
Further,For IEEE 802.15.4 testbed, i) an improved RF fingerprinting algorithm was designed with
improved performance and scalability. ii) A software module for simulating 802.15.4 devices were
developed to facilitate system testing and scalability study. In the following, we will focus on the two
jormajor updates for the mMTC use case, i.e. Kubernetes integration and intelligent application for RF
fingerprinting.

3.3.1.1. System Design with Kubernetes

In D2.1 [1] we explored a vRAN architecture for IoT networks where IoT baseband functions are
virtualized in Docker containers. The Docker containers are deployed on a single mini PC with a
command line interface (CLI). However, when it comes to running containers in real cloud native
networks, service providers can end up with manymany containers. These containers need to be
deployed, managed, connected, monitored and updated, and this is where a container orchestration
tool, e.g., Kubernetes, comes to playplay an important role. In this section, we will address the concepts
of Kubernetes and how it is implemented in mMTC use case.

D2.3 – Final Specification of 5G-DIVE Innovations 62

H2020-859881

Kubernetes is an open-source orchestration software that provides an API to control how and where
the containers will run [40]. In Kubernetes, application software resides in containers as a service and
runs in pods which are the smallest deployable units created by service providers. A desired state of
the application/service is described in a Kubernetes Deployment file. The deployment could be scaled
verticallyvertically and horizontally, and pods could be replicated as configured to provide
redundancy. Furthermore, to enable network access to the services, a Kubernetes Service is defined to
expose the service with IP addresses and ports. Bringing Kubernetes into our work benefits us in several
aspects:

• Availability: Instead of deploying IoT communication stacks on one node, Kubernetes uses a
ingmultiplecluster consisting multiple nodes for running containerized applications. A cluster
contains at least one master node and several worker nodes, providing fault tolerance and high
availability. A master node manages the worker nodes and scheduling of the applications. A
worker node hosts the pods that run the component of the application workload.

• Networking: Kubernetes allows cluster components to communicate with each other (internal)
and with other applications outside the cluster (external). There are typically four types of
networking for a Kubernetes cluster, i.e., container-to-container communication, pod-to-pod
communication, pod-to-service communication, and external-to-service communication. For
each type of communication, Kubernetes offers ways to handle the traffic routing automatically.

• Elasticity/scalability: With billions of devices connect to the network, the data is created at an
unprecedented rate and is also hard to predict. All of these require the system’s ability to handle
elastic demand and shifting workloads. Kubernetes offers an infrastructure that can scale
horizontally/vertically which scales the system resources according to the workload, to meet
the end user demand. Furthermore, the scaling of the services can be easily done across network
clusters without any impact on the services.

For a better understanding of how Kubernetes manages the containers in our use case, we show in
Figure 3-15 the mMTC deployment diagram where a three-node Kubernetes cluster is deployed. Three
services, i.e., LoRa decoding function, IEEE 802.15.4 decoding function and RF fingerprinting are
running on each worker node. To receive/send data from/to outside the cluster, we expose LoRa and
IEEE 802.15.4 services with external IP addresses and ports. For example, in uplink, ttraffic data from
IoT devices is received by the radio head and then published to the worker nodes using ZMQ. Note
that we use MetalLB [41] as our load balancer..Kubernetes is able to load balance and distribute the
network traffic across the nodes according to the policy applied. In the rest of this section, we present
aa key part of the Kubernetes configuration, i.e., communication between the radio head and pods as
well as how services are connected. Then the scripts for LoRa Kubernetes deployment are provided as
an deployment example. Details regarding the integration with the DEEP are addressed in Section
3.3.2.1..

D2.3 – Final Specification of 5G-DIVE Innovations 63

H2020-859881

FIGURE 3-15 MMTC DEPLOYMENT DIAGRAM

Normally, Kubernetes pods are created and destroyed to match the state of the cluster. However, each
pod gets its own IP address and the set of pods running in one moment in time could be different from
the set of pods running that application a moment later. To handle this, we expose the deployment as
a Service. In Kubernetes, a Service is an abstraction which defines a logical set of pods and the policy
defining the access rules. After the services, i.e. LoRa and 802.15.4, in Kubernetes clusters areare
exposed, we use two ZMQ PUB/SUB patterns for the connection between the radio head and the
Kubernetes services as shown in Figure 3-16. For downlink signals, edge containers (pods) work as
publishers and the radio head works as a subscriber. Edge containers (pods) will bind the
corresponding service internal IP address and port, while the radio head will connect to the service
external IP address and port. A Kubernetes Service is used to map the two sets of IP addresses and
ports so that traffic can be load balanced across the pods. For the uplink signal, on the contrary, the
radio head works as a publisher and edge containers work as subscribers. In this case, the radio head
publishes the received IoT data to the edge by connecting to service external IP address and port.
Meanwhile, edge containers (pods) bind to the corresponding internal IP address and port to receive
data. utilizeWe utilize these two patterns in different directions since we want one service can support
multiple radio heads (cells). Otherwise, with an increasing number of cells connected to the system,
pods in the edge need to connect to hundreds or thousands of IP addresses and ports to receive data
from radio heads. The system would be much more complex and difficult to deploy.

FIGURE 3-16 ZMQ PUB/SUB PATTERNS FOR DOWNLINK AND UPLINK SIGNALS

D2.3 – Final Specification of 5G-DIVE Innovations 64

H2020-859881

Further, we take LoRa deployment as an example to show how we expose the service with an external
IP address and port. Figure 3-17 illustrates the LoRa service configuration scripts of the .yaml file which
specifies the configuration of the Kubernetes Service deployment. From the scripts, we observe that we
create a new Service object named ‘lora-service-edge’, which targets TCP port 8088 on any pod with
the ‘app=lora-edge’ label. In addition, Kubernetes assigns this Service an IP address which can be used
to communicate with the devices outside the cluster. It is worth mentioning that we herein expose the
Service externally using MetalLB, which is a load-balancer implementation using standard routing
protocols [41]. Once the Service is deployed, we can publish data to the edge by connecting to the
external IP address and the exposed port. The data then will be distributed to the specific pods using
predefined load balancing policies.

FIGURE 3-17 AN EXAMPLE OF EXPOSING LORA APPLICATION AS A KUBERNETES SERVICE

Figure 3-18 presents the Kubernetes deployment scripts for LoRa Service. From the figure, we see that
a deployment named ‘lora-deployment-edge’ is created, indicated by the metadata.name field. The
deployment creates two replicated pods labelled as ‘lora-edge’. Having two pods running the same
instance in the system adds the redundancy, such that oneone can take over the traffic in case the other
fails. Each pod runs one container, i.e., edge, which runs the Docker Hub image ‘eabsics/5g-
dive:edge_v2.1.8’ to decode LoRa packets. The pods listen on port 8088 using TCP by default. Note that
in this deployment, we set environment variables for the container IP address and port that run in the
pod. Thus, when the pod restarts, the application will automatically connect to the newly assigned IP
address and receive data from radio heads.

D2.3 – Final Specification of 5G-DIVE Innovations 65

H2020-859881

FIGURE 3-18 AN EXAMPLE OF KUBERNETES DEPLOYMENT YAML FILE FOR LORA

3.3.1.2. Intelligent Application of RF Fingerprinting

Internet of Things (IoT) devices are becoming pervasive in closed-loop control of different
environments such as Industry, Home, Cities, etc. We need to ensure the secure connectivity of such
devices to maintain the integrity of the sensor data and prevent undesirable data leaks. However, the
low-power nature of the sensors limits the use of complex cryptographic functions for secure
authentication of the devices. As an added security mechanism for these devices, RF fingerprinting can
be used to verify the source of the received signal without extra energy and computing overhead on
the IoT devices. RF fingerprinting uses the minute differences in the received signal caused by
hardware impairments in the analog component of the particular device to identify that device.

