

	
	

H2020 5G-Crosshaul project
Grant No. 671598

D3.2: Final XFE/XCI design and
specification of southbound and

northbound interfaces

Abstract

This report presents the consolidated design of two core components of 5G-
Crosshaul, namely the 5G-Crosshaul Forwarding Element (XFE) in the data plane
and the 5G-Crosshaul Control Infrastructure (XCI) in the control plane.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 2

Document Properties
Document Number: D3.2

Document Title:
Final XFE/XCI design and specification of southbound
and northbound interfaces

Document Responsible: NOK-N
Document Editor: NOK-N

Editorial Team:
Carla Fabiana Chiasserini (POLITO), Thomas Deiß
(NOK-N), Giada Landi (NXW), José Núñez-Martinez
(CTTC), Charles Turyagyenda (IDCC)

Target Dissemination
Level:

Public

Status of the Document: Final
Version: 1.1

Reviewers:

Miguel Berg (EAB), Daniel Cederholm (EAB), Carla
Fabiana Chiasserini (POLITO), Shahzoob Bilal
Chundrigar (ITRI), Thomas Deiß (NOK-N), Jose
Enrique Gonzalez Blazquez (ATOS), Beatriz López
Herraiz (ATOS), Nuria Molner (UC3M), Antonio de la
Oliva (UC3M)

Document History:
Revision Date Issued By Description
0.1 26.9.17 NOK-N Version for 1st review
0.2 10.10.17 NOK-N Version for 2nd review
0.3 25.10.17 NOK-N Revision after 2nd review
1.0 26.10.17 NOK-N Final version
1.1 3.11.17 NOK-N Final version, document status corrected,

numbering in Table20 corrected

Disclaimer:

This document has been produced in the context of the 5G-Crosshaul Project. The
research leading to these results has received funding from the European
Community's H2020 Programme under grant agreement Nº H2020-671598.

All information in this document is provided “as is" and no guarantee or warranty is
given that the information is fit for any particular purpose. The user thereof uses the
information at its sole risk and liability.

For the avoidance of all doubts, the European Commission has no liability in respect
of this document, which is merely representing the authors view.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 3

Table of Content

Table of Content .. 3

List of Contributors .. 7

List of Tables .. 8

List of Figures .. 10

List of Acronyms .. 13

Executive Summary ... 19

1 Introduction .. 21

2 Northbound interface design .. 22

2.1 Topology and Inventory .. 23

2.1.1 APIs .. 23

2.1.2 Information Model .. 25

2.1.3 Workflow ... 27

2.2 Provisioning and Flow Actions .. 28

2.3 IT infrastructure and inventory ... 29

2.4 Statistics .. 29

2.5 Virtual Infrastructure Manager and Planner ... 29

2.6 NFV‐O .. 29

2.6.1 APIs .. 30

2.6.2 Information Model .. 30

2.6.3 Workflow ... 32

2.7 VNF Manager ... 33

2.8 Analytics for Monitoring.. 33

2.9 Local Management Service ... 33

2.10 Multi‐tenancy .. 34

3 Control plane architecture .. 35

3.1 High‐level architecture (5G‐Crosshaul MANO) ... 35

3.1.1 Multi‐domain control .. 36

3.1.2 Multi‐tenant design (XCI recursion) .. 38

3.2 XCI design .. 38

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 4

3.2.1 Alternatives for NFVO/VNFM/VIM .. 40

3.2.2 Alternatives for storage and computing control ... 41

3.2.3 SDN controllers .. 41

3.2.4 Integration between SDN controller and MANO components 43

3.3 Deployment models of XCI .. 55

3.3.1 Basic SDN controller interconnection models ... 57

3.3.2 Generalizing hierarchical SDN controller interconnection models 57

4 Control Plane Algorithms .. 66

4.1 Power Consumption Model of Docker Containers ... 66

4.1.1 Testbed and Applications .. 66

4.1.2 Experimental results and power consumption model .. 67

4.1.3 Comparing Docker Containers and VMs ... 69

4.2 Network Optimization Model ... 74

5 Data plane architecture... 80

5.1 Architectural Framework .. 80

5.2 XFE design ... 80

5.2.1 Circuit Switching (XCSE) ... 81

5.2.2 Packet Switching (XPFE) and the XCF .. 81

5.2.3 Adaptation function .. 86

5.3 Quality of Service .. 87

5.4 Operations Administration and Management (OAM) .. 89

5.4.1 In‐band control .. 90

5.5 Synchronization ... 96

6 Southbound interface design .. 100

6.1 OpenFlow and Adaptation Function ... 100

6.2 OpenFlow and XPFE .. 100

6.3 XPFE Flow Pipeline .. 102

6.4 XPFE Configuration .. 103

6.5 XCSE Configuration .. 106

7 Fronthaul split ... 108

7.1. High Split (PDCP‐RLC) .. 108

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 5

7.2. Low Split (MAC‐PHY) ... 110

8 Project KPIs .. 113

8.1 Obj1: Design of the 5G‐Crosshaul Control Infrastructure (XCI) 113

8.2 Obj2: Specify the XCI’s northbound (NBI) and southbound (SBI) interfaces 115

8.3 Obj3: Unify the 5G‐Crosshaul Data Plane ... 119

8.4 Obj4: Develop physical and link‐layer technologies to support 5G requirements ... 119

8.5 Obj5: Increase cost‐effectiveness of transport technologies for ultra‐dense access

networks .. 120

8.6 Obj6: Design scalable algorithms for efficient 5G‐Crosshaul resource orchestration

 120

8.7 Obj7: Design essential Crosshaul‐integrated (control/planning) algorithms 120

8.8 Obj8: 5G‐Crosshaul key concept validation and proof of concept 121

8.9 Use of developed components in demonstrations ... 122

9 Conclusions ... 124

10 Bibliography .. 125

11 Appendix I: Northbound interface design ... 128

11.1 Provisioning and Flow Actions .. 128

11.1.1 APIs .. 128

11.1.2 Information Model .. 129

11.1.3 Workflow ... 131

11.2 IT infrastructure and inventory ... 132

11.2.1 APIs .. 132

11.2.2 Information Model .. 134

11.2.3 Workflow ... 135

11.3 Statistics .. 136

11.3.1 APIs .. 136

11.3.2 Information Model .. 138

11.3.3 Workflow ... 140

11.4 Virtual Infrastructure Manager and Planner ... 140

11.4.1 APIs .. 141

11.4.2 Information Model .. 146

11.4.3 Workflow ... 148

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 6

11.5 VNF Manager ... 149

11.5.1 APIs .. 149

11.5.2 Information Model .. 150

11.5.3 Workflow ... 152

11.6 Analytics for Monitoring.. 153

11.6.1 APIs .. 153

11.6.2 Information Model .. 154

11.6.3 Workflow ... 155

11.7 Local Management Service ... 155

11.7.1 APIs .. 155

11.7.2 Information model .. 156

11.7.3 Workflow ... 157

11.8 Multi‐tenancy .. 157

11.8.1 APIs .. 157

11.8.2 Information Model .. 163

11.8.3 Workflow ... 164

12 Appendix II: Bootstrapping XPFEs: Detailed Example ... 166

12.1 Bootstrapping XPFE1 ... 166

12.2 Bootstrapping XPFE2 and XPFE4 ... 167

12.3 Bootstrapping XPFE3 ... 169

13 Appendix III: XCF Requirements .. 171

14 Appendix IV Potential enhancements to 5G‐Crosshaul data plane design 175

14.1 IETF DetNet data plane solutions .. 175

14.2 Segment Routing ... 175

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 7

List of Contributors

Partner No. Partner Short Name Contributor’s name

P01 UC3M
Antonio de la Oliva, Nuria Molner, Sergio
González Díaz, Jaime García Reinoso

P02 NEC Andrés García Saavedra, Xi Li, Xavier Salvat

P03 EAB
Chenguang Lu, Miguel Berg, Daniel
Cederholm

P04 TEI Paola Iovanna

P05 ATOS
Beatriz López Herraiz, Jose Enrique Gonzalez
Blazquez

P06 NOK-N Thomas Deiß, Dieter Knüppel, Ole Reinartz

P07 IDCC Charles Turyagyenda, Alain Mourad

P09 TI
Andrea Di Giglio, Antonia Paolicelli, Roberto
Morro

P13 NXW
Giada Landi, Francesca Moscatelli, Elian
Kraja, Marco Capitani

P14 CND Alberto Diez, Jakub Kocur

P17 CTTC

Ramon Casellas, Arturo Mayoral, Ricard
Vilalta, Raul Muñoz, Ricardo Martinez, Josep
Mangues-Bafalluy, José Núñez-Martinez,
Jorge Baranda

P18 CREATE-NET Leonardo Goratti, Domenico Siracusa

P19 POLITO
Claudio Casetti, Carla-Fabiana Chiasserini,
Senay Tadesse

P21 ITRI Shahzoob Bilal Chundrigar

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 8

List of Tables

Table 1: Topology and Inventory API. ... 23

Table 2: Topology and Inventory Information model. ... 25

Table 3: network topology of subnetwork n1 ... 27

Table 4: NFV-O API. ... 30

Table 5: NFV-O information model. .. 31

Table 6: Software platforms used in XCI MANO prototypes. 41

Table 7: Software platforms used in XCI SDN controller prototypes. 41

Table 8: Main use cases for hierarchical SDN controllers ... 59

Table 9: Hierarchical SDN Controllers classified by APIs .. 61

Table 10: Models accuracy ... 74

Table 11: Traffic Classes .. 88

Table 12: OpenFlow support for MAC-in-MAC fields: match and set-fields 101

Table 13: Objective1 and KPIs within WP3 .. 113

Table 14: Objective2 and KPIs within WP3 .. 115

Table 15: End-to-End Path setup Delay in a multi-domain environment. 119

Table 16: Objective3 and KPIs within WP3 .. 119

Table 17: Objective4 and KPIs within WP3 .. 120

Table 18 : Objective6 and KPIs within WP3 ... 120

Table 19: Objective8 and KPIs within WP3 .. 121

Table 20: List of Experiments in D5.2 [20] ... 122

Table 21: Use of XCI components in experiments... 123

Table 22: Use of dataplane components in experiments .. 123

Table 23: Provisioning and flow actions API: flow rules in physical devices. 128

Table 24: Provisioning and flow actions information model. 130

Table 25: IT infrastructure and inventory API. .. 132

Table 26: IT infrastructure and inventory information model. 134

Table 27: Statistics API. ... 137

Table 28: Statistics information model. .. 139

Table 29: Virtual Infrastructure Manager and Planner API. .. 141

Table 30: Virtual Infrastructure Manager and Planner information model. 146

Table 31: VNF Manager API. .. 149

Table 32: VNF Manager information model. ... 151

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 9

Table 33: Analytics for Monitoring API. ... 153

Table 34: Analytics for Monitoring Information model. .. 155

Table 35: Local Management Service API... 156

Table 36: LMS information model. .. 156

Table 37: Multi-tenancy service API: Virtual Tenant Network (VTN) functions. 157

Table 38: Multi-tenancy service API: Virtual L2 forwarding element functions (virtual
switches). .. 158

Table 39: Multi-tenancy service API: Virtual L3 forwarding element functions (virtual
routers). ... 159

Table 40: Multi-tenancy service API: port mapping functions. 160

Table 41: Multi-tenancy service API: virtual link functions. 162

Table 42: Multi-tenancy service information model. ... 163

Table 43: XCF Requirements ... 171

Table 44: MAC-in-MAC XCF requirement fulfillment ... 172

Table 45: XCF requirement fulfillment by MPLS-TP ... 173

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 10

List of Figures

Figure 1: Topology and Inventory Information model. .. 25

Figure 2: Topology and Inventory workflow example. .. 28

Figure 3: NFV-O information model.. 31

Figure 4: NFV-O workflow example: Instantiate NS. ... 32

Figure 5: NFV-O workflow example: Terminate NS. .. 33

Figure 6: 5G-Crosshaul architecture illustration .. 35

Figure 7: Multi-domain XCI architecture. .. 38

Figure 8: XCI design. ... 38

Figure 9: Functional architecture for a generic application requesting NSs 44

Figure 10: 5G-Crosshaul reference deployment ... 46

Figure 11: Computation of resources allocation workflow .. 47

Figure 12: Computed VMs placement and Network path .. 47

Figure 13: Creation of NS Virtual Links .. 48

Figure 14: Creation of OpenStack resources for NS Virtual Links 49

Figure 15: Creation of VNFs .. 49

Figure 16: Creation of OpenStack resources for VNFs .. 51

Figure 17: Tagging of traffic between compute nodes ... 51

Figure 18: Creation of the underlying connectivity.. 52

Figure 19: Configuration of underlying network connectivity at the XPFE data plane . 53

Figure 20: Options for resource management integration .. 54

Figure 21: EMMA workflow .. 55

Figure 22: Common SDN controller arrangements, combining hierarchical and peer
models. .. 57

Figure 23: Example of SDN control within a mixture of administrative, technological
and vendor domains, showing different peer and hierarchical modes. 59

Figure 24: The hierarchical 5G-Crosshaul model: Integration of per-technology child
SDN controllers with a centralized parent SDN orchestrator... 63

Figure 25: CPU test: Power consumption vs. CPU utilization 68

Figure 26: Network test: Power consumption vs. data rate .. 68

Figure 27: Network Test: CPU utilization vs. data rate ... 69

Figure 28: Network test: Power consumption vs. number of containers........................ 69

Figure 29: Overhead test: power consumption vs. number of containers/VMs 71

Figure 30: CPU test: power consumption vs. number of containers/VMs 72

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 11

Figure 31: Network test: power consumption vs. data rate .. 72

Figure 32: Memory Test: power consumption vs. memory utilization 73

Figure 33: Disk IO test for 10 GB file size: power consumption vs. block size 73

Figure 34: Disk IO test for 10 GB file size: latency vs. block size 74

Figure 35: General scenario to optimize .. 75

Figure 36: XPUs to satisfy RU traffic .. 79

Figure 37: 5G-Crosshaul data plane architecture [5]. .. 80

Figure 38: MAC-in-MAC header ... 82

Figure 39: F-tag .. 83

Figure 40: MPLS-TP headers ... 84

Figure 41: Lagopus internal strucuture ... 85

Figure 42: Lagopus enhanced with additional ring buffers .. 86

Figure 43: 5G-Crosshaul Adaptation Function [1] ... 87

Figure 44: XAF as OpenFlow switch ... 87

Figure 45: Example message flow for OF switch enrolment [39] 94

Figure 46: 4 Node SDN-Controlled network ... 96

Figure 47: Synchronization with PTPv2. ... 98

Figure 48: XPFE Open Flow Pipeline .. 102

Figure 49: OFMP_FEATURES_REPLY ... 104

Figure 50: OFPMP_PORT_DESC ... 105

Figure 51: XCSE model ... 106

Figure 52: The protocol stacks of the High Split ... 110

Figure 53: The protocol stacks of the low split .. 112

Figure 54: Active (blue) vs. idle (grey) networks nodes in a realistic regional network
with full traffic matrix active .. 115

Figure 55: Provisioning time of a network connection .. 116

Figure 56: Deletion time of a network connection ... 117

Figure 57: Experimental setup of an multi-domain data plane. 118

Figure 58: Histogram and CDF of the setup delay seen by the ABNO........................ 118

Figure 59: Provisioning and flow actions information model. 130

Figure 60: Flow actions example.. 132

Figure 61: IT Infrastructure and Inventory information model. 134

Figure 62: IT infrastructure and inventory workflow example. 136

Figure 63: Statistics information model. .. 139

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 12

Figure 64: Statistics workflow example. .. 140

Figure 65: Virtual Infrastructure Manager and Planner information model. 146

Figure 66: Virtual Infrastructure Manager and Planner workflow example. 148

Figure 67: VNF descriptor information model. .. 151

Figure 68: VNF Manager workflow example: Instantiate VNF. 152

Figure 69: VNF Manager workflow example: Terminate VNF. 153

Figure 70: Analytics for Monitoring Information model. .. 154

Figure 71: Analytics for monitoring workflow example. ... 155

Figure 72: LMS information model ... 156

Figure 73: Local Management service workflow example. ... 157

Figure 74: Multi-tenancy service information model. .. 163

Figure 75: Multi-tenancy service workflow example... 165

Figure 76: example topology .. 166

Figure 77: XPFE1 bootstrapping, end of phase C .. 167

Figure 78: XPFE1 bootstrapping, end of phase D .. 167

Figure 79: XPFE2 bootstrapping, after phase C ... 168

Figure 80: XPFE2 bootstrapping, after phase D .. 169

Figure 81: XPFE4 bootstrapping, after phase D .. 170

Figure 82: Segment routing. ... 176

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 13

List of Acronyms

Acronym Description

A-ROF Analogue Radio over Fibre

ACTN Abstraction and Control of Transport Networks

AF Adaptation Function

API Application Programming Interface

ASIC Application Specific Integrated Circuit

BH Backhaul

BIER Bit Indexed Explicit Replication

CA Certificate Authority

CCM Connectivity Check Message

CDN Content Delivery Network

CIDR Classless Inter-Domain Routing

COP Control Orchestration Protocol

CPRI Common Public Radio Interface

CPU Central Processing Unit

C-RAN Cloud Radio Access Network

CRC Cyclic Redundancy Check

CRUD Create, Read, Update, Delete

CU Central Unit

DB Data Base

DEI Discard Eligible Indicator

DU Distributed Unit

E2E End to end

ECMP Equal Cost Multipath

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 14

EMMA Energy-Management and Monitoring Application

eNb Evolved NodeB

ETSI European Telecommunications Standards Institute

FAPI Femto Application Platform Interface

FEC Forward Error Correction

FH Fronthaul

GBR Guaranteed Bit Rate

GMPLS Generalized Multi-Protocol Label Switching

gPTP Generalized Precision Time Protocol

GRE Generic Routing Encapsulation

HTTP HyperText Transfer Protocol

IETF Internet EngineeringTask Force

IP Internet Protocol

IT Information Technology

JSON JavaScript Object Notation

LAN Local Area Network

LBM Loopback Message

LDP Label Distribution Protocol

LLDP Link Layer Discovery Protocol

LMS Local Management Service

LTE Long Term Evolution

LSP Label Switched Path

LTM Link Trace Message

MAC Media Access Control

MANO Management and Orchestration

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 15

MIP Mixed Integer Programming

MMA Mobility Management Application

MME Mobility Management Entity

MPLS Multiprotocol Label Switching

MPLS-TP MPLS Transport Profile

MTA Multi-Tenancy Application

MVNO Mobile Virtual Network Operator

NAS Non-access Stratum

NBI NorthBound Interface

NFV Network Functions Virtualization

NFVI Network Function Virtualization Infrastructure

NFV-O Network Functions Virtualization Orchestrator

nGBR non-GBR

NGFI Next Generation Fronthaul Interface

NIC Network interface card

NS Network Service

NSD Network Service Descriptor

OAM Operation and Maintenance

ODL OpenDayLight

ONF Open Networking Foundation

ONOS Open Network Operating System

OS Operating System

OTN Optical Transport Network

OTT Over-The-Top

PBB Provide Backbone Bridging

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 16

PBSS Personal Basic Service Set

PCP Priority Code Point

PCP PBSS Control Point

PDCP Packet Data Convergence Protocol

PDV Packet Delay Variation

PHB Per Hop Behaviour

PKI Public Key Infrastructure

PNF Physical Network Function

PoC Proof of Concept

PTP Precision Time Protocol

PW Pseudowire

QoS Quality of Service

RAM Random Access Memory

RAN Radio Access Network

REST Representational State Transfer

RFC Request For Comments

RLC Radio Link Control

RoE Radio Over Ethernet

RU Remote Unit

SBI SouthBound Interface

SDN Software-Defined Networking

SFC Service Function Chaining

SID Service Identifier

SLA Service Level Agreement

SNMP Simple Network Management Protocol

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 17

SP Service Provider

SRLG Shared Risk Link Group

TAS Time Aware System

TE Traffic Engineering

TLS Transport Layer Security

TTL Time to live

TVBA Television Broadcasting Application

UCA Use Customer Address

UE User Equipment

UNI User-to-Network Interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

VDU Virtual Deployment Unit

vEPC virtual Evolved Packet Core

VIMaP Virtual Infrastructure manager and Planner Application

VIM Virtual Infrastructure Manager

VLAN Virtual LAN

VM Virtual Machine

VN Virtual Network

VNE Virtual Network Embedding

VNF Virtual Network Function

VNFC Virtual Network Function Component

VNFD Virtual Network Function Descriptor

VNFFG Virtual Network Function Forwarding Graph

VNFM Virtual Network Function Manager

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 18

VPN Virtual Private Network

VTN Virtual Tenant Network

VXLAN Virtual Extensible LAN

WP Work Package

XAF 5G-Crosshaul Adaptation Function

XCF 5G-Crosshaul Common Frame

XCI 5G-Crosshaul Control Infrastructure

XCSE 5G-Crosshaul Circuit Switching Element

XFE 5G-Crosshaul Forwarding Element

XML Extensible Markup Language

XPFE 5G-Crosshaul Packet Forwarding Element

XPU 5G-Crosshaul Processing Unit

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 19

Executive Summary

This document details the activities carried out and results obtained within the scope of
Work Package (WP) 3 of 5G-Crosshaul. This document presents the consolidated
design of two fundamental components of 5G-Crosshaul control and data plane, namely
the 5G-Crosshaul Control Infrastructure (XCI) and 5G-Crosshaul Forwarding Element
(XFE), and the interfaces between data plane and XCI (Southbound interface, SBI) as
well as between XCI and applications plane (Northbound interface, NBI). Refinements
of the initial design based on experience gained when developing the prototypes and
proof-of-concept systems are reflected in the consolidated design.

The key technical achievements described in this document are summarized as follows:

 Description of the information model, workflow and design of Application
Programming Interfaces (APIs) exposed by XCI services towards the
application-plane through a NBI. The services include Topology and Inventory,
Provisioning and Flow actions, Information Technology (IT) infrastructure and
Inventory, Statistics, Network Function Virtualization Orchestration (VNF-O),
Virtual Network Function Management (VNFM), Analytics for Monitoring,
Local Management Service (LMS) and Multi-tenancy.

 The design of the XCI, building on the initial design described in D3.1 [1]. We
present the services exposed within the XCI towards the application-plane, and a
set of software components that are part of proof-of-concept prototypes
developed by 5G-Crosshaul partners. We describe the integration between
Software Defined Network (SDN) controllers and Management and Network
Orchestrator (MANO) components in the XCI to establish paths in the 5G-
Crosshaul network and to connect the Virtual Network Functions (VNFs) in the
data centers to deliver the Network Services (NSs). Also, the interaction
between child and parent controllers in a hierarchical setup is described in detail.

 As input to energy saving for virtualization technologies, we present models of
the power consumption of hypervisor- and container-based virtualization.

 The design of the 5G-Crosshaul data plane, including an updated design of
XFEs, 5G-Crosshaul Common Frame (XCF), and Adaptation Functions (AFs).
We describe an OpenFlow pipeline to provide XCF encapsulation and
forwarding. The bootstrapping interaction between XFEs and SDN controllers is
described in detail.

 The implementation of enhanced Nodes b (eNbs) with different fronthaul splits.
This allows to test the 5G-Crosshaul data plane with traffic streams having real
latency and jitter requirements.

 Besides the actual transport of data, the network has to provide synchronization
to remote radio heads and baseband units. We describe packet-based
synchronization and related synchronization technologies to be used for 5G-
Crosshaul and how its accuracy depends on the existence of other traffic and its
priority. We also describe Operation and Maintainance (OAM) functionality to
manage the network.

 We specify the Key Performance Indicators (KPIs) that are addressed by the
data plane and control plane design, the metrics retrieved for their evaluation,
and we summarize the results.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 20

Compared to the previous document D3.1 [1], the major updates of this document are
the description of the interaction of SDN controllers with the MANO components as
well as with the XFEs. The network optimization model has been updated. The power
consumption model has been added, as well as the description of synchronization, OAM
and bootstrapping, and the XPFE pipeline. The implementation of different fronthaul
splits has been described. The description of KPIs relevant for WP3 and their evaluation
has been added to the document.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 21

1 Introduction

The main objective of this document is to describe the design of two essential
components of the 5G-Crosshaul project, namely the XCI and the XFE including the
design of a unified frame format to forward both fronthaul and backhaul traffic. D3.1
[1] introduced and presented the first version of the design of these two components.
The 5G-Crosshaul forwarding network is comprised of XFEs, which include both
packet switching elements (XPFEs) and circuit switching elements (XCSEs), and carry
data using a common frame format defined as XCF. In the control plane, the XCI
provides control and management functionality to manage all the available resources
that build the 5G-Crosshaul infrastructure, including XFEs and 5G-Crosshaul
Processing Units (XPUs) which carry out the bulk of the computational burden required
by the different services provided in 5G-Crosshaul.

The design of these 5G-Crosshaul components closely follows the 5G-Crosshaul system
architecture designed in WP1 within the System Architecture task (see D1.1 [2]).
Importantly, we design a control-plane management and orchestration architecture that
can be easily implemented with different and possibly heterogeneous software
platforms, both open-source and proprietary. Our design follows the architectural
guidelines fixed by the European Telecommunications Standards Institute (ETSI) [3]
and Open Networking Foundation (ONF) [4] standard bodies. Namely we defined an
SDN/NFV-based platform (the XCI) that provides decoupled data and control plane,
logically centralized control, and exposure of abstracted resources and state to external
applications. Indeed, Section 3 shows that our design is a suitable enabler for
modularized and independent implementations because it shows how proof of concept
of different components of the XCI can be demonstrated using different software
platforms. The only constraint that such software platforms should comply with the
interfaces defined by the interaction with the applications (through an NBI; see Section
2 and the data plane (through a SBI; see Section 6. In Section 2, we present the
information models and APIs used to describe the NBI with some detailed examples.
The remaining definitions are described in the appendix. The design of the XCI is
complemented with a model for power consumption of virtualization techniques and for
optimization of forwarding paths in Section 4. This supports the evaluation of the KPIs
related to energy saving. Secondly, Section 5 reflects the status of the design of the
XFE. As mentioned in D2.1 [5] and D3.1 [1], the XFE design consists of a multi-layer
switch comprised of a packet- and a circuit-switching layer (XFPE and XCSE,
respectively). In more detail, we describe the XCF, packet based synchronization,
Quality of Service (QoS) management and OAM for the network. In Section 6 we
motivate the choice of OpenFlow as the protocol for the SBI of the XCI. We describe an
OpenFlow pipeline for XCF encapsulation and forwarding and the bootstrapping
interaction between the XFEs and the SDN Controllers. We consider forwarding
packets through the eNb also as part of the data plane. The implementation of different
fronthaul splits for eNbs are described in Section 7. Eventually, in Section 8 we define
the KPIs that are addressed by WP3, the metrics to evaluate the different components
designed in this WP, and we summarize the evaluation.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 22

2 Northbound interface design

The goal of this section is to provide the final specification of the XCI controller
interfaces at the Northbound, namely NBI. In particular, the reference protocol mostly
used for the specification of the XCI Northbound services is based on Representational
State Transfer (REST). The REST protocol is one of the most used paradigms for
specifying Northbound services for both SDN and IT controllers (e.g., Open DayLight
(ODL) [6], Open Network Operating System (ONOS) [7], and OpenStack [8]). Note
that this does not preclude the use of other protocols such as proprietary ones or the use
of WebSockets [9]. In particular, the use of WebSockets can be of primal importance
for certain modules to provide, for instance, asynchronous notifications of network or
compute events from XCI services towards 5G-Crosshaul applications.

The specification of NBI is not standardized yet, though organizations such as the ONF
NBI Working Group are working towards this goal. We leave open the choice whether
the REST APIs will be fully compliant with RESTCONF protocol [10]. In this way,
there is no need to define a YANG data model associated to the REST APIs.

The the set of XCI NBI services is based on the Northbound functionalities identified in
D3.1 [1] and the requirements of the 5G-Crosshaul applications, which are identified in
D4.1 [11]. Note that the details reported in this section have been used as input for the
subsequent development of the 5G-Crosshaul NBI. The XCI NBI services have been
implemented internally in the SDN controller and the IT controller. The latter, which is
mapped to the compute and storage controller in the 5G-Crosshaul architecture, exposes
NBI services to the NFV MANO components, namely: the NFV-O, the VNF manager,
and the 5G-Crosshaul Virtual Infrastructure Manager (VIM) referred to as the Virtual
Infrastructure Manager and Planner Application (VIMaP).

The following subsections provide the NBI services exposed by the XCI towards the
5G-Crosshaul applications or towards other XCI modules. In particular, for each NBI
service, we provide the APIs, the more relevant information data models associated
with this NBI service and a workflow illustrating the use of this service by a generic
5G-Crosshaul application or by an internal module inside the XCI that, in turn, can
expose an NBI. As for the APIs, we include a table indicating the protocol, the Uniform
Resource Identifiers (URIs), the operation, and the input/output parameters associated
with the operation. As for the data model, we provide a Unified Modelling Language
(UML) diagram specifying the most relevant classes involved in the NBI service.
Finally, we include a workflow example, in the shape of a sequence diagram, which
illustrates some examples of each NBI service. Note that the low-level implementation
details of the APIs, workflows and information data models are beyond the scope of this
deliverable.

For the sake of brevity, we include a full description of Topology and Inventory (in
Section 2.1) and the NFV-O (in Section 2.6) NBI services, as representative examples
of NBI services abstracting network and IT resources. For the rest of NBI services, we
provide a limited description that does not include the details regarding APIs,
workflows, and information data models. The full information is provided in Section 11
(Appendix I).

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 23

2.1 Topology and Inventory

The Topology service maintains information regarding all created networks. It abstracts
the learned physical topology information that may be collected by some automated
process also involving the network elements (e.g., using protocols like Link Layer
Discovery Protocol (LLDP)). This abstraction offers the possibility of creating subnets
and/or to enhance the topology with other kind of information (e.g., Traffic Engineering
(TE) topology including TE metrics, Shared Risk Link Groups (SRLG), etc.) providing
the REST APIs to create, remove networks (i.e., a subnet which is different concept
from that of tenant), add/remove node links to/from a network.

On the other hand, the Inventory component provides query network inventory services.
In particular, it provides REST APIs to query inventory data from the inventory
database (DB). In this way, the network node and port capabilities can be obtained from
this service.

2.1.1 APIs	

The Northbound APIs in the following table give access to the network topology stored
and maintained by the SDN controller (i.e., the one formed by XFEs). These APIs also
provide primitives to create, delete, and modify the networks in the physical network
infrastructure. The APIs detailed below also expose network inventory resources, such
as the list of nodes and their capabilities. In the following, we provide a description of
the APIs offered by the Topology and inventory services.

Table 1: Topology and Inventory API.

Prot. Type URI Parameters

REST GET ../topology/default

Retrieve the whole
physical network
infrastructure.

../ topology/{network_id}

Retrieve the specified
network topology with
identifier network_id.

Input network_id (optional)

Output network_object

REST POST ../topology/{network_id}

Register a new network.

Input network_id

Output Success: Status Code
of normal end

Failure: Error code

REST PUT ../topology/{network_id}

Add subnetwork with id
network_id to the physical
network, the specified by

Input network_id

network_object

Output Success: Status Code

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 24

network_object. of normal end

Failure: Error code

REST PUT ../topology/{network_id}/{l
ink_id}

Add new link link_id to
network_id.

Input network_id

link_id

Output Success: Status Code
of normal end

Failure: Error code

REST DELETE ../topology/{network_id}

Delete an existing network
with identifier network_id.

Input network_id

Output Success: Status Code
of normal end

Failure: Error code

REST GET ../topology/default/nodes/

Retrieve all the nodes.

../topology/{network_id}/n
odes

Retrieve the specific nodes
in subnet with network_id.

Input network_id (optional)

Output node_list

REST GET ../topology/nodes/node_id

Retrieve node information
details of node_id.

Input node_id

Output node_object

REST GET ../topology/{src_node_id}_
{dst_node_id}

Get the shortest path in
terms of number of hops
between two infrastructure
devices.

Input src_node_id

dst_node_id

Output path_object

WebS
ockets

SUBSCRI
BE

../topology/{network_id}_{
event}

Input network_id

event

Output Success: Status Code
of normal end

Failure: Error code

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 25

WebS
ockets

ASYNC notification event Input event

Output N/A

2.1.2 Information	Model	

We consider the notion of a physical topology that is comprised of a list of networks.
These networks are subnets from the physical network. Each of the multiple topologies
has the notion of multiple nodes. Each node has multiple ports. Each network has
multiple links, where each link connects two ports. Based on the technology, the object
“Port” can have different technologic-specific attributes.

Network

network_id

Node

node_id

Link

link_id

Port

port_id

wireless

tech‐specific‐params

fixed

tech‐specific‐params

optical

tech‐specific‐params

*

*

21

1

Topology and
Inventory 1

*

1
*

1

*

Figure 1: Topology and Inventory Information model.

A more detailed description of the attributes of some relevant information models
associated with the Topology and Inventory services is described next.

Table 2: Topology and Inventory Information model.

Parameters Type Description

network_id String Identifier of the network.

network_object Set<Links> Object describing the network as a set of links in
Javascript Object Notation (JSON) or Extensible
Markup Language (XML) format. Each link has the
following attributes:

 EndpointA; String; Node
 EndpointB; String; Node
 Bandwidth; Integer; Bandwidth of the link.
 State: Enum, whether the link is active or not

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 26

 Technology; Enum; Indicate type of the link
(e.g., mmWave, optical)

network_event Enum The specific set of asynchronous network events
considered.

{node_up, node_down, link_up, link_down, port_up,
port_down}.

node_id String Identifier of the node.

node_object Node Contains the identifier of the node and type of node.
Object describing the node as a set of properties in
JSON or XML format. Parameters (variable; type;
description):

 Identifier: String; identifier of the node
 Type: String; type of node
 Name: String; name of the node
 Number of Ports; Integer, number of ports

path_object Object Object describing the path as set of links between two
endpoints (in XML or JSON format).

Request/response media types can be in JSON and/or XML format. It is important to
note that the URIs specified in the request by the consumer shall be independent of the
chosen representation in the implementation. For instance, in what follows we illustrate
a part of the response body in JSON format of a network topology corresponding to a
link connecting a node with a switch. In particular, the request will have the following
form: GET ../topology/n1, where n1 is the identifier of the network.

A part of the output of the physical network topology corresponding to subnetwork n1
follows:

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 27

Table 3: network topology of subnetwork n1

2.1.3 Workflow	

In what follows, we provide a message exchange sequence to illustrate the use of the
service by an application referred to as the consumer. This consumer can be an
application located on top of the XCI. The goal is to illustrate the use of the Topology
and Inventory services. The workflow in Figure 2 illustrates the creation of a physical
subnetwork forming part of the physical network topology. As shown in Figure 2, this
process can consist of the major steps:

1. The consumer application gets the physical network inventory from the Topology
and Inventory service.

2. The consumer application decides to register a new network. A physical subnetwork
is specified. Register a physical subnetwork from the consumer to the Topology and
Inventory service.

3. A physical subnetwork is specified for the previously registered network identifier.
A physical subnetwork from the consumer to the Topology and Inventory service.
3.1. Selection of a private or public subnetwork based on the range of defined IPs.
3.2. Selection of Virtual Local Area network (VLAN) associated to the registered

physical subnetwork.

