Telefonica

Networking the Cloud, Cloudifying the Network

Luis M. Contreras Telefónica GCTIO – Transport Technology and Planning

IEEE CloudNet, Coimbra (Portugal) 05.11.2019

Agenda

- Evolution of operator's networks
- Networking the Cloud
- Cloudifying the Network
- Cloud-Network slicing
- Taking action
- Concluding remarks

Evolution of operator's networks

Network evolution

Yesterday Databases HSS HLR Service Service AAA BSS creation creation ____ LTE 3G Wi-Fi Fixed OSS OSS OSS OSS OSS Packet Gateways OLT GW 11 EPC Core DSLAM 11 Transport RF "Fixed" metro VDSL Access LTE 3G Wi-Fi FTTx Vendor Y 🥠 Vendor Z 💡 Vendor X Vendor Ω = Proprietary software and hardware = Open/proprietary software running on COTS = Open/proprietary software only

Consolidated database Databases Real-time network analytics BSS Integrated BSS, CRM, policy, and analytics Integrated B/OSS OSS Real-time n/w and service perf mgmt and assurance Gateway vGateway/vOLT Gateways COTS EPC DSLAM/CPE Core COTS Transport RF "Fixed" metro Wi-Fi VDSL Access LTE 3G FTTx Vendor agnostic COTS = standard IT (x86) platforms Standard interfaces and protocols between layers

Tomorrow

Telefonica

1

4

Cloudification approach

Telefonica

6

The Cloud, Edge and Fog

Telefonica

Networking the Cloud

UNICA: Telefonica Network Virtualization Program

Telefonica UNICA is **the foundation of our NFV strategy** and can be **described as a Telco Cloud** architecture allowing **hosting and deployment of network components in an automatized fashion**

Telefonica

9

RECONNECT

https://www.analysysmason.com/Research/Content/Reports/telefonica-UNICA-architecture-strategy-for-network-virtualisation-white-paper/

Different worlds requiring to work together

Just connecting A to B, right?

Just connecting A to B, right?

VRF

VRF FIB/Neutron DVR

GRE

Telefonica

Intra-DC connectivity services in the CO

• VxLAN to transport any type of intra-DC traffic, removing the role of DC-GW and using Leaf Switches as the only end-points

	End-point 1	End-point 2	UNICA	Proposal for UNIC@CO
L2 services	VirtlO	VirtIO	VxLAN tunnel	VxLAN tunnel
	VirtlO	SR-IOV	Multi-segment	Multi-segment
	SR-IOV	SR-IOV	Multi-segment	Multi-segment
L3 services	VirtlO	VirtlO	VxLAN tunnel	VxLAN tunnel
	VirtlO	SR-IOV	Multi-segment via DC-GW	Multi-segment
	SR-IOV	SR-IOV	Multi-segment via DC-GW	Multi-segment

MAIN ADVANTAGES

 Harmonization the intra-DC connectivity services

No E/W workload passing the DC-GW

Inter-DC connectivity services* at the CO

* **Both options are valid**; it will up to OpCo's to deploy one or the other according to their specific needs

Overlay solution

- UNIC@CO DCI: extend the connectivity services that are already implemented for intra-DC connectivity (E-VPN over VxLAN) → VPN stitching at DC-GW
- Internet connection:
 - E-VPN over VxLAN
- Overlay solutions supported on top of a few MPLS VPNs from the network

Non overlay solution

- Main non overlay solutions are based on extending the MPLS towards the DC-GW. This can be achieved using multiple protocols:
 - Inter-AS
 - L-BGP
 - ...