Traditionally RF fingerprinting is performed for fixed networks, where the devices in the network is
known apriori, which limits the scalability of networks. In D2.1 [1], we showed the feasibility of using
RF fingerprinting with fixed IoT networks. However, this method limits the adaptability of RF
fingerprinting in dynamic networks, where new IoT devices can join the network by performing a
registration handshake. So, we propose an alternative design for RF fingerprinting using supervised
contrastive learning to improve the adaptability of RF fingerprinting in dynamic IoT networks. As we
need access to the radio signals, we consider single-hop networks with our virtualized IoT gateways.

D2.3 – Final Specification of 5G-DIVE Innovations 66

H2020-859881

We store the network association packet from the devices in our IoT network as a reference packet for
that device. We use a deep neural network to learn the mapping from radio signals to unique set of
features using supervised contrastive learning. By comparing the set of features for an incoming test
message from a device with the reference packet for that device, we can verify the transmitter of a
packet. We use a Siamese network which computes the difference between the sets of features for two
inputs to authenticate an incoming packet. Siamese network is contrastive learning based deep neural
network archirecture. It consists of twin identical subnetworks which share the same parameters and
weights. The set of features for radio signals from the same device would be similar. Hence the
difference between the set of features should ideally be close to zero as shown in Figure 3-19. Similarly,
the set of features for radio signals from different devices would be dissimilar, the difference between
the set of features would be large as shown in Figure 3-20. This approach is transferable to any new
network with new devices by reusing the same neural network structure with minimal data to adapt
for new IoT network.

FIGURE 3-19: COMPARING PACKETS FROM THE SAME DEVICE USING SIAMESE NETWORK

FIGURE 3-20: COMPARING PACKETS FROM THE DIFFERENT DEVICES USING SIAMESE NETWORK

Offline Training

Initially, we deploy M IoT sensors in a single hop network with 1 gateway in a laboratory environment.
We collect radio signals corresponding to N packets from each of these M devices at the gateway. The
gateway sends these radio signals to the cloud where we train the deep neural network to extract the
set of features from these radio signals. Each packet is sliced up into smaller slices, with a sliding
window operation for making the learned features shift-invariant. We term this collection of M*N
signals as our dataset.

We randomly sample a pair of slices from the training dataset and tag an ideal output for the pair. For
generating the ideal output, we check if the random slices originate from the same device. For slices
originating from the same device, we label the output for the pair of input slices as one, otherwise it is
tagged as zero.

'LVWDQFH
0HWULF

1HXUDO
1HWZRUN

3DFNHW'HYLFH�$)HDWXUHV�$

1HXUDO
1HWZRUN)HDWXUHV�$

a�

3DFNHW'HYLFH�$

'LVWDQFH
0HWULF

1HXUDO
1HWZRUN)HDWXUHV�$

1HXUDO
1HWZRUN)HDWXUHV�%

aGPD[

3DFNHW'HYLFH�$

3DFNHW'HYLFH�%

D2.3 – Final Specification of 5G-DIVE Innovations 67

H2020-859881

We structure the deep neural network as a stack of feature extraction layers followed by a sequential
representation layer as shown in Figure 3-21. The feature extraction layers extract the local temporal
features embedded in the slices. The sequential representation layer learns the sequential characteristics
of the local features extracted by the feature extraction layers over a whole slice. The sequential
representation layer outputs the vector of extracted features for each input slice. We compute a L1 norm
of the output vectors for both the inputs and compare it with the labelled output using a contrastive
loss function. Contrastive loss is best suited for our model as it minimizes the difference for similar sets
of features and maximizes the difference for dissimilar sets of features. The calculated loss is
backpropagated to the layers of the neural network to adjust their parameters (weights and biases) with
respect to the loss. Please note, in Figure 3-21, we update and propagate the loss to only one neural
network as the same neural network is instantiated twice for two inputs. This training process
continues until the training loss becomes stable.

FIGURE 3-21: TRAINING PROCESS

Device Authentication

Once the model has been trained, it can be deployed at the IoT gateway. We use the authentication
framework shown in Figure 3-22.

We store the reference packet from all the devices. in the IoT network in the reference sample database,
which is indexed by the MAC ID of the device. Note here the MAC ID is just an example. Any unique
ID e.g., digital certificate keys, sim card info etc, can be used to index the reference packet of a device
in the database. We first process an incoming packet to obtain the MAC ID of the transmitter. Next, we
randomly sample an ensemble of n slices from that node’s reference packet and the incoming packet.
We compare the output sets of features across the n slices using our Siamese network (neural network
followed by L1 norm). If the L1 norm is less than a predefined threshold, we verify that the transmission
is from the same node from which the reference packet is extracted. Hence the packet is now

)HDWXUH
([WUDFWLRQ
/D\HUV

6HTXHQWLDO
5HSUHVHQWDWLRQ

/D\HU

1HXUDO�1HWZRUN

9HFWRU�RI�H[WUDFWHG
IHDWXUHV

7UDLQLQJ
'DWDVHW

5DQGRP�6OLFH
1¬

5DQGRP�6OLFH
0

6HTXHQWLDO
5HSUHVHQWDWLRQ

/D\HU

1HXUDO�1HWZRUN

9HFWRU�RI�H[WUDFWHG
IHDWXUHV

)HDWXUH
([WUDFWLRQ
/D\HUV

/��1RUP /RVV
)XQFWLRQ

'HYLFH�6OLFH�1�� �'HYLFH��6OLFH�0�

/RVV

7UDLQLQJ�/RRS

D2.3 – Final Specification of 5G-DIVE Innovations 68

H2020-859881

authenticated and can be processed by the protocol stack. If the packet has a higher L1 norm than the
threshold, we can discard the packet and send warning to the management system.

FIGURE 3-22: AUTHENTICATION AND PERIODIC UPDATE FRAMEWORK

We store all incoming authentic packets in our online training database. Each packet in the database is
indexed by their ID. We periodically transfer the database to the cloud to retrain and update the deep
neural network

3.3.2. Mapping to the DEEP Platform
This section presents mapping of mMTC use case to the DEEP platform, focusing on BASS service
instantiation and IESS automation. In Section 3.3.2.1, we show the workflow for deployments of LoRa
service and IEEE 802.15.4 service using BASS for service deployment, instantiation and management.
In Section 3.3.2.2, we present the workflow for mapping RF fingerprinting to the IESS for model
training.

3.3.2.1. BASS Service Instantiation for mMTC

Figure 3-23 illustrates the mapping of mMTC use case to the BASS. In the mMTC use case, the BASS is
used on the edge to deploy and manage mMTC system which comprises a business translator, a vertical
service manager and an orchestrator driver. During runtime, remote administrator can interact with
the BASS and request mMTC service deployment provided by VSB as discussed in Section 2.2.2.4 (step
1). To integrate the BASS and the OCS, a translation from the VSD to Kubernetes deployment is done
via a Kubernetes driver. Then, the BASS instantiates the mMTC service with the customized
configuration (step 2). The instantiation request is received by the VIM and the OCS deploys the mMTC
service in the EFS (step 3). For IoT devices, the status of the devices (e.g. on/off status) is reported to the
OCS (step 4). Besides, communication stack information (e.g. deployment running status, error, etc.) is

5HIHUHQFH
6DPSOH�'%

1HXUDO
1HWZRUN

3URWRFRO�6WDFN

1HXUDO
1HWZRUN

/��1RUP

&RPSDUH�ZLWK
7KUHVKROG

,'

2QOLQH
7UDLQLQJ�'%

&RPSDUH�ZLWK
7KUHVKROG

*DWHZD\

&ORXG

6WRUH�DQG�)RUZDUG

,'

8SGDWHG�0RGHO

D2.3 – Final Specification of 5G-DIVE Innovations 69

H2020-859881

also reported to the OCS (step 4). The BASS collects the status information and transmit the data to the
remote administrator (step 5 and 6).

