

H2020 5G PPP 5G-Crosshaul project Grant No. 671598

D6.3: Year 3 achievements and future plan

Abstract

This deliverable (D6.3) reports on all the communication and dissemination activities undertaken in Year 3 from 1st of July 2017 to 31st of December 2017. In addition, as the final deliverable from WP6, it also provides a summary of the key achievements throughout the project lifetime and outlines the prospects of future activities after the end of the project.

Document Properties

Document Number:	D6.3
Document Title:	Year 3 achievements and future plan
Document Responsible:	Alain Mourad and Ping-Heng Kuo (IDCC)
Document Editor:	Alain Mourad and Ping-Heng Kuo (IDCC)
Editorial Team:	Alain Mourad and Ping-Heng Kuo (IDCC), Carla- Fabiana Chiasserini (POLITO), Andrea Di Giglio (TI), Andres Garcia-Saavedra and Xi Li (NEC), Paola Iovanna (TEI)
Target Dissemination Level:	Public
Status of the Document:	
Version:	1.0
Reviewers:	Antonio De La Oliva Delgado (UC3M) Thomas Deiβ (NOK-N)

Disclaimer:

This document has been produced in the context of the 5G-Crosshaul Project. The research leading to these results has received funding from the European Community's H2020 Programme under grant agreement

Nº H2020-671598.

All information in this document is provided "as is" and no guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses the information at its sole risk and liability.

For the avoidance of all doubts, the European Commission has no liability in respect of this document, which is merely representing the authors view.

Table of Content

Li	st o	f Coi	ntrib	utors	. 5
Li	st o	f Tak	oles		. 6
Li	st of	f Fig	ures		. 6
Li	st o	f Acr	onyr	ns	. 7
E	kecu	itive	Sum	imary	10
1	I	ntro	duct	ion	11
2	(Com	mun	ication and Public Activities	12
	2.1		Year	3 Achievements	12
	2.2		Sum	mary of Achievements Over Entire Project Duration	12
	2.3		Outl	ine of Activities Planned After Project End	15
3	[Disse	emin	ation and Collaboration Activities	16
	3.1		Activ	vities Update for Year 3	16
		3.1.1	-	Scientific Publications	16
	3.1.2 Talks/Panels/Webinars/Whitepapers18				18
		3.1.3	5	Workshops	19
		3.1.4	ļ	Demonstrations	20
		3.1.5	j	5G-PPP Collaborations	20
	3.2		Anal	ysis of Achievements Over Entire Project Duration	22
	3.3		Outl	ine of Activities Planned After Project End	23
4	5	Stan	dard	ization Activities	24
	4.1		New	Pronthaul Interface Standard - eCPRI	24
	2	4.1.1		Introduction to eCPRI	24
	2	4.1.2	2	Specifications of eCPRI	25
	2	4.1.3	5	Contributions from 5G-Crosshaul	26
	4.2		Anal	ysis of Achievements Over Entire Project Duration	26
	4.3 Liaison Activities with SDOs			27	
	4.4		Outl	ine of Activities Planned After Project End	27
5	5 Exploitation Activities				
	5.1 Key Innovations			Innovations	

	5.2	Commercial Products	31
	5.3	Patents	33
6	Con	clusions	34
References			35

List of Contributors

Partner Short Name	Contributor's name
UC3M	Antonio De La Oliva Delgado, Sergio González Díaz, Nuria Molner
NEC	Xi Li, Andres Garcia-Saavedra
TEI	Paola Iovanna
EAB	Chenguang Lu, Miguel Berg
ATOS	Jose Enrique González
NOK-N	Thomas Deiß
IDCC	Alain Mourad, Ping-Heng Kuo
TI	Andrea Di Giglio
TID	Luis Miguel Contreras Murillo
NXW	Giada Landi
СТТС	Ramon Casellas, Josep M. Fabrega
POLITO	Carla-Fabiana Chiasserini, Claudio Casetti
Telnet	Enrique Masgrau Rite
FhG-HHI	Anagnostis Paraskevopoulos
Visiona	Nuria Sánchez, Carlos Navarro Martínez

List of Tables

Table 1: Video interviews given in Year 3.	12
Table 2: Summary of communication activities throughout the project lifetime	13
Table 3: Journal/Magazine Papers Publications in Year 3.	16
Table 4: Conference Papers Publications in Year 3	17
Table 5: Talks and panels delivered in Year 3	18
Table 6: Workshops organized.	19
Table 7: Demonstrations exhibited at conferences or workshops	20
Table 8: Summary of dissemination achievements throughout the project	22
Table 9: Record of input (normative) contributions to SDOs	26
Table 10: Standardization dissemination (informative nature) record	27
Table 11: Key innovations pertaining to 5G-Crosshaul building blocks	29
Table 12: List of products relating to technologies in the scope of 5G-Crosshaul	32
Table 13: List of patent applications reported into 5G-Crosshaul	33

List of Figures

Figure 1: Statistics on the number of visits to the 5G-Crosshaul portal	14
Figure 2: Overview of the communication plan as executed during the project	14
Figure 3: Overview of eCPRI transport.	24
Figure 4: eCPRI split options	25
Figure 5: eCPRI common header	25

List of Acronyms

Acronym	Description	
3GPP	Third Generation Partnership Project	
5G PPP	5G Public Private Partnership	
API	Application Program Interface	
BBF	Broadband Forum	
BBU	Baseband Unit	
BoF	Birds of a Feather (IETF Pre-Working Group efforts)	
BPON	Broadband Passive Optical Network	
BSS	Base Station Subsystem	
CDN	Content Delivery Network	
CNF	Conference dissemination	
СР	Cyclic Prefix	
CPRI	Common Public Radio Interface	
CSA	Coordination and support Action	
CU	Centralized Unit	
DetNet	Deterministic Networking (IETF)	
DL	Downlink	
DU	Distributed Unit	
eCPRI	Enhanced CPRI	
eMBB	Enhanced Mobile Broadband	
EPC	Evolved Packet Core	
ETP	European Technology Platform	
ETSI	European Telecommunications Standards Institute	
FFT	Fast Fourier Transform	
FSAN	Full Service Access Network	
GSM	GSM Association	
GPON	Gbit/s-capable PON	
HetNet	Heterogeneous Networks	
ICT	Information and Communication Technology	
IEEE	Institute of Electronics and Electrical Engineering	
IETF	Internet Engineering Task Force	
iFFT	Inverse Fast Fourier Transform	
IMT	International Mobile Telecommunications	
ІоТ	Internet of Things	
IP	Internet Protocol	
IPR	Intellectual Property Rights	
IRTF	Internet Research Task Force	
ISG	Industry Specification Group (ETSI)	
IT	Information Technology	
ITU-R	International Telecommunications Union – Radiocommunication sector	