"network":[
 {
 “id”:”net_example”,
 “links”: [

 {
 “edgeId”:”1”,
 “edgeType: “wireless_edge”,

"EndPointA":{
"id":"00:00:00:00:00:00:00:01",

},
"EndPointB":{

"id":"00:00:00:00:00:00:00:51",
},

 "name": {
"value": "s1-eth1",

},
"state": {

"value": 1,
},
"bandwidth": {

"value": 100; // Data rate in Mbps
}

 }
 …//more links can be specified
]

 }
]

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 28

4. Subscription to an event of interest in this physical subnetwork (e.g., link failure). A
Uniform Resource Locator (URL) is returned as a result of a successful
subscription.

5. Creation of a WebSockets to receive asynchronous notifications from the Topology
and Inventory service of the event to which the consumer application is subscribed.

6. Asynchronous notifications of the previously subscribed event by the Topology and
Inventory service to the Consumer.

7. The consumer application decides to deallocate the physical subnetwork.

The entities involved in this process are the consumer application and the topology and
inventory service

GET /topology/default

GET reply: network_object

Topology and
Inventory

POST /topology/{network_id}

POST reply: Success or Failure

POST /topology/{network_id}:event

GET POST: URL

DELETE /topology/{network_id}

DELETE reply: Success or Failure

Consumer

WEBSOCKET asynchronous notification event

 loop

 until websocket closes

WEBSOCKET subscribe:URL

PUT /topology/{network_id}_{network_object}

PUT reply: Success or Failure

(2)

(1)

(3)

(4)

(5)

(7)

(6)

Figure 2: Topology and Inventory workflow example.

2.2 Provisioning and Flow Actions

This service provides the flow programming service for 5G-Crosshaul applications. In
particular, this service is in charge of offering to the north (applications or certain
modules inside the XCI) an API that allows them to conduct queries related to the
forwarding rule installation and removal of network nodes. It is important to note that
this module acts prior to the actual flow installation rule in the 5G-Crosshaul network
nodes. A more detailed description including the APIs, information models and
workflows involved can be found in Section 11.1.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 29

2.3 IT infrastructure and inventory

The IT infrastructure and inventory NBI is based on the REST protocol. In particular,
we use the NBI of several OpenStack [8] modules (e.g., nova, neutron), as the NBI
offered by the IT infrastructure and inventory service. These modules will form part of
the IT controller inside the XCI in the form of plugins.

To offer such an API, the IT infrastructure and inventory service must comprise several
modules. For instance, the set of instantiated Virtual Machines (VMs) must be
maintained by an IT infrastructure and inventory database. Also, an IT infrastructure
and inventory scheduler is needed to determine where the VM must be instantiated. A
more detailed description including the APIs, information models and workflows
involved can be found in Section 11.2.

2.4 Statistics

D3.1 [1] describes two services tailored to the collection of monitoring information (in
particular Section 7.1.4 for network-related statistics and Section 7.2.1.2 for IT-related
statistics). We updated the design to a unified common service, namely Statistics
service, which integrates the functionality of the two. Note that this API is based on
OpenStack’s Ceilometer [12].

This service shall offer to any consumer (or client) a network- computing- and storage-
related statistics service on a per tenant basis, including metering, alarm, and collection
of samples. A more detailed description including the APIs, information models, and
workflows involved can be found in Section 11.3.

2.5 Virtual Infrastructure Manager and Planner

The NBI of the VIMaP service is based on the REST protocol. This module is basically
in charge of conducting CRUD (Create, Read, Update, Delete) operations for the NS
layout (a set of VMs) for the ETSI NFV architecture. The VIM also offers an API to
conduct CRUD operations for the network slice or virtual infrastructure concept (i.e., a
set of not only VMs, virtual switches, and virtual routers) associated to the creation of
virtual infrastructure for the Mobile Virtual Network Operator (MVNO) use case. As
for the former, it corresponds to the deployment of NSs as defined within the ETSI
MANO architecture. In particular, it is in line with the ETSI use case #4 VNF
Forwarding Graphs in [13]. As for the latter, it tackles the instantiation of virtual
infrastructures with ultimate user control composed by a coherent set of network,
compute, and storage infrastructure. In this case, the infrastructure is completely
provided to the tenant (e.g., XFEs, cards, ports) including XPU resources. In fact, the
VIMaP main goal is to offer to the consumer the services offered by the SDN and IT
(compute and storage) controller in a unified manner. A more detailed description
including the APIs, information models and workflows involved can be found in
Section 11.4.

2.6 NFV-O

The NFV-O offers an NBI that allows the orchestration of NSs to 5G-Crosshaul
applications. A NS is composed by multiple VNFs or Physical Network Functions

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 30

(PNFs), which are interconnected through the specification of a VNF Forwarding Graph
(VNFFG).

2.6.1 APIs	

The NFVO provides mechanisms to create, retrieve and remove NSs, as described in the
following table.

Table 4: NFV-O API.

Prot. Type URI Parameters

REST POST ../nfvo/ns

Create a new
NS for a given
tenant.

Input NS Id

ServiceDeploymentFlavour

NS Tenant Id1

Output NS Id

REST GET ../nfvo/ns/ns_id

Retrieve
information
about the given
NS.

Input NS Id

NS Tenant Id

Output NS record

REST DELETE ../nfvo/ns/ns_id

Remove an
existing NS.

Input NS Id

NS Tenant Id

Output Success: Status Code of normal
end

Failure: Error code

2.6.2 	Information	Model	

The main entity managed by the NFVO is the NS, a chain of VNFs interconnected
through a VNFFG. The characteristics of a NS are defined according to a standard
template, called NS Descriptor (NSD), which defines:

 NS generic information, like vendor, version, human readable description, etc.
 The VNFs, which compose the NS, identified through their VNF Descriptors

(see Section 2.7).
 The PNFs, which compose the NS (optional).
 The VNFFGs, which interconnect the VNFs (and the PNFs if available),

identified through their VNFFG Descriptor. (Both VNFDs and VNFFGDs are
stored in repositories at the NFV-O level).

1 A tenant is one or more NFV MANO service users sharing access to a set of physical, virtual or service
resources. An NS tenant is a tenant to which NSs are assigned. (See [14])

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 31

 The dependencies between the VNFs.
 The scripts and configuration parameters to be launched at the various stages of

the NS lifecycle.
 The monitoring parameters.
 The criteria and the constraints for automated and on-demand scaling of the NS.

The VNF Descriptor information model is reported in Figure 67 within Section 11.5.2.

VNFDs are stored in the VNFD Database (DB), a shared DB which is accessed by both
VNFM and NFV-O. Suitable management APIs are usually exposed by the NFV-O to
load new VNFDs in the repository. This procedure is defined by ETSI NFV MANO
standard and it is out of the scope of this document. During the instantiation of a VNF,
the VNFD is specified in the request through its unique identifier.

VnfDependency

srcVnfdId: string
targetVnfdId: string

NetworkServiceDescriptor

id: string
vendor: string
version: string
vnfdId: string
vnffgId: string
vlld: string
lifecycleEvent: string
vnfDependency: VnfDependency
monitoringParameter: string
serviceDeploymentFlavour:
ServiceDeploymentFlavour
autoScalePolicy: string
connectionPoint: ConnectionPoint
pnfdId: string
nsdSecurity: string

*

0..1

ConnectionPoint

id: string
type: string

ServiceDeploymentFlavour

id: string
flvaourkey: string
constituentVnf: ConstituentVnf

1

ConstituentVnf

vnfdId: string
vnfFlvaourId: string
redundancyModel: string
affinity: string
numberOfInstances: unsigned int

1 *

1

*

1 *

Figure 3: NFV-O information model.

Next, the main data objects are presented in more detail:

Table 5: NFV-O information model.

Parameter Type Description

NS Id String Descriptor of the NS to be instantiated

ServiceDeploy
mentFlavour

Object Defines the size of the NS to be instantiated

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 32

NS record Object Description of the instantiated NS, its VNF instances, its
status and its parameters

2.6.3 Workflow	

Figure 4 and Figure 5 show the workflows to create and terminate a NS when triggered
by a generic NFV-O client. In the two figures, we have assumed a simplified scenario
where the NS includes only VNFs, without any PNF. If this requirement is not met, an
additional interaction between the NFV-O and the SDN controller responsible for the
physical network infrastructure would be required to enable the interconnection between
the VNFs and the PNFs at the physical network level (which is not managed by the
VIM). Moreover, we are also assuming the following:

1. The VNF Managers are already up and running.
2. No preliminary check of resource availability or resource reservation is

performed before allocation (these actions are considered as optional in ETSI
NFV specifications, but are usually not supported at the VIM level in state-of-
the-art cloud platforms).

The detailed workflows for the instantiation and termination of VNFs are described in
Section 2.7.

Figure 4: NFV-O workflow example: Instantiate NS.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 33

Figure 5: NFV-O workflow example: Terminate NS.

The basic workflows presented above can be extended as needed to integrate the
allocation of 5G-Crosshaul network resources specifically reserved to serve the traffic
of a given NS. This approach involves further interactions between the NFVO and the
SDN controller to setup the required network connectivity in the physical infrastructure.
Further details about these procedures are provided in Section 3.2.4.

2.7 VNF Manager

The VNFM exposes NBI services to manage single VNF instances. This module offers
an API to the NFV-O to conduct CRUD operations in VNFs. The role of this service is
aligned with the role specified by ETSI [3]. An open source implementation compliant
with the ETSI NFV specification from the functional architecture perspective can be
found, for instance, in OpenBaton [15], even if based on different information models in
terms of VNF Descriptors and VNFM APIs. A more detailed description including the
APIs, information models and workflows involved can be found in Section 11.5.

2.8 Analytics for Monitoring

This service is in charge of offering to the consumer elaborated information obtained
from the processing of the network and computing statistics gathered by the stats
module specified in Section 2.4. This elaborated information could be, for instance,
used by the Energy Management and Monitoring Application (EMMA) to determine
whether it is convenient to change the power status of some XFE or XPU in the
infrastructure. A more detailed description including the APIs, information models and
workflows involved can be found in Section 11.6

2.9 Local Management Service

The LMS offers to Northbound applications the possibility of managing the status of the
5G-Crosshaul XFEs and XPUs. By status in an XFE we refer, for instance, to the
capability of reconfiguring the properties of a port, or a set of ports. On the other hand,
the reconfiguration of XPU status (e.g., XPU on or XPU off) and its associated
properties is also considered as a potential feature offered by this service. Consequently,
this module requires a DB related to the status of network and IT components that can
be potentially modified by a 5G-Crosshaul application. A more detailed description

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 34

including the APIs, information models and workflows involved can be found in
Section 11.7.

2.10 Multi-tenancy

The Multi-tenancy service allows the Multi-tenancy Application (MTA) application or
VIMaP to enforce solutions to the Virtual Network Embedding (VNE) problem [16]. It
provides REST APIs to map virtual components such as virtual L2/L3 forwarding
elements and virtual links that belong to a Virtual Network (VN) to the physical
substrate. A more detailed description including the APIs, information models and
workflows involved can be found in Section 11.8.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 35

3 Control plane architecture

In this section, we present the design of the XCI platform. Its design is based on the
guidelines described in D2.1 [5]. Figure 6 illustrates the baseline 5G-Crosshaul system
architecture presented in D2.1. We divide the control plane into two layers: a top layer
for external applications (see D4.1 [11]) and the XCI below. The XCI is our 5G
Transport MANO platform that provides control and management functions to operate
all available types of resources (networking, computing, storage). The XCI is based on
the SDN/NFV principles and provides a unified platform that can be used by upper
layer applications via a NBI to program and monitor the underlying data plane by a
common set of core services and primitives. As mentioned in D1.1 [2], the XCI
interacts with the data plane entities via a SBI in order to:

1) Control and manage the packet forwarding behavior performed by XFEs
across the 5G-Crosshaul network;

2) Control and manage the PHY configuration of the different link technologies
(e.g. transmission power on wireless links); and

3) Control and manage the XPUs computing operations (e.g. instantiation and
management of VNFs via NFV).

Figure 6: 5G-Crosshaul architecture illustration

3.1 High-level architecture (5G-Crosshaul MANO)

In the following, we describe in detail the 5G-Crosshaul main architecture building
blocks of the control plane briefly introduced above. The XCI provides the logic
controlling the overall operation of the 5G-Crosshaul. The XCI part dealing with NFV

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 36

comprises three main functional blocks, namely: NFV-O, VNFM(s) and VIM
(following the ETSI NFV architecture, [3]):

 The NFV-O is a functional block that manages a NS lifecycle. It coordinates the
VNF lifecycle (supported by the VNFM) and the resources available at the NFVI
(supported by the VIM) to ensure an optimized allocation of the necessary resources
and connectivity to provide the requested virtual network functionality.

 The VNFMs are functional blocks responsible for the lifecycle management of VNF
instances (e.g. instance instantiation, modification, and termination).

 The VIM is a functional block that is responsible for controlling and managing the
NFVI computing (via Computing ctrl), storage (via Storage ctrl) and network
resources (via SDN ctrl).

In addition to these modules, managing the different VNFs running on top of the
5G-Crosshaul, the XCI includes a set of specialized controllers to deal with the control
of the underlying network, storage and computation resources:

 SDN Controller: This module is in charge of controlling the underlying network
elements following the conventional SDN paradigm. 5G-Crosshaul extended current
SDN support of multiple technologies used in transport networks (such as micro-
wave link2) to have a common SDN controlled network substrate which can be
reconfigured based on the needs of the network tenants.

 Computing/Storage Controllers: Storage and Computing controllers are included in
what we call a Cloud Controller. A prominent example of this kind of software
framework is OpenStack.

Note that the SDN/Computing/Storage controllers are functional blocks with one
or multiple actual controllers (hierarchical or peer-to-peer structure) that centralize some
or all of the control functionality of one or multiple network domains. We consider the
utilization of legacy network controllers (e.g. Multiprotocol Label Switching/
Generalized Multiprotocol Label Switching (MPLS/GMPLS) to ensure backward-
compatibility for legacy equipment.

3.1.1 Multi‐domain	control	

The multi-domain transport control is a relevant aspect to consider in 5G-Crosshaul
both to enable the interaction of SDN with legacy control and to support the case where
several SDN controllers have to interwork. We describe in Section 3.3 the different
deployment models of control interaction (e.g. peer and hierarchical), providing their
comparison in different network scenarios. In this section, we report some key
requirements for the extensions of the 5G-Crosshaul MANO architecture to include
multi-domain transport. Multi-domain transport control is actually a relevant topic that
it is currently discussed within the main standardization bodies, although a conclusion
has not been reached yet. For example the Internet EngineeringTask Force (IETF)
Abstraction and Control of Transport Networks (ACTN) BoF [17] proposes a
hierachical architecture for the multi-domain transport but it is focused on the transport
aspects with very limited description about the interaction with the virtualization
functions. In [3] instead, most of the work is concentrated to the virtualization of the

2 ONF is actively working on the definition of a SBI for micro-wave links: http://5g-crosshaul.eu/wireless-transport-sdn-proof-of-concept/

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 37

functions considering the transport as available Point to Point resources, without
considering the constraints related to the interaction among different domains. In most
cases, the interaction between multi-domain transport and virtualization are solved
considering a sort of overprovisioning of the networking resources, but that could be a
solution not viable in future due to the need to reduce the cost per bit of the transport. A
practical solution to fix such issues is to define a layered architecture that assures a
complete decoupling between the multi-domain transport and the virtualization layers.
According to this principle, the multi-domain transport is in charge to optimize the
network resources, to assure a suitable interworking among the heterogeneous transport
domains and to provide a suitable exposition of the transport resources to the
virtualization layer (e.g. to the NFV-O). The virtualization layer, instead, operates on
the network resources using a suitable abstract view of the transport. In this model, the
multi-domain transport should provide the resource exposition according to Service
Level Agreements (SLA) parameters hiding the technological details of the different
domains and simplifying the tasks of the virtualization layer. Moreover, the model
allows independent evolution of several transport domains from legacy to SDN on
virtualization functions handling and allows the XCI architecture to be quite general and
applicable to concrete scenarios where operators can move towards pure SDN
architecture smoothly.

The decoupling between the multi-domain transport and virtualization prevents any
dependency of the general architecture of the XCI on the specific transport technology
and simplifies the interaction also with the legacy control. Anyway, some issues must
be solved to make the solution efficient. For example, the virtualized view provided by
the multi-domain transport should be quite stable over time limiting the variation of
parameters and facilitating the task of the NFV-O. Again, this could be in contrast with
the resource optimization techniques applied to the transport layer where continuous
change of information and data could be necessary.

Figure 7 shows the extension of the XCI control architecture, see Figure 7, with multi-
domain transport control. In the diagram we highlighted the border between the
virtualization and transport layer represented by the abstract view of the transport
resources, this border is within the end-to-end (E2E) abstract exposition of the transport
resources. The multi-domain transport control is responsible for providing the E2E
abstract view based on SLA parameters and to guarantee that such values are met; while
the virtualization layer utilizes the E2E abstract view as networking resources to be
combined with storage and computation according to procedures defined in [3].

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 38

Figure 7: Multi-domain XCI architecture.

3.1.2 Multi‐tenant	design	(XCI	recursion)		

The main discussion and agreements on the design of a hierarchical recursive XCI have
already been presented in Section 3.3 of D1.1 [2].

3.2 XCI design

Figure 8 provides an update of the XCI design from D3.1 [1], also showing its
interactions with the 5G-Crosshaul SDN applications and VNFs, which are out of WP3
scope (represented in the green boxes).

Figure 8: XCI design.

The picture highlights the two macro-modules of the XCI:

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 39

 The XCI MANO components, responsible for the instantiation, orchestration
and management of VNFs and NSs (in ETSI NFV terminology, a NS is a
collection of VNFs interconnected through a VNFFG and it can be considered as
the equivalent of a Service Function Chain (SFC));

 The XCI SDN controller, responsible for the configuration and management of
the network infrastructure.

As explained in the previous section, the XCI MANO components include the NFVO,
the VNFM associated to the different 5G-Crosshaul VNFs, and the VIM. In 5G-
Crosshaul, the VIM concept is extended with planning algorithms, which take efficient
decisions about VMs placement and network configuration, towards integrated VIMaP
functions. The controllers, in particular, the SDN controller on the network side and the
XPU controllers, including both storage and computing, perform the enforcement of
VIMaP decisions. XPU controllers rely on State of the Art components (e.g. OpenStack
NOVA for computing controllers) and are out of scope for 5G-Crosshaul.

It should be noted that in this section we are assuming a single network domain,
operated by a single SDN controller. In the case of a network infrastructure deployed in
multiple domains, the general considerations described in Section 3.3 should be applied.
In particular, the role of the SDN controller should be decomposed in several “child”
controllers operating at each domain and abstracting the internal details of the local
resources, with a hierarchical “parent” controller in charge of computing and allocating
end-to-end and inter-domain connections. This is done through the coordination of the
lower controllers’ actions, which are the final responsible of the actual, technology-
dependent resource configuration. Further details about the applicability of the SDN
hierarchical approach is provided in section 3.3, where different deployment models are
investigated and compared.

The XCI SDN controller has the same macro-architecture described in D3.1 [1], with
three internal layers: SBI drivers for the interaction with heterogeneous devices at the
data plane; network core services implementing basic monitoring, configuration and
inventory functionalities; and network applications implementing the network level
logic. Both network core services and network applications provide NBIs which can be
used by the XCI MANO components (mainly the VIMaP) and the 5G-Crosshaul
applications to program the network.

The main updates from the initial design are related to the network applications, because
some of the functionalities previously included at the SDN controller level have been
entirely moved to the 5G-Crosshaul application level. The following network
applications are embedded in the SDN controller:

 Analytics for monitoring: an advanced monitoring service used to correlate raw
network monitoring data originally provided by the statistics service. It can be
used, for example, to elaborate monitoring information related to a VN based on
statistical data on flows and physical ports. This functionality offers an NBI to
applications, which is detailed in Sections 2.8 and 11.6.

 Network (re-)configuration: used to re-configure specific network elements,
mainly for management purposes. It is also used by the EMMA application to
change the status of the devices for energy saving issues. This functionality is
embedded in the Local Management service detailed in Sections 2.9 and 11.7.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 40

 Path provisioning: service which establishes a network path between a source
and one (or more) destination end-point(s). It can take as input several
constraints, including the specification of the path itself. This option allows
upper layer applications to implement their own allocation algorithms and use
the path provisioning service as a sort of “configuration arm”. If no path is
included in the input parameters, the internal path computation engine core
service is invoked. This functionality offers an NBI detailed in Sections 2.2 and
11.1.

 Multi-tenant network virtualization: service which builds isolated and
virtualized networks over the shared physical infrastructure. The multi-tenancy
logic (i.e. the mapping between a Virtual Infrastructure –VI– and its tenant) can
be kept at the SDN controller level, but it may be also implemented at the upper
layers e.g. at the VIMaP, at the NFVO level or at the application level (MTA).
The support for resource allocation and isolation are needed for all involved
networking and computing elements, and a coherent management is required
for unifying the concepts of infrastructure virtualization. The MTA application
provides such management, it uniformly wraps and complements the
infrastructure elements’ (SDN controllers, cloud management systems, network
elements, etc.) capabilities to provide multi-user and resource isolation support,
offering uniform and abstracted views to tenants. The mandatory features of the
network virtualization service are the consistency between the VI description
and the VI exposed at the SDN controller NBI level and the isolation between
coexisting VIs. This functionality offers an NBI summarized in Sections 2.10
and 11.8.

The network core services are the same as defined in D3.1 [1], while the SBI drivers
have been specialized according to the latest outcomes of WP2, which has identified the
different technologies of the 5G-Crosshaul data plane. Each SBI driver implements
mechanisms for receiving inventory and monitoring data from the devices, including
technology specific parameters, and for configuring some of their management
parameters and their forwarding behavior.

The following sections match the components identified in the XCI design and possible
software frameworks and platforms to be used for their implementation.

3.2.1 Alternatives	for	NFVO/VNFM/VIM	

Some open source software alternatives for the XCI MANO components have been
analyzed in D1.1 [2]. The XCI architecture does not mandate any specific software
platform; the same XCI functions can be developed starting from different open source
or proprietary projects, with the unique constraint of being compliant with the interfaces
defined at the NBI and SBI of each component in order to support the proper workflows
and interactions.

The proof of concept prototypes of different 5G-Crosshaul partners are based on the
components described in the following table:

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 41

Table 6: Software platforms used in XCI MANO prototypes.

Functional
Component

Software
baseline

Features / Use case 5G-Crosshaul
partner

NFVO proprietary Orchestration of virtual Evolved
Packet Core (vEPC).

NXW

proprietary Orchestration of Content Delivery
network (CDN) nodes.

ATOS

VNFM proprietary Management of vEPC VNFs
lifecycle.

NXW

proprietary Orchestration of CDN nodes VNFs
lifecycle.

ATOS

VIMaP OpenStack
[8]

Provisioning of vEPC VNFs and
their interconnections with QoS and
energy constraints.

NXW

OpenStack Provisioning of CDN origin and
replica servers on XPUs and SFC
configuration.

ATOS

OpenStack +
proprietary

Allocation and management of VMs
and their interconnections.

CTTC

3.2.2 Alternatives	for	storage	and	computing	control	

Storage and computing controllers will be based on state-of-the-art components, in
particular on the corresponding OpenStack modules. No further extensions are required.

3.2.3 SDN	controllers		

As in the XCI MANO components case, the architecture does not impose any specific
choice on the SDN controller software platform for the reference implementation. An
analysis of possible alternatives has been provided in D3.1 [1] and D2.1 [5].

The table below reports the software baselines used for the implementation of proof-of-
concept prototypes.

Table 7: Software platforms used in XCI SDN controller prototypes.

Functional
Component

Software
baseline

Features / Use case 5G-Crosshaul
partner

SBI driver ODL [6] XPFE forwarding control via OF.

Collection of energy consumption
parameters from XPFE.

NXW

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 42

Configuration of XPFE device
state.

Ryu [18] Configuration and control of
mmWave nodes, based on OF for
forwarding and REST for retrieval
and configuration of port
parameters.

CTTC

ODL Configuration, control and
management of mmWave mesh
nodes.

Forwarding control via OF for
mmWave mesh nodes.

Interdigital

Ryu Configuration and control of
emulated mmWave nodes, based
on OF for forwarding and REST
for retrieval and configuration of
port parameters.

Interdigital

Network core
services
(inventory,
topology,
statistics, flow
actions)

ODL Extensions to topology &
inventory modules for power-
consumption information.

NXW

Ryu Core services for mmWave
technology.

CTTC

ODL Core services for mmWave mesh
nodes.

Interdigital

Ryu Core services for emulated
mmWave platform.

Interdigital

Path
computation

ODL Path computation for energy-
efficient network path.

NXW

--
(analytical
algorithms)

Network optimization. UC3M

--
(analytical
algorithms)

ODL

Algorithms for optimal path
computation and service
embedding in multi-technology
transport network (ETH +
mmWave).

CREATE-NET

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 43

Floodlight
[19],
analytical
algorithms

Computation of path between RUs,
DUs, and XPUs.

NEC

Ryu/ABNO Per-domain and multi-domain path
computation (mmWave/WiFi and
Optical).

CTTC

Path
provisioning

ODL Path provisioning for energy-
efficient network path.

NXW

ODL Provisioning of SFC networking in
support of CDN infrastructure.

ATOS

Ryu/ABNO Path Provisoning of per-domain
and multi-domain.

CTTC

ODL Configuration and control of
analogue radio over fibre (A-RoF)
nodes, based on real-time mobility
of the High-Speed Train to save
energy.

ITRI

Network re-
configuration

ODL NBI methods to change the status
of XPFE (to support EMMA)

NXW

Analytics for
monitoring

ODL Elaboration of energy-related
monitoring information for paths
and virtual infrastructures.

NXW

Ryu Configuration and maintenance of
multiple Tenants in a shared
environment. Onboard and on land
controllers work independently.

ITRI

Parent SDN
controller (see
section 3.3)

Proprietary ABNO-based parent controller
with Control Orchestration
Protocol (COP) (proprietary
protocol) interaction with child
SDN controllers.

CTTC

3.2.4 Integration	between	SDN	controller	and	MANO	components	

So far, we have analyzed possible solutions for NFV tools able to deploy sets of VNFs
organized in NSs and for SDN controllers responsible for the configuration of the
network connectivity in the 5G-Crosshaul physical infrastructure. However, these two

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 44

entities (NFV tools and SDN controller) need to operate in a joint and coordinated
manner to deliver the virtual resources associated to the NSs with a consistent set of
underlying connections that enable the network traffic.

In general, 5G NSs are virtual entities composed of VNFs interconnected through
logical network topologies (i.e. the VNF Forwarding Graphs) represented with virtual
links and connection points in the ETSI MANO terminology. At the VIM level, virtual
links are mapped on virtual networks, while connection points are mapped to port
resources. However, all these virtual resources are just logical representations that, in
order to deliver traffic between the VMs running the VNF software, need a mapping to
the underlying network, with coherent connectivity at the physical layer. The
configuration of the physical connectivity should be performed as-a-Service, as an
integrated procedure in the provisioning of the NS logical infrastructure. In other terms,
when the VIM (e.g. OpenStack) creates the VMs and the related VNs, in parallel the
SDN controller should configure the physical data plane to provide a coherent transport
service, complying to the physical network capabilities and the QoS requirements
specified by the end-users. The whole procedure has to be coordinated, so that the
physical configuration is dynamically adapted to the traffic that will be generated by the
VMs. For example, the traffic flows handled at the SDN controller will have to be
classified according to the specific kind of network segments defined at the VIM
configuration (e.g. VLAN, VXLAN, GRE) and based on segment IDs, VMs MAC and
IP addresses selected at the VIM itself. Moreover, source and destination of flow
connections depend as well on the VMs physical placement, which is decided at
runtime and managed by the MANO components.

As a consequence, the XCI has to include an application logic able to handle the
coordination between NFV MANO and SDN controller actions, providing a higher
layer of resource orchestration for the end-to-end service delivery.

Figure 9: Functional architecture for a generic application requesting NSs

Figure 9 presents a possible architectural solution for the integration between the SDN
controller and the MANO components. Here the Application Logic functional block

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 45

implements the generic logic of a NS provisioning workflow and coordinates SDN
controller and NFV MANO actions for service lifecycle and resource management. At
the implementation level, with reference to the 5G-Crosshaul applications, the
Application Logic may also implement additional functionalities or integrate algorithms
that are specifically related to the target NS. For example, customized resource
allocation algorithms may be implemented for each 5G-Crosshaul application (e.g.
energy-aware algorithms for EMMA algorithms, multicast tree algorithms for
Television Broadcasting Application (TVBA) and specific actions on physical and
virtual resources may be needed in the workflow (e.g. power status configuration in
EMMA). It should be noted that the Application Logic is a functional element that,
regarding implementation, can be integrated into different architectural components; for
example, it can be embedded in the applications or integrated as part of the NFVO. In
the last case, the orchestrator should be extended with application-specific scheduling
algorithms and drivers to trigger the underlying network configuration via SDN
controller. Typically, for applications without specific requirements in terms of resource
allocation (i.e. allocation driven by application-level criteria), the implementation of the
application logic functions at the NFVO level is more efficient. In fact, it limits the
interaction between applications and XCI for the collection of topology and resource
capabilities data. This interaction is usually time consuming and, depending on the
dimension of the network, requires the exchange of several data via REST Hyper Text
Transfer Protocol (HTTP) messages to describe the full topology. Moreover, the
implementation within the NFVO enables the usage of internal interfaces and direct
queries to databases which are faster.

A typical workflow for requesting the deployment of a Network Service includes the
following steps:

1. Computation of resource allocation solution: this step takes decisions about the
physical resources to be allocated for the given NS. It can be handled by the
Application Logic in a centralized manner, taking joint decisions about servers
and network paths. Otherwise, delegating this computation independently to the
underlying components may lead to suboptimal solutions, due to the disjoint
computation where e.g. the VMs placement is decided by the VIM, and the
network paths are computed at the SDN controller.

2. Creation of NS Virtual Links: handled at the MANO side under the coordination
of the NFVO, the VIM creates a set of virtual networks corresponding to the
virtual links in the logic network topology. At this stage, no connections are
configured on the physical network.

3. Creation of the VNFs: handled at the MANO side, through the cooperation of
NFVO, VNFM, and VIM. In this step, the VIM creates network ports
(corresponding to the connection points of the VNFs) and VMs placed in the
Compute Nodes (i.e. the XPUs).

4. Setup of the underlying network connectivity: this step is handled by the SDN
controller, which configures the physical infrastructure and establishes the
network paths that interconnect the XPUs via XFEs. This network path will
carry the traffic among the VMs.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 46

3.2.4.1 Reference	PoC	implementation	

In the 5G-Crosshaul project, the integrated MANO-SDN solution has been implemented
in the XPFE and XCI PoC prototype developed in WP3. The implementation is based
on a reference scenario with Lagopus-based XPFEs as network data plane, OpenStack
as VIM and ODL as SDN controller (Figure 10). At the NFVO level, the developments
have adopted different Orchestrators and VNFMs as software baseline, i.e. proprietary
NFVO/VNFM components developed by partners in the consortium. The usage of
specific NFVOs and VNFMs depends on the specific application scenario (i.e. NSs
composed of VNFs with vEPC, CDN and TV Broadcasting components – see [11] for
further details on the demonstrators’ deployment) and related resource allocation
algorithms and VNFs’ configuration. In the scenarios presented below, related to the
EMMA application for the proviosioning of vEPC services, the application logic has
been implemented as internal extensions of the NFVO.

Figure 10: 5G-Crosshaul reference deployment

In the following, we present an example workflow for the provisioning of a simple NS
composed by 2 VNFs interconnected by a virtual link. For each step (1-4) we provide a
brief description of the interactions between the architecture components and the results
of the actions.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 47

Step 1 - Computation of resources allocation

Figure 11: Computation of resources allocation workflow

1. The end-user requests the provisionig of a vEPC NS using the APIs exposed by
the Application.

2. The Application interacts with the NBI of the SDN controller (ODL) to retrieve
the physical network topology through the REST APIs of the Topology Manager
service.

3. Similarly, the Application interacts with the VIM to get the information about
XPUs’ physical capabilities and available resources.

4. Making use of the information retrieved in steps 2 and 3, the application builds a
global network graph which includes both network and computing nodes.

5. Based on the graph elaborated in step 4, the application algorithms compute the
resource allocation solution, which includes the compute nodes where the VMs
need to be deployed and the network paths to interconnect this compute nodes
(see Figure 12).

Figure 12: Computed VMs placement and Network path

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 48

Step 2 - Creation of NS Virtual Links

Figure 13: Creation of NS Virtual Links

1. In order to create the logical network topology for the NS, the Application
requests the creation of the NS Virtual Links to the NFVO.

2-4. The NFVO translates each Virtual Link to the corresponding resources at the
VIM level. In particular, the NFVO asks the OpenStack VIM to create three
types of resources: VNs, subnets and virtual ports for the Service Access
Points (i.e. the external connection points that enable the interaction between
the NS and external networks).

At this stage, OpenStack has created the network-related resources shown in Figure 14
for the specific virtual link of our example. Here, OpenStack has associated the
segmentation ID (i.e. the VLAN ID) 147 to the network: this means that the traffic
generated by the VMs on the ports connected to this network are tagged with VLAN ID
147 when exiting from the physical servers. This parameter is used during the creation
of the underlying network connectivity to specify the classifier of the corresponding
traffic flow.

The NFVO requests also the creation of a subnet to enable L3 traffic on the given
network. Since the subnet is specified with DHCP enabled, a port is implicitly created
on the network for management purposes and it is used for the DHCP traffic with the
Neutron service.

The second port, instead, is created explicitly on-demand and corresponds to a Service
Access Point of the NS. In order to enable the interaction with external entities, the port
is attached to a VIM router (that we assume pre-existing) connected to an OpenStack
external network.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 49

Figure 14: Creation of OpenStack resources for NS Virtual Links

Step 3 - Creation of VNFs

Figure 15: Creation of VNFs

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 50

Assuming each VNF is composed of a single VNF Component (VNFC) and the VNFs
resource allocation handled by the VNFM, the workflow for the creation of the VNFs is
the following:

1. The Application requests the VNFs creation, specifying the VMs placement
computed in Step 1, using the APIs exposed by the NFVO. The NFVO
delegates the VNFs deployment to the VNFM, which is a VNF-specific
entity.

2-3. The VNFM asks the VIM to create the virtual resources to instantiate each
VNF. In particular, for each VNF, the VIM must create a virtual port for each
VNF external connection point and a VM for each VNFC. Each virtual port
must be connected to the virtual networks created in Step 2.

4. The VIM instantiates the VMs on the OpenStack compute nodes, according to
the desired VMs placement. In this case, the VM deployment is forced to use
two different hosts, in order to show the configuration of the physical network
between the compute nodes.

5. The VIM configures the OpenVSwitch instance in each compute node for
intra-host network traffic, i.e. for the traffic between VMs located on the same
compute node or between VMs and the compute node’s NIC for traffic towards
other hosts.

The OpenStack resources created in this phase are shown in Figure 16. The two VMs
vm-test-1 and vm-test-2 have been created on the hosts compute1 and compute2
respectively. Two additional ports have been created on the network instantiated in Step
2, each of them attached to a VM. The IP addresses, assigned automatically by
OpenStack on the Classless Inter-Domain Routing (CIDR) of the subnet created in Step
2, are shown in the VMs table. As depicted in Figure 17, the traffic generated by the
VMs and exiting from the hosts is tagged with VLAN ID 147, i.e. the segmentation ID
assigned to the VN where the two ports are attached.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 51

Figure 16: Creation of OpenStack resources for VNFs

Figure 17: Tagging of traffic between compute nodes

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 52

Step 4 - Creation of the underlying connectivity

Figure 18: Creation of the underlying connectivity

The last step is the creation of the underlying connectivity on the physical network,
which is handled mostly at the SDN controller level.