FIGURE 3-23 MMTC BASS DEPLOYMENT

3.3.2.2. IESS Automation for RF Fingerprinting Module

We show the IESS mapping of the RF Fingerprinting module in Figure 3-24. All IoT devices send their
packets to their local radiohead (gateway). The radio signals corresponding to these packets are sent to
the IoT communication stack to be processed (step 1). The IoT communication stack processes the radio
signals and provides the processed data to the IoT application. Consequently, it also stores the radio
signals in the DASS data storage (step 2). The stored radio signals are used for IESS model training
using the process of offline training described previously (step 3). The trained model is stored in the
model catalogue (step 3) and is sent to the BASS to be loaded and included in the mMTC service (step
4). The BASS interacts with the OCS through the Orchestration Driver, requesting the instantiation of
the RF Fingerprinting module (step 5). The OCS deploys the RF Fingerprinting module at the EFS (step
6) with the status of the operation sent back to the OCS (step 7). The OCS updates the RF Fingerprinting
Module status to the BASS (step 8).

D2.3 – Final Specification of 5G-DIVE Innovations 70

H2020-859881

FIGURE 3-24: RF FINGERPRINTING IESSS MAPPING

5DGLRKHDG

,R7�&RPPXQLFDWLRQ�6WDFN

5)�)LQJHUSULQWLQJ�0RGXOH

,R7�$SSOLFDWLRQ

()6

'DWD�'LVSDWFKHU

'DWD
3UHSURFHVVLQJ

'DWD�6WRUDJH

'$66

0RGHO�7UDLQLQJ

0RGHO�&DWDORJXH

,(66

%XVLQHVV
7UDQVODWRU

9HUWLFDO�6HUYLFH
0DQDJHU

2UFKHVWUDWRU
'ULYHU¬

%$66

2UFKHVWUDWRU
'ULYHU¬

2UFKHVWUDWRU
'ULYHU¬

2UFKHVWUDWRU

9,0

2&6

¬6HQG
SDFNHW

�5DGLR
VLJQDO�LV

FROOHFWHG�DQG
VWRUHG

�7UDLQ�PRGHO
DQG�VDYH�WR
FDWDORJXH

�/RDG�5)
)LQJHUSULQWLQJ

0RGXOH¬,QVWDQWLDWH�5)
)LQJHUSULQWLQJ

0RGXOH

¬'HSOR\�5)
)LQJHUSULQWLQJ

0RGXOH

¬5)
)LQJHUSULQWLQJ
0RGXOH�6WDWXV

¬5)
)LQJHUSULQWLQJ
0RGXOH�6WDWXV

D2.3 – Final Specification of 5G-DIVE Innovations 71

H2020-859881

4. 5G-DIVE Solution for Disaster Relief Using Autonomous
Drone

This section provides the refined and final key modules design for Disaster Relief Using Autonomous
Drone Scouts (Figure 4-1). This will include updates and refinements on the modules already
introduced in D2.1 [1], as well as the addition of new modules in both ADS, Use Case 1 Drones Fleet
Navigation, and ADS Use Case 2 Intelligent Image Processing for Drones. Details on Use Case 1 will
be described in Section 4.1. Details on Use Case 2 will be described in Section 4.2. And finally, yet
importantly, the mapping of ADS Use Case 1, and ADS Use Case 2 to the DEEP platform will be
presented in Section 4.3.

FIGURE 4-1 5G NSA AND EDGE SYSTEM BLOCK DIAGRAM FOR ADS

4.1. ADS Use Case 1: Drone Fleet Navigation
Drone fleet navigation is important functionality needed during a disaster relief mission. In this part,
we will introduce the enhanced feature which will allow a smooth drone flight and resource
management.

4.1.1. Key Module Design
During the disaster relief mission of the drone fleet, the drone navigation server and drone collision
avoidance system (DCAS) function is applied to support drones for executing missions. However, the
initial design of DCAS handles the computing in the fog. In this deliverable, we considered the DCAS
to be adopted at the edge. This will be part of improving the drone navigation server software which
can view and control multiple drones at the same console simultaneously. The new drone navigation
software will facilities the adoption of DCAS at the edge. On the other side, the benefits of iDrOS
(Internet Drone Operating System) to support drone fleet navigation functionalities will be quite
important. The iDrOS will enable the modules to run on the drone itself or at the edge. Consequently,
this section focuses on two systems namely DCAS and iDrOS.

D2.3 – Final Specification of 5G-DIVE Innovations 72

H2020-859881

4.1.1.1. DCAS

During the disaster relief mission of the drone fleet, the drone navigation server at the edge and DCAS
at the fog (i.e. drone) are applied to support drones for executing missions. The design of DCAS will
remain the same as introduced in D2.1 [1]. In this deliverable, DCAS will be adopted in the edge as
elaborated earlier. In particular, we will take advantage of the 5G-Connectivity to provide low latency
to adopt drone avoidance functionality at the edge. Also, this means utilizing the computing
capabilities at the edge. Basically, the drones will transmit the GPS information and drone ID back to
the navigation server at the edge over the 5G network. The new design of the navigation server is
capable of monitoring several drones at the same time and detect collision. The current design for
DCAS at the edge will only hoover the drone and send the request for the mission operator to handle
this situation. In near future, the DCAS at the edge will react automatically and fly drones in a different
pattern to avoid the collision. One of the candidate designs is to fly in a swapping pattern similar to the
model adopted in DCAS.

4.1.1.2. iDrOS

iDrOS (Internet Drone Operating System) is a system support layer simplifying the development of
drone applications implemented as a pipeline of data processing components. A component here is to
be considered as an individual functionality in charge of a specific step in the data processing pipeline;
for example, performing filtering of input image frames or relaying the results of object detection
functionality to the backend. iDrOS facilitates implementing these applications by equipping
programmers with an actor-based programming model. Single components are mapped to software
actors. Actors are loosely coupled and interact via a data bus layer, shown in Figure 4-2 iDros
architecture, accessed via pattern matching.

FIGURE 4-2 IDROS ARCHITECTURE

Navigation
Data

Processing

Data Bus Layer

Fl
ig

ht

In
te

rfa
ce

Sensor Abstraction Layer

CoAP MQTT

Adaptation

HTTP

Data
Processing Adaptation

… … …

D2.3 – Final Specification of 5G-DIVE Innovations 73

H2020-859881

The distinctive feature of iDrOS components is the programmers’ ability to migrate individual
functionality across different devices. Programmers can tag part of a component state as non-volatile,
which causes iDrOS to migrate the state along with the code corresponding to the functionality to be
migrated. The original implementation of iDrOS, however, assumed the availability of a previously
configured iDrOS instance whenever the functionality was to be migrated.

Within 5G-DIVE, we furthered both the programming model and the underlying implementation of
iDrOS to cater to high resource mobility and volatility. We have, in particular, added the ability to
migrate entire iDrOS instances in addition to the existing functionality to migrate individual
component functions. We leverage fog05 to this end and implement a custom orchestrator that, based
on a given objective function that represents the desired performance, dynamically monitors the
network conditions and accordingly adjusts the deployment configuration.

Orchestrator: Requirements

The design of the orchestrator has been shaped around three objectives that it must achieve. First, the
orchestrator must capture and store data about the current network conditions. This data includes the
number of nodes in the network, network performance, etc. Application developers who develop
applications that are to be deployed using the orchestrator should be able to add the custom data they
need to be recorded. Second, the orchestrator must utilize this data to make decisions on whether and
how to modify the deployment configuration. Those decisions take the form of actions to instantiate a
new iDrOS instance on a particular node, stop an instance that is currently running on a node, or
migrate an instance from one node to another.

The orchestrator must generate those actions to convert the current deployment configuration to an
optimized one. That is generated from analysing the current data about the network and also
application-specific data that has been added by the application developers. Third, the orchestrator
must be able to perform the conversion of the current deployment to the optimized deployment that
has been previously generated. This means that the orchestrator must be able to interface with the edge
deployment platform, which is Fog05 in this case, to modify the current edge deployment to match the
intended deployment.

Orchestrator: Architecture

As shown in Figure 4-3 iDrOS Orchestrator architecture, the iDrOS orchestrator architecture is based
on three modules: Surveying, Analysis, and Execution.