	International Telecommunications Union – Telecommunications	
110-1	standardization sector	
JRN	Journal dissemination	
LAN	Local Area Network	
LTE / -A	Long Term Evolution / -Advanced (3GPP)	
MAC	Medium Access Control	
MAG	Magazine dissemination	
MEC	Mobile Edge Computing	
mMTC	Massive Machine Type Communications	
MPLS	Multiprotocol Label Switching	
MWC	Mobile World Congress	
mWT	Millimetre Wave Transmission (ETSI)	
NFV	Network Functions Virtualization	
NFVRG	NFV Research Group (IRTF)	
NGFI	Next Generation Fronthaul Interface	
NGMN	Next Generation Mobile Networks	
NG-PON	Next Generation Passive Optical Network	
OAM	Operation, Administration and Maintenance	
ODL	OpenDayLight	
OF	Open-Flow (ONF)	
ONF	Open Networking Foundation	
ONT	Optical Network Terminal	
OTN	Optical Transport Network	
OSS	Operations Support System	
PAR	Project Authorization Request	
PDCP	Packet Data Convergence Protocol	
PHY	Physical Layer	
PoC	Proof of Concept	
PON	Passive Optical Network	
PRACH	Physical Random Access Channel	
QoS	Quality of Service	
R&D	Research and Development	
RAN	Radio Access Network	
RE	Radio Equipment	
RLC	Radio Link Control	
RNC	Radio Network Controller	
RoE	Radio Over Ethernet	
RoF	Radio Over Fibre	
RRC	Radio Resource Control	
RRH	Remote Radio Head	
RRU	Remote Radio Unit	
SCF	Small Cells Forum	
SDN	Software Defined Networks	
SDNRG	SDN Research Group (IRTF)	
SDO	Standard Development Organization	

SLA	Service Level Agreement	
ТСО	Total Cost of Ownership	
TDM	Time Division Multiplexing	
THES	Thesis dissemination	
TTA	Telecommunications Technology Association	
TSN	Time Sensitive Networking	
UL	Uplink	
URLLC	Ultra-Reliable Low-Latency Communications	
VIM	Virtual Infrastructure Manager	
VNF	Virtual Network Function	
WDM	Wave Division Multiplexing	
WG	Working Group	
XCI	Xhaul Control Infrastructure	
XGPON	10Gbit/s-capable PON	

Executive Summary

This deliverable D6.3 concludes the reporting of the communication and dissemination activities carried out throughout 5G-Crosshaul project lifetime. It reports on the achievements in the Year 3 from 01 July 2017 to 31 December 2017 and summarizes all cumulative achievements throughout the project lifetime. It also provides an outline of future activities that may be carried after the project end on 31 December 2017. Some highlights on the key achievements in Year 3 include:

- Publication of additional 17 peer-reviewed articles (11 proceedings and 6 journals and magazines).
- Delivering of 10 further talks and a final workshop organized at WWRF.
- Publication of the eCPRI specification including standard contributions from key partners in 5G-Crosshaul.

Cumulatively over the project lifetime from 01 July 2015 to 31 December 2017, the project exceeded on all metrics set for the targeted activities as highlighted below:

- Over 35 normative contributions feeding into key standardization specifications such as: eCPRI, G.metro, IETF CCAMP, IETF DETNET, and ONF. This is in addition to some 25 (informative) dissemination activities in standardization bodies and forums such as NGMN, ITU-T, FSAN, ETSI, IEEE, BBF, ONF.
- Nearly 100 peer-reviewed publications in IEEE and ACM proceedings, journals and magazines, over 75 talks and panels delivered at key events, and nearly 15 workshops and special sessions (co-) organized.
- Over 25 demonstrations exhibited at various events including at the flagship Mobile World Congress both in 2016 and 2017 and at the EC conference EuCNC in 2016 and 2017.
- Some 5 patent applications developed and reported by the project consortium.
- Proactive communication through blogs, press releases, video interviews, and leaflets, all actively promoted through various channels.

Some follow-up activities after the end of the project in December 2017 are also planned including a continuous contribution of the project results into ongoing and forthcoming research projects and standardization activities. This is in addition to a final press release and a final leaflet for distribution at MWC 2018.

1 Introduction

This deliverable D6.3 concludes the reporting of the communication and dissemination activities carried out throughout 5G-Crosshaul project lifetime. It reports on the achievements in the Year 3 from 01 July 2017 to 31 December 2017 and summarizes all cumulative achievements throughout the project lifetime. It also provides an outline of future activities that may be carried after the project end on 31 December 2017.

This deliverable is organized in four chapters corresponding to different types of activities, namely, (1) communication and public activities, (2) dissemination and collaboration activities, (3) standardization activities, and (4) exploitation activities.

Chapter 2 reports on the communication and public activities undertaken in Year 3, along with a summary of the achievements throughout the project duration.

Chapter 3 reports on the dissemination activities including talks, workshops, and peerreviewed scientific articles, as well as collaboration activities undertaken in the framework of the 5G-PPP. This is both in Year 3 and throughout the project lifetime.

Chapter 4 focuses on standardization activities in Year 3 and all along the project execution. A special overview is given here for the eCPRI specification, which is a key standard of new fronthaul interface released in August 2017 including contributions from three partners in 5G-Crosshaul consortium.

Chapter 5 summarises the key innovations that have been identified in different technological aspects of the project. It also reports on 5G-Crosshaul-related commercial products and patents that have been developed by the partners.

The document ends with conclusions summarizing the achievements over the project lifetime from 01 July 2015 to 31 December 2017, and outlines the prospects of future activities after the project end.

2 Communication and Public Activities

This chapter reports all the communication activities undertaken in Year 3 from 01 July 2017 to 31 December 2017. It also presents a summary of achievements throughout the execution phase of the project and an outline of any activity which will continue after the project end.

2.1 Year 3 Achievements

The communication activities in Year 3 included:

- Publishing 6 video interviews taken during 5G-Crosshaul project exhibition at the EuCNC 2017 conference. These are summarized in Table 1.
- Publishing a blog article relating to a final demonstration by Ericsson "Viability tests of Ericsson's pre-commercial 5G technology" at 5TONIC, 22 Sep. 2017, <u>https://www.5tonic.org/news/ericsson-demos-5tonic-technology-developed-</u> within-5g-crosshaul-project
- Planning for a final press release and a final leaflet for distribution at the upcoming MWC 2018 flagship event.

#	Month	Description	Lead partners
1	Sep'17	Interview on the project demonstrations at the EuCNC	VISIONA
		2017: Demo 1: SDN-based TV Broadcasting Service	
		https://youtu.be/s7TSL5g6480	
2	Sep'17	Interview on the project demonstrations at the EuCNC	NXW, NOKIA,
		2017: Demo 2: Energy Monitoring and Management	POLITO
		for Network Paths	
		https://youtu.be/35TB9dHCagA	
3	Sep'17	Interview on the project demonstrations at the EuCNC	CTTC, NEC
		2017: Demo 3: Resource management of the 5G-	
		Crosshaul	
		https://youtu.be/QJs71NB9OG0	
4	Sep'17	Interview on the project demonstrations at the EuCNC	HHI
		2017: Demo 4: Next Generation fronthaul/backhaul	
		over hybrid Optical Wireless and mmWave Link	
		https://youtu.be/pCvwelbqELY	
5	Oct'17	Video interview provided by Project Coordinator to 5G	UC3M
		Public Private Partnership (5G PPP), 2017:	
		https://www.youtube.com/watch?v=78wiM3KH210	
6	Oct'17	Video interview provided by SME to 5G Public Private	VISIONA
		Partnership (5G PPP), 2017:	
		https://www.youtube.com/watch?v=gZ-UNflObdA	

Table 1:	Video	interviews	given	in	Year 3	3.
----------	-------	------------	-------	----	--------	----

2.2 Summary of Achievements Over Entire Project Duration

Table 2 summarises 5G-Crosshaul achievements relating to all communication and public activities undertaken during the project lifetime.