1. The Application queries the VIM to retrieve the network-related information
needed to build the traffic flow requests for the SDN controller. In particular, the
VLAN ID used as segmentation ID for the virtual networks and VMs MAC
addresses are needed to define the classifiers of each traffic flow.

2. The Application builds the specification of the traffic flows to be installed in the
data plane, taking into account the VMs placement (i.e. source and destination of
traffic flows), traffic classification (MAC addresses and VLAN IDs), resource
allocation solution for the network paths as computed in step 1, and requested
QoS.

3. The Application invokes the REST API exposed by the Provisioning Manager
module of ODL and requests the network connections setup, based on the
calculated paths and classifiers.

4. The Provisioning Manager, making use of the mechanisms implemented by the
OpenFlow Plugin of ODL, creates the suitable flow rules on the Lagopus-based
XPFEs, following the XPFE pipeline format. In particular, the traffic is received
at the source edge XPFE tagged with the VLAN ID determined in step 1. On the
edge nodes of the network path traffic is further tagged and un-tagged with an
outer VLAN ID decided by the SDN controller and the forwarding within the
network domain is based on this outer VLAN ID only (see Figure 19) (the initial
VLAN ID becomes the inner VLAN ID). The XPFEs along the target network
paths are now able to forward the traffic between the VMs.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 53

Figure 19: Configuration of underlying network connectivity at the XPFE data plane

3.2.4.2 Customization	of	NS	provisioning	workflows	

The reference scenario, as well as the general workflow for the provisioning of a NS,
can be customized to better fit the needs of a specific NS or an Application. In this
section, we discuss two different options for the workflow customization: the
integration of specialized algorithms for resource management and the introduction of
additional functions to manage physical resources.

Algorithms for Resource Management

The decisions related to resource allocation and management can be performed using
different kind of algorithms, able to apply specific constraints and objective functions.

In general, resource allocation algorithms can take decisions either about IT and
network resources (i.e. VMs allocation at XPUs and network paths in XFE domains) in
a single joint step or just about VMs placement in a first round and, after that, about
network paths in a second round. The former joint approach is adopted, for example, in
the EMMA application. In this case, the algorithm is typically integrated at the
application level or in the NFVO (option 1 in Figure 20) since it needs information
about the availability of IT resources, network topology and capabilities of network
links, which can be retrieved from the combination of VIM and SDN controller.

The approach based on a disjoint, per domain resource management can involve
algorithms integrated into different components. For example, the IT computation can
be placed at the application level, while the computation of the network paths to
interconnect the VMs can be delegated to the SDN controller (option 2 in Figure 20).
Another possibility is represented by option 3 in Figure 20. Here the application logic is
only responsible for the workflow coordination, while all the resource allocation
decisions are taken at the XCI level, in particular at the NFVO for the IT resources and
at the SDN controller for the network resources (in this case, the network related
computation if performed by the internal Path Computation Engine component – see
Figure 8.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 54

Figure 20: Options for resource management integration

Additional functions in provisioning workflow

At the higher orchestration level, the NS provisioning workflow can be modified also to
support specific functionalities required by applications. In the case of EMMA, for
example, the general workflow has been modified to configure dynamically the power-
state of XPUs or XPFEs and switch on the devices only when needed to instantiate the
virtual resources (see Figure 21). The rationale for this is to enable a joint planning of
XPUs and XFEs switching on/off, with optimal resource placement. A disjoint planning
may instead lead to suboptimal solutions or even XPUs that cannot be interconnected at
all. In particular, the EMMA application has been implemented with specific drivers to
modify the power-state of XPUs and XPFEs via OpenStack and ODL APIs. The
corresponding functions have been implemented at the XCI as follows:

 Specific methods are exposed at the ODL controller NBI for XPFE’s power-
state configuration and monitoring. Moreover, a specific Simple Network
Management Protocol (SNMP) protocol driver has been implemented to enforce
the related XPFE configuration for the power-state and read power consumption
values.

 On the MANO side, power consumption monitoring and power-state
management is handled through a plugin within the OpenStack control node,
and a driver in each OpenStack compute node. The implementation of the
compute node driver depends on the specific type of hardware and the
mechanisms provided by the server to handle power states (e.g. DELL iDRAC).

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 55

Figure 21: EMMA workflow

3.3 Deployment models of XCI

In this section, we will discuss different deployment models that fit within the XCI
architectural design. The following summarizes the different models to control and
manage networking, compute, and storage resources.

It is commonly accepted that deploying a single, integrated controller for a large or
complex infrastructure including network, compute, and storage resources presents
scalability issues, or may not be doable at all in practice. In particular:

 The infrastructure size, in terms of controllable elements, has a direct impact on
the controller requirements regarding e.g. the number of active and persistent
TCP connections on top of which control sessions are established, memory
requirements to store in memory e.g. a data structure representing the network
graph that abstracts the network and Central Processing Unit (CPU)
requirements for processing message exchange, or implement control logic

 The infrastructure complexity in terms of multiple deployed technologies (such
as a packet-switched layer for Layer2/Layer3 transport over a circuit-switched
optical layer, each having intrinsic and non-generalizable parameters and
attributes) has an impact on functionalities and protocols to be implemented by
the controller. For example, at the south-bound interface the controller needs to
implement protocol extensions depending on the specific network layer of the
controlled elements. Moreover, an inter-layer coordination function is also
needed to deal with end-to-end connections and associated inter-layer
technology adaptation, increasing the complexity of such unique controller.

To address such shortcomings, a current trend within SDN control plane design is to
consider the deployment of multiple controllers, arranged in a specific setting, along
with inter-controller protocols. Such architectures apply both to heterogeneous and
homogeneous control (different or same control plane and data plane technologies
within the domain of responsibility of a given controller). As detailed next, a

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 56

straightforward scheme to arrange the controllers is either in a flat (peer) or hierarchical
setting, but we will later qualify and challenge such simple model.

It is important to state that nothing precludes the deployment of two or more SDN
controllers for a given set of controlled network elements. For example, the OpenFlow
protocol supports the notion of primary or main and backup or secondary controllers.
Two or more controllers can cover the same, overlapping or disjoint sets of network
elements (this is a straightforward deployment choice for high availability reasons,
where usually only a controller, e.g. the master one, has control over a given resource at
a given time). For simplicity, from now on we assume a single SDN controller covering
or spanning a set of controlled network elements. Having two or more controllers (e.g.
for redundancy purposes) adds additional considerations such as inter-controller
synchronization, and whether such controllers are synchronized e.g. using a dedicated
protocol between them or via/by virtue of obtaining the information from the same set
of network elements.

Regarding the management of platforms including resources that go beyond the network
(i.e., the compute and storage resources), as is the case of 5G-Crosshaul, the
deployment model of choice to handle scalability issues or multi-domain is unclear.

A potential deployment is a flat model on a per-domain basis, where a single MANO
instance is responsible for both managing the network slices (i.e., a logical isolated
network originated from the partition of a physical network) and the services running on
top of these network slices for each domain. An open challenge in this kind of
deployment model is how to orchestrate the provisioning of services that require a
multi-domain SFC. We define a multi-domain SFC as a complex SFC that can be
divided into smaller SFCs and thereby instantiated into different domains controlled by
different MANO instances.

An alternative model is a recursive MANO deployment model. In this model, there is
one MANO instance directly interacting with the physical network, compute, and
storage substrate underneath and managing the different network slices. These network
slices are exposed to additional MANO instances. The additional MANO instances
orchestrate the services running on top of their particular owned slice. The degree of
control and visibility that each of the additional MANO instances has over their slice
(full or partial) is an open question.

In the following, we focus our discussion mainly on deployment and interconnection
models of SDN controllers, since the network component is the main focus point when
investigating deployment models in the context of 5G-Crosshaul.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 57

Figure 22: Common SDN controller arrangements, combining hierarchical and peer models.

3.3.1 Basic	SDN	controller	interconnection	models	

In a basic approach, SDN controllers can be arranged in two canonical models: a peer or
flat model and a hierarchical model (Figure 22).

3.3.1.1 Peer	or	flat	model	

This model corresponds to a set of controllers, interconnected in an arbitrary mesh,
which cooperate to provide end-to-end services. In this setting, we can often assume
that the mesh is implicit by the actual (sub)domains connectivity. The controllers hide
the internal control technology and synchronize state using e.g. East/West interfaces.
Further, the controllers manage detailed information of their own, local topology and
connection databases, as well as abstracted views of the external domains and the
East/West interfaces should support functions such as network topology abstraction,
control adaptation, path computation and segment provisioning.

3.3.1.2 Hierarchical	model	

In this model, controllers are arranged in a tree-like topology, with a given root being
the top-most controller. For a hierarchy level, a centralized “controller of controllers” or
orchestrator (referred to as parent controller) handles the automation and has a number
of high-level functions, while low-level controllers (referred to as children) cover low-
level, detailed functions and operations. A recurring example is a 2-level hierarchy in
which a parent SDN controller is responsible for connectivity provisioning at a higher,
abstracted level, covering inter-domain aspects, while specific per-domain (child)
controllers map the abstracted control plane functions into the underlying control plane
technology. Proper interfaces and protocols are needed to enable this interaction
between child and parent controllers; more generic interfaces and protocols enable a
wider applicability of the architecture to an arbitrary number of hierarchy levels.

3.3.2 Generalizing	hierarchical	SDN	controller	interconnection	models	

In technological contexts such as the one defined by 5G-Crosshaul, several
considerations challenge the simplistic hierarchical models. The following is a non-
exhaustive list, noting that the challenges are also strongly inter-dependent, for
example, different network segments may belong to one or more administrative
domains/operators who internally arrange the network in technological domains, which,
in turn, are commonly provided by different vendors.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 58

 Network segment splitting. Defining an SDN control architecture for a network
that encompasses multiple network segments (such as access, aggregation,
metro, core) may be constrained regarding the feasibility to deploy a hierarchical
SDN control or not.

 Vendor constraints. Arranging controllers in a specific setting depends on the
available interfaces and protocols (ideally open and standard) and the
corresponding level of support/implementation for a given vendor. It is
reasonable to expect that arranging SDN controllers from the same vendor in a
hierarchy will be straightforward if the vendor provides such functionality and
there will be a high level of expected inter-operability in that case.

 Redundancy, high availability, robustness. It is accepted that deployments of
SDN control in carriers’ networks will be strongly constrained by the expected
requirements regarding robustness and high-availability. Best common practices
consider deploying multiple elements and synchronizing state between them.
This is sometimes referred to as fat-trees, or forests, e.g. where the parents
communicate with each other.

 Widest definition and scope of “domain”. Strongly related to the previous
ones, the term domain has multiple definitions and sometimes applies to the
arrangement of network elements by their technology but also by their vendor or
network segment, or even administrative or geographical domains.

 Fitness for purpose. A specific controller arrangement may not fully
correspond to the intended logical SDN controller relationships, which
sometimes can be better mapped to a client/server or master/slave model. While
master/slave can correspond to a hierarchical setting, other relationships,
functional splits, and responsibilities may fit better to a flat model.

 Administrative domains, control, and ownership. An often-recurring critique
of pure hierarchical models comes from the issue of top-most parent ownership.
Unless there are clear function definition and demarcation points, business
arrangements and inter-connection models are based on a peer relationship in
which no entity is under the control or supervision of a higher-level entity.

 Confidentiality. This applies to either peer or hierarchical models, although
depends on the specifics of the northbound and west/east interfaces.

 Domains of applicability. The initial designs for hierarchical models addressed
the problem of arranging SDN controllers considering only e.g. the networking
and data communications for NS provisioning aspects. When considering, as, in
5G-Crosshaul, the need to offer 5G services that involve heterogeneous
resources beyond the network (i.e. also storage and computing resources), the
adoption of a hierarchical, peer or hybrid model is not clear. A set of network or
cloud controllers may be under the control of an ETSI/NFV VIM, or the VIM
may include a cloud controller that includes a network controller, and
combinations hereof.

 Provisioning workflows. Intended provisioning workflows may also affect the
choice of hierarchical or peer models. For example, “end user driven”, “data
driven” or “event-driven” provisioning services may be better suited to a peer
model (e.g. a request from the RAN to the core) while a “operator-driven” pre-
provision action may be better suited to a hierarchical model.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 59

A main, direct consequence of the previous consideration and analysis, is that, in
general, a given deployment of a carrier class SDN-based control architecture for 5G
services (which combine heterogeneous networking/cloud resources over an
infrastructure spanning multiple network segments and/or technological domains and
vendors) will not correspond to a pure hierarchical or flat but will present a
combination of centralized/distributed and hierarchical/flat/peer models constrained by
the identified requirements and actual implementation choices (see Figure 23).

Figure 23: Example of SDN control within a mixture of administrative, technological and

vendor domains, showing different peer and hierarchical modes.

3.3.2.1 Hierarchical	SDN	approaches	based	on	the	definition	of	domain	

As a summary of the previous section, constraining aspects that may condition the
deployment of hierarchical SDN controllers are mainly defined by the widest definition
of domain and the associated requirements of confidentiality, functional split and inter-
connection and business agreements. The following table summarizes and illustrates the
main cases.

Table 8: Main use cases for hierarchical SDN controllers

Case examples

Deployments

Remarks in Hierarchical SDN architectures.

Same vendor within
a given technology
and administrative
domain

 Best-fit model depends on vendor defined criterion;
e.g. peer or hierarchy and abstraction support provided
by the SDN vendor.

 Straightforward and interoperable hierarchical SDN
setting.

 Straightforward and interoperable peer SDN setting.
 Hierarchy introduced for scalability reasons.
 Within a hierarchical setting, peer-models may be used

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 60

for robustness, or high-availability reasons (e.g. backup
controller, distributed systems acting as a logically
centralized entity).

 Peer models commonly used when adhering to a
distributed approach (e.g. controller mesh, redundancy
or high availability solutions).

 Hierarchical or peer architectures work at low-level
interfaces with binary encodings and byte-level
protocol. High degree of interworking, when
applicable, proprietary extensions used.

 Hybrid approaches complementing peer/hierarchical.

Different vendors
within a single
technology and
administrative
domain

 Peer models available (e.g. GMPLS controllers) but
with strict constraints in interoperability. Issues in real
deployments where operators chose to scope and
segment into vendor islands.

 Hierarchy as a means to orchestrate multiple vendors,
scope inter-operability to a limited subset of interfaces
and protocols, minimize risks.

 Hierarchy done by means of “plugins” constrained to
what is available or offered by vendors NBIs. Adopt an
“NBI” standard if available and agreed upon.

Multiple network
technologies within
single
administrative
domains

 Peer models very constrained, requiring complex
implementations and frameworks (e.g. GMPLS Multi-
layer and Multi-region networks).

 Peer model not adapted to a market where vendors
cover mostly a horizontal technology or network
segment.

 Suitable hierarchical models in which an “orchestrator”
coordinates topology management and service
provisioning (e.g. IP over optical).

 Hierarchy done by means of “plugins” constrained to
what is available or offered by vendors NBIs. Adopt an
“NBI” standard if available and agreed upon. The NBI
is less straightforward since it needs to cover multiple
technologies applicability.

Heterogeneous
technologies and
resources within
single
administrative
domains

 High-level orchestration of e.g. cloud / storage /
network controllers based on high-level requirements
and systems behaviour.

 Ad-hoc developments.

Different
administrative

 Peer models adopted due to business and peering
agreements, trust models.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 61

domains Confidentiality and security issues.
 Issues of Ownership and subordination.
 Forests models. Commonly abstracts hierarchy within

the administrative domain.

Wider scope
infrastructures
spanning multiple
domains and
network segments

 Hybrid approaches combining centralized, distributed
elements and architectures.

 Hybrid SDN-based architectures combining hierarchy
and peer models, depending on inter-operability
requirements, orchestration models and feasible
choices.

 Heavy use of abstraction and aggregation in
hierarchies.

 Instances of hierarchical SDN architectures for low-
level interfaces (e.g. within vendor islands) and
instances of hierarchical SDN architectures for high-
level orchestration.

 Constrained by inter-connection agreements between
providers and operators.

 Peer models for “data-triggered” or “event-triggered”
provisioning across multiple segments.

3.3.2.2 Hierarchical	SDN	approaches	based	on	API	classes	

It is also possible to use API classes as a criterion to identify potential SDN hierarchical
architectures. For example, at a given level, a hierarchical relationship may be based on
a high-level API and framework, relying on e.g. Intent based operation, control or
orchestration. On the other hand, another hierarchical relationship may apply at a low-
level interface, in which, macroscopically, the operation of children and parent (or
sibling controllers) is fundamentally similar and the portioning is motivated by
scalability, confidentiality and robustness reasons.

Table 9: Hierarchical SDN Controllers classified by APIs

Uses Remarks

Low-level APIs Often tied to a specific low-level byte protocol.
 Difficult interoperability, often only reasonable if within

the same SDN controller vendor.
 Strongly dependent on the hierarchy support provided by

the SDN controller vendor.
 Implemented to scale by combining homogeneous small-

size systems into bigger ones in “stages”.
 Theoretical support for a constrained or arbritrary number

of hierarchy levels.
 ~ “By design”.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 62

High-level APIs Commonly associated to high-level operations using high-
level frameworks and constructs (e.g. REST).

 APIs “exported” by the SDN controllers and
“consumed”/”used” by orchestration systems. It does not
preclude the use of a common, standard protocol within an
implementation agreement or standard.

 Often relies on implementing dedicated plugins at the
orchestration (parent) entity, drives the specification of
(standard) implementation agreements for APIs.

 Number of hierarchy levels limited (e.g. two in most
common deployments).

 Quite adapted to common uses of orchestration of
heterogeneous systems or vendors.

 ~ “By agreement”.

3.3.2.3 Integration	of	Child	and	Parent	Controllers	

Based on the theoretical considerations of the previous sections on the challenges of a
hierarchical SDN controller deployment, this section presents a practical deployment of
the 5G-Crosshaul model for hierarchical control orchestration. Such model aims at
achieving the following functionalities:

Centralized network orchestration: A logically centralized entity exists on top of and
across the different network domains and is able to drive the provisioning (and
recovery) of connectivity across heterogeneous transport networks, dynamically, and in
real time.

Technology abstraction: The introduction of a new interface and protocol that abstracts
the particular control plane technology of a given domain. In this sense, the proposed
architecture applies the same abstraction and generalization principles that
OpenFlow/SDN have applied to data networks

With these goals in mind, we have used the COP 3 to interconnect per-technology
domain child controllers to a technology agnostic centralized orchestrator (see Figure
24), referred to as the parent SDN controller, which corresponds to the High-Level API
approach described in section 3.3.2.2. COP is used for the interaction of the COP client
plugin installed in the parent SDN controller with the COP server installed in each of
the per-technology child SDN controller. However, the API between the per-technology
child SDN controllers and the COP server requires a customized plugin dependent on
the NBI API offered by each of the child SDN controllers. In Figure 24 there are three
child SDN controllers: Wireless SDN Controller A, Optical SDN controller, and
Wireless SDN Controller B. The specific plugin in each of the per-technology child
SDN controllers translates the REST-based request received by the COP server to the
specific per-technology SDN controller NBI API implemented by the SDN controller.

3 https://github.com/5G-Crosshaul

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 63

Figure 24: The hierarchical 5G-Crosshaul model: Integration of per-technology child SDN
controllers with a centralized parent SDN orchestrator.

The parent SDN controller assumes that each domain is composed of a data plane
controlled by an instance of a specific control plane technology for the transport
network, but transport and/or control plane technologies for each domain can be
different. The main functionalities of the SDN parent controller are network abstraction
so that the resulting global network view is not technology related. Thus, this control
plane abstraction must enable the provisioning of NSs using the underlying
configuration technology. In the following, we provide a description of the services that
COP provides for the interaction amongst parent and child SDN controllers.

Topology Services: Upon request through the COP client, the parent SDN controller can
retrieve a child SDN network topology. This service is aligned with the specification in
Section 2.1. The COP definition covers the topological information about the network,
which must include a common and homogeneous definition of the network topologies
(based on the concept of nodes and edges). Note that the definition of a topology may
be flexible enough to include the different capabilities of each per-technology transport
network domain.

Path Computation Services: The path computation service provides an interface to
request (by the COP client in the parent SDN controller) and return Path objects (by the
COP server in the child SDN controller) which contain the information about the route
between two service endpoints. Path computation is highly related to the call services.
Note that in the call object, the connection object has been designed to have the
possibility of containing explicit information about the flow match/action rules along
the traversed path. The path model should be the same in both, the service Call and at
the service Path Computation.

Call Services: Using Call objects, the parent SDN controller can request the provisoning
of end-to-end connectivity services across multiple transport domains. A Call object
must describe the type of end-to-end connection service to be requested or served (e.g.,
Ethernet, MPLS). The Call object is formed by a list of connection objects, including
the service endpoints. A connection object is used for a single per-technology transport
network node domain. It includes the path or route across the transport network traffic
traverses. By design, these routes may be fully described (explicit) or abstracted
(delegated to the child SDN controller) depending on the orchestration/control schemes

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 64

used amongst parent and child SDN controller. In the specific implementation, we have
opted for detailing the explicit route from the parent to the child SDN controller, hence
assuming a high degree of control by the parent SDN controller. These routes in
particular include the corresponding matching rules and actions. The abstracted route
description would be more appropriate in deployments with a substantial bigger number
of domains and more complex inter-domain connections, i.e, mesh, to trade-off route
determination complexity between parent and child SDN controllers.

On the other hand, it is important to note that each connection must be associated with a
single control plane entity (e.g. a per-technology child SDN controller) responsible for
the configuration of the data path. Note that this also requires an interface between the
COP client and COP server to request the computation of a path in a single
technological domain.

From a high-level view, in the following we show a simple example detailing the
workflow between the COP client, COP server, and the child SDN controller to serve a
call request attempting to install flow entries in their forwarding switches.

1. The COP client sends a call request to the COP server with call callid, to
establish a connection between two endpoints in a technological transport
domain.

2. The COP server conducts these two tasks:
a. The COP server saves the callid object and starts iterating over all the

connections that compose this call callid.
b. The COP server processes these connections, saves their state, and

prepares the info regarding each of the connection to be sent to the child
SDN controller in a way compliant to the API offered by the child SDN
controller (the API offered by Ryu, ODL, etc).

3. The child SDN controller conducts these two tasks:
a. The child SDN controller receives all the information encoded in a

connection, i.e. the match policy and action rules action for a given
connection.

b. The child SDN controller installs the match and action rules in the
corresponding data plane element.

COP is based on REST HTTP-based technology. The REST paradigm is convenient for
the COP implementation due to the need of stateless communication among SDN
controllers and the SDN orchestrator. It is also convenient because of the flexibility,
scalability and commodity for practical implementation. The objects defined by COP to
provide useful orchestration mechanisms between parent and child SDN controller in a
wide range of multi-domain network orchestration are defined using the YANG data
modelling language.

In the proof of concept, the parent SDN controller jointly with the mmWave/WiFi SDN
controller A and optical controller is located in one testbed site whereas the mmWave
SDN controller B is located in a different testbed site. To interconnect both testbed
sites, we have established different OpenVPN tunnels for both data and control plane
networks. Details on the setup and inter-site performance measurements amongst the

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 65

two sites will be found in D5.2 [20] (i.e., around 43ms of RTT and TCP performance of
around 70Mbps in average). Thanks to the COP protocol and the established Virtual
Private Network (VPN) tunnels, the parent SDN controller is able to establish end-to-
end connections between different sites to make the data to flow between any pair of
endpoints present in the deployment of Figure 24.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 66

4 Control Plane Algorithms

In this section, we present models for control plane algorithms, Firstly, the power
consumption of two different virtualization technologies, namely, Docker containers
and VMs is investigated. In particular, a power consumption model is presented for
each of them, leveraging the results of our experiments [21][22]. Secondly, a model on
optimizing the forwarding behavior of networks is presented. Both models have been
implemented, the first one as part of energy management algorithms, the second one
within Matlab.

4.1 Power Consumption Model of Docker Containers

Containerization has recently emerged as a lightweight alternative to VMs. Applications
run within containers, which share the same OS, kernel, and process space as the host
machine, while keeping file systems isolated. File systems contain whatever
applications need to run: code, runtime, and system libraries. Containers offer a lower
level of isolation than VMs, and are in general a less mature technology. On the positive
side, they imply only a fraction of the overhead associated with VMs: they can start
(almost) instantly, and use a negligible amount of additional memory.

Docker is the current de facto standard for containerization, and the first commercially
successful solution. A Docker daemon, equivalent to a VM hypervisor, runs several
containers, each executing a different application on a separate file system. It is worth
noticing that the OS operating system kernel is shared among containers (i.e., all
applications run on the same OS and OS version as the host), and that data has to
traverse the kernel network stack when traveling from a container to another.

4.1.1 Testbed	and	Applications	

In the experimental tests, we used a common desktop, namely, HP Compac 8000 Elite
CMT business PC with a dual-core 2.66 GHz processor and 2 GBytes of RAM. It runs
the Ubuntu 14.04.5 LTS OS, with kernel 4.4.0-31-generic. Both the processor and the
OS support hyper-threading, which raises the number of tasks that can be run at the
same time to four. RCE PM600 power meter is used to read real-time power statistics.
All tests are run for 2 minutes, and power samples are read from the power meter.

CPU test: The first test is a CPU-intensive task, continuously performing matrix
products with the numpy library. Because numpy is single threaded, this application
will employ at most one CPU core, even if more are available.

Network test: We consider a typical network transfer scenario: a client container uses
iperf to send an uninterrupted, constant-rate flow of TCP data to a server container;
neither container performs any other operation. The purpose of this test is to assess
whether the data rate impacts the power consumption, and how.

Network test with multiple client containers: In this test, we activated different
number of containers to send constant-rate flow of TCP data using iperf. The data rate is
kept constant, and it is divided among the client containers. The test highlights the
impact of varying the number of containers on the CPU utilization and power
consumption.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 67

4.1.2 Experimental	results	and	power	consumption	model	

Power consumption vs. CPU utilization. Figure 25 summarizes the results of the CPU
test. Each data point corresponds to a different number of containers running the test:
when there are up to three containers running, each consumes almost exactly 100% of
the available CPU, i.e., one core out of four. The rightmost point, corresponding to the
test with four containers, shows a CPU load of around 370%. The remaining 30% is
used by overheads, including that of the Docker daemon and of the OS processes. The
linear fitting is very good, and the linear regression law is as follows:

4411.121065.0 zPCPU

where PCPU is the power (in Watt) and z is the percentage of used CPU (e.g., 200 for
two cores).

Power consumption vs. data rate. Figure 26 presents the results of the network test;
specifically, the plot displays the power consumption as the data transfer rate varies.
The dependence is more complicated than in the case of the CPU test. The best model is
a second order polynomial fitting:

8210.32859.377368.17 2 ddPdata

where the power consumption is expressed in Watt, as measured by power meter and d
is the data rate in Gbits/s.

This behavior can be explained by looking, in Figure 27, at how the CPU load changes
with the data rate. We can clearly see an almost-linear growth until a rate of 0.6 Gbit/s,
and then a basically constant CPU usage after 0.8 Gbit/s. This is due to the fact that,
between 0.6 and 0.8 Gbit/s, we hit the maximum rate at which data transfers can occur:
we can set a rate of, say 1 Gbit/s in iperf, but only a fraction of that data gets to the
destination.

Power Consumption vs. number of containers: Figure 28 presents the results of the
network test when multiple client containers are sending data to the server container.
The plot displays the power consumption as the number of clients varies. In this test, the
total data rate is kept constant to 600Mb/s. We can see the power consumption is having
limited variation as the number of client containers change. The best model for this case
is logarithmic fitting:

ܲ ൌ 19.1632 5.3975݈ ଵ݃݊	

where the power consumption is expressed in Watt, as measured by power meter and n
is the number of containers.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 68

Figure 25: CPU test: Power consumption vs. CPU utilization

Figure 26: Network test: Power consumption vs. data rate

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 69

Figure 27: Network Test: CPU utilization vs. data rate

Figure 28: Network test: Power consumption vs. number of containers

4.1.3 Comparing	Docker	Containers	and	VMs	

In order to compare Docker containers to VMs, we used a laptop, namely, HP
EliteBook 820 G3 with a dual-core 2.3 GHz processor and 8 GBytes of RAM. It runs
the Ubuntu 16.04.5 LTS OS, with kernel 4.8.0-46-generic. Both the processor and the
OS support hyper-threading, which increases the number of tasks that can be run at the
same time to four. VMs run in Virtualbox version 5.0.32. We remark that using a
laptop, instead of a desktop, implies that the power consumption measured through the
power meter has the same behavior as shown in the previous section, however the value
of the coefficients varies. For sake of completeness, we report below also the models of
power consumption fitting the experiments run through a laptop.

Overhead test: This test involves Docker containers and VMs (from 1 to 4) executing
an application that does not consume any memory or computing resource, thus the CPU
consumption observed during the test is only due to the virtualization approach
overhead. Figure 29 highlights the advantage of containers over VMs, in terms of power

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 70

consumption due to the Docker containers and VMs overhead, as a function of the
number of deployed entities: the Docker power consumption is much lower than that of
VMs and becomes negligible as the number of running entities increases.

CPU test: The CPU test is done with the CPU-intensive task, performing matrix
products with the numpy library which employs at most one CPU at a time. In this test,
we varied the number of containers and the number of VMs till the available capacity is
saturated. Figure 30 shows that Docker containers and VMs equally perform under CPU
intensive applications. Below we report the linear fitting for Docker containers:

ܲ ൌ ݖ0.0166 5.0444

and VMs:

ܲ ൌ ݖ0.0175 4.9091

where P is the consumed power (in watt) and z is the CPU utilization in percentage.

Network test: In this test, the iperf application runs as a server in one Docker container
and as a client in another Docker container. A constant rate TCP data flow is sent from
the client container to the server container. The test results show the resource utilization,
hence the power consumption, when VMs and Docker containers are used to implement
applications involving network transfers. Figure 31 depicts the power consumption due
to data transfer versus the rate of the data generated by the iperf application. In this case,
the coefficients of the second order polynomial model of power consumption turned out
to be, for Docker containers:

ܲ	 ൌ 	െ1.6605ݎଶ 	ݎ3.7237	 	0.5822

and for VMs:

ܲ	 ൌ 	െ12.8815ݎଶ 	 	ݎ22.2558	 	3.2318	

where P is the consumed power (in watt) and r is the data rate in Gbits/s.

Memory Test: The test makes use of a java application consuming mainly memory
resources. Again, the application is run in Docker containers and in VMs in order to
highlight the different power consumption. As shown by Figure 32, varying the memory
utilization has negligible effect on the power consumption in both Docker containers
and VMs. However, due to their high overhead (see Figure 29), VMs imply a much
larger power consumption than Docker containers. In this case, the power consumption
(in watt) is simply given by P=0.31 and P=1.1 for Docker and VMs, respectively.

Disk IO Test: This test is used to investigate the power consumption and the latency of
disk io operations. Flexible IO (fio) command line tool is used to perform a random
reading task of different block sizes. Figure 33 specifically depicts the relationship
between the block size in random reading of 10 GB file and the associated power
consumption, which is essentially the same for both virtualization approaches, except
for the values observed at the lower block sizes.

For the disk IO test, the power consumption exhibits an exponential fitting as the block
size varies, for both Docker containers (top equation) and VMs (bottom equation):

ܲ	 ൌ ሻݔሺെ0.1014ݔ4.806݁	 	 ሻݔሺ0.0007232ݔ2.848݁	

ܲ	 ൌ ሻݔሺ0.0009083ݔ1.857݁	

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 71

where P is the consumed power (in watt) and x is the block size per time unit in KBytes.

Additionally, Figure 34 shows the difference in the time to complete the disk IO task as
the block size changes. The completion time in Docker is considerably smaller than in
VMs; for both virtualization approaches, however, the observed behavior for the latency
is second order decaying exponential. In particular, for Docker (top equation) and VMs
(bottom equation), we have:

	ܮ ൌ ሻݔሺെ1.076ݔ209.3݁ 	 	ሻݔሺെ0.015ݔ5.151݁	

	ܮ ൌ ሻݔሺെ0.07104ݔ7.174݁ 	 	ሻݔሺെ0.0073ݔ4.496݁	

where L is the latency (in minutes) and x is the block size in KBytes.

Finally, Table 10 presents the level of accuracy of the models obtained for different
tests. To determine the models’ accuracy, a cross-validation method is applied, i.e., we
have used points that have not be exploited for the fitting process. The average
percentage error is determined by evaluating the percentage absolute difference between
the value obtained from the model and the corresponding experimental result. From the
table, we observe that the CPU model is extremely accurate, and in most of the cases we
have an accuracy of about 10%.

Figure 29: Overhead test: power consumption vs. number of containers/VMs

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 72

Figure 30: CPU test: power consumption vs. number of containers/VMs

Figure 31: Network test: power consumption vs. data rate

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 73

Figure 32: Memory Test: power consumption vs. memory utilization	

 	

Figure 33: Disk IO test for 10 GB file size: power consumption vs. block size

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 74

Figure 34: Disk IO test for 10 GB file size: latency vs. block size

Table 10: Models accuracy

Test Figure Average Validation
Error (%)

Training Error

CPU test Figure 25 0.23 0.4354 (std dev)

Network test - single client Figure 26 8.89 2.4124 (std dev)

Network test - multiple
clients

Figure 29 3.42 1.419 (std dev)

VM vs. Docker - Network
test

Figure 31 23.87 - Docker 0.2746 (std dev)

 8.78 - VM 2.3699 (std dev)

VM vs. Docker - Disk-IO
test

Figure 33 13.9 - Docker 0.3624 (std dev)

 11.41 – VM 0.3257 (std Dev)

4.2 Network Optimization Model

This section introduces an algorithm to optimize the forwarding behavior of a 5G-
Crosshaul network comprised of multiple backhaul and fronthaul flows. Fronthaul
traffic is constrained to pass through an XPU first, processing Base Station (BS) raw
data, and it is then forwarded towards the core network. Backhaul (BH) traffic does not
necessarily have to be relayed by an XPU before being forwarded toward the Internet.
This model is an extension of the one described in D3.1 [1], using the same scenario as
an example.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 75

Figure 35: General scenario to optimize

We consider a scenario like the one shown in Figure 35. This scenario contains source
nodes generating backhaul traffic (eNBs), source nodes generating fronthaul traffic
(RUs), intermediate nodes that simply forward traffic, XPUs that contain Central Unit
(CU) functionality to process fronthaul traffic, Internet gateways, and network links
with specific capacities connecting different nodes. As mentioned, fronthaul traffic must
pass through at least one XPU providing CU functionality, while backhaul traffic has no
such constraint. We assume that an XPU may provide multiple CU functions (up to a
defined maximum), and links can use any layer-2 forwarding technology, providing a
specific capacity on this link. To avoid an overly complex model, we also assume that
each CU can process at most one fronthaul flow.