• The Surveying Module is responsible for gathering data from nodes in the network.
• The Analysis Module is responsible for utilizing that data to scrutinize the current deployment

configuration and generate an optimized deployment configuration.

D2.3 – Final Specification of 5G-DIVE Innovations 74

H2020-859881

• The Execution Module is responsible for turning the current deployment configuration into the
optimized one.

FIGURE 4-3 IDROS ORCHESTRATOR ARCHITECTURE

The deployment configuration refers to a graph of all the nodes in the network, which includes aerial
and edge nodes. Edges in this graph represent the distance between the nodes, based on a conceptual
notion of distance that is generally application-specific. The 3 modules are each running periodically
so that updated information is constantly being factored into the orchestration. It is important to
mention that the Monitoring Module is an additional module that is not strictly part of the orchestrator
but rather runs on each node in the network to gather important monitoring data that will be sent to
the orchestrator.

The architecture of the orchestrator was based on maintaining a continuous flow of data. The flow of
data goes from all the Monitoring Modules to the Metric object. Those Metric objects are collected by
the Surveying Module and passed to the Graph Interface. The Graph Interface uses those Metrics to
update the Network Graph object stored in the Analysis Module. The Analysis Module passes the
Network Graph object to the highest priority Optimization Strategy that meets its execution conditions.
The Optimization Strategy passes back an optimized intended deployment graph to the Analysis
Module, which forwards along with the current deployment graph to the Action Interface. The Action
Interface generates a list of Actions necessary to convert the Network Graph to the optimized intended
graph. This list of Actions is passed to the Execution Module which executes those actions on the nodes
that require any changes.

4.2. ADS Use Case 2: Intelligent Image Processing
Intelligent Image Processing provides the capability to locate PiH in a disaster-impacted area in real-
time based on aerial drone video surveillance. The detection and localization of PiH will be done by
the EagleEYE system. For the final design, we updated a couple of modules in EagleEYE system.
Namely Data Offloader module, Dual Object Detection module, and Visualizer module. In addition,
we are also adding the EagleStitch system and the Drone Data Processor system.

D2.3 – Final Specification of 5G-DIVE Innovations 75

H2020-859881

Details on the additions are as follow:

1. We added the EagleStitch image stitching system which gives us the capability to perform
panorama stitching of a disaster-impacted area. This will help the rescue team in assessing the
disaster impacted area during the rescue mission.

2. We added the Drone Data Processor system which gives us the capability to inject metadata
information to a drone stream. This is crucial as it allows us to differentiate between multiple
drone source inputs. In addition, the Drone Data Processor system uses Zenoh [7] as the DASS
platform which will take care of data exchange efficiently and has several capabilities such as
data storage and data pre-processing.

4.2.1. Key Module Design
For the final design of intelligent image processing system, we have EagleEYE system for performing
PiH detection and localization, EagleStitch system for performing 2D stitching of an area, and a Drone
Data Processor system for drone data pre-processing. Overview of the whole system can be seen in
Figure 4-4.

4.2.1.1. Data Offloader (EagleEYE system)

In the first release, traditional round-robin technique is utilized to offload data (in this case image
frame) to an available dual object detection worker. However, in our testing, we find out that the

FIGURE 4-4 ADS USE CASE 2 SYSTEM OVERVIEW

D2.3 – Final Specification of 5G-DIVE Innovations 76

H2020-859881

traditional round-robin technique is not very efficient. It will stall frame offloading to a busy worker
until it is available. This causes a lot of delays and makes available worker utilization low. For the final
solution, we updated the round robin technique to be a little bit more dynamic. With this, the offloader
will be able to offload frames to any available dual object detection worker (e.g.: worker-1 à worker-3
à worker-2 à worker-1). Compare this to the traditional round-robin technique that can only offload
frame to available dual object detection worker that is in order (e.g.: worker-1 à worker-2 à worker-3
à worker-1).

4.2.1.2. Dual Object Detection (EagleEYE system)

In the first release, the dual object detection module consists of 3 workers to handle all of the detection
tasks coming from a single drone. In the final solution, we update the dual-object-detection module to
contain more workers to handle all of the detection tasks coming from multiple drones. The number of
workers can be set according to the available GPU resources as well as the number of drones currently
under operation. Ideally, the number of workers will be scaled up/down automatically to handle the
processing load.

4.2.1.3. Visualizer System

In the first release, RTSP server is utilized to visualize the output of EagleEYE PiH detection. However,
we find out that using RTSP to visualize the output can incur extra latency. This extra latency comes
from the extra processes that happen inside RTSP as it is aimed more for media streaming. For the final
solution, we will visualize the output directly on a frame-by-frame basis to display the output of both
EagleEYE and EagleStitch system.

4.2.1.4. Sorter (EagleEYE system)

The sorter module is a new module placed after the dual object detection and PiH candidate selection
module. The sorter module inputs are jumbled data coming from previous modules. Sorter is required
so that the other modules after it (PiH persistence validation, and visualizer module) can function
properly as they rely on a sorted data. Sorter will sort data according to frame sequence and drone ID.
The sorting itself is based on the sorting network technique [42]. Then, the sorter will output the sorted
data to the PiH persistence validation module.

D2.3 – Final Specification of 5G-DIVE Innovations 77

H2020-859881

4.2.1.5. EagleStitch System

EagleStitch system is a new addition for ADS Use Case 2. EagleStitch system itself consists of a

single Stitcher module. The EagleStitch system will be installed and run on the edge. The stitcher
module input is images of the trial site's surrounding area. The stitcher module performs 2D-
Stitching on those images. In our design, we are using the stitching algorithm proposed in [43]. The
number of images to be stitched will depend on the target area, as well as the flying characteristic
of the drone. The processing pipeline of the stitching algorithm can be seen in Figure 4-5. A brief
overview of the pipeline is the following:

1. Feature Matching
To detect features in an image (e.g.: corner, curves).

2. Image Matching
To match for images that have the same features.

3. Bundle Adjustment
To bundle all images with the same features.

4. Panorama Straightening
To align the bundled images so that they are not slanted or rotated.

5. Blending
To adjust and correct the gain (brightness) of the images being stitched as well as to remove
the seams (edges) in the stitched images.

4.2.1.6. Drone Data Processor System

The drone data processing system is a new addition to ADS Use Case 2. This system will be
installed and run on a fog device onboard the drone. The drone data processor is used to inject

FIGURE 4-6 DRONE DATA PROCESSOR SYSTEM

FIGURE 4-5 EAGLESTITCH SYSTEM STITCHER MODULE PIPELINE

D2.3 – Final Specification of 5G-DIVE Innovations 78

H2020-859881

metadata onto the captured images before sending them to the edge. This metadata information
offers a simple way to differentiate the data that is coming from different drone sources. The
workflow of the drone data processor can be seen in Figure 4-6.
The drone data processing workflow is as follows:

1. The drone starts to capture Full HD video using the onboard drone camera. From the video,
raw image frames are then extracted. In our case, we will extract 30 image frames per
second. These raw image frames are then converted into a 3D Numpy array. At this step,
the images are still in their original resolution.

2. The 3D Numpy array of the image frames are then compressed and flattened into a 1D
Numpy array. The compression is meant to reduce the size of the image frame and to save
network bandwidth during transmission. For the compression, we are using lossy JPEG
compression.

3. The 1D Numpy array is then injected with information such as Drone ID, timestamp, frame
sequence, and any other relevant information. The information will be injected at the end
of the 1D Numpy array.

4. The 1D Numpy array is then encoded into bytes for transmission.
5. The bytes are then published to the Edge using Zenoh-net.