Targeted Goal	Highlights of Corresponding Achievement		
Deployment of the project portal for an up-to-date communication on all events and milestones from the project to the wide community, as well as social networks accounts to complement with the project portal.	The project portal was released in July 2015: <u>www.5g-crosshaul.eu</u> Throughout the execution phase of the project, the project portal has been continuously updated with new contents on talks, workshops, demonstrations, and events undertaken and planned. A free access to download public presentations and materials from the partners was also given, subject to partner permission. Figure 1 shows that, in the first three quarters of 2017, the project portal has attracted at least 3,000 visitors every month (~100 people per day on average), reflecting on a considerable attention globally. In addition, both a twitter account (@xhaul_eu) and a LinkedIn group (5G Crosshaul) have been established at the same time. Throughout the project execution, there have been 86 Tweets and 48 posts in the Twitter Page and LinkedIn Group respectively.		
Delivery of video/audio for promoting the project vision, concept and initial results.	During the project execution phase, over 15 video/audio interviews have been delivered including over 10 interviews relating to demonstrations exhibited at MWC flagship evens and the EuCNC conference. A YouTube Channel for 5G-Crosshaul was established in November 2015 to collect videos and interviews relating to the project. So far over 20 videos have been uploaded to this YouTube Channel.		
Delivery of social media/blog articles for promoting the project vision, concept and initial results.	 Overall 5 blog articles relating to 5G-Crosshaul concept and results have been posted by the partners in well- known and popular online magazines such as: RCR Wireless (https://www.rcrwireless.com/) NetworkWorld.com (https://www.networkworld.com/) 		
Press release and leaflets for promoting the project	Several press releases have been delivered starting with the announcement of the project kick off, and focusing next on the exhibitions at MWC flagship event, and finally on pre-commercial technology trials. Two leaflets have also been designed and distributed at MWC'16 and MWC'17, and a final leaflet is under preparation aiming at MWC'18.		

Table 2: Summary of communication activities throughout the project lifetime.

Figure 1: Statistics on the number of visits to the 5G-Crosshaul portal.

Figure 2 gives an overview of the communication plan as executed in the 5G-Crosshaul project. This reflects on a successful execution throughout the project and this is across diverse communication activities.

Figure 2: Overview of the communication plan as executed during the project.

2.3 Outline of Activities Planned After Project End

The following communication activities are planned after the project ends on 31 December 2017:

- Press release announcing the completion of the project and its key innovations.
- Final leaflet summarizing the key achievements of the project. The leaflet will be distributed by partners present at MWC 2018 event.
- Continuous communication through the project portal, the social networks, and the 5G-PPP communication and dissemination working group.

3 Dissemination and Collaboration Activities

This section gives an update of the dissemination and collaboration activities during Year 3, as well as a summary of achievements throughout the project. It also outlines activities that may occur after the project end.

3.1 Activities Update for Year 3

3.1.1 Scientific Publications

The journal and conference publications of 5G-Crosshaul during Year 3 are listed in the Table 3 and Table 4 respectively. In total, 3 journals, 1 magazine and 11 conference proceedings papers have been published and an additional 3 journal and 1 conference papers submitted for publication in 2018.

<u>#</u>	<u>Type</u>	<u>Month</u>	Description	<u>Leading</u> Partner
1	JRN	Aug'17	Distributed Downlink Power Control for Dense Networks with Carrier Aggregation, by Z. Limani Fazliu, C. F. Chiasserini, G. M. Dell'Aera and E. Hamiti, <i>IEEE Transactions on Wireless</i> <i>Communications</i>	POLITO
2	MAG	Sep'17	Advertisement Delivery and Display in Vehicular Networks: Using V2V Communications for Targeted Ads, by C. F. Chiasserini, F. Malandrino and M. Sereno, <i>IEEE Vehicular Technology Magazine</i> , vol. 12, no. 3, pp. 65-72.	POLITO
3	JRN	Sep'17	Cellular Network Traces Towards 5G: Usage, Analysis and Generation, by F. Malandrino, C. F. Chiasserini and S. Kirkpatrick, <i>IEEE Transactions on Mobile</i> <i>Computing</i>	POLITO
4	JRN	Oct'17	Area formation and content assignment for LTE broadcasting, by C. Casetti, C. F. Chiasserini, F. Malandrino, C. Borgiattino, <i>Computer Networks, Vol.</i> 126, 2017, pp. 174-186.	POLITO
5	JRN	Dec'17	"Experimental Validation of a Converged Metro Architecture for Transparent Mobile Front-/Back-Haul Traffic Delivery using SDN-enabled Sliceable Bitrate Variable Transceivers" by J. M. Fabrega, M. Svaluto Moreolo, L. Nadal, F. J. Vílchez, R. Casellas, R. Vilalta, R. Martínez, R. Muñoz, J. P. Fernández- Palacios, L. M. Contreras, Submitted as invited paper to <i>IEEE/OSA Journal of Lightwave Technology</i>	CTTC TID
6	JRN	Dec'17	Unleashing 5G-Crosshaul network to orchestrate end- to-end network services in a multi-domain multi- technology transport network, by J.Baranda, J. Mangues-Bafalluy, J. Núñez, J. L. de la Cruz, R. Casellas, J.X. Salvat, C. Turyagyenda, submitted to	CTTC NEC IDCC

Table	3.	Iournal/M	agazina	Panars	Publications	in	Voar 3	2
rubie	J. J	<i>/////////////////////////////////////</i>	uguzine	<i>i</i> upers	<i>i</i> ubiications	ın	Teur J	۰.

			IEEE Communications Magazine - Network and	
			Service Management Series.	
7	JRN	Dec'17	Improved LPC-Based Fronthaul Compression with High Rate Adaptation Resolution, by Leonardo Ramalho, Igor Freire, Chenguang Lu, Miguel Berg and Aldebaro Klautau, submitted to <i>IEEE Communications</i>	EAB
			Letters.	