14

- Apart from specific needs from some OpCo's, the extension of MPLS to the fabric might be of particular interest for VNFs like vBNG, vPE, etc.
 - Need for direct connectivity can be further studied
- In the long-term, solutions like Segment Routing

RECONNECT

VxLAN end points

E-VPN over

One step beyond

- Effective chaining is the very next step
- Alternatives: SFC based on NSH or SRv6
- Support in the DC

Source: T. Nadeau, K. Gray, "SDN: Software Defined Networks", O'Really 2013

Using Intel[®] FPGA Programmable Acceleration Card N3000", 2019

Cloudifying the Network

Deployments will depend on the country geography and context

Need to leverage on third party infrastructures for e2e service

Telefonica

Multi-domain perimeter

- Telco operators
- **MVNOs**
- Cloud providers •
- **Municipalities**
- Utilities
- etc

TT

0000

Extending the reach

Single data center with semi-automated operations

Automated and Optimized Workload placement across Distributed Data Centers in a multi domain, multi technology and multi vendor environment

Orchestration, Assurance & Analytics are essential to support a hybrid network that is increasingly becoming

Telefinica

Typical latencies in transport network

Additional latencies have to be considered for e2e service characterization

- Latency due to the access technology (interleaving, protection schemes, maximum bandwidth, etc)
- Latency due to data plane processing (PGW, coding, BRAS, etc)
- Latency due to service platforms (DNS lookup, etc)

Telefonica

Extract from 3GPP, "Service requirements for next generation new services and markets," TS 22.261

Scenario	End-to-end	Jitter	Traffic density
	latency		
Discrete	1 ms	1 µs	1 Tbps/km ²
automation –			
motion control			
Discrete	10 ms	100 μs	1 Tbps/km ²
automation			
Process automation	50 ms	20 ms	100 Gbps/km ²
– remote control			
Process automation	50 ms	20 ms	10 Gbps/km ²
– monitoring			
Electricity	25 ms	25 ms	10 Gbps/km ²
distribution –			
medium voltage			
Electricity	5 ms	1 ms	100 Gbps/km ²
distribution – high			
voltage			
Intelligent transport	10 ms	20 ms	10 Gbps/km ²
systems/			
infrastructure			
backhaul			
Tactile interaction	0,5 ms	TBC	[Low]
Remote control	[5 ms]	TBC	[Low]

Cloud-Network slicing

5G + Cloudification = Slicing

Telefonica• Single domain \rightarrow Multi-domain23

Cloud-Network coordination: ex., 5G

Taking action

Taking action – NECOS Project(*)

Slice as a Service as deployment model, grouping of resources managed as a whole, that can accommodate service components, independent of other slices.

Embedded methods for an optimal allocation of resources to slices in the cloud and networking infrastructure, to respond to the dynamic changes of the various service demands.

Lightweight principle, in terms of small footprint components deployable on large number of small network and cloud devices at the edges of the network

Telefonica

26

RECONNECT

(*) http://www.h2020-necos.eu/

Slicing Models & Approaches

Telefonica

27

Project Mission

Targets end-to-end 5G trials aimed at proving the technical merits and business value proposition of 5G technologies

Mission: Design, validate and verify an intelligent 5G solution that integrates 5G connectivity with edge and fog computing (and intelligence residing on this new distributed edge)

Solution Building Blocks

(1) EFS:	hosting all proposed virtualized functions, services, and applications		
(2) OCS:	managing and controlling the EFS, and its interworking with other domains		
(3) DEEP:	supporting vertical industries in day-by-day operations, management, and automation of businesses processes on-top of an edge and fog infrastructure.		

Concluding remarks

Telefonica

Luis M. Contreras

Technology and Planning Transport, IP and Interconnection Networks Global CTIO Unit

Telefónica I+D Telefónica, S.A. Distrito Telefónica, Edificio Sur 3, Planta 3 Ronda de la Comunicación, s/n 28050 Madrid (Spain) T +34 913 129 084 M +34 680 947 650 Iuismiguel.contrerasmurillo@telefonica.com **Acknowledgement**

This work is partially funded by the European Commission through the H2020 EU-BR project **NECOS** (grant no. 777067) and the H2020 EU-TW project **5G-DIVE** (grant no. 859881).

This presentation reflects only the author's view and the Commission is not responsible for any use that may be made of the information it contains.