D2.3 – Final Specification of 5G-DIVE Innovations 79

H2020-859881

4.3. ADS Mapping to the DEEP Platform
Figure 4-7 shows the complete mapping of ADS Use Cases to the DEEP platform. In ADS Use Case 1,
the DASS is used for the fog device. In ADS Use Case 2, the DASS is used on both the fog device as
well as the edge. DASS is used to perform data pre-processing and data storage tasks. The BASS is used
on the edge for the deployment and management of EagleEYE and EagleStitch system. Apart from
deployment and management, the BASS is also used for active monitoring. This active monitoring is
especially useful in the management of key modules that benefit greatly from scaling, such as
EagleEYE’s dual object detection module. Finally, the IESS is used on the edge for the automatic
training and storing of the trained model for EagleEYE’s dual object detection module. Details on the
object detection algorithm, object of interest for detection (e.g.: ‘person’, ‘flag’), as well as the desired
precision level will be input to the IESS for an automated training process. The different trained models
can also be stored in IESS for future use.

FIGURE 4-7 ADS USE CASE MAPPING TO THE DEEP PLATFORM

D2.3 – Final Specification of 5G-DIVE Innovations 80

H2020-859881

The flow for ADS Use Case 1 is from Step A to Step C, while the flow for ADS Use Case 2 is from Step
1 to Step 15.

The complete workflow of the ADS Use Case 1 are as follows:

A. Exchange flight status: based on Zenoh, the EFS, DASS stores the drone data such as Drone ID
and GPS. Then, each drone broadcasts the trajectory repetitively.

B. Collision detection: Each drone location is used by drone fleet navigation software to decide the
drone mission at the edge. Where the done automation path is sent to the edge, Based on the
DCAS detection mechanism [1].

C. Collision avoidance: DCAS will use the automation path and the stored data to trace any risk
and then change the drone path if collision risk is detected in the previous step.

The complete workflow of the ADS Use Case 2 are as follows:

1. The IESS first retrieves the dataset from the DASS for training. This dataset will be a collection
of images that contain person and flag objects. The dataset can be a custom dataset or sourced
from the publicly available repository.

2. The IESS then trains object detection models based on the dataset provided in Step 1. After
training, the trained models are stored in the IESS model catalogue for future use and reference.
After being stored in the IESS model catalogue, the trained model will also be available for other
verticals to use.

3. The BASS then reads the VSB and VSD to prepare for the instantiation of EagleEYE and
EagleStitch. The VSB and VSD will contain all of the necessary parameters for the instantiation.
In the case of EagleEYE instantiation, the BASS will load the previously trained model from the
IESS. After reading the VSB and VSD, the BASS performs the actual instantiation through the
help of the OCS.

4. The OCS instantiates EagleEYE and EagleStitch with the instruction provided by the BASS. Both
EagleEYE and EagleStitch will be instantiated as an EFS component on the edge. A monitoring
probe will also be installed in both EagleEYE and EagleStitch for telemetry data collection.

5. The BASS subscribes to the telemetry data stored at the DASS. Based on this telemetry data, the
BASS will be able to perform management activities such as scaling up/down system
deployment.

6. The drone then starts publishing data to the edge through the Radio Access Network (RAN).
The published data is a pre-processed data by the drone data processor.

7. At the edge, the DASS consumes the published data and store them.
8. EagleEYE and EagleStitch consume the pre-processed drone data stored in the DASS

simultaneously.
9. EagleEYE and EagleStitch perform computation. EagleEYE will perform PiH detection, while

EagleStitch will perform 2D-Stitching.
10. EagleEYE and EagleStitch publish the collected telemetry data to the DASS. For EagleEYE, an

example of the telemetry data is per frame inference time latency, the number of image frames

D2.3 – Final Specification of 5G-DIVE Innovations 81

H2020-859881

processed, worker utilization. For EagleStitch, an example of the telemetry data is stitching
latency and stitching status.

11. Both EagleEYE and EagleStitch results are visualized for the operator. In the case of EagleEYE,
it will be a video that is marked with the bounding boxes of PiH detection, as well as PiH GPS
location. For EagleStitch, it will be a stitched image of the target area.

12. Based on the PiH detection result, EagleEYE will send the PiH GPS location information to the
drone navigation for drone trajectory update.

13. The Drone navigation calculates waypoints for drone automatic navigation based on the PiH
GPS location information received in the previous step. These waypoints are then sent to the
drone through the RAN.

D2.3 – Final Specification of 5G-DIVE Innovations 82

H2020-859881

5. Conclusion
This deliverable presents the final specification of the 5G-DIVE solution for the use cases targeted in
the I4.0 and ADS vertical pilots.

Section 2 presented the final design framework for the solution targeted in 5G-DIVE. It first describes
the 5G connectivity solution used to support the verticals. Next, 5G-DIVE DEEP platform was
presented. Describing in details the update and improvement made compared to the previous design
reported in D2.1 [1].

Section 3 describe in details the final system design for each use cases. Building on top of the design
framework in Section 2. Elaboration on how each use case maps to the DEEP platform, as well as how
each use cases interacts with the DASS, BASS, and IESS are also presented.

The final specification described in this deliverable served as a basis for the implementations. The
achievement for this deliverable are as follows. 5G Connectivity solution of each use cases, final design
of the DEEP platform, as well as a complete solution tailored for each use cases that utilizes the DEEP
platform. Evaluation on the implementations in each use cases will be reported in WP3.

D2.3 – Final Specification of 5G-DIVE Innovations 83

H2020-859881

6. References

[1] “D2.1,” 2020. [Online]. Available: https://5g-dive.eu/wp-content/uploads/2021/01/D2.1-5G-DIVE-
innovations-specification_v1.0_compressed.pdf. [Accessed 22 April 2021].

[2] Torbjörn Cagenius et al., “Simplifying the 5G-ecosystem by reducing architecture options,”
Ericsson Technology Review, November 2018.

[3] Yuang, M., Tien, P.L., Ruan, W.Z., Lin, T.C., Wen, S.C., Tseng, P.J., Lin, C.C., Chen, C.N., Chen,
C.T., Luo, Y.A. and Tsai, M.R., “OPTUNS: optical intra-data center network architecture and
prototype testbed for a 5G edge cloud,” Journal of Optical Communications and Networking, vol. 12,
pp. A28--A37, 2020.

[4] “D1.3,” 06 2021. [Online]. Available: https://5g-dive.eu/wp-content/uploads/2021/06/D1.3-
Final.pdf.

[5] Zhang, Lixia, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, K. C. Claffy, Patrick Crowley,
Christos Papadopoulos, Lan Wang, and Beichuan Zhang, “Named data networking,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 3, pp. 66-73, 2014.

[6] “Minica,” 14 November 2019. [Online]. Available: https://github.com/jsha/minica. [Accessed 31
May 2021].

[7] “Zenoh,” ADLINK, [Online]. Available: https://www.adlinktech.com/en/Zenoh.aspx. [Accessed
22 April 2021].

[8] “Eclipse fog05,” [Online]. Available: https://fog05.io/. [Accessed 26 05 2021].

[9] “Bootstrap,” [Online]. Available: https://getbootstrap.com/. [Accessed 09 June 2021].

[10] “Spring Security,” [Online]. Available: https://spring.io/projects/spring-security. [Accessed 26 05
2021].

[11] IETF, “The 'Basic' HTTP Authentication Scheme,” 09 2015. [Online]. Available:
https://tools.ietf.org/html/rfc7617. [Accessed 26 05 2021].

[12] IETF, “ JSON Web Token (JWT),” 05 2015. [Online]. Available: https://tools.ietf.org/html/rfc7519.
[Accessed 26 05 2021].

[13] IETF, “JSRs: Java Specification Requests,” [Online]. Available:
https://jcp.org/en/jsr/detail?id=250. [Accessed 26 05 2021].

[14] “Ansible,” Red Hat, [Online]. Available: https://www.ansible.com/. [Accessed 31 May 2021].

[15] “Jinja,” [Online]. Available: https://palletsprojects.com/p/jinja/. [Accessed 31 May 2021].

D2.3 – Final Specification of 5G-DIVE Innovations 84

H2020-859881

[16] “Jsonnet,” [Online]. Available: https://jsonnet.org/. [Accessed 31 May 2021].

[17] “YAML,” [Online]. Available: https://yaml.org/. [Accessed 31 May 2021].