The algorithm presented in [1] set the paths or routes from sources (generating either
fronthaul or backhaul flows) to one gateway to the Internet, having defined the type of
sources a priori. The extension of the algorithm presented here, instead, addresses the
previous problem of defining the optimal routes for the traffic, but now the sources are
not defined a priori. The algorithm indeed determines which of the sources will produce
backhaul traffic (eNBs) and in which ones it will be better to place a RU and separate
the CU function to place it in the appropriate XPU place inside the network. This XPU
is shared among other RUs to increase the performance of all of them. If the XPU is not
shared, there is no such gain in the performance, thus, it is more expensive to place an
RU and an XPU only for it than placing an eNB (backhaul source). In summary, the
algorithm determines the appropriate number and place of RUs and eNBs, and includes
the placement of the XPUs that are necessary for the RUs that have been deployed.
Then it determines the optimal path that the traffic from the sources (backhaul or
fronthaul flows depending on the type of source) must follow to reach the
corresponding XPU and after that, the destination, which is an Internet gateway.

It is important to highlight that to place the resources and determine the traffic routes,
we take into account the propagation delay of each type of traffic and the related delay
constraints. The goal of the problem is to determine the optimal place and number of
RUs, eNBs, XPUs and the paths to be followed by the traffic flows so that the number
of RRHs that share an XPU is maximized while the number of XPUs is minimized.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 76

Problem formulation: The problem includes binary and real variables, yielding a Mixed
Integer Programming (MIP) problem.

Input parameters:

 ݂ fronthaul flow from source l before using a CU
 ݂

 fronthaul flow from source l after using a CU
 ܾ

 backhaul flow k from source l
 ܿ maximum capacity for link (i, j)

 ܷܺܲ maximum number of CUs XPU r can allocate
 ܦ delay constraint for fronthaul flow l before using the XPU

 ܦೆ delay constraint for fronthaul flow l after using the XPU

 ܦೖ delay constraint for backhaul flow k from source l

 ܮ length of link (i, j)

 ݒ light speed

Variables:

 ߚ binary variable to determine if source l is an RU or not (if not, it is an
eNB)

 ݔ	 binary variable to determine if (i, j) link is used for the ݂ flow before

using the XPU.
 ݔ	ೆ binary variable to determine if the (i, j) link is used for the ݂ flow after

using the XPU.
 ݔ	ೖ binary variable to determine if the (i, j) link is used for the ܾ

 flow.

 ߜ binary variable to determine if the r-th XPU is used or not.
 ݖ	 binary variable to determine if the r-th XPU is used for the ݂ flow.

 ݀ delay for fronthaul flow l in the whole network

 ݀ೆ delay for fronthaul flow l before using the XPU

 ݀ೖ delay for backhaul flow k from source l

Objective function: the goal of the problem is to maximize the performance of the
sources, thus if most of the sources can be RUs and share the XPU its traffic uses, they
obtain a gain in the objective function, because the costs will be lower since the XPU is
shared. On the other side If one source cannot share the XPU, this source is better to be
an eNB that does not need to use an XPU. These ideas are gathered in the objective

function: ݉ܽݔ ሺ݃ܽ݅݊ 	 ሺ 	ݖ െ	ߜሻ

െ	ߜሻ

Constraints:

 to determine if source l is an RU (we consider the traffic leaves the source

through a single path): ߚ ൌ 		ݔ

 ∀ ݂
 flow

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 77

 to determine if source l is an eNB (we consider the traffic leaves the source

through a single path): 1 െ	ߚ ൌ ೖ		ݔ
 ∀ ܾ

 flow

 to impose that flows in a link cannot exceed the capacity of the link:

 ݂ 		ݔ

		 ݂
 ೆ	ݔ

 ܾ
 ೖ,	ݔ

		 		 ܿ ∀ (i,j) link

 to impose that all flows in the network reach the Internet (we denote the internet
gateway r as ݐ݊ܫ):

ሺܾ
 ሺ1 െ	ߚሻሻ

,

		ሺ݂ ሻߚ	

	ൌ ሺ ܾ
 ೖ,,	ூ௧ೝ	ݔ

 	 ݂ 	ூ௧ೝ	ݔ
ሻ

 to impose that all fronthaul flows in the network reach an XPU:

ߚ

		ൌ 	 	ݖ

 the XPU is used by the fronthaul flow l if the traffic arrives by one of the
incoming links:

	ݖ 	 	ೝ	ݔ
 ∀ XPU r, ∀ ݂ flow

 the XPU can accommodate at maximum a predefined number of flows:

 	ೝ	ݔ
	 	ܷܺܲ ∀ XPU r, ∀ ݂ flow

 to determine if a XPU is used or not:

	ݖ 	 	 ∀ XPU rߜ

ߜ 	 	 	ݖ

 ∀ XPU r

 a fronthaul flow that transits by a node without being processed by the XPU
implemented therein, it maintains its status of fronthaul flow. A flow that instead
reaches a node and is processed by the XPU implemented therein, it becomes a
backhaul flow:

 	ೝ	ݔ
ൌ 	 ೆ		ೝݔ 	ݖ

 		ೝݔ ሺ1 െ	ݖ	ሻ

 ೆ	ೝ	ݔ
ൌ 	 ೆ		ೝݔ ሺ1 െ	ݖ	ሻ

 at any intermediate node r, all incoming traffic must equal the outgoing traffic:

 	ݔ

ൌ 	 	ݔ

 ∀ node r, ∀ ݂ flow

 ೆ	ݔ
ൌ 	 ೆ	ݔ

 ∀ node r, ∀ ݂
 flow

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 78

 ೖ	ݔ
ൌ 	 ೖ	ݔ

 ∀ node r, ∀ ܾ
 flow

 single path for each fronthaul flow before using the XPU:

 		ݔ

 ∀ node i, ∀ ݂flowߚ

 single path for each fronthaul flow after using the XPU:

 ೆ		ݔ
 ∀ node i, ∀ ݂ߚ

 flow

 single path for each backhaul flow:

 ೖ	ݔ
 1 െ	ߚ ∀ node i, ∀ ܾ

 flow

 delay constraints: we compute the propagation delay the packets suffer when
using the links of the network and this delay has to be lower than the maximum
established:

݀ ൌ
ೕ
௩	
 		ݔ	

ೕ
௩	
 ೆ		ݔ	 	 ܦ	

݀ೆ ൌ
ܮ
ݒ

	

 		ݔ	 	 ೆܦ	

݀ೖ ൌ
ೕ
௩	
 ೖ		ݔ	 ೖܦ	

 binary variables:

ߚ 	⋲ 	 ሼ0,1ሽ ∀ ݈ source

		ݔ 	⋲ 	 ሼ0,1ሽ ∀ (i,j) link, ∀ ݂ flow

ೆ	ݔ 	⋲ 	 ሼ0,1ሽ ∀ (i,j) link, ∀ ݂
 flow

ೖ	ݔ 	⋲ 	
ሼ0,1ሽ ∀ (i,j) link, ∀ ܾ

 flow

		ݖ 	⋲ 	 ሼ0,1ሽ ∀ XPU r, ∀ ݂ flow

ߜ 	⋲ 	 ሼ0,1ሽ ∀ XPU r

The two non-linear constraints in the model can be easily linearized by adding
additional variables and changing the products by summations bounding the variables of
interest above and below. Once these constraints are linearized we obtain a mixed
integer linear programming problem, which can be solved by maximizing the objective
function under the given constraints. The problem determines the number and
placement of RUs and eNBs that can be accommodated in the network, while solving
the placement of CUs to XPUs, and the route each flow from the sources has to follow
to reach its destination. Our goal is to minimize the number of used resources while
maximizing the initial bandwidth of the network prioritizing FH traffic over the
backhaul traffic. This model takes in account the delay the flows experience to reach the
resources since it is one essential requirement of the traffic we deal with, and even more
important in the case of FH traffic.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 79

This problem is NP-hard, it is not scalable as an optimization problem. For simulations,
we have implemented the problem in Matlab and used and tested the model in
anenvironment with a network of up to 31 nodes, 31 nodes require more than 19000
variables. Also, we performed simulations in a smaller network of 16 nodes with 8
sources of traffic changing the parameter ܺܲ ܷ of the maximum number of CUs we can
accommodate in each XPU. The results obtained are shown in Figure 36, where we can
observe the variation of the number of XPUs required to satisfy the RUs traffic.

Figure 36: XPUs to satisfy RU traffic

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 80

5 Data plane architecture

In this section, we summarize the architectural framework for the data plane. Based on
this description, we present further detail regarding QoS, Operations, Administration
and Management (OAM), and synchronization.

5.1 Architectural Framework

The 5G-Crosshaul data plane architecture is illustrated in Figure 37.

Figure 37: 5G-Crosshaul data plane architecture [5].

The fundamental building block of the data plane architecture is the XFE. The XFE is a
multi-layer switch constituting a 5G-Crosshaul Packet Forwarding Element (XPFE) and
a 5G-Crosshaul Circuit Switching Element (XCSE). The adaptation functions (AF-x)
perform media adaptation and translation of various frame formats used by RUs, DUs,
CUs, and XPUs into the 5G-Crosshaul common Frame (XCF) format. The XPFEs
communicate with each other by exchanging frames according to XCF format. The
frame format is transparent to the XCSEs. Section 7 of D2.1 [5] provides an in-depth
description of the XFE.

5.2 XFE design

The overall design of the XFE as a multi-layer switch consisting of a packet- and a
circuit-switching layer has not changed since D3.1 [1]. Additional detail is provided in
this section, focusing on the packet switching layer.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 81

5.2.1 Circuit	Switching	(XCSE)	

The circuit-switching part, i.e. the XCSE consists of a classical circuit switch, i.e. an
Optical Transport Network (OTN) switch, and a purely optical switch. For further detail
see D2.1 [5], Section 7.

5.2.2 	Packet	Switching	(XPFE)	and	the	XCF		

OpenFlow has been used as the SBI protocol to control the forwarding behavior the
XPFEs. The XPFE provides a common switching layer for packet switched traffic. This
common switching layer employs the XCF format to support: various traffic types (i.e.
fronthaul variants and backhaul) and the various link technologies in the forwarding
network [1]. The XCF is a frame format which defines the structure of the frames in the
XPFE common switching layer. The corresponding control of the forwarding behavior
of the XPFE is defined in the XCI in line with the SDN approach, where all control
aspects are moved to a logically centralized controller.

The XCF has to support a large variety of services such as, IP based fronthaul variants
arising from different functional splits [24] and the Long Term Evolution (LTE) BH
traffic [23] that is dependent on the physical topology and different protocols of the
backhaul network. The XCF should contain enough information in the frame headers to
enable the XPFEs to fulfill their task as a common switching layer for both fronthaul
and backhaul traffic. In addition to supporting backhaul traffic and different fronthaul
functional splits, multiple tenants should also be supported as well. Table 43 in Section
13 provides a detailed list of requirements that the XCF should support including: OAM
support, interaction with legacy devices, efficient use of available bandwidth, etc.

5G-Crosshaul adopted the MAC-in-MAC XCF, presented in subsection 5.2.2.1, as the
baseline while the MPLS-Transport Profile (MPLS-TP) XCF, presented in subsection
5.2.2.2, has been considered as a suitable alternative. Within 5G-Crosshaul MAC-in-
MAC was preferred to maintain alignment of developments among partners. From a
technical perspective, no clear advantages or disadvantages of MAC-in-MAC or MPLS-
TP as an XCF were identified.

5.2.2.1 MAC‐in‐MAC	XCF	as	baseline	

In order to ensure interoperability with legacy devices and to benefit from previous
research, an existing packet format i.e. MAC-in-MAC was adopted as the XCF. This
XCF provides sufficient information for the XFEs to forward the packets towards their
destination while satisfying the requirements on latency and jitter.

Starting from the ubiquitous availability of Ethernet, its widespread deployment in
datacenters, and recent developments for Radio over Ethernet (RoE) [24], the XCF was
based on Ethernet. To better support multi-tenancy MAC-in-MAC or Provider
Backbone Bridging (PBB) was chosen as the baseline format for the XCF. MAC-in-
MAC allows hiding the tenant (MAC) addresses from the provider network, such that
changes to tenant addresses do not cause reconfigurations of the packet forwarding
within the provider network. Only the edge of the provider network needs to be
reconfigured.

The MAC frames of a tenant are encapsulated with up to two additional headers; they
are transported themselves unchanged across the provided network. First, there is the

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 82

actual MAC-in-MAC header and second there is an (optional) F-Tag (Flow-Filtering
Tag) to support equal cost multi-path (ECMP).

The MAC-in-MAC header contains a new Ethernet header with MAC addresses, a B-
TAG (Backbone VLAN Tag) to support VLANs, and an I-TAG (Backbone Service
Instance Tag) to support further service differentiation. The frame format is shown in
Figure 38.

B‐Dst
Address

TPID

48

P
C
P

D
E
I

VID Payload

802.1ah B‐VID 802.1ah I‐SID
MAC‐in‐MAC template

Ethernet II header with EDP‐encoded B‐VID and I‐SID tags

B‐Src
Address

48 16 3 1 12

TPID
P
C
P

D
E
I

16 3 1

CRC / FCS

32N

C‐Dst
Address

48

Ether
Type

802.1Q C‐Tag

Ethernet II header with EDP‐encoded C tag

C‐Src
Address

48

TPID
P
C
P

D
E
I

16 3 1

VID

12 16

U
C
A

1

R
s
v

3

I‐SID

24

802.1ah I‐TAG TCI

Figure 38: MAC-in-MAC header

The outer MAC addresses are used to address the XPFEs. The destination B-MAC
address is the MAC address of the XPFE to which the tenant device, identified by C-
Dest address, is connected. The B-VLAN tag contains the VLAN-ID in the provider
network as well as the Priority Code Points (PCP) used to prioritize the packets
appropriately. The PCP and Discard Eligible Indicator (DEI) values of the I-Tag are
redundant to the ones in the B-Tag and are not used in 5G-Crosshaul. The Use
Customer Address (UCA) is used to indicate whether the addresses in the inner header
are actual client addresses or whether the frame is an OAM frame.

In the 5G-Crosshaul System Architecture, the concept of Multi-tenancy is of primal
importance to support several tenants with their own traffic circulating through the
network. Specifically, it is necessary to differentiate between tenants because each one
has a different portion of a virtual slice of the physical network. Moreover, there are
several kinds of services, and each tenant can offer some of them but not necessarily all
of them, so it is also important to differentiate services. Finally, there are different types
of traffic which have to be differentiated to give more importance to those having more
priority in the network. Therefore, the labels of each packet must contain fields to
express all these requirements.

The first label to identify a tenant is the B-VID tag contained in the field VID that has
12 bits of length and allows to identify 2^12 = 4096 different tenants. Based on the
instructions received from the control plane, the AF configures the PCP and DEI fields
to preserve traffic isolation and support SLAs within the 5G-Crosshaul transport
network, and a Credit/Time shaper might be associated to each traffic class, identified
by the PCP. To differentiate the service used, the I-SID tag is introduced in the I-SID
field as a Service ID. There are two possible ways to proceed: the I-SID scope is
general, and their values are shared among all the tenants or the I-SID scope is separate
per tenant. In both cases, the I-SID is defined by the infrastructure owner. ECMP can be
supported by providing a value per end user flow. This value can be used to calculate
over which of several paths a frame should be forwarded. If individual flows have
different values, this allows distributing flows to different paths while keeping all
packets of one flow on the same path. ECMP is not essential for carriers because it
might present difficulties for real time services and complicates the management and

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 83

localization of failures. Such a value is contained in the F-Tag for flow filtering, see
[25], clause 44.2 and Figure 39.

B‐Dst
Address

TPID

48

P
C
P

D
E
I

VID Payload

802.1ah B‐VID 802.1ah I‐SID
MAC‐in‐MAC template

Ethernet II header with EDP‐encoded B‐VID and I‐SID tags

B‐Src
Address

48 16 3 1 12

TPID
P
C
P

D
E
I

16 3 1

CRC / FCS

32N

C‐Dst
Address

TPID

48

P
C
P

D
E
I

Res
erv
ed

Ether
Type

802.1Q F‐Tag 802.1Q C‐Tag

Ethernet II header with EDP‐encoded F and C tags

C‐Src
Address

48 16 3 1 6

TPID
P
C
P

D
E
I

16 3 1

VID

12 16

U
C
A

1

R
s
v

3

I‐SID

24

802.1ah I‐TAG TCI

TTL

6

Flow
Hash

16

Figure 39: F-tag

The F-Tag contains PCP and DEI fields, which are redundant and are not used within
5G-Crosshaul. The Time to live (TTL) can be used to prevent forwarding loops. But as
the F-Tag is considered optional within 5G-Crosshaul this mechanism was not be used.
The flow hash field in the F-Tag is the one relevant to support ECMP. MAC-in-MAC as
baseline XCF satisfies all the 5G-Crosshaul requirements (Table 44) with the exception
of energy efficiency that was deemed not applicable to a frame format.

5.2.2.2 MPLS(‐TP)	as	XCF	

In this subsection, we present MPLS Transport Profile (MPLS-TP) as an alternative
XCF format. As presented in [26], the physical topology and already installed services
have an impact on the choice on the forwarding technology. Other techniques and their
corresponding frame formats, such as MPLS-TP, can take the role of MAC-in-MAC as
in described before. Both, for MAC-in-MAC as well as MPLS-TP, forwarding
decisions would still be done by each XPFE based on forwarding information stored at
the XPFEs.

In MPLS-TP, the forwarding of frames is based on MPLS, but the necessary
configuration is done via management commands, not via routing protocols such as the
Label Distribution Protocol (LDP). Typically, nodes are connected via point-to-point
pseudo-wires. Multipoint-to-multipoint networks have to be implemented by a mesh of
pseudo-wires.

MPLS-TP has a typical frame structure with an outer label for a label switched path
(LSP), an inner label for a pseudo-wire (PW), and an optional PW control word. Figure
40 shows an MPLS-TP header, using Ethernet as data link layer technology. As usual in
MPLS, each label contains the actual label, a 3-bit traffic class (TC), a 1-bit indication
whether the bottom of the label stack has been reached (EOS), and an 8-bit time to live
field (TTL).

The label in the LSP label allows distinguishing different tenants; it would be a task of
the XCI to keep track of the relation among tenants and labels per XPFE. Prioritization
of different services can be based on the TC bits in the same way as on the PCPs for
MAC-in-MAC. Also, traffic flows could be assigned to scheduling classes based on
their label. A PW can be used to transport different services, both packet and circuit-
oriented.

A label in the LSP label has 20 bits of length and has a local scope so theoretically there
are no limits to the number of tenants. Scalability is limited by equipment restrictions
(forwarding table dimensions) rather than by the number of available labels. The SDN

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 84

controller must keep track of the association between the tenant and the complete
sequence of labels used for the LSP.

DA TPID

48

P
C
P

D
E
I

VID MPLS Packet

MPLS‐TP frame

SA

48 16 3 1 12

TPID
0x8847

16

Label
T
C

E
O
S

TTL

20 3 1 8

Label
T
C

E
O
S

TTL

20 3 1 8

PW control word
(optional)

32

Payload

LSP label PW label PW control word

Figure 40: MPLS-TP headers

MPLS(-TP) support two kinds of traffic differentiation:

 E-LSP: EXP-inferred PHB (Per-hop behaviour) scheduling class LSP. In this
case, the TC field, originally named EXP, of the MPLS header is used by the
XPFE to determine the PHB to be applied to the packet. This includes both the
PHB scheduling class and the drop preference. A maximum number of eight
scheduling classes is possible.

 L-LSP: Label-only-inferred PHB scheduling class LSP. In this case the PHB
scheduling class is explicitly assigned at the time of label establishment. In
principle, an unlimited number of scheduling classes is supported.

Different LSPs can be provisioned to transport different flows. Edge nodes or
adaptation functions are in charge of classifying the incoming traffic and assigning it to
the correct LSP. Intermediate nodes need to analyse only the LSP label (instead of many
fields) of the incoming packets and use the forwarding behavior associated with the LSP
kind (E-LSP or L-LSP as described before).

As such, multiple tenants can be supported over the same network without interfering
their traffic by adding the previous information in the tags to differentiate the traffic of
the tenants.

On Ethernet links, MPLS-TP is compatible with synchronization protocols such as
synchronous Ethernet or IEEE 802.1AS. MPLS-TP is equally compatible with security
mechanisms such as IEEE 802.1X and IEEE 802.1AE. The fulfillment of the 5G-
Crosshaul requirements, by MPLS-TP, is summarized in Table 45 in Section 12. MPLS-
TP as XCF satisfies the XCF requirements in almost the same way as MAC-in-MAC as
XCF does. MPLS-TP also provides a rich set of OAM functionality, but there is no
impact on the XCF and is considered an aspect orthogonal to the XCF.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 85

5.2.2.3 Data	Plane	Implementation	

Within a 5G-Crosshaul network some of the XPFEs might be implemented in software.
We expect this to be the case for virtual switches on servers aggregating the traffic of
VMs or switching traffic among VMs as well as for XPFEs with a low number of
interfaces. XPFEs might have their switching functionality implemented in software as
OpenFlow capable Application Specific Integrated Circuits (ASICs) are targeting
switches with a large number of ports.

We have been investigating how to reduce latency and jitter of a software switch and
checking for which fronthaul splits this would be suitable. We based the investigations
on the open source switch Lagopus [27] as it provided the MAC-in-MAC support for
the XCF. Similar to other high-performance software switches, it is using DPDK [28], a
framework for packet processing on general purpose processors. Lagopus processes
packets in three stages, namely; reading packets from the Network Interface Cards
(NICs) (receive), applying the OpenFlow rules to the packets (worker), and finally
transmitting the packets to the NICs (transmit). The three stages are decoupled by ring
buffers as shown in the architecture in Figure 41.

1

3

4

2

receive

worker 0

worker 1

transmit

1

3

4

2

ports portsring bufferring buffer
Figure 41: Lagopus internal strucuture

Each of the tasks can be mapped to one or several processing cores. One processing
core may also handle several tasks. In the diagram above there is one receive and one
transmit core; with two cores for processing the packets in parallel, to forward packets
among four ports.

Lagopus is processing packets in bursts, it tries to read a burst of packets from a NIC,
workers read a burst of packets from a ring buffer and processes them one after the
other before enqueuing them to a ring buffer in one operation. Similarly, the transmit
task takes a burst of packets from the ring buffers and tries to write these packets to a
NIC for transmission. This approach minimizes the overhead for accessing common
data structures and increases throughput, but it increases jitter of the packet processing.

The transmit task provides scheduling functionality in case a port is congested. This
scheduling allows to prioritize e.g. fronthaul over backhaul traffic, thus reducing latency
and jitter for fronthaul traffic.

To ensure fronthaul traffic is prioritized in case the switch itself becomes congested, we
introduced additional ring buffers to allow the worker and transmit cores to process
packets according to priority, see Figure 42.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 86

1

3

4

2

receive

worker 0

worker 1

transmit

1

3

4

2

ports portsring bufferring buffer

Ethtype,
PCP,
DSCP,
...

OpenFlow
set_queue

high

low

low

high low

high

Figure 42: Lagopus enhanced with additional ring buffers

The receive task can classify packets to the ring buffers based on L2 or L3 priority
information in packet headers. The worker tasks classify the packets to ring buffers
based on OpenFlow set-queue commands.

Additionally, packets are forwarded to the next task as quickly as possible, i.e. packets
are inserted to the ring buffers one by one and are also transmitted to the NICs one by
one. Receiving packets from the NICs and dequeuing them from the ring buffers for
OpenFlow processing is still done in bursts. This difference is indicated at the top
Figure 42 by dense and sparse sequences of packets.

As expected, these changes allow to prioritize fronthaul traffic over backhaul traffic and
correspondingly reduce the latency of fronthaul relative to backhaul traffic. As an
example, the average latency for forwarding 64B packets increases from about 5.3s for
both fronthaul and backhaul traffic in a lightly loaded system to about 7.7s for
fronthaul traffic and several tens of s for backhaul traffic on a heavily loaded system.
When overloading the system, the latency for fronthaul traffic remains at about 7.7s,
whereas latency of backhaul increases to hundreds of s and packets of backhaul traffic
are dropped. In these measurements, Lagopus was executed on a server system,
operating at a processor frequency of 1.7GHz and using 10Gbps Ethernet interfaces.

5.2.3 Adaptation	function		

The general view of the 5G-Crosshaul Adaptation Function (XAF) is depicted in Figure
43. It is important to note that an XAF does not have to provide all of the indicated
mapping functions, it may provide an adaptation between just two ports.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 87

Figure 43: 5G-Crosshaul Adaptation Function [1]

Frames exchanged between the two ports are en/decapsulated with a header according
to XCF. Further functionality can be implemented as well by an XAF, e.g. an XAF can
provide a de-jitter buffer.

Viewing an XAF as an OpenFlow switch with two physical ports, it can be depicted as
in Figure 44.

Adaptation
function

Data plane

CONTROLLER LOCAL

XCF Other packet
format

Figure 44: XAF as OpenFlow switch

XAF handles mainly the traffic between the two physical ports; but some simple control
is needed, e.g. to set up the flows for en/decapsulation or for managing the XAF, and
therefore there is traffic to the LOCAL and the CONTROLLER port for in-band
control.

5.3 Quality of Service

Diverse types of FH and BH traffic have different latency and jitter requirements.
Overprovisioning transport links, such that no congestion can occur is a traditional way
of solving the QoS problem, but it is too expensive. On links with varying bandwidth,
such as microwave links, a minimum bandwidth can be guaranteed only, but most of the
time more bandwidth is available. This bandwidth variation has to be considered in a
QoS aware manner. XPFEs have to distinguish different types of traffic and schedule
frames for transmission according the QoS requirements of those frames.

The XCF provides 3 bits to encode priority information, allowing XPFEs to distinguish
8 different traffic classes. In turn, XPFEs provide 8 queues per port, one per each traffic
class, to prevent head of line blocking by low-priority traffic. Based on these traffic

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 88

classes, the 5G-Crosshaul network can provide four major service classes: ultra-low
latency, control, low latency and regular. The latter two services are divided further into
subclasses for GBR (Guaranteed Bit Rate), nGBR (non-GBR) premium, and nGBR best
effort traffic. Table 11 presents a mapping of traffic types to priorities code points.
Additional traffic classes would provide even more fine granular control, but the 3 types
of service classes for end user traffic are considered sufficient.

Table 11: Traffic Classes

PCP Traffic class service
class/priority

Comment

7 RoE, eCPRI [29]
IQ data,
Synchronization

Ideal May preempt other frames, committed
bit rate, ensure there remains sufficient
bandwidth for control.

6 Control (network
control, FH radio
control, BH radio
control)

Near/sub
ideal/GBR high

Traffic volume not sufficient to starve
other traffic classes, split bandwidth
further for the different types of
control traffic.

5 FH data GBR,
mission critical

Near/sub
ideal/GBR high

Committed bit rate. Priority of mission
critical traffic over GBR traffic can be
ensured by admission control on
application level.

4 BH GBR, mission
critical, tactile,
voice, video

Non-ideal/ GBR
high

N/A

3 FH nGBR
premium, mission
critical

Near/sub
ideal/nGBR high

Just a part of the bit rate may be
committed.

2 FH nGBR best
effort

Near/sub
ideal/nGBR low

Just a part of the bit rate may be
committed.

1 BH nGBR
premium, mission
critical

non-ideal/nGBR
high

Just a part of the bit rate may be
committed.

0 BH nGBR best
effort

non-ideal/nGBR
low

Just a part of the bit rate may be
committed.

The service classes – ideal, near/sub ideal, non-ideal – are taken from [26]. To prevent
lower-priority traffic classes being starved by the higher-priority ones, the available
bandwidth should not be overbooked with high-priority traffic.

The traffic class with highest priority may even preempt the transmission of other
frames to reduce jitter [29], if this is considered necessary. Instead of having to wait for

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 89

the complete transmission of a frame, a high priority frame could be sent immediately
after waiting for the minimum fragment size. CPRI-like data could be prioritized using
frame preemption applicable to copper, fiber, Ethernet and 802.11 based transport links.
For instance, the 802.11ad based Fast Forward technology (FF), described in D2.2 [31],
performs frame preemption by using two queues, namely a high priority or FF queue
and a normal queue. Packets are classified based on their Ethernet MAC header fields,
then they are timestamped, get a Cyclic Redundancy Check (CRC) appended and placed
into separate buffers i.e. FF or normal. Packets from the high priority queue are
processed by the PHY layer first.

The traffic classes could also be mapped in different ways to the priorities and different
service classes could be provided. The specific mapping in this section just shows that 8
PCPs are sufficient to differentiate several different service classes and subclasses.

5.4 Operations Administration and Management (OAM)

Both OAM and SDN protocols define abstractions, functions, and interfaces which need
to be implemented on the switch. However, the OAM and SDN models are based on
two conflicting assumptions:

‐ OAM defines stateful mechanisms that must be executed on the switch;
‐ SDN defines stateless forwarding model for the switch and delegates stateful

logic to the controller;

This causes a mismatch between OAM and SDN. On the one hand, OAM requires the
execution of complex tasks on the switch while on the other hand, SDN aims at
removing complexity from the switches. Moreover, SDN could in principle provide
better network management. However, it is non-trivial to realize enhanced management
without a full integration of OAM procedures into SDN paradigm.

The implementation of common packet-based OAM mechanisms such as Connectivity
Check (CCMs), Loopback (LBM) and Link Traces Messages (LTM), as defined in the
IEEE 802.1ag and ITU-T Y.1731 requires either to: (a) be triggered by the controller or
(b) to use SDN-compliant tools to define OAM procedures locally at the switches. Since
SDN switches can exclusively perform stateless forwarding, the only way of
implementing OAM protocols is on top of the network controller. Such an approach
clearly complies with the SDN paradigm and provides the corresponding benefits but
shows several drawbacks in OAM operations effectiveness as described in the
following:

1) Connectivity Check: this protocol requires the switch to generate periodic
heartbeat messages, however there is no SDN OpenFlow API for performing
such operation. Thus, the network controller needs to overcome such
shortcoming and implement the CCM mechanisms.

2) Loopback: unlike CCMs, Loopback messages are administratively initiated and
stopped. Nevertheless, the Loopback protocol still requires the switch to
generate and send specific messages over the data plane and, like in the CCM
case, the messages need to be generated in the network controller. One of the
main goals of Loopback protocol is to measure the delay of a link. Clearly, such
approach prevents to truly measure the delay between two switches on the data
plane because of the additional delay introduced by the control plane.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 90

3) Link Trace: enables the tracking of a certain path hop-by-hop. To identify each
hop, a series of Link Trace Messages (LTM) are sent over the network with
incremental Time-To-Live (TTL) values. The L2 destination address of these
messages is multicast, the real destination is inside the CFM header, to forward
this message and to generate the reply the message need to be processed by the
network controller. The main drawbacks of such approach are hence: i) the
additional delay in the tracing procedure due to the controller-switch distance,
and ii) the overloading of the controller and control channel.

The centralization of this OAM procedures might cause an overload of the controller
due to the periodic message generation (e.g., CCM), this overload together with the
delay in the control plane will degrade the performance of the protocols. In particular,
loopback metrics obtained by a centralized procedure could be completely useless due
to the control plane delay.

We propose the utilization of a set of SDN-compliant tools that allows the definition
and configuration of OAM procedures in a local manner on the switches. It provides a
better accuracy and performance and allows an offloading of the control plane due to
the non-existence of delay because of the local execution. These tools executed in the
switch would have an abstract interface to the network controller maintaining the huge
benefits of SDN.

5.4.1 In‐band	control	

SDN switches in a data-center can be expected to have out-of-band control, i.e., the
switches have a dedicated port used to connect to the management network to which
also the SDN controllers are connected. The flow-table modifications to the switch are
communicated via this dedicated network. Also, the management of the switch in terms
of administratively enabling/disabling ports, updating software, etc., is done via this
dedicated network.

Only some XPFEs in a 5G-Crosshaul network are expected to have such a dedicated
management network. Other XPFEs deployed in the access network have to be
configured and managed in-band, i.e., the management and control traffic is sent on the
same links as the actual data traffic. OpenFlow supports in-band control via the LOCAL
port, which is a reserved port representing the switch’s local network and management
stack (see [32], Section 4.5). Incoming packets from a physical port can be matched by
flow-table entries and forwarded as an action to the LOCAL port. Vice versa, messages
received from the LOCAL port can be forwarded to the SDN controller or to the
management system. The LOCAL port is optional in OpenFlow, but XPFEs with in-
band control have to support it.

In-band control requires some kind of bootstrapping, initial flow-table entries are
needed to exchange packets between the LOCAL and some physical port where the
SDN controller can be contacted. The control functionalities in an XPFE and an SDN
controller communicate with IP packets over plain or VLAN-tagged Ethernet frames. In
case the configuration and management traffic on the 5G-Crosshaul network conforms
to the XCF, then also flow-entries to en/decapsulate the management packets are
needed. These flow entries to adapt the management traffic would have to be created
before the connection to the SDN controller can be established, i.e. these flow entries
would have to be established independent of the SDN controller.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 91

Bootstrapping in case of in-band control is a general problem of SDN-controlled
switches and is already under study in more generic setups than 5G-Crosshaul, see e.g.
[33] which proposes a method that is tested on an example network, but without going
into detail on how to establish a secure control network in an otherwise untrusted
network. The OF-CONFIG specification [34] enables applications to manage
networking device configurations remotely through secure connections using
NETCONF [35] as transport protocol. This provides a secure framework for automated
management and control of SDN networks. At the time of writing this deliverable, it
does not provide recommendations for the bootstrapping method, but assumes
preconfiguration in the switches before they are being added to the network. But such
preconfiguration increases complexity in rollouts. In addition, [36] proposes several
methods to establish a secure channel. [37] proposes an LTE connection for out-of-band
control of OF-switches in a wide area network. Although this would avoid separate
physical links, it increases configuration effort and cost as the LTE devices need to be
purchased and configured. Additionally, it requires availability of an LTE connection
which cannot be assumed in general. [38] proposes extensions to current protocols such
as DHCP-SDN, but also does not cover the security challenges in in-band control
networks.

In the following we present a procedure for securely bootstrapping XPFEs using
minimal assumptions on preconfiguration. Thereafter, we extend this procedure to
bootstrap wireless nodes with securely setting up the wireless links.

5.4.1.1 Secure	Bootstrapping	

The secure bootstrapping process of an XPFE can be separated into several phases:

A. Establish connectivity to the control network and retrieve connection
identifiers (IP address and so forth) of an SDN controller and of elements of
a Public Key Infrastructure (PKI)

B. Optionally authenticate to the CA (Certificate Authority) and create, sign and
download an operator specific certificate

C. Establish secure connection to the SDN controller (e.g. through Transport
Layer Security (TLS))

D. Register at the SDN controller by instantiating an OpenFlow session

Each newly added XPFE floods all its neighbors with DHCP messages until it receives
a response from a DHCP server. If one of the neighbors is

1. A DHCP server, it replies to the XPFE.

2. The SDN controller, it forwards the messages to the DHCP server towards
which it knows the path

3. An XPFE connected to the SDN controller, the device will forward the messages
to the SDN controller

If none of the above applies, the messages are dropped.

Once an IP address has been assigned and also other required parameters have been
transported as DHCP payload to the new XPFE, it (optionally) accesses the CA. After
that it establishes a TLS session with the SDN controller and perform the registration
procedure.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 92

The XPFEs should start in fail-secure mode [32] preconfigured with two flow entries:

• Any traffic received on a physical port should be forwarded to the LOCAL port.

• Any traffic from the LOCAL port should be flooded to all physical ports, i.e. to
the ALL port.