<u>#</u>	<u>Month</u>	Description	<u>Leading</u> Partner
1	May'17	Traffic adaptive formation of mmWave meshed backhaul networks, by H. Ogawa, G. K. Tran, K. Sakaguchi, and T. Haustein (IEEE Conf. on Communications ICC Workshop)	ННІ
2	Jul'17	Energy Consumption Measurements in Docker, by S. S. Tadesse, F. Malandrino and C. F. Chiasserini (<i>IEEE 41st</i> <i>Annual Computer Software and Applications Conference</i> (COMPSAC), Turin, pp. 272-273)	POLITO
3	Jul'17	Control Plane Architectures Enabling Transport Network Adaptive and Autonomic Operation by R. Casellas, R. Vilalta, A. Mayoral, R. Martínez, R. Muñoz and L.M. Contreras (International Conference on Transparent Optical Networks, ICTON 2017)	CTTC, TID
4	Jul'17	Mobile Front-/Back-Haul Delivery in Elastic Metro/Access Networks with Sliceable Transceivers based on OFDM Transmission and Direct Detection, by J. M. Fabrega, M. Svaluto Moreolo, L. Nadal, F.J. Vílchez, J.P. Fernández- Palacios and L.M. Contreras (International Conference on Transparent Optical Networks, ICTON 2017)	CTTC, TID
5	Aug'17	Characterizing Docker Overhead in Mobile Edge Computing Scenarios, by G. Avino, M. Malinverno, F. Malandrino, C. Casetti, and C. F. Chiasserini, (ACM SIGCOMM HotConNet Workshop, Los Angeles, CA, USA)	POLITO
6	Sep'17	 Experimental Validation of a Converged Metro Architecture for Transparent Mobile Front-/Back-Haul Traffic Delivery using SDN-enabled Sliceable Bitrate Variable Transceivers, by J. M. Fabrega, M. Svaluto Moreolo, L. Nadal, F. J. Vílchez, R. Casellas, R. Vilalta, R. Martínez, R. Muñoz, J. P. Fernández-Palacios, L. M. Contreras (European Conference on Optical Communications, ECOC 2017) 	CTTC, TID
7	Sep'17	Delay Analysis of Fronthaul Traffic in 5G Transport Networks, by G. O. Perez, J. A. Hernandez, and D. L. Lopez (IEEE International Conference on Ubiquitous Wireless Broadband ICUWB'2017)	UC3M
8	Sep'17	Transport Network Design for FrontHaul, by P. Sehier, A. Bouillard, F. Matthieu, T. Deiß (3rd IEEE Workshop on	NOK-N

Table 4: Conference Papers Publications in Year 3.

		Next Generation Backhaul/Fronthaul Networks - BackNets 2017)	
9	Nov'17	Quality Probe for Testing Multimedia Content in 5G Networks, by J.P. López, D. Jiménez, C. Navarro, J.A. Rodrigo, J.M. Menéndez, and N. Sánchez (NEM Summit 2017)	VISIONA
10	Nov'17	Hybrid SDN: Evaluation of the impact of an unreliable control channel, by M. Osman, J. Nunez-Martinez and J. Mangues-Bafalluy (IEEE NFV-SDN'17 NFVPN Workshop)	CTTC
11	Nov'17	Resource Management in a Hierarchically Controlled Multi- domain Wireless/Optical Integrated Fronthaul and Backhaul Network, by J. Baranda, J. Nunez-Martinez, Inaki Pascual, J. Mangues-Bafalluy, A. Mayoral, R. Casellas, R. Vilalta, R. Martinez, R. Munoz, J. X. Salvat, A. Garcia-Saavedra, X. Li, J. Kocur (IEEE NFV-SDN conference, Demo Paper)	CTTC NEC CND
12	Dec'17	DCT-Based Compression Scheme for OFDM Baseband Signals, by Maria Nilma Fonseca, Leonardo Ramalho, Aldebaro Klautau, Chenguang Lu, Miguel Berg, Stefan Höst (Submitted to Wireless Days 2018)	EAB ULUND
13	Dec'17	FluidRAN: Optimal vRAN/MEC Orchestration, by A. Garcia-Saavedra, X. Costa-Perez, D. Leith, G. Iosifidis (Accepted by IEEE INFOCOM 2018)	NEC

3.1.2 Talks/Panels/Webinars/Whitepapers

Table 5 lists all presentation activities delivered including talks, panels and webinars. As reported, 11 activities are delivered during this period. This is worth noting that some of the presentations are delivered in a special session organized by 5G-Crosshaul within the 39th WWRF Meeting. Also, the footprint of 5G-Crosshaul has again extended to Asia by a presentation delivered at the Taipei 5G Summit in Taiwan.

<u>#</u>	<u>Month</u>	Description	<u>Leading</u> <u>Partner</u>
1	Jul'17	"Sharing of Crosshaul Networks via a Multi-Domain	UC3M
		Exchange Environment for 5G Services", by Luis M.	
		Contreras, Carlos J. Bernardos, Antonio de la Oliva, Xavier	
		Costa-Pérez at IEEE NetSoft 2017, Bologna, Italy.	
2	Jul'17	"5G-Crosshaul Project overview and Demo Activity", by C.	POLITO
		F. Chiasserini at IEEE 5G Summit, Thessaloniki, Greece.	
3	Sep'17	"EU Project 5G-Crosshaul - 5G Transport Systems", by A.	IDCC
		Mourad and C. Turyagyenda at European Conference on	
		Optical Communication (ECOC 2017), Gothenburg,	
		Sweden.	
4	Sep'17	"5G-Crosshaul Architecture Implementation", by A.	UC3M
	_	Azcorra, at The 4 th Taipei 5G Summit, Taipei, Taiwan.	
5	Sep'17	"Towards 5G Mobile Transport Platforms for Industry	NOK-N,
	_	Verticals", by A. Bouillard and X. Costa-Pérez, at 3rd IEEE	NEC

Table 5: Talks and panels delivered in Year 3.

		Workshop on Next Generation Backhaul/Fronthaul	
		Networks - BackNets 2017, Toronto, Canada.	
6	Oct'17	"Data-plane Integration for 5G Fronthaul and Backhaul – A	IDCC
		proof-of-concept from 5G-Crosshaul", by C. Turyagyenda,	
		at Special Session of WWRF 39th Meeting - 5G Mobile	
		Transport Networks, Barcelona, Spain.	
7	Oct'17	"Multi-Domain Hierarchical 5G-Crosshaul Control	CTTC
		Infrastructure", by J. Mangues-Bafalluyz, at Special Session	
		of WWRF 39 th Meeting - 5G Mobile Transport Networks,	
		Barcelona, Spain.	
8	Oct'17	"Energy Efficient Services Orchestration in Converged	NXW
		Fronthaul/Backhaul", by G. Carrozzo, at Special Session of	
		WWRF 39 th Meeting - 5G Mobile Transport Networks,	
		Barcelona, Spain.	
9	Oct'17	"Slicing Across Multiple Administrative Domains", by L.	TID
		M. Contreras, at Special Session of WWRF 39 th Meeting -	
		5G Mobile Transport Networks, Barcelona, Spain.	
10	Oct'17	"Cellular Access Multi-Tenancy through Small-Cell	NEC
		Virtualization and Common RF Front-End Sharing", by J.	
		Mendes, X. Jiao, A. Garcia-Saavedra, F. Huici, I. Moerman	
		at ACM WiNTECH 2017 Workshop, Snowbird, Utah, USA.	
11	Dec'17	5G-PPP Architecture Working Group White paper V2.0	NEC,
			IDCC,
			UC3M

3.1.3 Workshops

During Year 3, it is worth highlighting that the consortium partners CTTC and IDCC have organized a special session in the 39th meeting of WWRF, entitled **5G Mobile Transport Networks**. The special session covers not only talks from 5G-Crosshaul consortium, but also presentations from the 5G PPP Phase-1 projects 5G-XHaul and 5G-EX and Phase-2 Project 5G-Transformer.