[18] Sobel, Jonathan M., and Daniel P. Friedman., “An introduction to reflection-oriented
programming,” in Proceedings of reflection, 1996.

[19] “Hibernate Validator,” [Online]. Available: https://hibernate.org/validator/. [Accessed 31 May
2021].

[20] “Jakarta Bean Validation specification,” 2019. [Online]. Available:
https://beanvalidation.org/2.0/spec/. [Accessed 31 May 2021].

[21] “Prometheus Client Libraries,” [Online]. Available:
https://prometheus.io/docs/instrumenting/clientlibs/. [Accessed 31 May 2021].

[22] “Vector,” [Online]. Available: https://vector.dev/. [Accessed 31 May 2021].

[23] “Telegraf,” [Online]. Available: https://www.influxdata.com/time-series-platform/telegraf/.
[Accessed 31 May 2021].

[24] “Influx DB,” [Online]. Available: https://docs.influxdata.com/influxdb/v2.0/get-started/.
[Accessed 31 May 2021].

[25] B. Burns, Designing Distributed Systems, O'Reilly Media, Inc., 2018.

[26] “Telegraf Operatorr,” [Online]. Available: https://github.com/influxdata/telegraf-operator.
[Accessed 31 May 2021].

[27] “Swagger Open API Specification,” [Online]. Available: https://swagger.io/specification/.
[Accessed 31 May 2021].

[28] “Swagger,” [Online]. Available: https://swagger.io/. [Accessed 31 May 2021].

[29] “H2O AutoML: Automatic Machine Learning,” [Online]. Available:
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html. [Accessed 01 June 2021].

[30] “YOLOv3 in PyTorch,” [Online]. Available: https://github.com/ultralytics/yolov3. [Accessed 01
June 2021].

[31] “TensorFlow Core The Sequential Model,” [Online]. Available:
https://www.tensorflow.org/guide/keras/sequential_model. [Accessed 01 June 2021].

[32] MongoDB Inc., “MongoDB – a cross-platform document-oriented database program,” [Online].
Available: https://www.mongodb.com/. [Accessed 01 June 2021].

[33] “MinIO,” [Online]. Available: https://min.io/. [Accessed 01 June 2021].

D2.3 – Final Specification of 5G-DIVE Innovations 85

H2020-859881

[34] “Amazon S2 API Reference,” [Online]. Available:
https://docs.aws.amazon.com/AmazonS3/latest/API/Type_API_Reference.html. [Accessed 07
June 2021].

[35] “Docker Registry,” [Online]. Available: https://docs.docker.com/registry/ . [Accessed 01 June
2021].

[36] “BentoML,” [Online]. Available: https://www.bentoml.ai/. [Accessed 01 June 2021].

[37] “Jib,” [Online]. Available: https://github.com/GoogleContainerTools/jib. [Accessed 01 June
2021].

[38] F. &. U. R. &. G. D. &. M. J. Bulnes, “An efficient method for defect detection during the
manufacturing of web materials,” Journal of Intelligent Manufacturing, 2014.

[39] J. a. A. F. Redmon, “YOLOv3: An Incremental Improvement,” in ArXiv abs/1804.02767, 2018.

[40] “Kubernetes Documentation,” [Online]. Available: https://kubernetes.io/docs/concepts/.
[Accessed 31 May 2021].

[41] “MetalLB Documentation,” [Online]. Available: https://metallb.universe.tf/concepts/. [Accessed
31 May 2021].

[42] D. E. Knuth, in The Art of Computer Programming, Volume 3: Sorting and Searching, Addison–
Wesley, 1997, p. 219–247.

[43] M. a. L. D. G. Brown, “Automatic panoramic image stitching using invariant features,”
International journal of computer vision, vol. 74, no. 1, pp. 59-73, 2007.

[44] 5G-CORAL Project, “5G-CORAL,” May 2019. [Online]. Available: http://5g-coral.eu/wp-
content/uploads/2019/06/D3.2.pdf. [Accessed 31 May 2021].

[45] J. Barandaet al., “Realizing the network service federation vision: Enabling automated
multidomain orchestration of network services,” IEEE Vehicular Technology Magazine, vol. 15, no.
2, pp. 48-57, 2020.

[46] J. B. et al., “Nfv service federation: enabling multi-provider ehealth emergency services,” in
Proceedings of the International Conference on Computer Communications (INFOCOM’20), 2020.

[47] “5G-CORAL,” August 2019. [Online]. Available: http://5g-coral.eu/wp-
content/uploads/2019/09/D4.2_FINAL.pdf. [Accessed 31 May 2021].

[48] K. Antevski, M. Groshev, G. Baldoni and C. J. Bernardos, “DLT federation for Edge robotics,” in
2020 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN),
Leganes, 2020.

D2.3 – Final Specification of 5G-DIVE Innovations 86

H2020-859881

[49] “D1.1,” 2020. [Online]. Available: https://5g-dive.eu/wp-
content/uploads/2021/01/D1.1_Final.pdf. [Accessed 18 May 2021].

D2.3 – Final Specification of 5G-DIVE Innovations 87

H2020-859881

7. Appendix
In this section feasibility study of DLT-based federation, as well as workflow details on the integration
of BASS and OCS are provided respectively in Section 7.1, and Section 7.2.

7.1. DLT-Based Federation Support
This section presents the applicability of Distributed Leger Technology (DLT) as a mechanism of the
external federation support element of the BASS. The goal of the DLT-based federation support is to
improve the orchestration and control processes by automating the service federation across multiple
administrative domains (ADs). Federation has been described as a concept for integrating multiple ADs
at a different granularity into a unified open platform where the federated resources can trust each
other at a certain degree. The federation of resources between ADs was introduced in 5G Coral
Deliverable 3.2 [44] here we analysed the profit-maximized federations and advanced resource
provisioning. In this section, we will focus on the federation of services between ADs, where network
services deployment is extended over the infrastructure of an external domain. First, we will describe
the service federation procedures. Then, we will elaborate on how the external federation support element
of the BASS applies DLT for service federation. Finally, we will show experimental validation based on
Edge robotics use case and summarize the obtained results.

Service Federation

Service federation is a concept where a consumer domain through its orchestrator requests an
extension of a service (or part of a service) to be deployed over a provider domain. The orchestrator of
the provider domain monitors the complete deployment process of the service extension. In order to
successfully complete a service federation [45] [46], there are several steps that are executed in
sequence:

• Registration: initial step in which the ADs that are involved in the service federation establish
a peer-to-peer interconnectivity or register to a central entity. The registration step defines the
type of federation, which can be open or closed. As an open service federation can be considered
when external new domains are more easily establish the interconnectivity. The closed
federation includes pre-defined participants with strict policies and rules that are set and
defined by the ADs.

• Discovery: in this step the involved ADs exchange information on their computing and
capabilities to provide services or resources. Each AD holds and periodically updates a global
view of the available services at the external ADs.

• Announcement: the consumer domain initiates this step once it has been decided the need to
federate a service (or part of a service) in an external domain. An announcement is broadcasted
to all the potential provider ADs. The announcement is composed of the requirements for a
given services.

• Negotiation: all the potential provider ADs receive the announced offer and sends back an
answer including the pricing of the service.

D2.3 – Final Specification of 5G-DIVE Innovations 88

H2020-859881

• Acceptance and deployment: The consumer AD collects all the responses from the potential
provider ADs and selects a single offer that is most suitable for him. The selection process is
entirely dependent on the consumer AD internal policies and preferences. The consumer AD
sends back an acceptance reply and starts the deployment of the requested federated service.

• Usage & Charging: once the service is deployed in the providers domain, the provider notifies
the consumer AD and sends all the necessary information for the consumer AD to include the
federated service as part of its end-to-end service chain. From that moment, the provider AD
starts charging the federated service during its lifecycle, until it is terminated.

We would like to stress out that security, privacy, and trust among the participating ADs in the service
federation is crucial in all the previous steps. Due to competitive reasons, different ADs would not
reveal much information regarding the underlying infrastructure or the full capabilities for service
deployment.

