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New requirements from the network management

|The introduction of novel networking paradigms such as Network
Slicing mandates a thorough revision of the network design with
respect to the legacy approach

| Sliced networks set up a number of different network instances
to run on the same infrastructure

| This makes the network management a much more complex
task:

® Resources shall dynamically be assigned to different network services
® Their possible different QoS requirements have to be monitored in real time

| Traditionally such tasks were heavily human based, with manual
configuration of the different network elements.

|This traditional way of closed loop management is not feasible
anymore with novel 5G networks and beyond




Achieving closed loop automation through Al

| A 5G and beyond network service management system shall

| Take advantage of the large volume of data flowing through
the network and carrying information potentially relevant to a
knowledgeable resource allocation

| Be proactive, by forecasting and exploiting the upcoming
behaviour of a system involving many different players

] All the aforementioned tasks are among the characteristics of
Artificial Intelligence:

| Supervised learning solutions can be used to perform forecasts
when sufficient ground truth data can be gathered from the
network

| Unsupervised learning solutions are fundamental when the
complexity of the problem is unsuitable for traditional approaches

| Reinforcement learning tools are very well suited when
subsequent actions are taken to maximize a certain reward



Al for network management in action:

VvrAIn
A Deep Learning Approach to Virtualized Radio Access

Networks (VRAN)
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Why VRAN? vr

| Virtualized RAN (VRAN) centralizes softwarized radio access points
(RAPs!) into commodity general-purpose computing infrastructure.
® Advantage 1: Statistical multiplexing gains from resource pooling (via centralization)
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(RAPs!) into commodity general-purpose computing infrastructure.
® Advantage 1: Statistical multiplexing gains from resource pooling (via centralization)

® Advantage 2: Agile update roll-ups such us security patches, protocol upgrades, bug fixes,
CI/CD, agile, DevOps, etc. (via softwarization)
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| Virtualized RAN (VRAN) centralizes softwarized radio access points
(RAPs!) into commodity general-purpose computing infrastructure.
® Advantage 1: Statistical multiplexing gains from resource pooling (via centralization)

® Advantage 2: Agile update roll-ups such us security patches, protocol upgrades, bug fixes,
CI/CD, agile, DevOps, etc. (via softwarization)

® Advantage 3: Cheaper deployment and new business opportunities (via commoditization)
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The resource orchestration problem vrAin
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The problem is far from trivial vrAin
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The problem is far from trivial vrAin
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The problem is far from trivial vrAin

Performance Is a very complex function of
the contexts and the resource assignment
-> Deep Learning
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vrAlIn: Al based VRAN resource controller vrAin

ot TTT T Tm T m T mm T

1 1

1 1

! [ o OORAP N1

: a Ooon o) !

o 0000 O RAP2[O |,

- RS Resource Manager cp | (CcPU0 ) (CPUT)-(CPUN)
1o 2 ©00000 RAP1— A new context Ulcontro

i 5* g 00000 R i every T _— . Controller X

15 = eamme > conerts | cPu Poicy ) Linux
| T ) Encoder — CPU control CFS
] ' E Scheduler Kernel
Ml Sttt ‘Xl% L® 1
! i ?‘E‘f\, I Radio Policy (v) Docker API & B Q

| B : [ ]

| S > 5000000 : vrAln BBU &
'm = Q000 | Docker container

oS RAP 1 : [m tcig | [ Conn. Control | | AS Sec. Control |

:% = ooooooooooo ! RRC easuremen 8 onn. Contro ec. ntro y(u - s1U u'_J
1 — ! Radio control [ NAsencaps | [ sysinfoconfig | | Qos |

! T i {PDCP | SRB-0 || SRB-1uwn | [ SRB-2wn || DRB1-8¢ng

4l

Context snapshot per RAP
(SNR, load patterns, etc.)

TIMER MUX DEMUX
UL READER =

| PROCEDURES | E——

—___> DSP worker #0 —
PHY ==
— —> DSP worker #N _—] &

DAC
Ettus o777 @

- " Research’

st e SRSLTE

11

HW

RRU ‘
Software-defined % )
Radio (SDR) USRP B210

RLIC | SRB-O(w | [ SRB-1(am | [ SRB-2(am | [ DRB1-8 eng ]

Compute reward
Aggregate all KPIs into a single
reward value balancing QoS
and CPU savings.

| e U, S,
I Optimal I=====-===" L,
|3"§ 100 T i] 1 i RAP EEEEE RAP2 |

~—~ 754 | 2 1 1
| g 504 | B ! | | = 2 -
| : i ; Y d s plimal rAln | | Heuristic | 1

qg_) 2S00 R | e 1 1004 1
L el O | wsg E T ) <

1 2/31/3 1 2313 1 231/3 1@ >3 !
1 2/31/3 2/31/3 23173 | JqF e g
I Load RAP2/ Load RAP1 | I 4819 . I | I I Measure 4
e Lo :5 ELLL i | KPIs <
1 2313 1 -J13 1 dJ1
-—-1 Load RAP2 / Load RAP1 | 2t the end of the



Backup




ald SCROWTH %efi}:’i

)

The resource orchestration problem vrAin
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Integration of vrAln into O-RAN vrAin
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Reward function vrAin

Decoding Error Probability
Empirically computed by sampling every
subframe (UL) or via HARQ
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vrAln: Challenges and Solutions vrAin
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vrAln: Challenges and Solutions vrAin
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vrAln: Challenges and Solutions vrAin
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Evaluation results: Unlimited Resources VvrAin

Scenario 1

« Unlimited CPU resources
 One virtual Base Station

Objective:
* Minimize the costs while satisfying the QoS
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Evaluation results: Unlimited Resources VvrAin
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Evaluation results: Limited Resources VvrAin

Scenario 2

« Limited CPU resources (one core)
« Two virtual Base Station

Objective:
« Maximize the performance of both virtual BSs
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Evaluation results: Limited Resources VvrAin
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Conclusions VvrAin

 The performance of a virtual BS is a very complex function of the
contexts and the resource assignment, motivating the use of Deep
Learning.

 We solve the problem using a novel combination of Sparse
Autoencoders, a Reinforcement Learning algorithm and a Neural
Network Classifier.

« Our solution minimizes the costs with unlimited resources and
maximizes the performance with limited resources. With respect to
state-of-the-art solutions, vrAln achieves...

« CPU savings ~30% with unlimited resources.
« Throughput increase ~25% per virtual Base Station.

* We trained our models with real data and implemented a proof-of-

concept of the solution.
« Dataset in https://github.com/agsaaved/vrain