VISIONA has also organized at Technical University of Madrid a training session entitled 5G for "dummies" in Media Sector targeting junior and senior researchers highly interested in the potential that 5G network capabilities has for developing innovative media-related applications. The seminar counted on with researchers from 5G PPP Phase-2 Project of 5G-MEDIA which deals with programmable edge-to-cloud virtualization for the 5G media industry.

#	Month	Workshop	Country
1	Oct'17	5G Mobile Transport Networks (Special Session of	Spain
		WWRF 39 th Meeting): <u>https://5g-ppp.eu/5g-crosshaul-</u>	_
		final-workshop-wwrf39/	
2	Dec'17	5G for "dummies" in Media Sector seminar (Technical	Spain
		University of Madrid)	

Table 6: Workshops organized.

3.1.4 Demonstrations

In Year 3, 5G-Crosshaul focused most of the efforts on delivering several integrated demonstrations at the 5G-Crosshaul testbed sites in Madrid, Barcelona, Berlin and Taiwan. Professional videos were taken and will be released before the project final review due in March 2018. Table 7 below reports two additional demonstration activities exhibited at conferences or workshops.

<u>#</u>	<u>Month</u>	Description	<u>Leading</u> <u>Partners</u>
1	Oct'17	Resource management of the 5G-Crosshaul network at WWRF 39 th Meeting	CTTC
2	Nov'17	Resource Management in a Hierarchically Controlled Multi-domain Wireless/Optical Integrated Fronthaul and Backhaul Network at IEEE NFV-SDN'17 NFVPN Workshop	CTTC NEC CND

Table 7: Demonstrations exhibited at conferences or workshops.

3.1.5 5G-PPP Collaborations

In Year 3, 5G-Crosshaul has continued its collaboration within the 5G-PPP, through joint work with 5G-PPP projects and participation in the 5G-PPP working groups. In this period, the following activities are particularly worth noting:

- IDCC continue to contribute to **5G-PPP Pre-Standard Working Group** list of relevant SDO working groups and standard contributions from 5G-Crosshaul. IDCC also led the efforts on 5G-Crosshaul standardization impact in the 5G-PPP architecture working group white paper. IDCC has also led a bid to the open call by 5G-PPP Steering Board for exhibition at MWC'18.
- NOK-N has collaborated with **5G-PPP Software Network Working Group** to release a white paper entitled *"Vision on Software Networks and 5G"*, which defines terminology and identifies architectural trends and existing gaps in combinations of NFV and SDN, as well as relevant standardization bodies and open source initiatives. Furthermore, reusable assets from 5G-Crosshaul has been provided to the working group for evaluation in 5G-PPP Phase-2 projects.
- POLITO has collaborated with **5G-PPP NETMGMT Working Group** to release a white paper entitled "*5G-PPP Cognitive Network Management for 5G*", which is published in Mar'17.
- NEC has collaborated with **5G-PPP Architecture Working Group** to revise the white paper entitled "*View on 5G Architecture (Version 2.0)*" for public consultation in Jul'2017. This revised white paper highlights the key design recommendations identified by the Phase 1 projects toward the 5G architecture

design and provides a baseline architecture to be facilitated by the new Phase 2 projects to assist further development.

- TI has collaborated with **5G-PPP Vision Working Group** to identify new technical areas, business models, and vision of mobile network after 5G Phase 2. Also, some topics of 5G-Crosshaul activities may be utilized by the WG to identify the deployment scenarios for verticals.
- VISIONA continue to follow **5G-PPP Trials WG** to participate the work on Phase 3 pre-structuring model, as well as other activities of the Trials WG.
- VISIONA continue to follow **5G-PPP SME WG** to increase the visibility of SMEs, for the purposes of identifying new collaboration opportunities within 5G-PPP.

In addition to the above activities specific to the 5G-PPP working groups, the following activities have also been undertaken towards the 5G-PPP or across projects within the 5G-PPP:

- IDCC has provided an article on 5G-Crosshaul to European 5G Annual Journal 2017, which is published in Sep'17 by 5G-PPP. (<u>https://5g-ppp.eu/annual-journal/</u>)
- The consortium partners co-organized a special session at the 39th meeting of WWRF, and invited talks from 5G PPP Phase-2 Project of 5G-Transformer. 5G-PPP has released a news release relating to the workshop organized by 5G-Crosshaul at the 39th meeting of WWRF (<u>https://5g-ppp.eu/5g-crosshaul-final-workshop-wwrf39/</u>).
- CTTC has carried out a collaboration with H2020 Metrohaul project. The results obtained were presented in the paper R. Casellas, R. Vilalta, A. Mayoral, R. Martínez, R. Muñoz, L. Miguel Contreras, "Control Plane Architectures Enabling Transport Network Adaptive and Autonomic Operation," in Proceeding of International Conference on Transparent Optical Networks (ICTON2017), 2-6 July, 2017, Girona (Spain).
- During the 10th NEM Summit 2017 organized 29-30 December, 2017, in Madrid (Spain), VISIONA partners had the opportunity to meet 5G-PPP 5G-MEDIA partners and share experiences in 5G-Crosshaul regarding the TV Broadcasting application in particular, and how 5G network architectures, technologies and infrastructures can be exploited for developing innovative media-related applications.
- VIS and NXW expertise was also given visibility during the presentation on SMEs made by the European Technology Platform for communications networks and services Networld2020 on 9 November at the ICT Proposer's Day-5GPPP-Phase 3 & Global 5G Collaborations in Budapest.

3.2 Analysis of Achievements Over Entire Project Duration

Table 8 provides the records of scientific publications, talks/panels, demonstrations, and organized/sponsored workshops throughout the whole execution phase. The record is shown for each period (Year 1, Year 2, and Year 3) and compared to the target number set in each period. It is crystal clear from Table 8 that the project exceeded by far its targets set in each category of dissemination activities. Over 90 peer-reviewed publications have been published, 75 talks delivered, 14 workshops co-organized, and 25 demonstrations at conferences and showcases.

		Year				
	Year 1: Jul'15-Jun'16	Year 2: Jul'16-Jun'17	Year 3: Jul'17- Dec'17	Total		
Scientific Publications (Achievement/Target)	33/20	46/20	13/10	92/50		
Talks/Panels/Webinar(Achievement/Target)	37/10	28/20	10/5	75/35		
Workshops (Achievement/Target)	7/1	5/2	2/1	14/4		
Demonstrations (Achievement/Target)	12/2	11/2	2/2	25/6		

Table 8: Summary of dissemination achievements throughout the project.