Applying DLT for Federation

The sequential execution of the service federation steps can take from more than a minute to over an
hour depending on how they are implemented. In a fog environment that is dynamic and
heterogenous, the underlying infrastructure of each AD is continuously changing, and the state of a
resource can change in order of seconds. To improve the federation process in a secure manner, the
BASS through the external federation support element offers the service federation process to run over
DLT. More specifically, the federation procedures to be executed on a Federation smart-contract (SC)
which is running on top of a permissioned blockchain. The focus of the SC design is to maintain
neutrality and privacy while overseeing the federation procedures that involve all ADs.

Each AD sets up a single node as part of the peer-to-peer blockchain network. The distributed nature
of blockchain allows scalability while maintaining the security. The ADs communicate with the
Federation SC through transactions and every transaction is recorded in the blocks. The generation of
blocks depends on the consensus protocol. The choice of the consensus protocol would determine the
speed and the security level of the federation process. For example, the Proof-of-Authority consensus
increases the speed, while the Proof-of-Work mechanism increases the security of the blockchain.

Each AD that wants to join establishes connectivity with at least a single node in the blockchain network
using a new and locally deployed node. It registers to the Federation SC with a single transaction using
its unique blockchain address. In the registration transaction the Federation SC records the relevant
information of the registering AD and its service footprint. This process is equivalent to the registration
step explained before and it is relatively simple to be realized. Once the registration is completed, the
AD is ready to consume or provide federated services.

Figure 7-1 shows the interactions of the consumer and provider domains Orchestrators with the BASS
Federation SC for a single service federation process. When a consumer AD needs a federated service,
it creates a federation announcement (step 1). The announcement is sent as a transaction to the
Federation SC which records the announcement as a new auction process on the blockchain (step 2).
Then, the Federation SC broadcasts the announcement to all registered ADs (step 3). Please note that
the discovery step is omitted in the design of the Federation SC because the privacy and security of the

D2.3 – Final Specification of 5G-DIVE Innovations 89

H2020-859881

ADs are protected by hiding their address in the broadcast announcement. Once the broadcasted
announcement is received, the potential providers analyse the requirements and place a bid offer to the
Federation SC (step 4 & 5). Each offer is recorder by the Federation SC (step 6). In our vision the
consumer domain oversees the negotiation and acceptance steps. In that way, the consumer AD has
full control and freedom to apply any selection policies. Consequently, the consumer AD is notified for
any new bidding offer and polls the Federation SC to obtain information of each bidding offer (step 7,8
& 9). Once the consumer AD selects a winning provider AD, it closes the auction in the Federation SC
(step 10 & 11). The winning provider is recorded in the Federation SC and a message is broadcasted to
all the participating ADs that the auction has finished, and a winner is chosen (step 12 & 13). Each of
the participating ADs attempts to find out if he is the chosen winner in order to deploy the service. As
shown in Figure 7-1 only the winning provider AD is granted access to the information (step 14 & 15).
At this point the negotiation and acceptance steps are completed and the deployment of the federated
service has started (step 16). Once the deployment is finished, the provider AD confirms the operation
by sending transaction to the Federation SC (step 17). The Federation SC records the successful
deployment and starts charging for the federated service (step 18). Finally, the Federation SC notifies
the consumer AD of successful federated service deployment (step 19 & 20) so the consumer AD can
start using it.

FIGURE 7-1 SEQUENCE MESSAGE DIAGRAM FOR BASS FEDERATION SMART-CONTRACT AND ADMINISTRATIVE

DOMAINS DURRING FEDERATION

Experimental Validation

To prove the feasibility of the DLT service federation concept we deployed a trusty and untrusty
experimental scenario where we performed federation over an Edge robotics use case. The presented
DLT-based federation can be useful in Edge robotics scenarios [47] here highly mobile robots demand
frequent change of point service in the access network which is currently feasible within single AD.

D2.3 – Final Specification of 5G-DIVE Innovations 90

H2020-859881

Often, and Edge robotics service require fast and short-lasting expansion of the access point service
footprint over multiple administrative domains.

The consumer AD infrastructure in our testbed consists of a host that runs LXD virtualization on top.
The host is orchestrated by the consumer orchestrator which is a simple custom developed orchestrator
that uses fog05 as distributed Virtual Infrastructure Manager (VIM) to deploy virtual Access Points
(vAPs). The provider AD is isolated from the customer domain. Contains a single host and a Provider
orchestrator orchestrates the virtualized LXD infrastructure through a new isolated instance of fog05.
The BASS external federation support is implemented as two instances of Ethereum blockchain. The
instances are deployed over virtual machine on a server. Both instances contain the Federation SC
described before. The first instance is running Proof-of Authority (PoA) consensus for trusty
communication, and the second instance Proof-of-Work (PoW) for untrusty communication.

The experimental scenario is mimicking a real use-case where mobile robot is instructed to deliver
goods in an area. In order to finalize the task, the robot needs to drive from the consumer domain
covered area to the area of coverage of the provider domain. Based on the real-time robot location the
consumer orchestrator knows when the robot is about to leave the coverage area and triggers the
federation procedure. After the triggering, the consumer orchestrator proceeds with the federation
procedure as described. The provider domain is selected as winner, establishes an overlay inter-domain
link to the consumer domain and deploys the federated vAP. After the deployment of the federated
vAP has finished, the provider orchestrator confirms the deployment to the Federation SC by storing
the BSSID of the deployed AP. The consumer orchestrator will use this information to perform
handover to the federated AP.

D2.3 – Final Specification of 5G-DIVE Innovations 91

H2020-859881

FIGURE 7-2: FEDERATION USING POA CONSENSUS: (TOP) SUMMARIZED PHASE;

(MIDDLE) CONSUMER AD; (BOTTOM) PROVIDED AD; [48]

We evaluated the time performance of the Edge robotics federation for each of the PoA-based and PoW-
based scenarios. To that end the bottom graph on Figure 7-2 presents the accumulated times for the
federation procedures in both consumer and provider domain using PoA consensus. The average
federation time is 12.97 seconds for the consumer domain and 3.98 seconds for the provider domain.
Figure 7-2 in the middle breaks down all the phases in the consumer domain that occur within the
previously mentioned 12.97 seconds and are needed for the consumer domain to retrieve the BSSID of
the federated vAP in the provider domain.

Figure 7-2 on the top breaks down all the phases in the provider domain where we can see that the
negotiation and bidding process until the provider domain is elected as winning provider takes 3.98
seconds. More specifically, it takes 3.98 seconds from the time the provider receives the broadcast
announcement until the deployment is ready to start.

FIGURE 7-3: FEDERATION USING POW CONSENSUS: SUMMARIZED TIMES [48]

D2.3 – Final Specification of 5G-DIVE Innovations 92

H2020-859881

The results of the PoW-based scenario and untrusty communication are shown in Figure 7-3. The graph
shows only the accumulated times for both domains. Compared to the PoA-based solution, the PoW-
based solution takes significantly more time to negotiate and complete the federation process using the
DLT. Due to the PoW consensus mechanism the federation completed phase is completed within 24.3
seconds, nearly double the time of the PoA-based solution.

D2.3 – Final Specification of 5G-DIVE Innovations 93

H2020-859881

7.2. BASS and OCS Integration Workflow
Figure 7-4 presents the BASS and OCS integration workflow steps. In the first step the Vertical service
Coordinator (a.k.a BASS Controller) trigger the funtioncality of creating a vertical service on the
Fog05Driver that was development for this purpose. Then the Fog05Driver is in charge of translating
the generic Vertical service descriptor file to a specific Fog05 descriptor that is called FDU (Fog05
Deployment Unit) descriptor. If it’s necessary an specific Fog05DriveConfig class contains
configuration options for the Fog05 Region/Driver. One example would be connection details,
credentials, etc. Then the Fog05Driver issues a “on-board” POST request to the fog05-rest-server by
passing in the body the FDU in json format. The fog05-rest-server will then validate it and on-board
the FDU in Fog05 server. The response is an OK message and the poputalte FDU including the UUID
of the newly created descriptor. Step two refers the instantiation of the onboarded FDU, this is achieved
by sending an “instantiate” POST request to the fog05-rest-server including the created UUID. The
response is a descriptor’s instance UUID and a OK status.