The LOCAL port is optional for OF switches in general, for our bootstrapping
procedure we require this port to exist. No L2 loop can be created by adding a new
XPFE to the network as no traffic is forwarded directly among physical ports. The two
initial flow entries are the same for all types of XPFEs and therefore do not cause
additional administration effort for deploying different OF switches.

The method proposed here relies on TLS to prevent any intervention in the control
channel between XPFEs and their SDN controllers. To ease the operation and thereby
support broader market support, vendors could install certificates signed by their own
CA as part of the production process. Devices could then initially register at operator
networks using this ‘vendor certificate’ if the operator network would trust these
certificates. Operators can then decide whether they want to deploy their own ‘operator
certificates’ in addition, possibly implemented in a fully automated process.

5.4.1.2 Bootstrapping	phases	

In this section, we present in more detail the bootstrapping of XPFEs, starting from the
first XPFE in a network. XPFE by XPFE a control network will be created to which the
XPFEs and the SDN controller are connected. In our case, the control network will have
a specific outer VLAN address and PBB service identifier (SID).

A) Establish connectivity to the control network and Retrieve connection
identifiers of a SDN controller and of elements of a PKI

Initially, the XPFE scans all physical interfaces for active links, and then floods DHCP
DISCOVER messages on these interfaces on plain Ethernet in regular intervals until it
receives a DHCP OFFER. This DHCP OFFER should be generated by a DHCP server
with the support of the SDN controller. The DHCP server needs to be configured with

 An adequate range of IP addresses to assign to the XPFEs
 Additional parameters to share with XPFEs such as IP addresses of SDN

controllers and CAs

The path to the DHCP server needs to be known to the SDN controller. This path could
be a preconfigured one or the SDN controller and the DHCP server could be located on
the same node. If the DHCP server is connected to the XPFE directly connected to the
SDN controller, this path can also be learned as part of the bootstrapping procedure.

The first switch on the path from a new XPFE to the SDN controller encapsulates the
messages from the XPFE in Packet_In messages and sends them via its own control
connection to the SDN controller.

The OFFER message is expected to contain one or more DHCP Option 43 entries
(vendor-specific option) containing the IP address of the SDN controller to connect to
and the IP address of the CA (optional). When such a message is received, the DHCP
procedure continues with the XPFE exchanging REQUEST and ACKNOWLEDGE
messages with the DHCP server. Eventually, the OF switch has an IP address assigned

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 93

to it and is configured with the IP address of a remote SDN controller and optionally the
IP address of a CA, all to continue the bootstrapping process.

B) Authenticate to CA and update certificate

Optionally, operator certificates can be enrolled automatically to new XPFEs. A
network operator would not need to preconfigure each XPFE with a valid own
certificate before adding it to the network, but can instead rely on the vendor certificate
for the initial handshake. If used, this procedure, needs to be performed before the
XPFE establishes a secure connection with the SDN controller. There are several
options to implement such a procedure. The one summarized here is described in more
detail in [39].

As a precondition for the operator certificate enrolment the XPFE needs to be
preconfigured with a switch-vendor provided private/public key pair and with the
related certificate signed by a vendor CA. During phase A it also needs to have received
connection identifiers (i.e. IP address) of the CA server of the operator of the network.
The operator CA needs to be preconfigured with a certificate of the vendor and its own
certificate(s). The protocol being used for the enrolment is CMPv2 [40].

To begin the procedure the XPFE generates a new private/public key pair to be enrolled
in the operator CA. It then starts interaction with the CA by generating the Initialization
Request (ir) and sending it to the CA. The CA verifies the digital signature on the ir
message against the vendor root certificate. It also verifies the proof of the possession of
the private key for the requested certificate. Then it generates the operator certificate for
the XPFE. This certificate is sent back to the XPFE in the Initialization Response (ip).
The XPFE extracts and installs the new certificate generated for it by the operator, and
if necessary also the operator root certificate. The XPFE confirms receiving of the ip
message by generating and sending a Certificate Confirm (certconf) message to the CA,
which the CA responds with a Confirmation message (pkiconf). Thereafter, the XPFE
possesses a certificate trusted by the operator network. The message exchange is shown
in Figure 45.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 94

XPFE RA/CA

14. Confirmation (pkiconf)

8. Initialization Response (ip)

1. Discover RA/CA address

2. Generate private/public key pair

3. Sign Initialization Request (ir)

5. Authenticate Initialization Request (ir)

6. Generate OF-switch certificate

7. Sign Initialization Response (ip)

9. Authenticate Initialization Response (ip)

10. Sign Certificate confirm (certconf)

12. Authenticate Certificate confirm (certconf)

13. Sign Confirmation (pkiconf)

15. Authenticate Confirmation (pkiconf)

Figure 45: Example message flow for OF switch enrolment [39]

C) Establish secure connection to the SDN controller

The XPFE establishes a secure connection with the SDN controller (see [32]) by firstly
resolving its MAC address, we propose the control network is a L2 one. Thereafter, the
XPFE sets up a TLS session with the SDN controller, using the certificates of the SDN
controller and the XFPEs to generate the keys for the symmetric encryption and to
prove to the SDN controller that the XPFE indeed possesses the private key
corresponding to its public key certificate.

An exchange of TLS Finished messages, already sent encrypted, completes the
procedure.

D) Register at the SDN controller by instantiating an OF session

After the secure connection has been established, the new XPFE and SDN controller
need to send a OF-Hello message to each other, containing the OF protocol version set
to the highest version supported by the sender. Next the SDN controller sends a Feature
Request to the XPFE which is being replied by a Feature Response containing the list of
features the XPFE supports. Based on this data the SDN controller continues to
configure the XPFE and to discover the extended topology. Note that, up to this time,
the OF switch has flooded all frames sent from its LOCAL port on all its physical ports.

Eventually, the SDN controller installs flow entries in the new XPFE to connect to the
control network and the next XPFE to extend the control network to the new XPFE. The
flow entry changes for the new XPFE have to be sent by the SDN controller in one
message as the changes will cause a temporary interruption of the control connection. If
not all information is available on the new XPFE to re-establish the control connection,
it will remain disconnected. From this point onwards, no more Packet_In or Packet_Out

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 95

messages are used to communicate with the new XPFE. The new XPFE is integrated
into the network and is ready to be configured by the SDN controller for forwarding
production traffic.

A detailed example is shown in Section 12. The procedure described above is a basic
procedure to integrate new XPFEs into a network. Once the XPFE is connected to an
SDN controller, further steps can be taken to enhance reliability and robustness of the
control network.

5.4.1.3 In‐band	signaling	for	wireless	nodes	to	join	SDN	network		

The procedure described above can be used as well for XPFEs with wireless links only.
As an additional step for a wireless node based on IEEE 802.11ad [41], the
establishment of the wireless links requires already some kind of authentication.

This is shown in the example network in Figure 46, with 4 wireless sector interfaces on
each of 4 nodes. Some of the sectors are used to connect the node as a station (STA) to
another node, in other sectors the node acts as a Personal Basic Service Set (PBSS)
Control Point (PCP) according to [41]. Node 1 is the new node joining the network.
Node 2 is the peer node to which Node 1 is connecting to and acts as a relay node. Node
3 is a gateway node connected to the wired network via a service provider (SP) GW
from which the SDN controller is reachable via IP routing. Finally, Node 4 is a leaf
node on the network connected to Node 2 on the same sector interface as Node 1
creating a point-to-multipoint topology.

Before the generic procedure can start, Node 1 (new node), establishes a temporary
association with neighbour Node 2. While establishing the temporary association, Node
2 informs the controller, via a New Node Link Report, that Node 1 is attempting to
associate to Node 2. The controller authenticates the identity of Node 1 (new node) e.g.
by using the vendor certificate of this node. Once authenticated, Node 1 can start the
generic procedure as described above. At this point, the controller is aware of the Node
1 sector MAC address that is associating to Node 2.

The new node joins the SDN controlled wireless network by sending a DHCP message
over an established wireless connection. The procedure continues with the exchange of
IP addresses, optional enrolment of an operator certificate, and eventually the
establishment of the control channel among node1 and the SDN controller. Note the
operator certificate is not available for the initial establishment of the wireless link.
Only the vendor certificate can be used for this establishment. The operator certificate
can be established only once the first links have been created.

The New Node Link Report contains information on bridge and link MAC addresses of
both ends of the physical link and can be used for topology discovery as an alternative
for LLDP or similar protocols. Note, the Packet_In messages used in the procedure
contain information on the used port for the XPFE where a new XPFE is connected, but
not which port the new XPFE is using to connect.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 96

PCP

PCP

S
T

A

P
C

P

Node 3
(GW)

Node 2
(relay)

Node 1
(new)

1

4

2

3

PCP

PCP

S
T

A

P
C

P 3

2

4

1

PCP

PCP

P
C

P

P
C

P 3

2

4

1
wired

wireless

SDN
CONTROLLER

SP
GATEWAY

PCP

PCP

S
T

A

P
C

P 3

2

4

1

Node 4
(leaf)

Figure 46: 4 Node SDN-Controlled network

5.5 Synchronization

All mobile systems require synchronization between RUs in order to support handover
and to minimize interference. Also, the CU and RU need to share a precise clock in
order to fulfil stringent regulatory requirements. Often, a Global Navigation Satellite
System (GNSS) like the Global Positioning System (GPS) is used to provide
synchronization to a radio base station. With traditional time division multiplexing
(TDM) based transport like CPRI fronthaul, frequency synchronization in RUs could
then be derived from the physical layer of the fronthaul transport technology between
CU and RU. However, with the move towards packet-based transport like eCPRI or
higher layer functional splits in general, the ability to distribute synchronization is
changing and other synchronization distribution methods are needed. Further, for basic
operation of FDD mobile systems, frequency synchronization is sufficient but evolving
wireless networks with time division duplexing (TDD) operation, carrier aggregation,
mobile positioning, Multimedia Broadcast/Multicast etc. require accurate time and
phase in addition to frequency. For the XFE in 5G-Crosshaul, Synchronous Ethernet
(SyncE) and/or Precision Time Protocol (PTP) (or a combination of the two) are
relevant:

 Synchronous Ethernet is an ITU-T standard for computer networks that allows
the transmission of clock signals (frequency sync) over Ethernet. It includes
three recommendations, namely ITU-T Recommendations G.8261, G.8262 and
G.8264. While the IEEE 802.3 standard specifies Ethernet clocks to be within
±100 ppm, the accuracy of Ethernet Equipment slave Clocks (EECs) in SyncE
must be within ±4.6 ppm. SyncE allows nearly immediate frequency lock but
requires that all traversed network nodes have SyncE support. Links using IEEE
802.11 (WLAN) technology do not support SyncE.

 IEEE 1588-2008, PTP Version 2 [42], is a hierarchical master-slave architecture
for clock distribution across packet networks. PTP encapsulations exist for

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 97

various protocols such as UDP, IP, and Ethernet. Hardware time-stamping of
packets allows time precision down to tens of nanoseconds. Not all the options
and features in the standard are needed for all applications and therefore IEEE
1588 introduced the concept of profiles. IEEE 1588 defines only the default
profile for industrial-automation applications while other profiles are specified
elsewhere. PTP profiles contain both required and prohibited options, as well as
ranges and defaults for configurable attributes, to meet specific application
requirements.

IEEE 802.1AS [43], approved in February 2011, is a PTP profile for Timing and
Synchronization for Time-Sensitive Applications in Bridged Local Area Networks.
More precisely, the IEEE 802.1AS standard, defines a mechanism to ensure that
synchronization requirements are met for time-sensitive applications across Bridged and
Virtual Bridged Local Area Networks consisting of LAN media where the transmission
delays are fixed and symmetrical. IEEE 802.1AS can be applied to provide
synchronization between the XFEs in the 5G-Crosshaul network in IEEE 802.3 Ethernet
networks but not for IEEE 802.11 based links. The latter needs another solution, e.g. a
native timing mechanism. 802.1AS is plug-and-play, that is, the Grand Master clock is
selected automatically. After this, a clock tree reconfigures automatically, whereby
bridges in the tree propagate time towards the leaves. The master periodically
broadcasts the time reference to the other clocks (up to 10 messages per second are
permitted in PTPv2).

To support all features of modern mobile systems, ITU-T has developed a PTP profile
specifically to address the stringent requirements of telecom applications, the so called
“Telecom Profile” [44] where recommendations G.827x from the ITU-T address the
actual profile (G.8275.1), network requirements (G.8271, G.8271.1), and clock
specification (G.8272, G.8272.1, G.8273, G.8273.2, G.8273.3) for synchronous
networks. Recommendation G.8275.1 specifies a profile with full timing support from
the network while G.8275.2 specifies a profile with only partial timing support from the
network. The latter could be of interest when interfacing legacy networks but better
performance is expected with the full timing support option. Finally, ITU-T G.8265.1
specifies a PTP profile for applications that only need frequency synchronization. One-
way messaging is sufficient for frequency distribution but for phase and time
distribution, two-way messaging must be used. By using networking equipment with
hardware time-stamps and timing support in intermediate nodes (boundary clock or
transparent clock), it should be possible to achieve timing errors down to a few tens of
nanoseconds, supporting even the most stringent timing alignment requirements in
3GPP, e.g. for Carrier Aggregation and MIMO. Another advantage is that the Telecom
Profile supports operation over UDP/IP, which means that it is independent of the layer
2 protocol. These properties make it a suitable choice for packet transport
synchronization in 5G-Crosshaul.

In PTP, phase and time synchronization between master and slave clocks require the
exchange of four messages (see Figure 47) with time-stamps for both distributing the
local time and estimating the round-trip to improve accuracy. Two important conditions
must be satisfied to achieve good performance: The first condition is that the time offset
between master and slave must be approximately constant during the exchange of the
above mentioned four messages. If there is a frequency offset between master and slave,

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 98

the time offset is only approximately constant during a short period. This problem can
be handled by imposing accuracy requirements on the free-running clocks, by using
syncE to remove frequency offset, or by model-based approaches taking an unknown
frequency offset into account. Packet Delay Variation (PDV) creates similar problems
as frequency offsets but are more random in nature and thus more difficult to mitigate.
The second condition is that the forward and backward transit times should be equal, i.e.
the network should be symmetric.

Figure 47: Synchronization with PTPv2.

Once the slave clock received the values of t1, t2, t3 and t4, and if the above conditions
are met, the slave can estimate the clock offset and propagation delay to the master as
follows:

Clock offset = [(t2 െ	t1)	െ	(t4 − t3)]/2

Propagation time = [(t2 െ	t1)		(t4 – t3)]/2 = [(t4 െ	t1)	െ	(t3 − t2)]/2

If other traffic (e.g. time-sensitive FH traffic) has higher priority than PTP through the
XFEs, there may be significant jitter in the clock offset and propagation time estimation
due to high PDV during the PTP message exchange. Even if PTP has the same or higher
priority than interfering traffic, PDV may be high unless pre-emption is implemented.

The problem with high PDV during sync message exchange can be mitigated, at least to
some extent, by proper strategies in the clock offset and propagation delay estimation
process. To identify the most significant problems for synchronization in 5G-Crosshaul,
an FPGA-based testbed was built and phase noise measurements were performed on the
recovered clock for a use case where PTP is only implemented in endpoints [45].
Further work has been performed to highlight practical difficulties and potential
solutions of selection and filtering techniques to achieve low time error in the presence
of PDV [46]. Results for the simplified topologies studied so far, show that it is possible
to fulfil relevant 3GPP radio requirements even when PTP is only implemented in the
endpoints. These results could be relevant for a case where legacy equipment is

Master Clock Time Slave Clock Time

Data at
Slave Clock

Follow_Up message
containing value of t1

Delay_Resp message
containing value of t4

t1

t2

Sync message

Delay_Req message

t2

t1, t2

t3

t4

t1, t2, t3

t1, t2, t3, t4

t2m

t3m

time

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 99

connected to 5G-Crosshaul XFEs via adaptation functions. However, it is expected that
more complicated topologies with many hops and varying traffic mixes may still need
timing support from intermediate nodes (XFEs) to achieve desired performance. Further
evaluations on the testbed using network switches with timing support (according to
ITU-T Telecom Profile), yielded timing errors with a standard deviation as low as 15
ns. Also, with timing support from the network, timing error is affected less by network
topology.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 100

6 Southbound interface design

Openflow [32] has been adopted at the SBI to control the XPFEs. In this section we
describe which OpenFlow actions are used by the adaptation functions and the XPFEs
and we describe the XPFE OpenFlow pipeline. We also describe how the SDN
controllers retrieve topology information from the XPFEs, especially information on
ports. Extensions of Openflow to control microwave devices have been described
already in [5], section 9.2.

6.1 OpenFlow and Adaptation Function

The Adaptation function encapsulate and decapsulate the customer fronthaul/backhaul
traffic as shown in Section 6.3. Openflow supports MAC-in-MAC since version 1.3 by
defining the PUSH_PBB and POP_PBB actions for encapsulation and decapsulation.

The PUSH_PBB header action logically pushes a new PBB service instance header onto
the packet (I-TAG TCI), and copies the original Ethernet addresses of the packet into
the customer addresses (C-DA and C-SA) of the tag. The PBB service instance header
should be the outermost tag inserted, immediately after the Ethernet header and before
other tags. The customer addresses of the I-TAG are in the location of the original
Ethernet addresses of the encapsulated packet. This action adds both the backbone
MAC-in-MAC header and the I-SID field to the front of the packet. The PUSH_PBB
header action does not add a backbone VLAN header (B-TAG) to the packet, this can
be added via a PUSH_VLAN header action after the PUSH_PBB header operation. After
this operation, regular set-field actions can be used to modify the outer Ethernet
addresses (B-DA and B-SA).

A POP_PBB header action logically pops the outer-most PBB service instance header
from the packet (I-TAG TCI) and copies the customer addresses (C-DA and C-SA) in
the Ethernet addresses of the packet. This action removes the backbone MAC-in-MAC
header and the I-SID field from the front of the packet. The POP_PBB header action
does not remove the backbone VLAN header (B-TAG) from the packet; it should be
removed prior to this operation via a POP_VLAN header action.

The F-Tag is considered optional within 5G-Crosshaul as described in Section 5.2.2.1.
The OpenFlow 1.5.1 specification does not support the F-Tag in PUSH_VLAN and
POP_VLAN actions. Therefore, in case of optional employment of the F-Tag within 5G-
Crosshaul, OpenFlow extensions must be defined. Despite the F-Tag, OpenFlow
supports since version 1.3 all the required functions envisioned for the Adaptation
Function in case of having MAC-in-MAC as XCF baseline.

6.2 OpenFlow and XPFE

XPFEs forward the XCF traffic based on the information contained in the MAC-in-
MAC header according to the OpenFlow forwarding model. The first operation
performed by an XFE for XCF forwarding is to match the incoming packets against the
flow entries of the flow tables. Table 12 reports the MAC-in-MAC header fields that
can be matched by using different OpenFlow versions.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 101

Table 12: OpenFlow support for MAC-in-MAC fields: match and set-fields

Field OF version Comment

Backbone Destination Address OF-1.0 Same as Ethernet Destination Address

Backbone Source Address OF-1.0 Same as Ethernet Source Address

Backbone VID: TPID OF-1.1 Same as S-TAG Ethertype: 0x88a8

Backbone VID: PCP OF-1.1 Same as S-TAG PCP

Backbone VID: DEI N/A Not supported

Backbone VID: VID OF-1.1 Same as S-TAG VID

Instance SID: TPID OF-1.3 Ethertype: 0x88E7

Instance SID: PCP OF-1.3

Instance SID: DEI N/A Not supported

Instance SID: UCA OF-1.4

Instance SID: I-SID OF-1.3

Optional: F-TAG: TPID N/A Not supported

Optional: F-TAG: PCP N/A Not supported

Optional: F-TAG: DEI N/A Not supported

Optional: F-TAG: TTL N/A Not supported

Optional: F-TAG: Hash N/A Not supported

Even the latest OpenFlow version (1.5.1 at the time of writing this report) does not
support the matching and the configuration of the DEI field. Such field may be used
separately or in conjunction with the PCP to indicate frames eligible to be dropped in
the presence of congestion. Therefore, OpenFlow still has to be extended to support
matching and configuration of the DEI field.

A flow entry is composed of a match and an action set. The action set of the incoming
matched XCF packets will contain the output instruction, or the DROP action
alternatively, including the port and queue the XCF frame should be forwarded to. XCF
frames are directed to one of the queues based on the packet output port and the packet
queue id, set using the OUTPUT action and SET_QUEUE action respectively. XPFEs
provide eight queues per port, one per each traffic class, to prevent head of line blocking
by low-priority traffic. A specific PCP value is associated to each queue as reported in
Section 5.3.

In general, an OpenFlow switch provides limited QoS support. A switch can optionally
have more than one queue attached to a specific output port, and those queues can be
used to schedule packet transmission. Packets mapped to a specific queue will be treated
according to that queue’s configuration. Queue processing happens logically after all
OpenFlow pipeline processing. Packet scheduling using queues is not defined by the
OpenFlow specification and it is switch-dependent; in particular, no priority between
queue IDs is assumed. Hence, queue configuration takes place outside the OpenFlow

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 102

switch protocol, either through a command line tool or through an external dedicated
configuration protocol. The 5G-Crosshaul XPFEs use a hard-coded queue configuration
or read the queue configuration from a file.

6.3 XPFE Flow Pipeline

The XPFEs are based on an OpenFlow pipeline to forward XCF frames as well as to
encapsulate tenant frames into XCF frames and to decapsulate them vice versa.
Encapsulation and decapsulation is based on the L2-L3-ACL example defined in [49].
As the XCF is based on PBB we omitted the L3 part from this example completely. The
pipeline consists of three different paths as shown in Figure 48.

 forward XCF frames to another XPFE
 decapsulate XCF frames and deliver them to directly connected hosts,
 handle frames received from directly connected hosts, either by sending them to

another directly connected host or by encapsulating them and sending them to
another XPFE.

Some of the tables in the pipeline are replicated per tenant. These tables are numbered
t,n in Figure 48. In case the total number of tables exceeds the OpenFlow limit of 256
tables per XPFE, the traffic of several tenants has to be handled by the same set of
tables. This can be achieved by extending each flow rule with a match against a service
id recorded in the frame metadata.

Frametyp
e

0

ETH_DST,
IN_PORT

Ingress_VI
D

t,1

VLAN_VID

Policing

metadata
(priority)

L2_Custo
mer

ETH_DST,
tunnel_id

Encap

ETH_DST,
tunnel_id

EgressPor
t

‐

Decap

VLAN_VID
(I‐SID)

To
Controller

L2MCastE
ntries

VLAN_VI,
metadata
(UNI/NNI)

PCP

251

metadata
(priority)

t,3

t,7t,4

3

OF_table_number(t,i)= t*8+i+3
0..3: common ingress tables
252..255: common forwarding &egress tables

Priority_t
agging

t,0

VLAN_PCP
(DSCP, …)

Identify
tenant

IN_PORT

1

ACL

IN_PORT,
ETH_SRC,
VLAN_VID

t,2

L2_Provid
er

252

ETH_DST
VLAN_VID

Enqueue

253

VLAN_PCP

Figure 48: XPFE Open Flow Pipeline

To determine the correct treatment of received frames (Table 0 in Figure 48), we divide
the ports logically into two groups of User Network Interface (UNI) and Network
Network Interface NNI ports. At UNI ports the hosts of tenants can be connected,
assuming non-XCF, but VLAN-tagged Ethernet frames are exchanged.

At NNI ports, other XPFEs can be connected, exchanging XCF frames. There is an
outer VLAN around the PBB header, therefore the outermost Ethertype is the same for

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 103

both XCF and non-XCF frames. Therefore, we use the UNI/NNI port distinction to
distinguish traffic from hosts and from other XPFEs and record this distinction in packet
metadata. Frames received at a NNI port can still receive two different treatments.
When the destination address of a received frame matches a specific MAC address of
the port, acting as an XPFE identifier, then the frame is decapsulated, otherwise it is
forwarded.

In the forwarding path, the egress port is determined based on the destination MAC
address and the outer VLAN Id (Table 252 in Figure 48), allowing different forwarding
decisions for different services or tenants. This is followed by a table mapping the
frames to egress queues based on their outer PCP (Table 253 in Figure 48).

For frames to be decapsulated, a tunnel Id is recorded in metadata of the frame (Table 3
in Figure 48). The egress port is determined based on the destination address and tunnel
Id (Table t,4 in Figure 48). In case the destination address is a multicast address, the
frame is forwarded to all UNI ports of the service (Table t,5 in Figure 48). Both tables
are shared with the encapsulation path. To implement a split horizon for multicast
frames, i.e. to prevent that the frame is encapsulated again, the metadata recording
UNI/NNI port reception is used. We consider the network to be tightly controlled, i.e.
addresses of connected devices are known. Therefore, frames with unknown destination
address are not flooded, they are silently discarded.

In the encapsulation path, the service is determined based on ingress port and customer
VLAN (Table t,1 in Figure 48), and the priority is determined (Table t,0 in Figure 48).
Both information is recorded in metadata. For the sake of simplicity, we assume that
frames at a UNI port have a VLAN header, allowing to determine service and priority
easily. The network operator may actually use a different priority on the frame than a
tenant. Priority remarking has to be negotiated among operator and tenant. Note, the
original frame is not changed, the priority is carried in the outer VLAN.

After identifying the service and priority the received frames are checked whether they
may access the network (Table t,2 in Figure 48), allowing operators to enforce the SLAs
with their customers. Thereafter the frame is delivered locally or forwarded via another
XPFE. In the latter case, it is encapsulated (Table t,7 and 251 in Figure 48) and the
same forwarding decisions (Table 252 in Figure 48) as for received XCF frames are
taken.

We mapped separate functionalities to separate tables in the pipeline for the sake of
clarity, although some of the tables could be combined from a technical perspective.
The complexity of the pipeline is comparable to the one for MPLS as described in [50].
This MPLS pipeline contains handling of OAM frames, which is still missing from our
pipeline. OAM frames could be determined in the first table based on Ethertype, the
UCA bit in the PBB header, or their address, and forwarded to a local entity for further
treatment or to another XPE for e2e monitoring.

6.4 XPFE Configuration

In the 5G-Crosshaul infrastructure the interaction between the SDN Controller and the
network-related data plane, composed of XPFE devices, takes places using the
OpenFlow switch protocol [32]. The XPFEs connect to an SDN controller with an
initial OFMP_HELLO message. Thereafter the SDN controller retrieves the list of

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 104

capabilities of the XPFE via OFMP_FEATURES_REQUEST/REPLY messages. The
example in Figure 49 shows that the XPFE supports various statistics, but it cannot
reassemble IP packets.

Figure 49: OFMP_FEATURES_REPLY

The SDN controller monitors the connection to the XPFE with
OFPT_ECHO_REQUEST/REPLY messages. It also retrieves further general
information of the XPFE with OFPT_BARRIER_REQUEST/REPLY and
OFPT_ROLE_REQUEST/REPLY messages.

The SDN controller requests more specific information of the XPFE, e.g. number and
bandwidth of ports. The information provided by the XPFE might be too large to fit into
a single IP packet, therefore OpenFlow multipart messages are used to exchange the
information. Figure 50 shows an example of the port description of an XPFE, indicating
the interface speed (Curr speed).

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 105

Figure 50: OFPMP_PORT_DESC

Similarly, the SDN controller requests information on flow tables, groups, and meters.

This initialization phase is followed by a periodically interaction between the SDN
controller and the XPFE for the statistics polling. Statistics are retrieved for flows,
ports, and groups. Again, multipart messages are used. The information received from
the switches are stored in the SDN controller datastore. In the case of the EMMA
application, the module in charge of doing this kind of operation is the Openflow Plugin
within the ODL-based SDN controller. In particular, this module updates the Inventory
datastore within ODL and then all the information related with the Openflow nodes in
the data plane are reachable via a REST API.

Besides collecting information from the XPFEs, the SDN controller configure the
XPFEs. Most prominently it provides the flow-entries for the various flow-tables.

The Openflow plugin behaviour is well defined through its yang interfaces, which
define both the types and the available operations:

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 106

 Messages4
 Inventory datastore information5. This model augments the node connectors, for

example to support statistics such as the queue statistics:

grouping flow-node-connector {
 description "Wrapper of openflow port. ";
 uses port:flow-capable-port;
}

augment "/inv:nodes/inv:node/inv:node-connector" {
 ext:augment-identifier
 "flow-capable-node-connector";
 description
 "Openflow port into inventory tree.";
 uses flow-node-connector;
}

 Flow-capable port definition6
 Queue-packet definition for queue statistics7

6.5 XCSE Configuration

The XCSE is composed of a framing, see D2.1 Section 6.2 [5], the TDM switch and the
optical switch. The XCSE is configured according to a proprietary South Bound
Interface, an RPC protocol [51] is used for the demo implementation.

The XCSE modeling is shown in the figure below:

Figure 51: XCSE model

In this model, several client ports are dedicated to transport CPRI, and Ethernet traffic.
The granularity of the TDM switch port is the same as the framing slot granularity (e.g.

4 https://github.com/opendaylight/openflowjava/blob/master/openflow-protocol-
api/src/main/yang/openflow-types.yang
5 https://github.com/opendaylight/openflowplugin/blob/master/model/model-flow-
service/src/main/yang/flow-node-inventory.yang
6 https://github.com/YangModels/yang/blob/master/experimental/odp/opendaylight-port-types.yang
7 https://github.com/YangModels/yang/blob/master/experimental/odp/opendaylight-queue-types.yang

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 107

1.25 Gb/s as slot framing granularity). Hence in case of CPRI signal with 2.5 Gb/s, two
slots are considered, while in case of Ethernet client at 1 Gb/s as bit rate, 1 port is
considered. Such ports are aggregated and switched to a group of output ports (e.g. 10
Gb/s) that are the ingress port of the optical switch.

There can be M ports between the TDM switch and the optical switch. The optical port
can have N external ports with N ≠ M. This is to consider the case where some optical
wavelengths pass-through the optical switch without terminating in the TDM switch.
Therefore, the cross-connection between TDM and optical switch can be expressed as
<portX, type> - <portY, type>, where port/type identifies the termination point (TP) and
type (e.g. TDM or optical switch)

The RPCs that composes the TDM interface are:

• connect(tpFrom, tpTo);

• disconnect(tpFrom, tpTo);

• protect(tpFrom, tpTo(w), tpProt(p));

• unprotect(tpFrom, tpTo);

The RPCs that compose the optical interface are:

• connect(tpFrom, tpTo);

• disconnect(tpFrom, tpTo);

• protect(tpFrom, tpTo(w), tpProt(p));

• unprotect(tpFrom, tpTo);

The other configuration parameter is the enabling of Forward Error Correction (FEC).
The use of FEC is optional according the level of performance (e.g. BER) and the
characteristics of the transmission channel (e.g. loss, chromatic dispersion, etc.). See the
nomenclature of ITU G 698.1 for an example of application code with and without
FEC.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 108

7 Fronthaul split

The XFE and XCI are meant to forward and control the mix of both fronthaul and
backhaul traffic in the 5G-Crosshaul network architecture. The demonstration of the
concepts for XFE and XCI requires the ability to mix fronthaul and backhaul traffic
over Ethernet networks. Backhaul traffic was available through the products of several
partners but fronthaul traffic over Ethernet wasn’t. Therefore, part of the work of WP3
has been evolving the tools and emulators of radio access available in the partner’s
portfolio to support the desired fronthaul traffic format.

As part of the evolution towards the C-RAN radio, the standard bodies work with
number of possible splits (see 3GPP TR 38.801 [56] or eCPRI [29]). Among those the
decision was made to focus on two solutions that had high chances to be introduced in
the final version of [56], including a higher layer split in Packet Data Convergence
Protocol –Radio Link Control (PDCP-RLC) layer (Option 2) and a lower split in MAC-
PHY layer (Option 6).

Existing OpenEPC eNodeB software emulators provided an architecture that is possible
to adapt to support the two splits and the fronthaul over Ethernet formats. This has
permitted to perform experiments and demonstrations of the 5G-Crosshaul network
architecture with realistic Crosshaul traffic composed of different types of fronthaul and
backhaul connections.

The eNodeB software is a modular architecture in which each layer of transmission is
implemented as an independent module that provides an API and communication
primitives to other (higher and lower) modules. The eNodeB emulator does not support
the physical layer of the LTE radio interface, instead it provides an abstraction layer
over Ethernet and re-using IP tools (e.g. DHCP) which permits to connect the Client
emulator to run any kind of user plane traffic through the eNodeB and the core network.
The UE behavior is implemented as part of the eNodeB emulator which also terminates
NAS signaling towards the core network (i.e. the MME). This layered and modular
design facilitated implementing C-RAN splits in the eNodeB emulator software.

The eNodeB emulator software is implemented completely in Linux in user space
without kernel dependencies, which guaranteed its portability to any kind of hardware
platform, but also limited its performance. Since it has only been intended to perform
experiments and functional testing it has served its purpose. Part of the 5G-Crosshaul
experiments focus in showing relevant performances and measurements of throughputs
and latencies in the XFE, requiring work in performance improvement at the eNodeB
emulators.

7.1. High Split (PDCP-RLC)

C-RAN architectures with fronthaul over Ethernet already supported a high split
between PDCP and RLC layers. This split is simple to implement since it keeps the
complexities of the MAC and RLC layers, which are functionality-wise nearer to the
radio, in the Remote Unit (RU). The Digital Unit (DU) includes the protocol stack from
PDCP on. This approach allows to efficiently utilize available processing power for the
air interface encryption and integrity protection processes that can scale based on

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 109

average load across multiple sites rather than peak utilization of each eNodeB. Figure
52 represents the placement of different protocol layers within network entities.

The fronthaul interface between RU and DU can be carried over Ethernet and IP. The
fronthaul protocol in this case is not standardized and there are several commercial
vendors known to be using this split with proprietary solutions (e.g. Altiostar [57]).

The split between PDCP and RLC produces a fronthaul interface with a traffic profile
similar to that of backhaul, since there is no significant difference between backhaul and
fronthaul traffic characteristics when using this split.

The high split required adaptations of the eNodeB emulator software splitting it into two
independent network functions and introducing an intermediate module in each of the
functions that would implement the fronthaul protocol. Due to a lack of a standardized
solution for this split, the selected fronthaul protocol is proprietary. The fronthaul
protocol implemented a simple encapsulation of IP packages with an additional header
indicating packet type, direction etc.

Both the theoretical analysis and the experimentation permitted to evaluate the overhead
of the fronthaul protocol of approximately 1% from UE input to fronthaul packets and
of 0.6% from UE input to backhaul packets. This corroborates the similarity of the
fronthaul to backhaul traffic profiles.

When testing the performance of the eNodeB emulator it was necessary to perform
simple optimizations to achieve throughputs which were in line with the aims in the
project. The project purposes were satisfied with a downlink throughput of around
100Mbps, still far away from those of 5G New Radio. To achieve this performance it
has not been necessary to modify substantially the architecture and requirements of
eNodeB emulator which can still be used in Linux, in user space, without kernel module
dependencies and virtualized.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 110

Figure 52: The protocol stacks of the High Split

7.2. Low Split (MAC-PHY)

The standardization of C-RAN has targeted a split of the eNodeB within the MAC layer
for its advantages including leaving all functionality which can be done in hardware at
the RU and all the software in the DU. Small Cell Forum already addressed this split in
their initial studies about Small Cell Virtualization (SCF106 [58] and SCF159 [59]).
Besides the work of Small Cell Forum it is also one of the splits proposed in the work of
3GPP (Option 6 in TR 38.801). This split is also considered interesting because it is
nearer to the legacy CPRI split but higher in the protocol stack permitting relaxing the
stringent requirements in the fronthaul which are characteristic of CPRI, and also
importantly, allowing to scale the fronthaul traffic depending on the momentary user
traffic.