- The total number of peer-reviewed scientific publications has reached 91, which is almost double of the targeted number. By considering the publication list more closely, the consortium has published 26 journal/magazine papers and 66 conference papers in the last two and half years. Such a result has verified the novelty of the ideas rooted in this consortium. Almost 75% of the publications are presented at conferences, while the rest targeted journals or magazines.
- The consortium has delivered 75 presentations/panels and organized/sponsored 14 workshops over the entire project execution phase. This is worth noting that in MWC'17 alone, three panel activities have been conducted, including a dedicated panel moderated by IDCC entitled "Crosshaul The fusion of Fronthaul and

Backhaul in 5G". Moreover, 81% of the activities are based on talks delivered in various events held in Europe as well as other regions of the world, such as North America and Asia. This shows that the consortium has successfully shared its impactful innovations and visions globally.

• For demonstrations, the consortium has showcased its technologies via real-world platforms 25 times at key events throughout the project execution. This includes 7 demonstrations at MWC'16 and MWC'17, 5 at EUCNC'16 and EUCNC'17, 4 at 5G-Global 2017, 2 at ONF plug fests, and the rest at various conferences and workshops.

3.3 Outline of Activities Planned After Project End

Further dissemination and collaboration activities are anticipated after the project end. These include:

- Additional scientific publications in reputed (e.g. IEEE and ACM) journals and conference proceedings.
- Additional exhibition of demonstrations noticeably integrated demonstrations finalized in Q4'17.
- Continuous collaboration with 5G-PPP projects and working groups to reflect 5G-Crosshaul results into the 5G-PPP programme.

4 Standardization Activities

This chapter provides first an overview of the new eCPRI standard completed and released in August 2017 including key contributions from 5G-Crosshaul consortium partners. A summary of standardization achievements throughout the project lifetime is then provided along with an outline of potential future activities.

4.1 New Fronthaul Interface Standard - eCPRI

4.1.1 Introduction to eCPRI

The goal of eCPRI is to introduce a new fronthaul interface that can satisfy the requirement of high bandwidth 5G use cases, where higher link efficiency is needed in order to handle tremendous volume of data that will be transported over the fronthaul. In particular, eCPRI targets at the functional split within PHY layer (i.e. Option 7 defined by 3GPP), which allows better coordination among multiple geographical separated radio units. Thus, eCRPI is able to comply with the requirements of more stringent radio technologies features, including timing and frequency accuracy, as well as bandwidth capacity. In general, eCRPI is a packet based fronthaul interface between a CU and a DU (these two entities are dubbed as eREC and eRE in eCPRI specifications respectively), with the same level of interoperability as CPRI. A high-level overview of eCPRI transport is shown in Figure 3:

Figure 3: Overview of eCPRI transport.

Basically, eCPRI is applicable to all functional split options, with scalable bandwidth in accordance to the user plane traffic. As aforementioned, it was mainly designed for functional splits at PHY level. A set of PHY-level functional splits supportable by eCPRI are illustrated in Figure 2. These examples include two available split options for downlink with intra-PHY split, namely I_D and II_D . For uplink, there is one intra-PHY split option I_U . The estimated bandwidth for user data under these split options are 4, 20, and 20 Gbps for I_D , II_D and I_U respectively. The detailed assumptions for these estimations can be found in D2.2.

Figure 4: eCPRI split options.

4.1.2 Specifications of eCPRI

The user plane message for eCPRI comprises a 4-bytes common header, followed by eCPRI payload, as shown in Figure 5. The common header contains an 1-bit indicator, as highlighted in Figure 5, which is used to indicate whether or not this eCPRI message is the last one in the PDU, implying if concatenation with subsequent messages is needed to form payload for the Transport Network Layer (e.g. UDP/IP, Ethernet).

Figure 5: eCPRI common header.

Moreover, the eCPRI common header also comprises the information relating to message type, as the messages will be processed differently in accordance to its type. Each of these eCPRI message type is associating to a payload format, and is suitable for different functional split option. For instance, Message type 0 (IQ data) and Message type 1 (bit

sequence) are for intra-PHY functional split before and after IFFT operation (assuming downlink) respectively.

4.1.3 Contributions from 5G-Crosshaul

Three partners, namely Ericsson, Nokia and NEC, have been actively contributing to the eCPRI specifications. These contributions aligned with the work done in 5G-Crosshaul relating to requirements, QoS definition, and transport technology (e.g. compression, synchronization, etc.). As eCPRI standardization activities are not disclosed, it is hard to track and access all the input contributions and technical documents. Some 5 input contributions have been reported, and the full eCPRI specification as released has been reported by the partners to 5G-Crosshaul standardization achievement record.

4.2 Analysis of Achievements Over Entire Project Duration

Table 9 provides a summary of the input (normative) contributions that have been submitted by the consortium partners and reported to the 5G-Crosshaul standardization achievement record. A total of 35 input contribution and specification have been reported across several SDOs (eCPRI, ITU-T, IEEE, ETSI, IETF, ONF, BBF).

SDO		Year			
	Year 1:	Year 2:	Year 3:		
	Jul'15-Jun'16	Jul'16-Jun'17	Jul'17-Dec'17		
eCPRI	0	5	1	6	
G.metro	5	0	0	5	
IEEE	1	3	0	4	
IMT-2020 FG	2	0	0	2	
IRTF/IETF	1	7	0	8	
ETSI MEC	4	0	0	4	
ONF	0	4	0	4	
BBF	2	0	0	2	
			Total	35	

Table 9: Record of input (normative) contributions to SDOs.

From the above table, it is clear that eCPRI is the key specification released in Year 3 with direct contributions from 5G-Crosshaul partners for work aligned with the 5G-

Crosshaul concept. Significant contributions have also been made to ITU-T G.metro, IETF CCAMP, IETF DETNET, and ONF.

In addition to the above contributions of normative nature, Table 10 provides a record of dissemination activities of informative nature into the different standardization bodies. Some 25 standard dissemination contributions are reported in several SDOs noticeably ETSI, ONF, IEEE, NGMN, ITU-T, and BBF.

SDO		Year			
	Year 1:	Year 2:	Year 3:		
	Jul'15-Jun'16	Jul'16-Jun'17	Jul'17-Dec'17		
3GPP	1	0	0	1	
IEEE	3	1	0	4	
ETSI	4	1	0	5	
IETF/IERF	0	1	0	1	
NGMN	2	1	0	3	
ITU-T	1	2	0	3	
BBF	2	0	0	2	
ONF	2	3	0	5	
FSAN	1	0	0	1	
	1	1	Total	25	

Table 10: Standardization dissemination (informative nature) record.