Step three of the workflow refers to triggering the “delete” vertical service, the Fog05Driver will send
a DEL request to the fog05-rest-server by passing the UUID of the FDU descriptor’s instance. The
response will be an OK status. Finally, step four of the workflow deals with removing “off-loading”
the vertical service descriptor from the Fog05 Server. The Fog05Driver will send a DEL request to the
fog05-rest-server by passing the UUID of the FDU descriptor. The response will be an OK status.

D2.3 – Final Specification of 5G-DIVE Innovations 94

H2020-859881

FIGURE 7-4 BASS AND OCS INTEGRATION WORKFLOW

7.3. Data driven RAN Intelligence
The 5G-DIVE project relies on Edge computing resources to assist the different use cases in improving
their performance on different aspects, the majority of improvements being use case specific, i.e., at the
application layer. However, an Edge computing fabric or, in the case of Open-Radio Access Network
(O-RAN) standards, an O-RAN Radio Intelligent Controller (RIC), can also serve the 5G network to
provide improvements at the Network Layer. The ways to achieve this are to either deliver an
intelligent engine to an edge fabric node or to a RIC node. The intelligent engine will run as an Over-
the-Top application (OTT), and will be able to improve network layer functions.

D2.3 – Final Specification of 5G-DIVE Innovations 95

H2020-859881

The ZDM use case relies on a video stream to detect defective objects. Preliminary tests on the 5G
connectivity have shown that a commercial 5G deployment may have difficulties sustaining a
continuously reliable video stream. This is an important finding that becomes even more relevant if the
required stream quality for detection is a higher resolution setting than the currently used camera, that
is HD, such as 2K, 4K or 8K (keeping sustained quality). It becomes therefore important for the ZDM
use case to address throughput improvement strategies in order to improve the QoE of the video being
streamed. This is done in the following couple of sections. Next section provides an introduction to the
O-RAN architecture and the current 3GPP standardization work for 3GPP networks Edge access. The
following section describes the concept of Intelligent engine that will be used in the ZDM use case to
achieve higher available throughput.

7.3.1. O-RAN architecture
Some of the latest mobile network developments of the past years have included work on aspects
around an open and virtualized RAN. In virtue of control and user plane separation (CUPS) in 5G
service-based architecture (SBA), the functions that derive policies can be located apart from main 5G
core network functions, opening the door for more virtualized functionalities.

The O-RAN Alliance has been driving the standardization efforts to achieve this vision. The concept of
an open RAN translates into an open hardware and cloud platform, that telecom manufacturers,
suppliers and operators can use to deploy their networks. The goal of such open platforms is to reduce
the current number of proprietary product architectures and vendor specific Operations and
Management (O&M), with the goal of increasing efficiency of both deployments and operations. To
deploy and operate on open platforms, virtualization of network functions is a key aspect.

Besides the increased efficiency of both deployments and operations, virtualized network deployments
in open platforms provide an easier infrastructure for embedded AI-enabled RAN control. Figure 7-5
Open RAN architecture depicts the basic architecture for Open RAN.

D2.3 – Final Specification of 5G-DIVE Innovations 96

H2020-859881

FIGURE 7-5 OPEN RAN ARCHITECTURE

Besides the separation of control and user planes by introducing new interfaces and functional base
station components, the figure depicts two RAN Intelligent Controllers (RICs), one for near-real time,
and another for non-real time intelligence. As depicted as well in the figure, there are a number of RAN
functions that are controlled at the RICs. It is important to note that, because these functions pertain to
the application layer, whether they relate to mobility, QoS, interference management, or any other
function, they are OTT. As the architecture is compliant and complementary to 3GPP (and other bodies)
standards, the RIC can be seen as a deployment node for any kind of RAN intelligence, especially via
AI/ML. Key enablers for data driven intelligence are databases that keep storing useful telemetry data
to serve a specific intelligent application purpose.

7.3.2. 3GPP Edge fabric standardization efforts
RAN deployments that follow a pure 3GPP architecture can also have many of their functions
optimized via Edge nodes. Current standardization efforts in 3GPP include works from almost all
Service and System Aspects (SA) working groups, namely from SA2-SA6. SA2 is covering core network
enhancements. A mapping between the 3GPP CN architecture including the enhancements specified
in SA2 and the 5G-DIVES solution was presented in D1.3 [zz]. SA3 is covering security aspects while
SA4 conducts works on media processing, and SA5 is responsible for general management aspects.

In SA6, the working group responsible for the application layer architecture, normative specification
work has been initiated for enabling Edge Applications. The objective of this work is to define an
enabling layer to facilitate communication between the Application Clients (AC) running on the UE
and the Edge Application Servers (EAS) deployed on the Edge Data Network.

The support of interworking between the Edge fabric and 3GPP networks is therefore a very active
effort, and this effort will pave the way towards a global adoption of Edge Computing fabric and
pervasive deployments of Edge Networks that can serve both the end consumers and industry
verticals.

D2.3 – Final Specification of 5G-DIVE Innovations 97

H2020-859881

Both the RICs defined in the O-RAN architecture and the Edge fabric supporting pure 3GPP networks
can therefore be seen as hosts for OTT applications that can control and improve a number of aspects
and functions in the RAN.

Particularly in the case of RIC deployments, intelligent control applications are named xApps or rApps,
depending on whether they are deployed at the near-real time RIC or non-real time RIC. xApps can be
deployed at the Edge in private premises or environments. The benefit of deploying xApps in private
networks is twofold. Firstly, the telemetry data is stored within the private network, not leaving a
public domain, enhancing security aspects. Secondly, the latency associated with an Edge node or RIC
controller deployed in-premise is necessarily lower.

One example of an OTT application that can be deployed at any RIC or at the Edge fabric is for Access
Traffic Sterring, Splitting and Switching (ATSSS), and its conceptual functionality is detailed in the next
section.

7.3.3. ATSSS xApp
An ATSSS xApp can be utilized in access traffic steering decisioning. If such an xApp is deployed at
the edge, the latency associated with pushing access traffic steering rules is lower when compared to
having SMF/PCF inside the mobile network operator. An AI/ML model trained with the available
telemetry at the host node can be incorporated in the traffic steering decisioning. This can be considered
as an enhancement to 3GPP Rel-17 ATSSS framework which provides flexibility to both the UE and the
UPF on the traffic splitting control over 3GPP and non-3GPP access networks in order to maximize the
bandwidth/throughput. It is worth to note that in Rel-17 ATSSS framework, the link performance
measurements provided by Performance Measurement Function (PMF) is used. However, in the
proposed ATSSS xApp, in addition to link performance measurements, access network telemetry can
be used. Therefore, any AI/ML-based prediction on the access link status, user mobility, gNB/AP load
status can be used to enhance the access traffic steering decisioning.

The main motivation of the considered ATSSS xApp is to react to sudden/predicted changes on the link
and/or network status in order to efficiently use 3GPP and non-3GPP access networks. The ATSSS xApp
gathers access network telemetry including 3GPP and non-3GPP accesses, link performance
measurements from PMF, and modifies the access traffic steering rules, in other words access traffic
weight factors for 3GPP and non-3GPP access networks. As an example, a steering rule with access
traffic weight factors of 30% onto 3GPP and 70% onto non-3GPP can be set by the network operator.
When the 3GPP access network gets congested, assigning 30% of the ongoing traffic for a UE may not
achieve the throughput requirements. In this case, ATSSS xApp makes use of RAN telemetry to
understand/predict load status of 3GPP and non-3GPP access networks and modifies the weight factors
i.e., 10% onto 3GPP and 90% onto non-3GPP to maximize the achievable throughput.