The fronthaul when implementing the lower split can be transported over IP and
Ethernet but with a traffic profile different from backhaul. Unlike the fronthaul in the
higher split, for the split between PHY and MAC there is a standard from Small Cell
Forum which can be followed and is called FAPI (SCF082 [60]) and more recently
nFAPI. There are other standards (e.g. eCPRI [29], RoF, NGFI8) but nFAPI suited
particularly well the requirements and objectives.

FAPI is an API which was meant for use internally in small cells. nFAPI is meant to be
a C-RAN fronthaul protocol transported over IP and Ethernet. The availability of a

8 https://standards.ieee.org/develop/wg/NGFI.html

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 111

standard permitted us to implement RUs and DUs matching best practice for the lower
split.

nFAPI provides a set of primitives and message formats that while initially covering the
small cells use case can be applied to any C-RAN eNodeB implementation. One of the
resulting advantages of this lower split is that there are no proprietary interfaces
anymore. Only the UE/RU emulation still is based on a software only setup that permits
the signaling and data transfer but doesn’t implement the LTE radio air interface.

The eNodeB software emulation already included a basic stub of FAPI implementation
meant to integrate with Software Defined Radio (SDR) boards available in the market
(e.g. from Octasic [61]). Within the project the software has been completed to support
the nFAPI layer both for RU emulator and DU network function. The extensions have
been focused in implementing the basic attachment and data transfer scenarios required
for demonstration and experimentation with XFE and XCI, but not the complete
functionality of a C-RAN product.

The use of nFAPI as fronthaul protocol, as depicted in Figure 53, resulted in a protocol
overhead from UE input to fronthaul packet of 2%, double that of the higher split.

The lower the split, the more stringent the software performance requirements; at the
RU emulation the packet processing times and latencies are critical to comply with
LTE-Uu timing requirements. The eNodeB was initially not architected for this split and
therefore significant effort was required to adapt it and partially rearchitect it.

One of the fundamental changes in the eNodeB RU emulator with the lower split is the
requirement of using a version of Linux Ubuntu 16.04 optimized for real-time
operations9. The RU cannot longer run virtualized and will run on bare-metal. Along
with that, improving the processing latency required a complete code review to identify
areas for optimization looking at operations which were redundant and optimizations.
The optimizations – especially extracting time-critical processing from main message
pipeline and executing it on a dedicated core, reducing the number of memory
allocations and deallocations, and moving lock-heavy operations to the non time-critical
part of the code – permit to achieve the 100Mbps throughputs and low latencies on a
host with a quadcore Intel processor operating at 2.6GHz.

9 https://gitlab.eurecom.fr/oai/openairinterface5g/wikis/OpenAirKernelMainSetup/

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 112

Figure 53: The protocol stacks of the low split

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 113

8 Project KPIs

A number of objectives and KPIs have been defined to determine whether 5G-
Crosshaul has achieved its targets. In this section, we describe which of the KPIs are
relevant for WP3, how they are measured and summarize the measurements.

8.1 Obj1: Design of the 5G-Crosshaul Control Infrastructure (XCI)

WP3 extended existing SDN controllers and introduced new mechanisms to abstract
5G-Crosshaul transport networks and to aggregate measured contextual information.

Table 13: Objective1 and KPIs within WP3

5GPPP KPI Impact Benchmark Measurements

Increase the number of
connected devices per area
by at least a factor of 10.

Limited number of devices
due to separate and manual
management of each
technological domain.

Path Setup Time,
Path restoration time after
link and node failure.

Energy efficiency
improvement by at least a
factor of 3.

Path provisioning and VM
deployment without energy
consumption
considerations,
network elements are
always on.

Power consumption of
physical network nodes
(XPFEs and XPUs).

The impact on the number of connected devices is achieved indirectly by the XCI. The
XCI uses standard APIs to automatically control the network nodes, this automation
allows to deploy nodes at a higher density. This allows deploying denser access
networks in a cost-efficient manner. Controlling multiple technological domains allows
this densification even if different data link technologies are used. In turn, the denser
access network allows more devices to connect to the network. Here, the relevant
metrics are path setup and restoration times. Other applications, e.g. to reduce
interference, and their impact on this KPI are described in WP4.

Hierarchical control in the XCI: As detailed in D5.2 [20], measured path setup times
in both wireless and optical domains confirm the advantage of a hierarchical
orchestration model to cope with the higher densification of deployed data plane nodes.
Overall, these results exhibited an average of 3,971 seconds from the point of view of
the RMA application, located on top of the SDN controller, of automated E2E path
setup delay and 3.349 seconds from the point of view of the parent SDN controller,
hence radically contributing to the target of lowering the multi-domain service
deployment time amongst different devices located in different administrative domains.
Updated numbers will be provided in D5.2 [20]. The key behind these results is the
automation amongst SDN applications, parent, and child SDN controllers in
contraposition with the manual procedures that need to be conducted in current
deployments which may take this path setup time establishment to days. In this case, we
have shown a decrease in service creation time from days to seconds.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 114

The automation of path restoration after links and/or network failures is also subject to
more details in evaluation in D5.2 [20]. In these measurements, we focus our attention
on a mmWave/WiFi data plane domain and evaluate the time needed to restore an
established path that suffers from wireless link failures. Path restoration times were
below 300ms (below 120ms on average) under an unreliable wireless control plane
(based on WiFi), and below 10ms with a reliable wired control plane. Again, the key
behind these results is the automated control plane logic in the child SDN controllers so
that not all control plane decisions are taken by the parent SDN controller (e.g., a
control plane logic decision affecting the wireless domain might be managed by the
wireless SDN controller). This operating mode would require the notification of these
decisions to the upper SDN control layers.

Support for energy management in the XCI: The contribution to energy efficiency
provided by the XCI, combined with the EMMA application, has been evaluated in
different scenarios using both emulated networks and a real test-bed. The analysis of the
results in emulated scenarios with reference topologies are provided in D4.2 [55],
including a comparison with the state of art of alternative energy-efficient solutions
described in literature.

The technical feasibility of the proposed solution has been verified in the 5G-Crosshaul
test-bed, deploying prototypes of XCI and EMMA application over physical networks
based on RoF, XPFEs and mmWave technologies. The related results will be presented
in D5.2 [20]. Major savings in energy efficiency are achieved in scenarios with
discontinued traffic (e.g. in the high-speed train scenario). Moreover, the additional
procedures to modify dynamically the status of the network nodes and servers (starting
from an idle condition) is in the order of tens of milliseconds. This generates a
minimum impact on the total provisioning time of a virtual service, which is in the order
of few minutes and it is mainly influenced by the time to instantiate and configure the
VNFs.

Finally, to verify the scalability of the system and its applicability to realistic
environments, the XCI and EMMA application prototype have been also tested over a
reference network topology provided by a network operator in the consortium and
representing the real regional network deployed in an area in the North-West of Italy.
The topology has a total of 51 network nodes and 61 links, with 4 BBUs, two of them
acting also as gateway.

The XCI has been tested to establish a number of bi-directional network paths from the
edge nodes to the gateways and evaluating the total number of nodes that can be
maintained in idle mode when all the flows of the expected traffic matrix are active. In
particular, the XCI has established on-demand a dedicated path for the traffic generated
by each of the 1497 antennas attached to edge nodes of the network. The fronthaul
traffic bandwidth for each flow is based on the values provided by the network operator
and varies from 0,35 Mbit/s to 473,54 Mbit/s. As shown in Figure 54, a total of 6 nodes
can be maintained in idle mode (grey switches) out of 51 (around 12%). It should be
considered that this value refers to the actual contribution of the EMMA algorithms at
control/application plane. As analysed in WP1, to obtain a reasonable estimation of the
total energy savings reachable with the deployment of the 5G-Crosshaul solution, this
value must be added to the savings introduced by 5G-Crosshaul data plane technologies
and by the adoption of multi-tenancy, which are in the order of 70%.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 115

Figure 54: Active (blue) vs. idle (grey) networks nodes in a realistic regional network with full

traffic matrix active

8.2 Obj2: Specify the XCI’s northbound (NBI) and southbound (SBI)
interfaces

WP3 defined interfaces to accelerate the integration of new physical technologies (SBI)
and the introduction of new services (NBI). Instead of deploying new services
manually, they can be deployed automatically and their deployment can be greatly
reduced.

Table 14: Objective2 and KPIs within WP3

5GPPP KPI Impact Benchmark Measurements

Enable the introduction or
provisioning of new
services in the order of
magnitude of hours (e.g.,
VPNs, network slices).

Manual deployment of the
service, which can take
months [52], [53].

service provisioning or
deployment times of e.g.
paths (VPNs), nodes
(vEPC nodes), or services
(e.g. CDN).

The measured time is the actual deployment time. The time to define a service, e.g. its
business logic, is not included in the measurement.

Path provisioning for VNFs: The experimental activities in WP5 have evaluated the
provisioning time for network connections (both in single and multi-domain scenarios)
and Network Services with instantiation and configuration of VNFs over real test-beds
deploying 5G-Crosshaul data plane technologies and software prototypes, including the

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 116

XCI components. These experiments, which will be detailed in D5.2 [20], show a
provisioning time of few seconds for intra- and inter-domain network connections and
few minutes for vEPC NSs with up to 4 VNFs (mostly caused by the time required by
VM instantiation and booting).

The scalability of the system in terms of provisioning time for network connections has
been tested using an emulated network with the topology of the reference regional
network of the previous section (see Figure 54) and with the XCI SDN controller
running in a VM with 4 vCPUs and 16 GB RAM. Requests for bi-directional
connections between each of the 1497 antennas and the two gateways have been issued
with different request rates, to evaluate how these rates impact the provisioning and
deletion time in a network with a realistic dimension and topology. Each test has been
repeated 20 times and the results about average, minimum and maximum time are
shown in Figure 55 for provisioning and Figure 56 for deletion. In the considered range
of requests’ rates, the system has always been able to process and executes all the
requests. For low rates (up to 1,3 requests per second) the provisioning time is in the
order of 60 ms, while it increases to around 80 ms and 100 ms for rates of 2 and 2.5
requests per seconds. After these rates, the provisioning time raises quickly up to an
average value of 500 ms with peaks of 850 ms for a rate of 6,7 requests per second,
associated with an increasing value of the variance. Analysing in detail the components
of the provisioning time, we can see that the major delay is introduced by the path
computation, which takes usually 98-99% of the total provisioning time. This fact can
be easily explained with the fact that in the emulated environment both the exchange of
OpenFlow messages and the configuration of the virtual switches are performed locally
in the machine and they introduce a minimum delay.

Figure 55: Provisioning time of a network connection

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 117

Figure 56: Deletion time of a network connection

Service deployment in CDN networks: Regarding services, such as a CDN, the
integration and orchestration exploiting the capacities of the XCI allow the
configuration of these services through VNFs. This would allow the application layer
the automatic deployment of a complete and configured service (servers, network
configurations, connectivity among the elements which build the service) in a
virtualized environment, avoiding the manual configuration and instantiation of every
component as hardware appliances. Therefore, the deployment time will be significantly
reduced. Detailed measurements are reported in D5.2 [20].

End-to-end path provisioning support: The end-to-end path provisioning time from
Application plane (Resource Management Application) to data plane via the XCI has
been evaluated in a multi-domain environment in the context of WP5, illustrated in
Figure 57. In the application plane, the RMA computes optimal routes between
endpoints in the multi-domain data plane relying on a graph-based abstracted view of
the underlying topology, provided by the XCI. The XCI SDN component is
hierarchical, with a parent ABNO controller orchestrating one SDN controller per
domain. Each controller uses a different protocol for inventory, management and
monitoring of the respective hardware (e.g., a REST-based interface in one of the
mmWave domains, and a proprietary protocol in the other one). To expose this multi-
domain information in a homogeneous manner to the RMA, the parent controller
interacts with the child controllers via COP, and so does the RMA with the parent
controller. The RMA is deployed at a different site than the controllers and the data
plane, the RTT among the two sites is about 60ms. The child controllers can make local
decisions at a shorter time-scale than the RMA and the parent controller. For instance,
the mmWave mesh controller can configure local paths within the mmWave mesh to
use in case of failures and so ensure connectivity while RMA calculates and triggers the
request for a new path provisioning.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 118

Figure 57: Experimental setup of an multi-domain data plane.

From the point of view of the parent ABNO, Figure 58 shows the histogram and CDF
for the end-to-end setup delay, from the reception of the request in the ABNO NBI to
the completion of the operations. The multiple peaks in the histogram are caused by the
ABNO (child and parent), which process received requests every 50ms. The average
setup delay increases from tens or hundreds of milliseconds in the wireless and single-
layer optical domains as seen from the child controllers to seconds as seen from the
parent. This is due to various factors. First, an average of 2,867s are spent in the multi-
layer optical network. Second, there is the interaction and message processing between
the parent ABNO and child controllers. Third, there is the sequential handling of some
of the messages to set up the E2E path. As far as the application plane is concerned,
Table 15 compares some statistics of the setup delay as seen from the parent ABNO and
from the RMA. Recall that that the RMA and parent controller are deployed on different
sites with a RTT of 60ms. However, the difference is 600ms approximately, which is
due to the processing carried out at the RMA.

Figure 58: Histogram and CDF of the setup delay seen by the ABNO

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 119

Table 15: End-to-End Path setup Delay in a multi-domain environment.

 Average Min. 25-percentile 75-percentile Max.

pABNO (s.) 3,349 3,092 3.294 3.398 3.693

RMA (s.) 3.971 3.667 3.804 4.046 5.281

8.3 Obj3: Unify the 5G-Crosshaul Data Plane

WP3 – jointly with WP2 – developed the XFE and XCF as a common and flexible
frame format to carry both fronthaul and backhaul traffic through the network.

Table 16: Objective3 and KPIs within WP3

5GPPP KPI Impact Benchmark Measurements

CAPEX and OPEX savings
due to the unified data
plane (25%) and multi-
tenancy (>80%, depending
on the number of tenants).

Latency and jitter of
hardware switches.

Data plane throughput,
data plane latency/jitter.

80% increased energy
efficiency due to
consolidation of
equipment.

Energy consumption of
existing networks
(equipment is always on).

Power consumption is
determined by a tool
evaluating power
consumption on a network
wide level.

CAPEX and OPEX of XFEs are not measured within WP3. This is compared in the cost
model of D1.2 [54] against the costs of existing hardware switches. This cost model
covers energy savings as well.

It can be shown that multiple tenants are supported by the XCI and the XFEs, but its
impact cannot be measured directly. The multi-tenancy feature is included in the cost
model described in D1.2 [54]. The measurements of throughput, latency/jitter indicate
whether the more flexible design of switches and frame format to support multi-tenancy
are still able to satisfy the requirements of fronthaul and backhaul traffic.

Latency depending on load: For a lightly loaded switch, there is no significant
difference in latency and jitter among traffic streams with different priority. As the load
increases, latency and jitter of low-priority traffic increase significantly and will be
dropped first in case of overload. The latency per hop is below 10s for 10G interfaces.
Although this is significantly higher than the latency of a hardware switch, this is still
sufficiently small for fronthaul traffic. Detailed numbers will be provided in D5.2 [20].

8.4 Obj4: Develop physical and link-layer technologies to support 5G
requirements

Link layer technologies have been investigated in WP2. L2 switching technologies have
been investigated in WP3.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 120

Table 17: Objective4 and KPIs within WP3

5GPPP KPI Impact Benchmark Measurements

Latency of < 1ms between
5G Point of Attachment
(PoA) and mobile core.

Latency and jitter of
hardware switches (E.g.
less than 400ns, [31]).

Data plane throughput,
data plane latency/jitter.

The measurements of throughput, latency/jitter indicated whether the more flexible
devices are still able to satisfy the requirements of fronthaul and backhaul traffic. The
measurement of data plane throughput is not needed to measure the KPI, but is used to
validate that latency requirements are achieved without increasing packet loss rate.

Data plane throughput, latency, and jitter are described already for Objective 3 in
Section 8.3.

8.5 Obj5: Increase cost-effectiveness of transport technologies for
ultra-dense access networks

This objective is not relevant for WP3.

8.6 Obj6: Design scalable algorithms for efficient 5G-Crosshaul
resource orchestration

WP3 has developed the XCI, including an algorithm for network optimization. The
relevant aspect here is the scalability of the algorithms, being able to handle networks
with 10 times more nodes.

Table 18 : Objective6 and KPIs within WP3

5GPPP KPI Impact Benchmark Measurements

Scalable management
framework: algorithms that
can support 10 times
increased node densities.

Separate management of
FH and BH networks in
metropolitan areas.

CPU profiling of the
control subsystem.

Resource consumption, especially CPU usage, for reference configurations is measured
to show that the XCI scales up. Topology and size of reference configurations are based
on the topologies described in D1.2 [54].

Further resource management and TE algorithms as well as techniques for path
provisioning have been developed in WP4, their evaluation on the scalability is shown
in D4.2 [55].

8.7 Obj7: Design essential Crosshaul-integrated (control/planning)
algorithms

WP3, jointly with WP4, has developed applications to reduce energy consumption in
the 5G Crosshaul by 30% through energy management. In the XCI, the control of
optimal scheduling of equipment sleep cycles, routing and function placement is the key

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 121

functional enabler for the Energy Monitoring and Management Application. The
corresponding KPI – Design essential 5G-Crosshaul-integrated (control/planning)
applications – is described in D4.2 [55].

8.8 Obj8: 5G-Crosshaul key concept validation and proof of concept

WP3 contributed to the joint demonstrations in the testbed providing XCI and XFE
components. In general, the relevant KPIs related to these demonstrations are described
in WP5. Specifically, WP3 developed self-healing mechanisms. Algorithms for
resource orchestration based on traffic load and energy-aware optimization and
reconfiguration are part of the applications and are described in WP4.

Table 19: Objective8 and KPIs within WP3

5GPPP KPI Impact Benchmark Measurements

Self-healing mechanisms
for unexpected 5G-
Crosshaul link failures
through alternative path
routing in mesh topologies.

Separate out-of-band wired
control plane.

Path restoration times for
link and node failures.

It has been measured whether the XCI designed in 5G-Crosshaul is able to, within an
acceptable time (i.e., a few seconds), maintain the backhaul/fronthaul path amongst two
end points after a failure in the current established path. Both wired (benchmark) and
wireless control channels are compared.

Our findings reveal that, due to the self-healing mechanisms embedded in the control
logic of the XCI and regardless of the control plane medium used, the designed XCI is
able to restore data plane paths that have been affected by failures. In particular, the
exhibited distribution of data plane restoration times is within the order of hundreds of
ms (i.e., less than 300ms) whereas results with a wired control plane (i.e., a separate
out-of-band control plane) were below 10ms.

The aforementioned results reported are independent of the kind of node/link failure.
We obtain these results by evaluating different data plane failure events (e.g., a
mmWave data plane node failure or a WiFi data plane node failure). More details about
this set of measurements can be found in D5.2 [20].

The path restoration times are not excessively higher than those obtained with a separate
wired out-of-band control plane. Results obtained with a wireless control plane are
higher because of the unreliability of the wireless control plane. It is important to note
that the deployment cost with a wireless control plane is significantly lower than that of
an out-of-band reliable wired control plane.

On the other hand, as the XCI spans across larger parts of the network and therefore
multiple technology (or per-vendor) domains, the overall network recovery will be
substantially improved compared to out-of-band control of isolated technological
domains due to the necessity of manually restoring the multi-domain paths. When path
restoration times are within the same order or even better, the overall self-healing
mechanism will provide a more optimal network recovery solution as it spans across a
larger part of the network than isolated technical domains.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 122

8.9 Use of developed components in demonstrations

The components developed in WP3 have been evaluated in the demonstrations in WP5.
The usage of the components in the experiments, see Table 20, as described in D5.2
[20] is summarized in Table 21 and Table 22. The NBI and SBI definitions and the XCF
are used implicitly, they are not listed here.

Table 20: List of Experiments in D5.2 [20]

Number Name

1 Power Consumption Monitoring for XPFE physical nodes

2 Power consumption monitoring for single network paths and tenants

3 Energy-oriented network resource management in RoF domains

4 Energy-oriented network resource management in XPFE domains

5 Energy-oriented virtual infrastructure management

6 Energy-oriented network resource management in XPFE domains for on-
demand provisioning of connections dedicated to fronthaul and backhaul
traffic

7 EMMA resource management over mmWave mesh

8 Virtual CDN service on the 5G-Crosshaul infrastructure

9 Multicast TV service provisioning

10 Path reconfiguration when QoS degradation

11 Distribution of live content through the vCDN infrastructure on the 5G-
Crosshaul infrastructure

12 Assessment of the SDN-based control of the Optical Transport Network
(optical domain)

13 Assessment of the SDN-based control and data plane for the mmWave/Wi-
Fi mesh domain

14 End-to-end characterization. Network Orchestration across multiple
heterogeneous domains: control and data plane characterization

15 Backhaul and Fronthaul services integration through an SDN WS-WDM-
PON transport network and XPFEs + Radio-over-Fibre

16 Evaluation of mixed Digital/Analogue Radio-over-Fibre

17 Integration of XCSE, XPFE, mmWave and CPRI compression data plane
solutions

18 Evaluation of integrated packet-based FH/BH combining wired XPFEs and
hybrid mmWave/optical wireless links

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 123

Table 21: Use of XCI components in experiments

Component Section Experiment

NFVO 3.2.1 5, 8, 9, 10, 11

VNFM 3.2.1 5, 8, 9, 10, 11

VIMaP 3.2.1 5, 9, 10, 11, 12

SDN controller 3.2.3 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

SDN controller/SBI driver 3.2.3 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14

SDN controller/network core
services

3.2.3 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14

SDN controller/path
computation

3.2.3 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14

SDN controller/path
provisioning

3.2.3 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14

SDN controller/network
reconfiguration

3.2.3 4, 5, 6, 7, 10, 12, 13, 14

SDN controller/analytics for
monitoring

3.2.3 1, 2, 4, 5, 6

SDN controller/ Parent SDN
controller

3.2.3,
3.3

12, 13, 14

SDN controller/analytical
algorithms

4.1 5

Table 22: Use of dataplane components in experiments

Component Section Experiment

XPFE (enhanced Lagopus) 5.2.2.3 6, 8, 9, 10, 11, 15, 17, 18

XPFE Flow pipeline 6.3 6, 8, 9, 10, 11, 15, 17, 18

eNb with different split options 7 6, 14, 15, 18

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 124

9 Conclusions

In this deliverable, we have presented the consolidated design of the 5G-Crosshaul
control plane platform (i.e. XCI) together with the design of a NBI to the applications
plane and a SBI to the data plane. Further, we have provided the data plane design,
particularly the design of packet switching elements (XPFEs).

We have provided the design of NBI APIs exposed by several XCI services towards the
5G-Crosshaul applications. More specifically, we have provided the API design for
each NBI service, the most relevant information of each respective data model, and a
workflow to illustrate the use of each service by a generic 5G-Crosshaul application or
by an internal module inside the XCI that, in its turn, can expose an NBI. The NBI APIs
designed in WP3 reflect the design agreements with WP4, where the requirements of
5G-Crosshaul applications have been detailed.

Furthermore, we presented the XCI design, which is in line with the 5G-Crosshaul
System Architecture in D1.2. Essentially, we provided detailed deployment aspects
including the selection of software components inside the XCI and possible software
frameworks and platforms to be used for their implementation, along with a detailed
discussion of different deployment models of the XCI (focusing on deployment and
interconnection models of the SDN controllers). We further presented the details of the
interaction among SDN controllers, MANO components and between child and parent
controller. The interaction shows that our XCI design is a suitable enabler for
modularized and independent implementations.

The algorithms in the XCI use different underlying models. We described power
consumption models for virtual machines and containers. An optimization model for the
forwarding decisions is described as well.

In this document, the consolidated design of the data plane based on XFE has been
defined, in particular, the XPFE and the XCF. MAC-in-MAC is chosen has the baseline
technology to design the XCF. Synchronization aspects for packet based networks and
OAM for 5G-Crosshaul network have been further explored in this document.

The document also focuses on the interaction between XCI and the data plane at the
SBI. The OpenFlow protocol has been chosen as the SBI candidate for controlling the
data-plane forwarding. We presented an analysis on how OpenFlow 1.5.1 specifications
can fulfill the XFE, Adaptation Function (AF) and the XCF design requirements, and a
XPFE OpenFlow pipeline. This is complemented by a description of procedures to
integrate XPFE nodes into an existing network.

We described implementations of different splits of the protocol stack, implying
different requirements regarding latency and jitter for the fronthaul traffic.

Finally, the report has detailed the KPIs relevant for WP3 and their evaluation.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 125

10 Bibliography

[1] 5G-Crosshaul, Deliverable D3.1, XFE/XCI design at year 1, specification of
southbound and northbound interface

[2] 5G-Crosshaul, Deliverable D1.1, 5G-Crosshaul initial system design, use cases and
requirements

[3] ETSI GS NFV 003 V1.2.0 (2014-11), Network Functions Virtualization (NFV);
Terminology for Main Concepts in NFV. European Telecommunications Standards
Institute.

[4] SDN Architecture 1.0 (June 2014 | TR-502). Open Network Foundation.
[5] 5G-Crosshaul, Deliverable D2.1, Study and assessment of physical and link layer

technologies for 5G-Crosshaul
[6] OpenDaylight [Online]. Available: http://www.opendaylight.org
[7] ONOS [Online]. Available: http://onosproject.org
[8] OpenStack [Online]. Available: http://www.openstack.org
[9] WebSocket protocol. https://tools.ietf.org/html/rfc6455
[10] RESTCONF protocol. https://tools.ietf.org/html/draft-ietf-netconf-restconf-12
[11] 5G-Crosshaul, Deliverable D4.1, Initial design of 5G-Crosshaul Applications and

Algorithms
[12] OpenStack Ceilometer [Online]. Available at

http://docs.openstack.org/developer/ceilometer/
[13] ETSI NFV Use Cases [Online]. Available at.

http://www.etsi.org/deliver/etsi_gs/nfv/001_099/.../gs_nfv001v010101p.pdf
[14] ETSI GS NFV IFA 010, v2.1.1, Network Functions Virtualization (NFV);

Management and Orchestration; Functional Requirements Specification.
[15] Open Baton [Online]. Available at http://openbaton.github.io
[16] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer and X. Hesselbach, "Virtual

Network Embedding: A Survey," in IEEE Communications Surveys & Tutorials,
vol. 15, no. 4, pp. 1888-1906, 2013.

[17] IETF Abstraction and Control of Transport Networks BoF.
https://sites.google.com/site/actnbof/

[18] Ryu controller [Online]. Available at https://osrg.github.io/ryu/
[19] Floodlight [Online]. Available at http://www.projectfloodlight.org/floodlight/
[20] 5G_Crosshaul, Deliverable 5.2, Report on experimentation results and proof of

concept (under preparation)
[21] S. Tadesse, C.F. Chiasserini, F. Malandrino, “Energy Consumption Measurements

in Docker”, IEEE Computers, Software, and Applications Conference (COMPSAC
2017), Turin (Italy), July 2017

[22] Standard Performance Evaluation Corporation, SPEC CPU 2006,
https://www.spec.org/cpu2006/

[23] NGMN, LTE backhauling deployment scenarios, white paper, 2011

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 126

[24] IEEE 1904.3, Draft Standard Radio over Ethernet Encapsulations and Mappings
[25] IEEE Standards Association, Bridges and Bridged Networks, IEEE Std 802.1Q™-

2014
[26] Small Cell Forum, Small Cell Virtualization Functional, Splits and Use Cases,

document 159.05.1.01, June 2015
[27] Lagopus [Online]. Available at http://www.lagopus.org
[28] Dataplane Development Kit [Online]. Available at http://dpdk.org/
[29] eCPRI 1.0 Specification, [Online], Available at http://www.cpri.info/spec.html
[30] IEEE LAN/MAN standards committee, Specification and Management Parameters

for Interspersing Express Traffic, IEEE 802.3br
[31] 5G-Crosshaul, Deliverable D2.2, Integration of physical and link layer technologies

in 5G-Crosshaul network nodes.
[32] Open Networking Foundation (ONF), "OpenFlow Switch Specification," March

2015. [Online]. Available:
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-
specifications/openflow/openflow-switch-v1.5.1.pdf

[33] Sachin Sharma, Dimitri Staessens, Didier Colle, Mario Pickavet, and Piet
Demeester, In-Band Control, Queuing, and Failure Recovery Functionalities for
OpenFlow, IEEE Network Jan/Feb 2016

[34] Open Networking Foundation (ONF), OF-Config 1.2, OpenFlow Management and
Configuration Protocol, ONF TS-016, [Online]. Available:
https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/wp-
content/uploads/2013/02/of-config-1.2.pdf

[35] NETCONF protocol, https://tools.ietf.org/html/rfc6241
[36] D. Samociuk: Secure Communication Between OpenFlow Switches and

Controllers; AFIN 2015: The 7th Intl. Conf. on Advances in Future Internet
https://www.thinkmind.org/download.php?articleid=afin_2015_2_30_40047

[37] R. Santos, A. Kassler, A SDN Controller Architecture for Small Cell Wireless
Backhaul using a LTE Control Channel, 2016 IEEE 17th Intl. Symp. on A World of
Wireless, Mobile and Multimedia Networks (WoWMoM)

[38] Katiyar, R., Pawar, P., Gupta, A., and Kataoka, K.: Auto-Configuration of SDN
Switches in SDN/Non-SDN Hybrid Network. In Proc. of the Asian Internet
Engineering Conf. (2015), ACM, pp. 48–53

[39] 3GPP TS 33.310, Network Domain Security (NDS); Authentication Framework
(AF)
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?sp
ecificationId=2293

[40] Internet X.509 Public Key Infrastructure Certificate Management Protocol. RFC
4210, https://tools.ietf.org/html/rfc4210

[41] IEEE 802.11ad, http://www.ieee802.org/11/Reports/tgad_update.htm
[42] IEEE Standards Association, "Standard for a Precision Clock Synchronization

Protocol for Networked Measurement and Control Systems. IEEE 1588," 2008

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 127

[43] IEEE Standards Association, "Timing and Synchronization for Time-Sensitive
Applications in Bridged Local Area Networks. IEEE 802.1AS," 2012

[44] J.-L. Ferrant, et al, “Development of the First IEEE 1588 Telecom Profile to
Address Mobile Backhaul Needs”, IEEE Communications Magazine, pp. 118-126,
October 2010.

[45] J. Paulo, I. Freire, I. Sousa, C. Lu, M. Berg, I. Almeida, and A. Klautau, “FPGA-
Based Testbed for Synchronization on Ethernet Fronthaul with Phase Noise
Measurements”, in Proceedings of Intl. Symp. on Instrumentation Systems, Circuits
and Transducers – INSCIT, Sept. 3, 2016.

[46] I. Freire, I. Souza, I. Almeida, C. Lu, M. Berg, A. Klautau, “Analysis and
Evaluation of End-to-End PTP Synchronization for Ethernet-Based Fronthaul”, in
Proceedings of IEEE Global Communications Conference, Dec. 7, 2016.

[47] IETF, Deterministic Networking (detnet) working group,
https://datatracker.ietf.org/wg/detnet/charter

[48] IETF, Source Packet Routing in Networking (spring) working group.
https://datatracker.ietf.org/wg/spring/charter

[49] Open Networking Foundation (ONF), OpenFlow Table Type Patterns, Version 1.0,
August 2014.

[50] Open Networking Foundation (ONF), MPLS-TP OpenFlow Protocol Extensions
for SPTN, Version 0.9, ONF TS-029, January 2017.

[51] IETF RFC 5531, RPC: Remote Procedure Call Protocol Specification Version 2
[52] Affirmed Networks, Service Creation [Online]. Available:

http://www.affirmednetworks.com/products-solutions/service-creation/
[53] Cisco, Cisco Network Services Orchestrator Enabled by Tail-f [Online]. Available:

https://www.cisco.com/c/dam/en/us/products/collateral/cloud-systems-
management/network-services-orchestrator/at-a-glance-c45-734640.pdf

[54] 5G-Crosshaul, Deliverable, D1.2, Final 5G-Crosshaul System Design and
Economic Analysis (under preparation)

[55] 5G-Crosshaul, Deliverable D4.2, Final 5G-Crosshaul Applications and Algorithms
[56] 3GPP TR 38.801 v14.0.0, Study on New Radio Access Technology, Radio access

architecture and interfaces
[57] Altiostar [Online]. Available: http://www.altiostar.com/news/press-

releases/company-launch/
[58] Small Cell Forum, „Virtualization for small cells – Overview” [Online]. Available:

http://scf.io/en/documents/106__Virtualization_for_small_cells_Overview.php
[59] Small Cell Forum, “Small cell virtualization functional splits and use cases”

[Online]. Available: http://scf.io/en/documents/159_-
_Small_Cell_Virtualization_Functional_Splits_and_Use_Cases.php

[60] Small Cell Forum, “nFAPI and FAPI specifications” [Online],
http://scf.io/en/documents/082_-_nFAPI_and_FAPI_specifications.php

[61] Octasic Software Defined Radio product [Online]. Available:
http://www.octasic.com/product/octbts-3000/

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 128

11 Appendix I: Northbound interface design

In this appendix, we provide the details of those APIs, which have been omitted in
Section 2 for the sake of brevity.

11.1 Provisioning and Flow Actions

11.1.1 APIs	

Table 23 provides the set of Northbound APIs that are available to perform different
operations on the flows through an SDN controller (e.g. ONOS, ODL). These
interfaces, in the form of REST APIs, allow creating, deleting, and modifying flow rules
in physical nodes. In this specific context, nodes are intended as XPFEs. The response
to these operations is in XML or JSON format.

Table 23: Provisioning and flow actions API: flow rules in physical devices.

Prot. Type URI Parameters

REST POST ../sdn_ctrl/flows/{no
de_id}

or

../sdn_ctrl/flows/{no
de_id}/{table_id}

Create a new flow
rule.

Input node_id

table_id (optional)

flow_object

Output Success: flow_id

Failure: Error code

REST DELETE ../sdn_ctrl/flows/{no
de_id}/{flow_id}

or

../sdn_ctrl/flows/{no
de_id}/{table_id}/{f
low_id}

Delete an existing
flow rule.

Input node_id

table_id (optional)

flow_id
Output Success: Status Code of normal

end

Failure: Error code

REST GET ../sdn_ctrl/flows/{no
de_id}

or

../sdn_ctrl/flows/{no
de_id}/{table_id}

Retrieve the list of
all flow rules on a

Input table_id

node_id

Output flow_object

List of flow rules on the
specified node, or out of a
specific flow table

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 129

specific node or
table.

REST GET ../sdn_ctrl/flows/

Retrieve all the
flow rules

Input -

Output List of all flow rules

REST GET ../sdn_ctrl/statistics/
flows/
{node_id}/{port_id}
/

Retrieve statistics
for all flows passing
over a port of a
node

Input node_id

port_id

Output Aggregate values

 Bytes counter
 Rate [bytes/s]

Time of last statistics collection

REST GET ../sdn_ctrl/streams/f
lows/{event_id}

Input event_id

Output URL to the notification service
(e.g. Websocket)

Webso
ckets

SUBSCRI
BE

../sdn_ctrl/streams/f
lows/{event_id}

Input event_id

Output Success: Status Code of normal
end

Webso
ckets

ASYNC notification event Input event_id

Output event_object

11.1.2 Information	Model	

Description of the parameters used for setting up flow rules in the switching elements
are shown below in Table 24. The UML diagram describing the defined information
model to provision flow rules in a node (i.e. switching element) is shown in Figure 59.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 130

Figure 59: Provisioning and flow actions information model.