4.3 Liaison Activities with SDOs

The consortium has received a liaison request from IEEE 1914 in November 2017. The SDO has demanded the partners in 5G-Crosshaul to review the specifications of IEEE 1914, and provide the feedback based on the insight that the consortium has been obtained through the conducted research activities. Such solicitation by the IEEE is yet another example of the standardization impact of 5G-Crosshaul project.

4.4 Outline of Activities Planned After Project End

Standardization activities are dependent on the standardization timeline of a given SDO and hence they do not stop when the 5G-Crosshaul project stops. Therefore, we anticipate further standard contributions from the project partners wherever and

whenever a relevant specification activity in an SDO occurs. Continuous monitoring of the SDOs in technology areas relevant to 5G-Crosshaul is therefore expected after the project end to identify such future opportunities.

5 Exploitation Activities

It is undoubtedly crucial to identify the potential exploitation out of the results and concepts developed in this project. In particular, the key innovations, proof-of-concepts, commercial-grade products, and patents are some of the aspects that should be examined in terms of project exploitation. During the project execution over last two-and-half years, a multitude of activities have been carried out to exploit the values generated by this project, and this chapter aims to provide an overview in order to illustrate how well the findings of this project have been utilized to create commercial values. In this chapter, the key innovations, commercial products, and patents developed within the project will be summarised.

5.1 Key Innovations

Different key innovations have been identified at various components of 5G-Crosshaul framework. In this report, depending on the functional block where the technology is applied, the key innovations can be classified into following categories depending on the associated building blocks, namely XFE, XCI, and applications. The highlight of key innovations pertaining to each of these categories are summarised below. Partners within the consortium will make use of the EU free services for disseminating project results provided by the Common Dissemination Booster (CDB). For example, SME VISIONA plans to take advantage of Service 2 Stakeholder/end-user mapping to identify and prioritise stakeholders in the media sector and build the network VISIONA needs to reach them and exploit progress achieved behind TVBA application and the possibilities that VNF-based QoE monitoring offers for broadcasters.

<u>#</u>	Building	Innovation	Leading
	block		<u>Partners</u>
1	XFE	Novel optical ROADM based on integrated silicon	TEI
		photonics to reduce cost and size of 100 times with respect current nodes.	
2	XFE	A latency reduction solution for mmWave-based	IDCC
		backhaul/fronthaul dubbed fast-forwarding was	
		developed, in order to support wireless transport for	
		scenarios with stringent latency requirements (e.g. lower-	
		layer split).	
3	XFE	Novel optical access solution for crosshaul services	Telnet
		(Packetized FH) based on WS-WDM-PON technology is	
		evaluated in a PoC where C-RAN schemes with different	
		functional split options and SDN support are demonstrated	
		in terms of 5G network requirements.	
4	XFE	Extension and evaluation of a Radio Resource	CTTC
		Management algorithm for a dense deployment of small	
		cells with mmWave transport capabilities powered with	
		renewable energies based on distributed Q-learning. The	
		agents placed at each small cell running this distributed	
		algorithm will be able to improve the energy efficiency of	

Table 11: Key innovations pertaining to 5G-Crosshaul building blocks.

		the system by learning from the local environment. Moreover, thanks to the activities in WP4, the agents can collaborate with EMMA application in order to include a	
		system wide view which allows to guide the learning process towards a more energy efficient solution (e.g., by avoiding conflicts among the small cells agents in multi cells scenarios).	
5	XFE	Development of a SBI agent to provide a common abstraction of wireless data-plane resources. The proposed approach decouples control operations from management operations. Thanks to this decoupling, the solution offers the required flexibility to evolve with the evolution and the integration of multiple technologies in 5G-Crosshaul networks.	All WP2 partners
6	XFE	Network solution to use multi-layer nodes (packet and optical) to support tight requirements of latency and bandwidth.	All WP2 partners
7	XFE	Local OAM was added to the data plane to support its operation. Packets for connectivity checks or latency measurements cannot be injected into the network from the SDN controllers. Local OAM allows the XPFEs themselves to generate and receive the corresponding packets. The invention provides a corresponding state machine on the XPFEs, which is under control of the SDN controllers. This allows to get accurate information on the status of the network without placing a computational burden on the SDN controllers.	UC3M, IDCC
8	XFE	Procedures were defined to integrate safely new XPFEs into existing 5G-Crosshaul networks for cases where no out-of-band management network was available. The procedures are applicable to the general case as well as to XPFEs with wireless links only.	NOK-N, IDCC
9	XFE	Compressed packetized Fronthaul to reduce bandwidth requirements for CPRI.	EAB
10	XFE	Several fronthaul splits (MAC/PHY, PDCP/RLC) have been implemented on virtual machines and dedicated processor boards. The traffic according to different fronthaul splits can be generated without changing the underlying hardware and without having to apply for spectrum at the air interface. This eases considerable test setups to evaluate network configurations.	CND
11	XCI	In the control plane the VIM and the SDN controllers have been integrated to connect virtual machines in a data centre with other nodes in the Crosshaul network. The corresponding application allows the VIM to establish the network among virtual machines in data centres according to its own rules, e.g. regarding the use of VLANs. Thereafter the SDN controllers establish the connections inside the Crosshaul network using the information, which is provided by the VIM via the application.	NOK-N, NXW

12	XCI	A NFVO was developed, which is compliant to the ETSI	NXW
		NFV specifications and which allows to use different	
		resource orchestration mechanisms. This NFVO allows to	
		experiment with different optimization strategies to deploy	
		VNFs in a data centre.	
13	XCI	The hierarchical SDN control component of the XCI of	CTTC,
		different technological domains was shown in a PoC,	IDCC
		covering three different transport domains (one optical and	
		two wireless domains of different partners). The	
		hierarchical SDN model allows through network	
		abstraction to control multiple transport network domains	
		and at the same time to encapsulate per-domain specific	
		technological details in the corresponding child	
		controllers. The developed XCI hierarchical control model	
		decreases the e2e service provision time while increasing	
		the XCI scalability in terms of number of managed	
		domains transporting both fronthaul and backhaul traffic,	
		hence easing the integration of different technological	
		transport domains.	
14	Application	An SDN application featuring graphical interface and the	NXW
	S	logic to manage requests for energy efficient paths and	
		monitor power consumption per entity.	
15	Application	TV Broadcasting application (TVBA) – An application	VISONA
	S	running as an OTT service whose purpose is to provide TV	
		broadcasting and multicasting services through the 5G-	
		Crosshaul network maintaining optimal QoS and QoE at	
16	A 1° 4°	user's reception.	ATOS
16	Application	(CDNMA) A Web emplication comprising elegrithms for	AIOS
	S	(CDNMA) – A web application complising algorithms for management and implementation of CDN in 5G. Crossbaul	
		nativerk including vCDN infrastructure instantiation and	
		control and management of the service during its lifetime	
17	Application	Resource Management application (RMA) Ap	NEC
17	s	application featuring algorithms for providing a	CREATE-
	5	centralized and automated management of 5G-Crosshaul	NET
		resources to promptly provision transport services with an	
		adequate quality while ensuring that resources are	
		effectively utilized. The application provides support to	
		the VoD and live streaming services (provided by the	
		CDNMA and TVBA applications) by provisioning the	
		optimal path for mobile users' traffic.	
18	Application	Mobility Management application (MMA) - An	ITRI
	s	application based on Distributed Mobility Management	UC3M
		(DMM) for traffic offloading optimization for media	
		distribution like CDN and TV Broadcasting.	