The main data objects are presented in more detail:

Table 24: Provisioning and flow actions information model.

Parameters Type Description

node_id String Identifier of the node

table_id String Identifier of the flow table

port_id String Identifier of a port

flow_id String Identifier of a flow

flow_object Object table_id: string
 flow_id: string
 flow_match: string denoting the matching rule
 flow_instruction: string denoting the instructions.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 131

 Time out: Integer denoting the time the flow rule
exists.

 Priority: Integer indicating the priority of a flow rule.

 Meter: Integer denoting statistics such as packet and
byte counters.

event_id String Identifier of a specific event to subscribe.

event_object Object Object which contains the set of information specific to the
subscribed event.

11.1.3 Workflow	

The workflow provided in Figure 60 illustrates the configuration of flow rules (e.g.
FlowMod in OpenFlow) in a node. Any 5G-Crosshaul application (e.g. Mobility
Management Application (MMA)) or even the VIM, can request the SDN controller to
create, delete and modify flow rules in one or more switching elements at the data
plane.

 The workflow shown in Figure 60 includes the following steps:

1. A consumer application requests the creation of new flow rules in a specific
device.

a. The SDN controller creates new flow rules specifying the matching
rules, instructions, priority and time out, just to name a few.

2. A consumer application decides to request the details of a specific flow rule.
a. The SDN controller returns an object describing the parameters of the

flow (i.e. flow identification, flow match, flow actions, flow priority and
time out).

3. A consumer application decides to request the statistics for all the flows passing
through a specific port.

a. Upon receiving the request, the SDN controller returns related statistics
such as byte counter, rate and the time at which statistics were collected.

4. A consumer application decides to subscribe to the notification of a specific
event of interest (e.g. arrival of a new flow). An URL is returned in response.

5. A WebSocket is created in order to subscribe to the notification service for the
event of interest.

6. Asynchronous notifications are received for the specific event of interest. An
object is returned in response containing the set of information for the
subscribed event.

7. A consumer application decides to remove (delete) a specific flow rule from a
device.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 132

Figure 60: Flow actions example.

11.2 IT infrastructure and inventory

11.2.1 APIs	

In the following, we provide a description of the APIs offered by the IT infrastructure
and inventory services.

Table 25: IT infrastructure and inventory API.

Prot. Type URI Parameters
REST GET ../it/vms

../it/tenant/{tenant_id}/vms

Retrieve all/per_tenant VM
elements.

../it/vms?type=”type”
../it/{tenant_id}/vms?type=”typ
e”

Retrieve all VM elements of

Input type (optional) tenant_id

Output vm_list

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 133

specified type.
REST GET ../it/vm/{vm_id}

Retrieve information of VM
with identifier vm_id.

Input vm_id
Output vm_object

REST POST ../it/vm
../it/tenant/{tenant_id}/vm

Create a new VM for
tenant_id.

Input vm_object

tenant_id

Output vm_id

REST PUT ../it/vm/{vm_id}
../it/tenant/{tenant_id}/vm/{vm
_id}

Update information of VM
with identifier vm_id.

Input vm_id

tenant_id

vm_object

Output Success: Status Code of
normal end
Failure: Error code

REST DELE
TE

../it/vm/{vm_id}

../it/tenant/{tenant_id}/vm/{vm
_id}

Delete the VM (in tenant_id)
with identifier vm_id.

Input vm_id

tenant_id

Output Success: Status Code of
normal end
Failure: Error code

REST GET ../it/tenant/{tenant_id}/os_host

List compute/storage nodes in
tenant_id

Input tenant_id

Output List of compute/storage
nodes

REST GET ../it/tenant/{tenant_id}/os_host
s/{host_name}

List details of host_name

Input tenant_id

host_name

Output host_object

REST GET ../it/tenant/{tenant_id}/os_host
s/{host_name}/start

Start a compute node
host_name in tenant tenant_id

Input tenant_id

host_name

Output Success: Status Code of
normal end
Failure: Error code

REST GET ../it/tenant/{tenant_id}/os_host
s/{host_name}/shutdown

Input tenant_id

host_name

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 134

Shutdown a compute node
host_name in tenant tenant_id

Output Success: Status Code of
normal end
Failure: Error code

REST GET ../it/tenant/{tenant_id}/os_hype
rvisors

Get list of hypervisor in tenant
tenant_id

Input tenant_id

Output Hypervisor_list

REST GET ../it/tenant/{tenant_id}/os_hype
rvisors/{hypervisor_id}

Input tenant_id

hypervisor_id

 Output hypervisor_object

11.2.2 	Information	Model	

The data model comprises the computing, storage, and network functions associated to
a given tenant (or owner/user). Each tenant has associated a set of VMs and can
comprehend one or more VNs. Each VN is formed by a set of virtual links defining the
connection patterns between each pair of VMs.

Figure 61: IT Infrastructure and Inventory information model.

A more detailed set of the attributes for the object VM is provided in the following
table:

Table 26: IT infrastructure and inventory information model.

Parameters Type Description
vm_id String Identifier of the VM.

Tenant

tenant_id

VM

*

1

IT Infrastructure
and Inventory *1

1

*

Virtual
Network

network_id

*

1

vm_id
name
ip
mac
network_id
hypervisor
node_id
endpoint_id
flavour

1 *

Virtual
Link

link_id

1

*

2

1..*

Compute
Node

id
hypervisor_info*

1

1

*

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 135

vm_object Object Object describing the VM as a set of properties in JSON or
XML format.
Parameters (variable; type; description):

 Name; String; name of the VM.
 Flavor; String; Hardware template,
 Image_name; String; VM template,
 NetworkId; String; L2 Network identifier.
 SubnetId; String; L3 Network identifier.
 Id; String; unique identifier of the VM.
 MAC address; String; L2 address
 IP address; Ipv4; L3 address
 Hypervisor; String; Identifier of the compute node on

which is deployed the VM.
 Node_id; String; DpId of the switch attached
 Endpoint_id; String; Network identifier of where the

VM is attached.
type String Type of the VM (compute or storage).

11.2.3 Workflow	

In the following, we provide a message exchange sequence to illustrate the use of the IT
controller service by the VIMaP upon the creation and management of Over-The-Top
(OTT) network services. The consumer is in this example the NFV-O and the VIMaP,
both located inside the XCI. The goal is to illustrate the use of the IT infrastructure and
inventory services for the ETSI NFV use case. In particular, the workflow in Figure 62
illustrates the creation of a network service layout, composed by a set of VMs and their
direct interconnection. As shown in Figure 62, this process can consist of four major
steps:

1. The NFV-O requests the instantiation of a network service layout to the VIMaP
composed by a set of VMs. Note that the network service layout is associated to a
tenant, which is the owner of this network service layout.

2. The VIMaP parses the template specified by the NFV-O and requests to the IT
infrastructure the instantiation of the following resources:
2.1. The creation of a VN layout, returning an identifier in case of successful

creation.
2.2. In the case of successful creation, the IT controller returns an identifier for this

virtual network layout.
2.3. The instantiation of the VMs forming the virtual network layout with the

identifier previously returned by the IT infrastructure and inventory.
2.3.1. Based on the template introduced to the VIMaP, the IT controller

creates/instantiates a set of VMs.
2.3.2. The number of instantiated VMs is based on the profile requested by the

NFV-O.
2.3.3. A zone (physical location) is selected where each VM will be

geographically deployed.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 136

3. The VIMaP (e.g., by request of the VNF Manager, the NFV-O) may decide, at any
point in time of the lifecycle of the network service layout, to update its profile,
adding or removing elements.

4. The VIMaP receives a request to terminate the network service layout. This implies
the interaction with the IT infrastructure and inventory service for the subsequent
deallocation of VMs.

The entities involved in this process are the NFV-O, the VNF manager, and the IT
infrastructure and inventory.

Figure 62: IT infrastructure and inventory workflow example.

11.3 Statistics

11.3.1 APIs	

In the following, we provide a description of the APIs offered by the Statistics service.

IT Infrastructure
and Inventory

POST reply: network_layout_id

create subnet to allocate network
service layout

VIMaP

NFV‐O

create_netserv_layout()

netservice_layoutID

POST ../it/tenant/{tenant_id}/network_layout

POST ../it/tenant/{tenant_id}/network_layout/{network_layout_id}/vm

POST reply: vm_id

PUT ../it/tenant/{tenant_id}/vm_id

PUT reply: Success or Failure

delete_netserv_layout(id)

Success or Failure

 loop

 until all VMs are deleted or failure deleting VM

DELETE ../it/tenant/{tenant_id}/network_layout/{network_layout_id}/vm

PUT reply: Success or Failure

 loop

 until all VMs are created or failure creating VM

(1)

(2)

(2.1)

(2.2)

(2.3)

(3)

(4)

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 137

Table 27: Statistics API.

Prot. Type URI Parameters

REST GET ../stats/{tenant_id}

Retrieve a list of
stats that can be
polled

Input

tenant_id

Output Success: Return list of stats in
the response body.
Failure: Error code

REST GET ../stats/{tenant_id}/
{stat_id}/samples

Retrieve samples

Input

tenant_id

stat_id

Output Success: Return stat structure in
the response body.
Failure: Error code

REST POST ../stats/{tenant_id}/
{stat_id}/samples

Post a list of
samples

Input tenant_id

stat _id

samples

Output Success: Return list of meters
in the response body.
Failure: Error code

REST GET ../stats/{tenant_id}/
{stat_id}/statistics

Retrieve statistics
out of samples

Input tenant_id

stat _id

stat_info

Output Success: Return statistics of
samples according to stat_info
in the response body.
Failure: Error code

REST GET ../stats/{tenant_id}/
{stat_id}/statistics/f
unctions

Retrieve list of
available aggregate
functions

Input

tenant_id

stat_id

Output List of aggregate functions XCI
can perform

REST GET ../stats/{tenant_id}/
{stat_id}/alarms

Retrieve list of
available alarms

Output Success: Return list of alarms
structure in response body.

Failure: Error code

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 138

REST PUT ../stats/{tenant_id}/
{stat_id}/alarms/{al
arm_id}

Set alarm_id

Input

tenant_id

stat_id

alarm_id

alarm_info

Output Success: Status Code of normal
end
Failure: Error code

REST DELETE ../stats/{tenant_id}/
{stat_id}/alarms/{al
arm_id}

Delete alarm_id

Input

tenant_id

stat_id

alarm_id

Output Success: Status Code of normal
end
Failure: Error code

Webso
ckets

SUBSCRI
BE

../stats/{tenant_id}/
{stat_id}/alarms/{al
arm_id}

Subscribe to an
alarm

Input tenant_id

stat_id

alarm_id

Output Alarm flag

WebSo
ckets

ASYNC

notification event Output tenant_id

stat_id

alarm_id

alarm_info

11.3.2 	Information	Model	

The Statistics service information model supports the collection of samples of different
types of information: bytes transmitted/received, bytes stored, free storage space, CPU
load, etc., a simple data processing (e.g. aggregation of samples), and setting up alarms
for monitoring. Note that this information is collected per tenant_id.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 139

Figure 63: Statistics information model.

Next, the main data objects are presented in more detail:

Table 28: Statistics information model.

Parameter Type Description

stat_id Integer Unique identifier of a type of data (bytes transmitted/received,
storage used, storage free). The identifier is unique across
different tenants which removes the need to specify a tenant_id.

tenant_id Integer Unique identifier of a virtual tenant.

alarm_info Object It contains an alarm_id to uniquely identify the alarm and a
description of the event that triggers the alarm, e.g. when bytes
transmitted reach a threshold.

sample Object Object that contains a sample collected for a stat, including
timestamps, source of the sample and other metadata.

stat_info Object This object is aimed to generate and store process information
for a stat. This structure may contain a numeric value (e.g.
maximum sample in a certain period of time), or an array of
samples (number of occurrence of each unique sample). An

stat

stat_id: string
tenant_id: string
resource_id: string
type: string
unit: string

sample

stat_id: string
tenant_id: string
timestamp: datetime
type: string
unit: string
metadata: string
source: string
resource: resource_id

stat_info

stat_id: string
tenant_id: string
aggregate: string
count: int32
start_time: datetime
end_time: datetime
groupby: string
max: float
min: float
sum: float
unique: float array
density: float array
unit: string

Tenant

tenant_id: string
description: string
status: string

*1

alarm_info

alarm_id: string
event: string

1

*

*

1

1

1..*

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 140

important element of this information object is the aggregate
function which lets us request personalized processing of a data
shape by providing a mathematical function which XCI shall
perform on such subset of data.

11.3.3 Workflow	

Figure 64 illustrates how a consumer (an application like EMMA) can poll for statistics
performed over a dataset:

1. Consumer requests Statistics service to aggregate a set of samples of stat_id
according to certain parameters e.g. within a period of time, and an aggregate
function, e.g. average. The statistics service replies with the processing result.

2. A consumer may set up an alarm should an event occur. To achieve this, a
WebSocket is created so that the Statistics service can notify asynchronously the
consumer when such an event occurs.

Figure 64: Statistics workflow example.

11.4 Virtual Infrastructure Manager and Planner

The NBI of the VIMaP service is based on the REST protocol. The VIMaP is basically
in charge of conducting CRUD operations for the network service layout (a set of VMs)
for the ETSI NFV architecture. The VIMaP also offers an API to conduct CRUD
operations for the network slice or virtual infrastructure concept (i.e., a set of not only
VMs, virtual switches, and virtual routers) associated with the creation of virtual
infrastructure for the MVNO use case. For operations on the network service layout, it
corresponds to the deployment of Network Services as defined within the ETSI MANO
architecture. In particular, it is in line with the ETSI use case #4 VNF Forwarding
Graphs in [13]. For operations on network slices, it tackles the instantiation of virtual

GET /stats/{stat_id}/statistics

GET reply: result

Statistics

PUT /stats/{stat_id}/alarms/{alarm_id}

PUT reply: Success or Failure

WEBSOCKET asynchronous notification event

Aggregate samples in stat_id
according to stat_info parameters

Set an alarm on stat_id based
on alarm_info parameters

App (e.g. EMMA)

Event triggers alarm

 loop

 until websocket closes

DELETE /stats/{stat_id}/alarms/{alarm_id}

DELETE reply: Success or Failure

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 141

infrastructures with ultimate user control composed of a coherent set of network,
compute, and storage infrastructure. In this case, the infrastructure is completely
provided to the tenant (e.g., XFEs, cards, ports) including XPU resources. In fact, the
VIMaP main goal is to offer to the consumer the services offered by the SDN and IT
(compute and storage) controller in a unified manner.

11.4.1 APIs	

In the following, we provide a description of the APIs offered by the VIMaP services.

Table 29: Virtual Infrastructure Manager and Planner API.

Prot. Type URI Parameters

REST POST ../vimap/
tenant/{tenant_id}/
vm/create_vm

Create a new VM for
tenant_id.

Input vm_object

tenant_id

Output vm_id

REST GET ../vimap/
tenant/{tenant_id}/
vm/{vm_id}

Get information for vm_id
in tenant tenant_id.

Input vm_id

tenant_id

Output vm_object

REST DELETE ../vimap/
tenant/{tenant_id}/
vm/{vm_id}

Delete VM vm_id for
tenant_id.

Input vm_id

tenant_id

Output Success: Status Code of
normal end

Failure: Error code

REST PUT ../vimap/
tenant/{tenant_id}/
vm/{vm_id}

Update vm_id information
with vm_object in tenant
tenant_id.

Input vm_id

tenant_id

vm_object

Output Success: Status Code of
normal end

Failure: Error code

REST GET ../vimap/
tenant/{tenant_id}/
vm

Retrieve all VM elements

Input tenant_id

filter (optional)
JSON_Object (Object
containing a key/value
array with properties to

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 142

in tenant_id.

../ vimap /
tenant/{tenant_id}/
vm?filter={“networkId”:”
net1”}

Retrieve all VM elements
within net1

filter the list)

Output vm_list

REST POST ../vimap/
tenant/{tenant_id}/
connectivity_service/create
_call

Specify connectivity
provisioning between
endpoints with call_object
in tenant_id.

Input tenant_id

call_object

Output tenant_id

call_id

REST GET ../vimap/
tenant/{tenant_id}/
connectivity_service/{call_
id}

Get connectivity
provisioning object
between endpoints
identified by call_id in
tenant_id.

Input tenant_id

call_id

Output call_object

REST PUT ../vimap/
tenant/{tenant_id}/
connectivity_service/{call_
id}

Modify connectivity
provisioning between
endpoints in tenant_id
specified in call_id.

Input tenant_id

call_id

call_object

Output Success: Status Code of
normal end

Failure: Error code

REST DELETE ../vimap/
tenant/{tenant_id}/
connectivity_service/{call_
id}

Input tenant_id

call_id

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 143

Delete connectivity
provisioning between
endpoints in tenant_id.

Output Success: Status Code of
normal end

Failure: Error code

REST GET ../vimap/
tenant/{tenant_id}/
connectivity_service

Obtain connectivity
provisioning information
between endpoints in
tenant_id

Input tenant_id

Output connectivity_service_list

REST GET ../vimap/
tenant/{tenant_id}/hypervis
or/{hypervsisor_id}

Get hypervisor information
of hypervisor
hypervisor_id in tenant
tenant_id.

Input tenant_id

hypervisor_id

Output hypervisor_object

REST GET ../vimap/
tenant/{tenant_id}/hypervis
or

Get list of hypervisors in
tenant tenant_id.

Input tenant_id

Output hypervisor_list

REST GET ../vimap/
tenant/{tenant_id}/
network_topology/{networ
k_id}

Get network information
for network_id in
tenant_id.

Input tenant_id

network_id (sec.2.1)

Output network_object (sec.2.1)

REST POST ../vimap/
tenant/{tenant_id}/
Slice_provisioning_service
/create_slice

Creation of a slice
specified by slice_object in
tenant_id.

Input tenant_id

slice _object

Output tenant_id

slice_id

REST GET ../vimap/
tenant/{tenant_id}/
Slice_provisioning_service

Input tenant_id

slice_id

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 144

/{slice_id}

Obtain information details
of slice_id in tenant_id.

Output slice _object

REST PUT ../vimap/
tenant/{tenant_id}/
Slice_provisioning_service
/{slice_id}

Update information details
of slice_id in tenant_id
with slice_object.

Input tenant_id

slice_id

slice _object

Output Success: Status Code of
normal end

Failure: Error code

REST

DELETE ../vimap/
tenant/{tenant_id}/
Slice_provisioning_service
/{slice_id}

Delete slice_id in
tenant_id.

Input tenant_id

slice_id

Output Success: Status Code of
normal end

Failure: Error code

REST GET ../vimap/
tenant/{tenant_id}/
Slice_provisioning_service

Obtain information details
of all slices in tenant_id.

Input tenant_id

Output slice_objects_list

REST POST ../vimap/
tenant/{tenant_id}/
NetworkServiceSupportLay
out/create_ netserv_layout

Create
netser_layout_object in
tenant_id.

Input tenant_id

netserv_layout_object

Output tenant_id

netserv_layout_id

REST GET ../vimap/
tenant/{tenant_id}/
NetworkServiceSupportLay
out/{ netserv_layout_id}

Obtain information details
of netserv_layout_id in
tenant_id.

Input tenant_id

netserv_layout_id

Output netserv_layout_object

REST PUT ../vimap/
tenant/{tenant_id}/
NetworkServiceSupportLay
out/{ netserv_layout_id}

Input tenant_id

netserv_layout_id

netserv_layout_object

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 145

Update netserv_layout_id
with netserv_layout_object
in tenant_id.

Output Success: Status Code of
normal end

Failure: Error code

REST/

DELETE ../vimap/
tenant/{tenant_id}/
NetworkServiceSupportLay
out/{ netserv_layout_id}

Delete netserv_layout_id
in tenant_id.

Input tenant_id

netserv_layout_id

Output Success: Status Code of
normal end

Failure: Error code

REST/ GET ../vimap/
tenant/{tenant_id}/
NetworkServiceSupportLay
out

Obtain information details
of all network service
layouts in tenant_id.

Input tenant_id

Output netserv_layout_objects_lis
t

REST/

GET ../vimap/
tenant/{tenant_id}/
streams/
topology_update/
{network_id}

Obtain URL to subscribe to
network topology events.

Input tenant_id

network_id (sec.2.1)

Output URL to subscribe to
notification service (e.g.,
websocket)

REST

GET ../vimap/
tenant/{tenant_id}/
streams/
connectivity_service_updat
e/{call_id}

Obtain URL to subscribe to
connectivity service
events.

Input tenant_id

call_id

Output URL to subscribe to
notification service (e.g.,
websocket)

WEBSOC
KET

SUBSC
RIBE

../vimap/
tenant/{tenant_id}/
streams/
connectivity_service_updat
e/{call_id}

Subscription to
connectivity service
specified by call_id.

Output call_object

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 146

11.4.2 	Information	Model	

The VIMaP information data model supports the concept of tenant. A tenant, at the
VIMaP service, may be composed of different slices (virtual infrastructure use case) and
different network service layouts (OTT use case). Both the network slice and
network_service_layout objects are considered a VN from the point of view of the IT
infrastructure and inventory service. A slice or a network service layout entails a set of
calls defining the flow patterns between these components.

Figure 65: Virtual Infrastructure Manager and Planner information model.

In the following, we present more detailed information of the most relevant objects
forming part of the VIMaP NBI service.

Table 30: Virtual Infrastructure Manager and Planner information model.

Parameters Type Description
tenant_id String Identifier of the tenant who is requesting the VIMaP service.
vm_id String Identifier of the VM.

vm_object Endpoint Object describing the VM as a set of properties in JSON or
XML format:
Parameters (variable; type; description):

 Name; String; name of the VM.
 Flavor; String; Hardware template.
 Image_name; String; VM template.
 NetworkId; String; L2 Network identifier.
 SubnetId; String; L3 Network identifier.
 Id; String; unique identifier of the VM.
 MAC; String; L2 address
 IP; Ipv4; L3 address
 Hypervisor; String; Identifier of the compute

Tenant

tenant_id

Slices

slice_id

*1

1

Net_Service_Layout

network_service_layout_id

1

*

Call

call_id

*

*1

1

*

Virtual Network

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 147

(physical) node on which is deployed the VM.
 Node_id; String; DpId of the switch attached
 Endpoint_id; String; Network identifier of where the

VM is attached.
call_id String Identifier of the connectivity service (Call)
call_object Call Intent-based connectivity service request object described as

a set of properties in JSON or XML format:
Parameters (variable; type; description):

 aEnd; Endpoint; Source connectivity service
endpoint

 zEnd; Endpoint; Destination connectivity service
endpoint

 transport_layer; TransportLayerType; Connectivity
service description (L0, L2, L3…)

 traffic_parameters; TrafficParams; QoS parameters
describing the connectivity service (Bandwidth,
Latency…).

Slice _object Slice Slice object described as a set of properties in JSON or XML
format:
Parameters (variable; type; description):

 virtual_IT_infrastructure; JSON; object containing
the description of the virtual IT infrastructure
requested. It should contain the description of
computing and storage resources, requested for the
slice.

 virtual_tenant_network; VTN (sec 2.10.1); abstract
representation of the network slice requested.

 network_service_layout:
NetworkServiceSupportLayout;
object containing a set of service endpoints (VMs)
connected by a graph representation (layout).

 control_stack: JSON: object describing the Software-
Defined control stack for the slice. This object may
contain the addressing and security parameters to
access the control instances.

netserv_layo
ut _object

Network
ServiceS
upportLa
yout

A network service layout object described as a set of
properties in JSON or XML format:
Parameters (variable; type; description):

 service_endpoints; list(Endpoint); list of service
endpoints

 transport_layer; TransportLayerType; Connectivity
service description (L0, L2, L3…)

 traffic_parameters; TrafficParams; QoS parameters
describing the connectivity service (Bandwidth,
Latency…).

 topology_layout; Topology; graph representation of
service endpoints connectivity.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 148

11.4.3 Workflow	

In the following, we provide a message exchange sequence to illustrate the use of the
VIMaP service by an NFV-O when managing the creation and management of OTT
network services. The consumer is in this example the NFV-O, which is located inside
the XCI. The goal is to illustrate the use of the VIMaP services for the ETSI NFV use
case. In particular, the workflow in Figure 66 illustrates the creation of a network
service layout composed by a set of VMs and their direct interconnection.

Figure 66: Virtual Infrastructure Manager and Planner workflow example.

As shown in Figure 66, this process can consist of the major steps:

1. The NFV-O creates a network service layout formed by a set of VMs.
1.1. The VIMaP conducts the necessary operations to create and interconnect the

VMs forming the network service layout.
1.2. Note that in this case, the default algorithm used by VIMaP offers the logic

for the placement of the VMs. This does not preclude the specification of
the placement of VMs by other entities (e.g., the NFV-O or the MTA).

2. In case the VIMaP can allocate the indicated set of VMs (with their associated
characteristics specified by a template) it returns an id of the successfully created
network service layout.

3. The NFV-O can request the characteristics and status of the created network
service layout.

4. At a given point, the NFV-O can update the characteristics or the template of the
previously created network service layout. For instance, it can request to change
the location, the characteristics of a given VM, or the way the VMs are

POST /vimap/tenant/{tenant_id}/NetworkServiceSupportLayout::create_netserv_layout()

POST reply: netservice_layoutID

VIMaP

GET /vimap/tenant/{tenant_id}/NetworkServiceSupportLayout/{netservice_layoutID}

GET reply: netservice_layout_object_parameters

PUT /vimap/tenant/{tenant_id}/NetworkServiceSupportLayout/{netservice_layoutID}

GET reply: Success or Failure

DELETE /vimap/tenant/{tenant_id}/NetworkServiceSupportLayout/{netservice_layoutID}

DELETE reply: Success or Failure

allocate net_serv_layout in phy infrastrucutre
through SDN and Compute controllers

delete net_serv_layout in phy infrastrucutre
through SDN and Compute controllers

update net_serv_layout in phy infrastrucutre
through SDN and Compute controllers

NFVO

(1)

(2)

(3)

(4)

(5)

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 149

connected between them. This change implies the interaction either with the
SDN or compute controllers, or with both entities.

At a given point in time, the NFV-O may decide to deallocate the network service
layout from the physical infrastructure. This requires the interaction of the VIMaP with
both the SDN and compute controllers.

11.5 VNF Manager

11.5.1 APIs	

The VNF Manager provides mechanisms to create, retrieve and remove VNFs, as
described in the following table.

Table 31: VNF Manager API.

Prot. Type URI Parameters

REST POST ../vnfm/vnf

Create a new VNF for
a given tenant.

Input VNFD Id

VNF Tenant Id10

Deployment flavour Id

NS Id

External virtual links Ids
(List<String>): identify the
external virtual links the VNF
must be connected to (through
its external connection points).

Output VNF ID

REST GET ../vnfm/vnf/vnf_id

Retrieve the
information related to
a given VNF.

Input VNF Id

VNF Tenant Id

Output VNF record

REST DELETE ../vnfm/vnf/vnf_id

Remove an existing
VNF.

Input VNF Id

VNF Tenant Id

Output Success: Status Code of normal
end

Failure: Error code

10 A tenant is one or more NFV MANO service users sharing access to a set of physical, virtual or service
resources. A VNF tenant is a tenant to which VNFs are assigned. (See [14])

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 150

11.5.2 	Information	Model	

The main entity managed by the VNF Manager is a VNF. The characteristics of a VNF
are defined according to a standard template, called VNFD, which defines:

 VNF generic information, like vendor, version, human readable description, etc.
 The VNF Components (VNFC), which compose the VNF and their

characteristics, through the definition of associated Virtual Deployment Units
(VDUs).

 The internal and external Connection Points and the virtual links they are
attached to.

 The dependencies between the VNFC, i.e. between VDUs.
 The scripts and configuration parameters to be launched at the various stages of

the VNF lifecycle.
 The monitoring parameters at the whole VNF and single VNFCs level.
 The criteria and the constraints for automated and on-demand scaling of the

VNF.

The VNF Descriptor information model is described in Figure 67.

VNFDs are stored in the VNFD DB, a shared DB which is accessed by both VNFM and
NFV-O. Suitable management APIs are exposed by the NFV-O to load new VNFDs in
the repository. This procedure is defined by ETSI NFV MANO standard and it is out of
the scope of this document. During the instantiation of a VNF, the VNFD is specified in
the request through its unique identifier.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 151

Vdu

id: string
vmImage: string
computationRequirement
virtualMemory
virtualNetworkBw: int
lifecycleEvent: string
constraint: string
highAvailability: string
scale_in_min: uint
scale_out_max: uint
vnfc: Vnfc
monitoringParameter: string

VnfDescriptor

id: string
vendor: string
descriptorVersion: string
version: string
vdu: Vdu
connectionPoint: ConnectionPoint
lifecycleEvent: string
dependency: VduDependency
monitoringParameter: string
deploymentFlavour: DeploymentFlavour
autoScalePolicy: string
manifestFile: string
manifestFileSecurity: string

*

0..1

VduDependency

srcVduId: string
targetVduId: string

VirtualLink

id: string
connectivityType: string
connectionPointId: string
leafRequirement: uint
rootRequirement: uint
qos: string
testAccess: string

1

ConstituentVdu

vduId: string
numberOfInstances: int
constituentVnfc: string

1

*

1

*

1 *

DeploymentFlavour

id: string
flavourKey: string
constraint: string
constituentVdu: ConstituentVdu

ConnectionPoint

id: string
type: string
virtualLinkReference: string

Vnfc

id: string
connectionPoint: ConnectionPoint

1

0..1

*

1 *

*

*

*

**

1

*

Figure 67: VNF descriptor information model.

Next, the main data objects are presented in more detail:

Table 32: VNF Manager information model.

Parameter Type Description

VNFD Id String ID of the VNF descriptor to be instantiated.

Deployment
flavour Id

String Defines the size of the VNF to be instantiated.

VNFD Object Description of the instantiated VNF, its VNFC instances, its
status and its parameters.

Vnf record Object Description of the instantiated VNF, its status, and its
parameters.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 152

11.5.3 Workflow	

This section describes the workflows for instantiation and termination of single VNFs,
modelled according to the option of resource allocation done by the NFV-O. In other
terms, while the VNFM is responsible for coordinating the whole instantiation
procedure, the request for resource allocation to the VIM is mediated by NFV-O. These
workflows are part of the whole Network Service instantiation and termination
workflows; in this case, the VNFM client is actually the NFV-O itself.

As shown in Figure 68, the VNFM receives a request to instantiate a VNF, receiving as
input the VNFD, together with other parameters which indicate the size of the VNF (i.e.
its deployment flavour) and how the VNF must be interconnected to the whole Network
Service (e.g. through the specification of already established external virtual links). The
VNFM generates a VNF Id which is immediately returned and used as reference ID for
further asynchronous notifications or requests related to the lifecycle of that VNF. The
VNFM elaborates the VNFD and identifies the virtual resources (network, storage,
computing) which must be allocated to build all the VNF Components (VNFCs) and the
internal virtual links that compose the VNF itself. The resulting resources are requested
to the NFV-O that can optionally perform some algorithms to decide the optimal
resource placement and finally forwards the request to the VIM. The VIM allocates all
the resources, typically starting from the network side, and when finished notifying the
NFV-O which, in turns, sends an acknowledgement to the VNFM. Once the allocation
procedure is finished, the VNFM takes care of the configuration of the VNF and its
VNFCs and finally notifies the originating requester about the instantiation result.

Figure 68: VNF Manager workflow example: Instantiate VNF.

Figure 69 shows the termination procedure. The VNFM sends the VNF the commands
required to (gracefully) shutdown the running applications, as specified in the VNFD.
Then it asks the NFV-O to delete the virtual resources previously allocated, an action
which is executed interacting with the VIM to remove VMs and network resources.
Once all the resources are deleted, the originating requester is informed with an
asynchronous message.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 153

Figure 69: VNF Manager workflow example: Terminate VNF.

11.6 Analytics for Monitoring

11.6.1 APIs	

This service reliably collects measurements on the utilization of the physical and virtual
resources comprising the cloud infrastructure. This dataset can be used for subsequent
retrieval and analysis, and triggering actions when it is necessary.

Table 33: Analytics for Monitoring API.

Prot. Type URI Parameters

REST GET ../analytics/resources

Retrieve the whole resources

../analytics/resources/(resource_id
)

Retrieve details about one resource
with the resource_id

Input resource_id (optional)

Output list(resource)

resource

REST GET ../analytics/meters

Return all known meters

../analytics/meters/(meter_name)

Return samples for the meter with
the meter_name

Input meter_name
(optional)

Output list (meter)

list (samples)

REST POST ../analytics/meters/(meter_name)

Post a new meter

Input meter_name

Output Success: Status Code
of normal end

Failure: Error code

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 154

REST GET ../analytics/samples

Return all known samples

../analytics/samples/(sample_id)

Return a sample with the
sample_id

Input sample_id (optional)

Output list (sample)

sample

REST GET ../analytics/event_types

Get all event types

../analytics/event_types/(event_typ
e)

Return an event_type

../analytics/events

Return all events matching the
filters

../analytics/events/(event_id)

Return an event with the event_id

Input event_type (optional)

event_id (optional)

Output List (event types)

event_type

list (event)

event

11.6.2 	Information	Model	

The information data model supported by the analytics for monitoring service is shown
in Figure 70:

Figure 70: Analytics for Monitoring Information model.

The main parameters are described in the following table:

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 155

Table 34: Analytics for Monitoring Information model.

Parameters Type Description

resource_id Unicode Identifier of the resource

meter_name Unicode Identifier of the meter

sample_id Unicode Identifier of the sample

event_type Unicode Identifier of the event type

event_id Unicode Identifier of the event

11.6.3 Workflow	

This section shows the workflow followed by an application that requires the analytics
for monitoring service. In particular, Figure 71 illustrates the request of the samples for
a specific meter and the request for creating a new meter for monitoring.

Figure 71: Analytics for monitoring workflow example.

1. Gathering the monitoring data from existing services or by polling the
infrastructure.

2. Configuring the kind of data gathered to meet different operating
requirements.

11.7 Local Management Service

11.7.1 APIs	

The Local Management Service is in charge of the modification of the status of XFEs
and XPUs. For instance, it provides EMMA with REST APIs that can be used to

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 156

perform the network (re-)configuration (switching on/off physical nodes) if such action
leads to the minimization of the energy expenditure while ensuring an acceptable QoS.

Table 35: Local Management Service API.

Prot. Type URI Parameters

REST GET ../lms/{node id}/stts

Retrieve Node Status
(On/Off)

Input Node id

Output Success: n_status
Failure: Error Code

REST POST ../lms/{node
id}/stts/n_status}

Set Node Status to On or
Off

Input Node id

Output Success: n_status

Failure: Error Code

11.7.2 Information	model	

The information data model supported by the Local Management service is shown in
Figure 72, and it supports the identification of a specific node and its status.

Figure 72: LMS information model

In the following, we describe the relevant parameters:

Table 36: LMS information model.

Parameter Type Description

node_id Integer Unique identifier of a physical node

n_status Integer Status (e.g., On/Off/Sleep) of a physical node

Node

node_id: integer

*1 1

Node Status

n_status: integer

*

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 157

11.7.3 Workflow	

Figure 73: Local Management service workflow example.

As shown in the first interaction of the workflow of Figure 73, the Energy Management
and Monitoring Application can ask the LMS to return the status of a physical node,
identified by its node ID. Possible status indicators (n_status) are associated to On, Off
or Sleep status. This status is then used by EMMA to run its energy saving algorithms.
The LMS can reply with an error code if, e.g., the node is non-existent or its status
cannot be determined (if the node has been disconnected). A possible output of EMMA
algorithms is the request that a physical node is turned On, Off, or set to Sleep (low
energy consumption) state. This can be achieved (second interaction of the workflow of
Figure 73) by asking the LMS to set the node to a specific status (On, Off or Sleep). The
LMS service can reply with an error code if, e.g., the node is non-existent or its status
changed is denied (different error codes can be defined to specify possible reasons why
the status change has been denied).

11.8 Multi-tenancy

11.8.1 APIs	

The Northbound APIs in the following table provide primitives to create, modify, delete
and visualize the mapping between Virtual Tenant Networks (VTNs) and the physical
infrastructure. Media types can be in JSON and/or XML format. It is important to note
that the URIs specified in the request by the consumer shall be independent of the
chosen representation in the implementation. Table 37 shows the most important
functions to create, modify and delete a VTN.

Table 37: Multi-tenancy service API: Virtual Tenant Network (VTN) functions.

Prot. Type URI Parameters

REST GET

../mt/vtns

Retrieve list of

Input -

Output Success: List of VTN_info structures
in response body

LMS

POST reply: Success (n_status) or Failure (error_code)

EMMA

GET /emm/{node_id}/stts

POST /emm/{node_id}/stts/{n_status}

POST reply: Success (n_status) or Failure (error_code)

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 158

VTNs Failure: Error code

REST POST

../mt/vtns/

 Creates a VTNs

Input -

Request body contains VTN_info

Output Success: Status Code of normal end
Returns tenant_id
Failure: Error code

REST GET

../mt/vtns/{tenant_
id}

Retrieve
information
related to a VTN

Input tenant_id

Output Success: VTN_info of tenant_id
structure in response body
Failure: Error code

REST POST

../mt/vtns/{tenant_
id}

Modify
information of a
VTN

Input tenant_id

Request body contains VTN_info

Output Success: Status Code of normal end

Failure: Error code

REST DELETE ../mt/vtns/{tenant
_id}

Remove a VTN

Input tenant_id

Output Success: Status Code of normal end

Failure: Error code

Table 38 shows the most important functions to add, modify and delete virtual switches
(Layer-2 forwarding elements) into a VTN.

Table 38: Multi-tenancy service API: Virtual L2 forwarding element functions (virtual
switches).

Prot Type URI Parameters

REST GET

../mt/{tenant_id}/v
_switches

Retrieve list of
virtual switches
that belong to
tenant_id

Input tenant_id

Output Success: List of v_switch_info
structures in response body
Failure: Error code

REST POST

../mt/{tenant_id}/v
_switches/

 Creates a virtual
switch

Input tenant_id

Request body contains v_switch_info

Output Success: Status Code of normal end
Returns v_switch_id

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 159

Failure: Error code

REST GET

../mt/{tenant_id}/v
_switches/{v_swit
ch_id}

Retrieve
information
related to a virtual
switch

Input tenant_id

v_switch_id

Output Success: v_switch_info of
v_switch_id structure in response
body
Failure: Error code

REST POST

../mt/{tenant_id}/v
_switches/{v_swit
ch_id}

Modify
information of
virtual switch

Input tenant_id

v_switch_id

Request body contains v_switch_info

Output Success: Status Code of normal end

Failure: Error code

REST DELETE ../mt/{tenant_id}/v
_switches/{v_swit
ch_id}

Remove a virtual
switch

Input tenant_id

v_switch_id

Output Success: Status Code of normal end

Failure: Error code

Table 39 shows the most important functions to add, modify and delete virtual routers
(Layer-3 forwarding elements) into a VTN.

Table 39: Multi-tenancy service API: Virtual L3 forwarding element functions (virtual routers).

Prot Type URI Parameters

REST GET

../mt/{tenant_id}/v
_routers

Retrieve list of
virtual routers that
belong to
tenant_id

Input tenant_id

Output Success: List of v_router_info
structures in response body
Failure: Error code

REST POST

../mt/{tenant_id}/v
_routers/

Creates a virtual
router

Input tenant_id

Request body contains v_router_info

Output Success: Status Code of normal end
Returns v_router_id
Failure: Error code

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 160

REST GET

../mt/{tenant_id}/v
_routers/{v_route
r_id}

Retrieve
information
related to a virtual
router

Input tenant_id

v_router_id

Output Success: v_router_info of
v_router_id structure in response
body
Failure: Error code

REST POST

../mt/{tenant_id}/v
_routers/{v_route
r_id}

Modify
information of
virtual router

Input tenant_id

v_router_id

Request body contains v_router_info

Output Success: Status Code of normal end

Failure: Error code

REST DELETE ../mt/{tenant_id}/v
_routers/{v_route
r_id}

Remove a virtual
router

Input tenant_id

v_router_id

Output Success: Status Code of normal end

Failure: Error code

Table 40 shows the most important functions to manage the mapping between physical
ports (e.g. of XFEs) and virtual forwarding elements.

Table 40: Multi-tenancy service API: port mapping functions.

Prot Type URI Parameters

REST GET

../mt/{tenant_id}/v
_switches/{v_switc
h_id}/v_ifaces

or

../mt/{tenant_id}/v
_routers/{v_router
_id}/v_ifaces

Retrieve list of
interface mapping
that belong to a
virtual switch or a
virtual router

Input tenant_id

v_switch_id/v_router_id

Output Success: List of v_iface_info
structures in response body
Failure: Error code

REST POST ../mt/{tenant_id}/v Input tenant_id

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 161

 _switches/{v_switc
h_id}/

or

../mt/{tenant_id}/v
_routers/{v_router
_id}/

Creates an
interface mapping

v_switch_id/v_router_id

Request body contains v_iface_info

Output Success: Status Code of normal end
Returns v_iface_id
Failure: Error code

REST GET

../mt/{tenant_id}/v
_switches/{v_switc
h_id}/{v_iface_id}

or

../mt/{tenant_id}/v
_routers/{v_router
_id}/{v_iface_id}

Retrieve
information
related to a virtual
interface mapping

Input tenant_id

v_switch_id/v_router_id

v_iface_id

Output Success: v_iface_info structure in
response body
Failure: Error code

REST POST

../mt/{tenant_id}/v
_switches/{v_switc
h_id}/{v_iface_id}

or

../mt/{tenant_id}/v
_routers/{v_router
_id}/{v_iface_id}

Modify
information of
virtual interface
mapping

Input tenant_id

v_switch_id/ v_router_id

v_iface_id

Request body contains v_iface_info

Output Success: Status Code of normal end

Failure: Error code

REST DELETE ../mt/{tenant_id}/v
_switches/{v_switc
h_id}/{v_iface_id}

or

../mt/{tenant_id}/v
_routers/{v_router
_id}/{v_iface_id}

Input tenant_id

v_switch_id/ v_router_id

v_iface_id

Output Success: Status Code of normal end

Failure: Error code

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 162

Remove a virtual
interface mapping

Table 41 shows the most important functions to manage virtual links between virtual
forwarding elements.

Table 41: Multi-tenancy service API: virtual link functions.

Prot Type URI Parameters

REST GET

../mt/{tenant_id}/v
_links

Retrieve list of
virtual links

Input tenant_id

Output Success: List of v_link_info
structures in response body
Failure: Error code

REST POST

../mt/{tenant_id}/v
_links/

Creates an virtual
link

Input tenant_id

Request body contains v_link_info

Output Success: Status Code of normal end
Returns v_link_id
Failure: Error code

REST GET

../mt/{tenant_id}/v
_links/{v_link_id}

Retrieve
information of a
virtual link

Input tenant_id

v_link_id

Output Success: v_link_info structure in
response body
Failure: Error code

REST POST

../mt/{tenant_id}/v
_links/{v_link_id}

Modify
information of
virtual link

Input tenant_id

v_link_id

Request body contains v_link_info

Output Success: Status Code of normal end

Failure: Error code

REST DELETE ../mt/{tenant_id}/v
_links/{v_link_id}

Remove a virtual
link

Input tenant_id

v_link_id

Output Success: Status Code of normal end

Failure: Error code

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 163

11.8.2 Information	Model	

The Multi-tenancy information model described in Figure 74 supports virtualization of
networking resources through a mapping between virtual and physical entities.

Figure 74: Multi-tenancy service information model.

See next a more detailed description of the most relevant objects:

Table 42: Multi-tenancy service information model.

Parameter Type Description

tenant_id Integer Unique identifier of a virtual tenant.

v_switch_id Integer Unique identifier of a virtual switch.

v_router_id Integer Unique identifier of a virtual router.

v_link_id Integer Unique identifier of a virtual link.

v_switch_info Object Object describing a virtual switch (e.g., status).

v_router_info Object Object describing a virtual router (e.g., status).

v_iface_info Object Object describing a virtual interface mapping (e.g.

v_switch_info

id: string
port_mapping: v_port
vlan_mapping: vlan_mapping
status: string
tenantId: tenant_id v_iface_info

id: string
type: string
vlan: uint32
phy_node_id: string
phy_port_id: string
mac_address: string
status: string

1

VTN_info

tenant_id: string
description: string
status: string

*

1

Virtual router

id: string
port_mapping: port_mapping
status: string
tenantId: tenant_id

Virtual link

id: string
src_port: v_port
dst_port: v_port
NetworkConstraints: net_constraints
tenant_id

*

inetport_mapping

id: string
type: string
ip: uint64
prefix: uint32
status: string

*

1

0..1

net_constraints

bandwidth: int32
delay: int32
jitter: int32

1

1

1

*

2

2

1

*

1

*

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 164

status, mapping to physical interfaces).

v_link_info Object Object describing a virtual link mapping (e.g. status,
mapping to physical links/paths).

11.8.3 Workflow	

Figure 75 illustrates an example usage of the multitenancy service by MTA or VIMaP,
who are the consumers of the service in this case. This represents a very simple example
of the creation of a VTN through a process that comprises the following steps:

1. The consumer requests the creation of a new network tenant. The multitenancy
service allocates space to store information on the new tenant and generates a
new identifier if successful.

2. The consumer iteratively requests the creation of virtual switches. The
multitenancy service generates identifiers for each of the new entities.

3. The consumer iteratively requests the creation of virtual routers. The
multitenancy service generates identifiers for each of the new entities.

4. The consumer iteratively requests a mapping between a physical port and a
virtual port that belongs to a virtual switch or virtual router. In the latter case, an
IP configuration is also required.

5. The consumer iteratively requests the creation of virtual links by routing pairs of
virtual ports. To do so, the multitenancy service requests the SDN controller a
route between two mapped physical ports given a set of network constraints
(net_constraints).

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 165

Figure 75: Multi-tenancy service workflow example.

POST /mt/vtns/

POST reply: tenant_id

Multitenancy

allocate VTN_info

MTA/VIMaP

 loop

 until all virtual switches are created

POST /mt/vtns/{tenant_id}/v_switches

POST reply: v_switch_id

Set up virtual
switches

 loop

 until all virtual routers are created

POST /mt/vtns/{tenant_id}/v_routers

POST reply: v_router_id

Set up virtual
routers

 loop

 until all physical interfaces are mapped into virtual interfaces

POST /mt/vtns/{tenant_id}/v_ifaces

POST reply: v_ifce_id

Map virtual to
physical interfaces

 loop

 until all virtual switches are created

POST /mt/vtns/{tenant_id}/v_links

POST reply: v_link_id

Set up virtual
links

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 166

12 Appendix II: Bootstrapping XPFEs: Detailed Example

In this appendix we present a detailed example of the procedure to bootstrap XPFEs as
described in Section 5.4.1.1. The bootstrapping of XPFEs is explained using the
example network depicted in Figure 76. In the figure, the network ports of all XPFEs are
numbered. The SDN controller and the DHCP server are both directly connected to
XPFE1, the DHCP server through port 2 and the SDN controller through port 1.

DHCP
server

SDN
Controller

XPFE1

XPFE4

XPFE2

XPFE3

1

2

3

4

12

1

2

2 1

Figure 76: example topology

After their local bootup phase, all XPFEs start phase A by flooding all active interfaces
with DHCP Discover messages from their LOCAL port. At this stage, all messages will
be discarded except those that are transmitted by XPFE1 on its port 2. On all other
ports, neighboring XPFEs are receiving these messages (and the SDN controller from
port 1 of XPFE1) and as all XPFEs are forwarding incoming messages only to their
LOCAL port, all of these messages are discarded.

The bootstrapping uses frames without VLAN tagging for most of the messaging.
Tunneling of the control network will be configured after the connection to the SDN
controller has been established. IP addresses are taken from the subnet 192.168.1.0/24,
with 192.168.1.253 for the DHCP server and 192.168.1.252 for the SDN controller.

12.1 Bootstrapping XPFE1

Only the DHCP discover message of XPFE1, transmitted on its port 2, reaches the
DHCP server. Upon receipt, the DHCP server replies with a DHCP offer message with
the destination MAC address set to that of the LOCAL port of XPFE1. XPFE1 forwards
this message to its LOCAL port where it is being processed.

The DHCP client on XPFE1 checks the vendor-specific options present in the offer, and
if they are sufficient, it continues by sending the DHCP request message, which is again
being flooded on all its physical ports. The DHCP server responds with a DHCP Ack
which is being forwarded to the LOCAL port of XPFE1, where the DHCP client assigns
the IP address granted by the DHCP server to the LOCAL port. We assume that
192.168.1.1 is used for XPFE1. This concludes phase A for XPFE1.

After the (optional) enrolment of an operator certificate, XPFE1 starts phase C by
sending an ARP request message on all physical ports, of which only the messages sent
on port 1 reaches the SDN controller, which responds with an ARP reply. After that, the
rest of phase C (establishing a secure TLS connection) completes through that path. At
this point, no control network is established, the network is depicted in Figure 77.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 167

DHCP
server

SDN
Controller

XPFE1

XPFE4

XPFE2

XPFE3

1

2

3

4

12

1

2

2 1

LOCAL

192.168.1.252

192.168.1.253192.168.1.1

untagged

Figure 77: XPFE1 bootstrapping, end of phase C

As part of phase D XPFE1 registers at the SDN controller. The SDN controller adds the
newly connected XPFE1 to its databases and configures the device.

This setup establishes a separate VN for the in-band control network, such as a control
VLAN, between OF switch 1 and the SDN controller. The control network uses the
XCF, i.e. has an additional MAC header and an outer VLAN. At this stage the control
network is quite simple: all Ethernet frames received at ports 1 and 2 and from the
LOCAL port of XPFE get the additional MAC header and outer VLAN pushed. In the
opposite direction these headers are popped. This is depicted in Figure 78.

DHCP
server

SDN
Controller

XPFE1

XPFE4

XPFE2

XPFE3

1

2

3

4

12

1

2

2 1

LOCAL

192.168.1.252

192.168.1.253192.168.1.2

untagged
tagged
PUSH/POP

Figure 78: XPFE1 bootstrapping, end of phase D

The SDN controller sends the command to add the PUSH/POP flow entries in a single
message to XPFE1. Then XPFE1 adds these flow entries to its tables. While installing
the flow entries the connection between XPFE1 control and the SDN controller could be
interrupted shortly. As soon as the flow entries are installed for port 1 and for LOCAL,
the connection is operational again. Strictly speaking the flow entry for PUSH/POP at
port 2, i.e. towards the DHCP server, could be send in a separate message as it is
unrelated to the connection between XPFE1 and the SDN controller. We do not use OF
scheduled bundles to synchronize the operations among the switches, as this would
require having the XPFE connected to an NTP server, which would be another
connection to be established in this early bootstrapping phase.

In addition, the SDN controller configures XPFE1 to trap all ingress plain Ethernet
frames and forward them to the SDN controller through the control network wrapped in
Packet_In messages.

12.2 Bootstrapping XPFE2 and XPFE4

After bootstrapping of XPFE 1 has completed, XPFEs 2, 3 and 4 are still in phase A. As
part of connecting the second XPFE the SDN controller learns the path to the DHCP

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 168

server and uses this information for future setups. After having been configured, XPFE1
wraps the DHCP discover messages it receives from XPFE 2 through its port 3 and
from XPFE 4 through its port 4 into Packet_In messages and sends them to the SDN
controller through its newly established OF session.

The SDN controller classifies the contents of the Packet_In messages as DHCP discover
messages from (so far) unknown networking devices, and stores the MAC addresses of
the local ports of both XPFEs in its database, combined with the XPFE and port through
which they can be reached (XPFE1/port 3 for XPFE2 and XPFE1/port 4 for XPFE4).
Thereafter, the SDN controller forwards the DHCP discover messages. As so far the
SDN controller doesn’t have information on where the DHCP server is located, it
forwards the messages wrapped in Packet-Out messages to XPFE 1 with the instruction
to flood the packets contained on all its ports (except the ingress port). The DHCP
discover messages flooded from XPFE1/port2 reach the DHCP server, which responds
with DHCP offer messages. Based on its setup, XPFE1 wraps the DHCP offer packets
in Packet-In messages which it sends to the SDN controller, also conveying port 2 as
the ingress port. The SDN controller stores that information as the path to the DHCP
server for further DHCP messages. From this time on in the bootstrapping procedure the
SDN controller uses this information to directly access the DHCP server. It also extracts
the DHCP offer packets contained, which it then sends again as Packet_Out messages to
XPFE1. Based on the destination MAC address of the DHCP offer frame and
information obtained earlier during processing of the Packet_In messages containing the
DHCP discover frames, the SDN controller selects the outgoing port XPFE1 shall use.

The DHCP offer messages are being forwarded to the local ports of XPFE2 and XPFE4,
which generate related DHCP request messages. These messages are forwarded along
the same path as the DHCP discover messages earlier, being responded to by the DHCP
server by DHCP Ack messages which are also forwarded along the same paths as the
DHCP Offer messages earlier.

After completion of phase A and optionally phase B, XPFE2 and XPFE4 continue with
phases C and D. All packets of XPFE2 and XPFE4 are received in XPFE1, and as the
DHCP messages, are forwarded to the SDN controller wrapped in Packet_In messages.
The SDN controller processes the packet stream separately based on the information in
the Packet_In messages, and sends related messages back to XPFE2 and XPFE4 using
Packet_Out messages to XPFE1 which unwraps the contained packets and sends them
on as instructed. After phase C, the network for XPFE2 is depicted in Figure 79.

DHCP
server

SDN
Controller

XPFE1

XPFE4

XPFE2

XPFE3

1

2

3

4

1
2

1

2

2 1

LOCAL

192.168.1.252

192.168.1.253192.168.1.1

untagged
tagged
PUSH/POP

192.168.1.2
LOCAL

Figure 79: XPFE2 bootstrapping, after phase C

As the result, XPFE2 and XPFE4 have registered at the SDN controller through secure
control channels which are tunnelled through the secure control channel of OF switch 1

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 169

by Packet_In/Packet_Out messages. The SDN controller now commands OF switch 2
and OF switch 4 to re-establish the control channel through the control network. For
XPFE2, the final network is depicted in Figure 80. The SDN controller command as
well XPFE1 to forward frames to the SDN controller or DHCP server depending on
MAC addresses instead of using Packet_In/Packet_Out.

DHCP
server

SDN
Controller

XPFE1

XPFE4

XPFE2

XPFE3

1

2

3

4

1
2

1

2

2 1

LOCAL

192.168.1.252

192.168.1.253192.168.1.1

untagged
tagged
PUSH/POP

192.168.1.2
LOCAL

Figure 80: XPFE2 bootstrapping, after phase D

Note, there are no PUSH/POP commands for port 1 in XPFE2 nor for port 3 in XPFE1,
frames for the SDN controller are exchanged with VLAN and PBB tag from this point
onwards. The commands to reconfigure XPFE need to be sent in a single command by
the SDN controller. The control connection between XPFE2 and the SDN controller
might be interrupted shortly while the PUSH/POP flow entries are added to the tables in
XPFE2 and XPFE1 is reconfigured. Only when both switches have finished their
configuration, the control connection is operational again. It is important that the SDN
controller reconfigures first XPFE2 and thereafter XPFE1. If done otherwise, control in
XPFE2 won’t be reachable anymore from the SDN controller.

12.3 Bootstrapping XPFE3

Finally, XPFE3 originated DHCP Discover frames are, based on the timing of the
registration procedure of XPFE2 and XPFE4, being received by one or even both of
these XPFEs. Here we assume that XPFE2 and XPFE4 completed their registration at
almost the same time, so both receive the frames, and both wrap them into Packet_In
messages and send them to the SDN controller through their newly established
OpenFlow sessions.

The SDN controller classifies the contents of the Packet_In messages as DHCP discover
messages from the (so far) unknown XPFE3, and stores the MAC address of the local
port of it in its database, combined with the XPFEs and ports through which they can be
reached (XPFE2/port 2 or XPFE4/port 2). In this example, the SDN controller only
stores one version of this information in its database, overwriting a possibly existing
entry whenever it receives a DHCP Discover message from XPFE3. Using this method,
the SDN controller will later only use the path as the return path through which it last
saw the DHCP Discover message. It then forwards the DHCP discover messages to
XPFE1 wrapped in Packet-Out messages, with the instruction to send the DHCP
Discover frames on XPFE1/port 2, based on information on the location of the DHCP
server obtained earlier.

The DHCP server responds with DHCP offer messages which XPFE1 forwards to the
SDN controller wrapped in Packet_In messages. The SDN controller extracts the DHCP
offer frames, and selects either XPFE2 or XPFE4 as the return path dependent on

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 170

through which path the DHCP Discover message has been received last. In this
example, it selects XPFE2, so it sends out the DHCP offer frames wrapped in as Packet-
Out messages to XPFE2 with the instruction to send the frames contained out of
XPFE2/port 2.

The DHCP offer messages are being forwarded to the local port of XPFE3, which
selects the first offer that contains the expected vendor specific options and generates a
related DHCP request message. This message is moving along the same path as the
DHCP discover message went earlier, being responded to by the DHCP server by a
DHCP Ack message which is also moving along the same paths.

Thereby XPFE3 completes phase A and optional phase B, and continues with phases C
and D. All frames sent out by XPFE3 are travelling through both XPFE2 and XPFE4
and so arrive twice at the SDN controller. All the protocols used in both phases are
robust against packet replication, even duplicates of SYN messages. For the return path,
the SDN controller can select either XPFE2 or XPFE4. In this example, it selects
XPFE2.

As the result, XPFE3 has registered at the SDN controller through a secure control
channel which is tunnelled through the secure control channel of XPFE2 by
Packet_In/Packet_Out messages. The SDN controller now commands XPFE3 to re-
establish the control channel through the control network. Thereafter the XPFE2 must
extend the control network to its port2, commanded by the SDN controller. Then the
SDN controller may have XPFE3 send probe messages out of its ports to detect the
network between XPFE3, XPFE2 and XPFE4. Finally, the SDN controller should set
XPFE3 to a state where they trap all ingress plain Ethernet frames and forward them to
the SDN controller through the control network wrapped in Packet_In messages. The
final configuration is depicted in Figure 81.

DHCP
server

SDN
Controller

XPFE1

XPFE4

XPFE2

XPFE3

1

2

3

4

1
2

1

2

2 1

LOCAL

192.168.1.252

192.168.1.253192.168.1.1

untagged
tagged
PUSH/POP

192.168.1.2
LOCAL

192.168.1.4
LOCAL

192.168.1.3
LOCAL

Figure 81: XPFE4 bootstrapping, after phase D

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 171

13 Appendix III: XCF Requirements

We defined requirements on the frame format, i.e. which information is contained in
individual frames. The control, how this information is used in the XPFEs for the
forwarding decisions, is a control-plane issue related to the XCI. It is not relevant here
whether e.g. point-to-point or multipoint-to-multipoint services are established or any
kind of TE is performed. These questions are important, but independent of the frame
format, as long as the frames contain sufficient information to establish the
corresponding services.

Table 43: XCF Requirements

ReqId Requirement Explanation
Functional splits

XCF-R1 Support multiple
functional splits

The XCF has to support traffic of different
functional splits of the radio protocol stack,
ranging from CPRI-like fronthaul traffic to
backhaul traffic
Multi-tenancy

XCF-R2 Isolate traffic Provide guaranteed QoS to traffic of different
tenants. Traffic of one tenant shall not impact the
QoS of the traffic of other tenants.

XCF-R3 Separate traffic Maintain the privacy of the traffic of different
tenants. One tenant shall not be able to listen to
traffic of another tenant.

XCF-R4 Differentiation of
forwarding traffic

Traffic of different tenants may be forwarded
differently.

XCF-R5 Multiplexing gain It shall be possible to utilize statistical multiplexing
gains among the traffic of different tenants.

XCF-R6 Tenant ID The traffic of different tenants shall be identifiable.
Coexistence

XCF-R7 Ethernet Compatibility with legacy Ethernet switches
XCF-R8 Security support Security is supported for the frames themselves,

i.e. encryption or authentication. Securing access to
the network itself is considered a control-plane
issue.

XCF-R9 Compatible with
IEEE 1588v2 or
IEEE 802.1AS

It shall be possible to carry synchronization
information on the same links as the data traffic
using XCF.

Transport Efficiency
XCF-R10 Short overhead The additional headers introduced by the XCF

shall be short.
XCF-R11 Multi-path The XCF shall allow carrying traffic towards one

destination on different paths, but keeping
individual flows on the same path. This could be
useful in meshed microwave networks.

XCF-R12 Flow The frame format shall support to provide QoS for

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 172

differentiation individual flows in addition to traffic classes.
XCF-R13 Class of Service

differentiation
XFEs shall support different classes of service for
different types of traffic

Management
XCF-R14 In-band control

traffic (OAM)
It shall be possible to carry OAM traffic on the
same links as the data traffic using XCF

Support of multiple media
XCF-R15 802.3 yes/no
XCF-R16 802.11ad yes/no
XCF-R17 mmWave yes/no

Energy efficiency
XCF-R18 Energy usage

proportional to
handled traffic

The XFEs shall be energy efficient by using
features such as sleep modes, reduced line rates,
etc.
Miscellaneous

XCF-R19 No vendor lock in The XCF shall be based on standards, such that no
vendor lock-in may happen.

The subsequent Table 44 and Table 45 summarize how the requirements are fulfilled in
the case of choosing MAC-in-MAC as XCF as well as with MPLS-TP as alternative.

Table 44: MAC-in-MAC XCF requirement fulfillment

ReqId Requirement Explanation
Functional splits

XCF-R1 Support multiple
functional splits

All functional splits with packetized transport can
be supported by the XCF, see also XCF-R2
Multi-tenancy

XCF-R2 Isolate traffic QoS provided by PCP, see also Section 5.3
XCF-R3 Separate traffic Traffic of different tenants can be distinguished by

the B-Tag and the I-Tag
XCF-R4 Differentiation of

forwarding traffic
N/A, to be solved in XCI

XCF-R5 Multiplexing gain Naturally, as packet-based technology multiplexing
gains can be achieved

XCF-R6 Tenant ID B-Tag and I-Tag
Coexistence

XCF-R7 Ethernet Legacy Ethernet switches can forward frames
based on DA and VLAN-ID of outer header

XCF-R8 Security support Either payload has to be encrypted e.g. by IPsec or
encrypted links have to be used, e.g. 802.1AE
MACSec

XCF-R9 Compatible with
IEEE 1588v2 or
IEEE 802.1AS

IEEE 1588 packets can be carried as any other IP
packet as payload. XCF frames and 802.1AS
(gPTP) can be carried on the same link. See also
Section 5.5

Transport Efficiency
XCF-R10 Short overhead B-tag + I-Tag: 22B, (optional) F-Tag: 6B
XCF-R11 Multi-path Based on F-Tag

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 173

XCF-R12 Flow
differentiation

Individual services can be identified by I-SID and
classified to dedicated queues, although PCP is
considered sufficient, see Section 5.2.2.1

XCF-R13 Class of Service
differentiation

QoS provided by PCP, see also Section 5.3

Management
XCF-R14 In-band control

traffic (OAM)
OAM traffic is under control of XCI. OAM traffic
can be distinguished by Ethertype or by dedicated
multicast addresses. See also Section 5.4

Support of multiple media
XCF-R15 802.3 Yes
XCF-R16 802.11ad Yes
XCF-R17 mmWave same frame format as 802.11ad

Energy efficiency
XCF-R18 Energy usage

proportional to
handled traffic

N/A

Miscellaneous
XCF-R19 No vendor lock in Based on MAC-in-MAC standard

Table 45: XCF requirement fulfillment by MPLS-TP

ReqId Requirement Explanation
Functional splits

XCF-R1 Support multiple
functional splits

All functional splits with packetized transport can
be supported by MPLS-TP as XCF, see also XCF-
R2
Multi-tenancy

XCF-R2 Isolate traffic QoS provided by TC, same number as bits PCP of
MAC-in-MAC, see also Section 5.3

XCF-R3 Separate traffic Traffic of different tenants can be distinguished
LSP label

XCF-R4 Differentiation of
forwarding traffic

N/A, to be solved in XCI

XCF-R5 Multiplexing gain Naturally, as packet based technology multiplexing
gains can be achieved

XCF-R6 Tenant ID LSP label
Coexistence

XCF-R7 Ethernet Ethernet can be used as link layer technology.
XCF-R8 Security support Either payload has to be encrypted e.g. by IPsec or

encrypted links have to be used, e.g. 802.1AE
MACSec

XCF-R9 Compatible with
IEEE 1588v2 or
IEEE 802.1AS

IEEE 1588 packets can be carried as any other IP
packet as payload. XCF frames and 802.1AS
(gPTP) can be carried on the same link. See also
Section 5.5

Transport Efficiency

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 174

XCF-R10 Short overhead Link layer header (18B) + LSP/PW/PW-ctrl (12B)
= 30B

XCF-R11 Multi-path Not supported
XCF-R12 Flow

differentiation
Individual services can be identified by LSP label
and classified to dedicated queues, although PCP is
considered sufficient, see Section 5.2.2.2

XCF-R13 Class of Service
differentiation

QoS provided by TCP, similar to PCP of MAC-in-
MAC, see also Section 5.3

Management
XCF-R14 In-band control

traffic (OAM)
OAM traffic is under control of XCI. OAM traffic
can be distinguished by Ethertype or by dedicated
multicast addresses. See also Section 5.4

Support of multiple media
XCF-R15 802.3 Yes
XCF-R16 802.11ad Yes
XCF-R17 mmWave Yes, same frame format as 802.11ad

Energy efficiency
XCF-R18 Energy usage

proportional to
handled traffic

N/A

Miscellaneous
XCF-R19 No vendor lock in Based on MPLS-TP RFCs

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 175

14 Appendix IV Potential enhancements to 5G-Crosshaul data plane
design

Although we consider the data plane architecture with the XCF as described in this
deliverable as sufficient for 5G-Crosshaul, there are a number of ongoing networking
standardization activities that target to solve similar problems as the data plane of 5G-
Crosshaul. Two such activities are summarized here, one for deterministic networking
and one for segment routing.

14.1 IETF DetNet data plane solutions

IETF DetNet (Deterministic Networking, [47]) provides a capability to carry unicast or
multicast data flows for real-time applications with extremely low data loss rates, timely
delivery and bounded PDV. DetNet identifies existing IP and MPLS, layer-2 or layer-3
encapsulations and transport protocols that could be considered as foundations for a
deterministic networking data plane. The DetNet data plane is logically divided into two
layers, namely DetNet service layer and DetNet transport layer.

The DetNet transport layer operates below and supports the DetNet service layer and
optionally provides congestion protection for DetNet flows. DetNet proposes the
following data plane technology alternatives for the DetNet transport layer: native IPv6,
native IPv4, MPLS and Bit Indexed Explicit Replication (BIER).

The DetNet service layer provides adaptation of DetNet services. It is composed of a
shim layer to carry deterministic flow specific attributes, which are needed during
forwarding and for service protection. The DetNet service layer is used to deliver traffic
end to end across a DetNet domain. DetNet proposes the following data plane
technology alternatives for the DetNet service layer: Pseudo Wire Emulation Edge-to-
Edge (PWE3), Generic Routing Encapsulation (GRE), MPLS-based Services for
DetNet, MPLS-Based Ethernet VPN (EVPN) and higher layer header fields.

DetNet service layer technologies could be used together with the 5G-Crosshaul XCF to
realize deterministic traffic flow configuration across the 5G-Crosshaul domain. For
example, the Pseudo Wire Emulation Edge-to-Edge mechanism could be configured
over a MAC-in-MAC (baseline XCF) packet switched network (PSN); to establish a
PSN tunnel with deterministic characteristics.

14.2 Segment Routing

When forwarding a frame or packet through a network on the packet switched part of
5G-Crosshaul, each XPFE needs to be configured how to forward this packet.
Typically, forwarding is based on the destination address. Segment routing [48] instead
adds a stack of labels describing the path through the network when the packet enters
the network. The network is seen as a set of segments that the packets have to traverse.
There are two types of segment IDs.

 Node Segment IDs are used to describe a path to a node, i.e. which is the next
node to reach.

 Adjacency segment IDs are used to describe a service at a node.

D3.2: Final XFE/XCI design and specification
of southbound and northbound interfaces

H2020‐671598 176

Segment routing is a type of source routing, where the source chooses the path and
encodes it in the packet header as an ordered list of segment IDs. The intelligence for
routing is on the source router while the rest of the routers can be kept simple. No per-
flow state needs to be kept on these other routers. Nevertheless, there is no single router
in a network acting as source router for all traffic flows. Many routers will be source
routers for some traffic flows, and each of them has to control the routing of its flows.
The source router intelligence is programmed by an external controller, which fits well
with a SDN approach.

As one possibility, segment routing leverages MPLS, where each router adds a label or
a label stack, pops some label, or swaps a label. The typical operation of a router within
the network would be to determine the next hop based on the top most label and then
pop this label.

R1
SID: 1

R3
SID: 3

R7
SID: 7

R5
SID: 5

R6
SID: 6

R4
SID: 4

R2
SID: 2

Data

Data

7 6 4

7

Explicit path

Dynamic path

Data plane

MPLS
(segment ID = label)

IPv6
(seg. ID = IPv6

address)

Control plane

Routing protocols
with extensions
(IS‐IS, OSPF, BGP)

SDN controller

Paths Options

Dynamic
(STP calculation)

Explicit
(expressed in the

header)

Strict or loose path

SID: Segment ID

Figure 82: Segment routing.

The label stack may be incomplete; it is not necessary to list all forwarding nodes on a
path. This leaves flexibility within the network to determine local paths or to provide
alternative paths in case of link failures. In Figure 82, for the violet packet, the segment
IDs are initially provided as label stack, describing rather precisely the path through the
network, which is called an explicit path. Only within the first segment, there is some
choice how to reach node 4. If the first segment is an Ethernet network, this choice
could be resolved by the spanning tree protocol. For the golden packet, just the
destination node is provided in the label stack and it is left to the network to find a
route. This is called a dynamic path.

The choice of destination based routing, or segment routing, or any other routing, is
orthogonal to the goal of 5G-Crosshaul to forward both fronthaul and backhaul traffic
on the same links. Therefore, the focus within the 5G-Crosshaul was kept on MAC-in-
MAC as the XCF, not extending the header with stacks of labels or addresses.