5.2 Commercial Products

Table 12 summarises the commercial products relating to transport networks that have been released by some of the main vendors in the consortium.

Innovation	PoC / Product / Service	Partner
	eNB with flexible functional split PoC	CND
	Radio Dot System	Ericsson
	Router 6000 family	
	EdgeLink mmWave nodes	
XFE	Fast-Forward mmWave nodes	InterDigital
Packet	iPASOLINK converged packet radio	NEC
	Flexi Multiradio 10 Base Station	
	Ethernet VLAN switch	Nokia
	AnyHaul	
	SDN WS WDM PON solution	Telnet
	Fronthaul 6000	Ericsson
XFE	Optical forwarding elements	
Circuit	AnyHaul	Nokia
	OpenEPC	CND
	Wireless SDN Transport PoC	Ericsson NEC Telefonica
	Services SDN	
XCI	Cloud System	Ericsson
	Network Manager	
	EdgeHaul SDN-based controller	InterDigital
	vEPC	
	ProgrammableFlow controller	NEC

Table 12: List of products relating to technologies in the scope of 5G-Crosshaul.

	SDN/NFV PoC	Nextworks
	HetNet solution	Nokia
	WDM SDN controller	Telnet
	CDN	ATOS
	TV broadcasting – QoE monitoring in the cloud	Visiona
Network Apps	Energy efficiency management and monitoring	Nextworks / Polito
	Mobility management	UC3M / ITRI

5.3 Patents

Table 13 lists 4 patent applications that have developed and reported by consortium partners during the execution phase of the project. An additional three invention disclosures with references NC104517, NC104518, NC104519 have also been reported by Nokia, pending internal approval for filings.

Table 13: List of patent applications reported into 5G-Crosshaul.

<u>#</u>	Patent Application Number and Title	Partner
1	WO2017088902: Ethernet frames encapsulation within CPRI basic frames	NEC, UC3M
2	WO2017142862: Open flow functionality in a software-defined network	IDCC
3	WO2017147076: Methods, apparatuses and systems directed to common transport of backhaul and fronthaul traffic	IDCC
4	WO2017204704: Method, decoder, and encoder for handling a bit stream for transmission over a transmission link between a remote unit and a base unit of a base station system	EAB

6 Conclusions

This deliverable reported the achievements of 5G-Crosshaul in terms of communication, dissemination, collaboration, standardization and exploitation activities, both in Year 3 (from 1 July 2017 to 31 December 2017) and cumulatively throughout the project lifetime (from 01 July 2015 to 31 December 2017). It is crystal clear that the project has exceeded all targeted objectives for Year 3 and throughout the project lifetime. An impressive record across a diverse set of activities has been achieved.

Specifically, for Year 3, the main achievements lie in: (1) the release of eCPRI standard specification including contributions from 5G-Crosshaul partners; (2) the boosting of the publications and dissemination record with additional 17 publications, 10 talks, and 2 workshops organized; and (3) producing videos and video interviews on various demonstrations showcasing the technological innovations developed within the project.

Cumulatively throughout the project execution, the project developed some 20 technological innovations reported in this deliverable and deployed a wide range of communication, dissemination and exploitation tools to maximize the impact of these innovations on all stakeholders. This can be appreciated from the highlights below:

- Over 35 normative contributions feeding into key standardization specifications such as: eCPRI, G.metro, IETF CCAMP, IETF DETNET, and ONF. This is in addition to some 25 (informative) dissemination activities in standardization bodies and forums such as NGMN, ITU-T, FSAN, ETSI, IEEE, BBF, ONF.
- Nearly 100 peer-reviewed publications in IEEE and ACM proceedings, journals and magazines, over 75 talks and panels delivered at key events, and nearly 15 workshops and special sessions (co-) organized.
- Over 25 demonstrations exhibited at various events including at the flagship Mobile World Congress (MWC) both in 2016 and 2017 and at the EC conference EuCNC in 2016 and 2017.
- Some 5 patent applications developed and reported by the project consortium.
- Proactive communication through blogs, press releases, video interviews, and leaflets, all actively promoted through various channels.

Further activities will continue beyond the project lifetime noticeably in terms of communication for the shorter term for example to accompany MWC'18, and in terms of standardization and exploitation activities in the medium and longer terms. Partners within the consortium will also make use of the EU free services for disseminating project results provided by the Common Dissemination Booster (CDB). Up to five services will be available for 5G-Crosshaul members during 2018 to maximize the reach and impact of the innovations developed in the project.

References

- [1] <u>http://5g-crosshaul.eu/wp-content/uploads/2015/11/5G-Crosshaul-vs-5G-</u> Xhaul.pdf
- [2] http://www.3gpp.org
- [3] www.broadband-forum.org
- [4] www.cpri.info
- [5] www.etsi.org
- [6] www.fsan.org
- [7] www.ieee.org
- [8] www.ietf.org
- [9] <u>http://www.itu.int/en/ITU-T/Pages/default.aspx</u>
- [10] <u>www.ngmn.org</u>
- [11] <u>www.opennetworking.org</u>
- [12] <u>www.photonics21.org</u>
- [13] <u>www.smallcellforum.org</u>
- [14] <u>https://www.opennetworking.org/sdn-resources/openflow</u>
- [15] <u>http://www.interdigital.com/solution/edgehaul</u>
- [16] <u>https://www.ericsson.com/ourportfolio/products/fronthaul?nav=productcatagory</u> 006%7Cfgb 101 0516
- [17] <u>https://www.ericsson.com/ourportfolio/products/radio-dot-</u> system?nav=productcatagory006%7Cfgb 101 0516%7Cfgb 101 0526
- [18] <u>https://www.ericsson.com/ourportfolio/products/network-</u> manager?nav=productcategory005%7Cfgb_101_0382
- [19] http://www.nec.com/en/global/prod/nw/pasolink/
- [20] http://www.nec.com/en/global/solutions/tcs/vepc/
- [21] http://www.nec.com/en/global/prod/pflow/
- [22] <u>http://networks.nokia.com/portfolio/products/mobile-broadband/single-ran-</u> advanced/flexi-multiradio-10-base-station
- [23] <u>https://networks.nokia.com/products/airscale-base-station</u>
- [24] http://networks.nokia.com/portfolio/solutions/heterogeneous-networks
- [25] <u>https://networks.nokia.com/products/wavence</u>
- [26] https://networks.nokia.com/products/7250-interconnect-router-r6
- [27] <u>https://networks.nokia.com/products/1830-photonic-service-switch</u>
- [28] <u>https://networks.nokia.com/products/7360-isam-fx-shelf</u>