

H2020 5G-Crosshaul project

Grant No. 671598

XFE/XCI design at year 1, specification of

southbound and northbound interface

Abstract

This document presents a detailed description of the main element of the proposed control

plane within the 5G-Crosshaul architecture, the 5G-Crosshaul Control Infrastructure

(XCI), and introduces the 5G-Crosshaul Forwarding Element (XFE), described already in

[1]. This document covers design, implementation, deployment considerations of its

different elements, as well as the interaction of the XCI with the other architectural planes

(data plane and application plane) of the Software-Defined Networking concept via the

proposed Southbound Interface (SBI) and Northbound Interface (NBI) respectively. This

document concludes with the presentation of the XCI validation methodology.

………

………

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 2

Document Properties

Document Number: D3.1

Document Title:
XFE/XCI design at year 1, specification of southbound

northbound interface

Document Responsible: Thomas Deiß (NOK-N)

Document Editor: José Núñez-Martínez (CTTC)

Target Dissemination Level: Public

Status of the Document: Final

Version: 1.0

Production Properties:

Reviewers: Xi Li (NEC), Domenico Siracusa (CNET), Sean Chang (ITRI).

Document History:

Revision Date Issued by Description

0.0 15-09-16 José Núñez-Martínez First version of the

document with all the

contributions

0.1 11-10-16 José Núñez-Martínez Review finished.

1.0 18-10-16 José Núñez-Martínez Final editing.

Disclaimer:

This document has been produced in the context of the 5G-Crosshaul Project. The research

leading to these results has received funding from the European Community's H2020

Programme under grant agreement Nº H2020-671598.

All information in this document is provided “as is" and no guarantee or warranty is given that

the information is fit for any particular purpose. The user thereof uses the information at its

sole risk and liability.

For the avoidance of all doubts, the European Commission has no liability in respect of this

document, which is merely representing the authors view.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 3

Table of Content

List of Contributors .. 7

List of Tables .. 8

List of Figures .. 9

List of Acronyms .. 11

 Executive Summary ... 14

 Key achievements ... 16

 Introduction .. 17

 Data Plane Architecture .. 19

 Control Plane Architecture .. 22

5.1. High-level Architecture (5G-Crosshaul MANO) ... 22

5.1.1. Multi-domain control .. 23

5.1.2. Multi-tenant design (XCI recursion) .. 25

5.2. XCI Design .. 25

5.2.1. Alternatives for NFV-O/NFVM/VIM .. 28

5.2.2. Alternatives for storage and computing control ... 28

5.2.3. SDN controllers.. 29

5.3. Deployment models of XCI .. 30

5.3.1. Basic SDN controller interconnection models... 31

5.3.1.1. Peer or flat model .. 31

5.3.1.2. Hierarchical model ... 32

5.3.2. Generalizing hierarchical SDN controller interconnection models 32

5.3.2.1. Hierarchical SDN approaches based on the definition of domain 34

5.3.2.2. Hierarchical SDN approaches based on API classes ... 36

 Analytical Description of Relevant Problems .. 37

6.1. Network optimization model .. 37

6.2. Power consumption computation model ... 40

 Southbound Interface ... 43

 Northbound Interface ... 44

8.1. Topology and Inventory .. 45

8.1.1. APIs .. 45

8.1.2. Information Model .. 46

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 4

8.1.3. Workflow ... 49

8.2. Provisioning and Flow Actions .. 50

8.2.1. APIs .. 50

8.2.2. Information Model .. 52

8.2.3. Workflow ... 53

8.3. IT Infrastructure and Inventory ... 54

8.3.1. APIs .. 55

8.3.2. Information Model .. 56

8.3.3. Workflow .. 58

8.4. Statistics .. 59

8.4.1. APIs .. 60

8.4.2. Information Model .. 62

8.4.3. Workflow ... 63

8.5. Virtual Infrastructure Manager and Planner ... 64

8.5.1. APIs .. 64

8.5.2. Information Model .. 69

8.5.3. Workflow ... 72

8.6. NFV Orchestrator .. 74

8.6.1. APIs .. 74

8.6.2. Information Model .. 74

8.6.3. Workflow ... 76

8.7. VNF Manager ... 77

8.7.1. APIs .. 77

8.7.2. Information Model .. 78

8.7.3. Workflow ... 80

8.8. Analytics for Monitoring ... 81

8.8.1. APIs .. 82

8.8.2. Information Model .. 83

8.8.3. Workflow ... 84

8.9. Local Management Service ... 85

8.9.1. APIs .. 85

8.9.2. Information model .. 86

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 5

8.9.3. Workflow ... 87

8.10. Multi-tenancy .. 87

8.10.1. APIs .. 88

8.10.2. Information Model .. 94

8.10.3. Workflow ... 95

 Validation and Evaluation ... 97

9.1. Methodology ... 97

9.2. Data Plane Validation Plan (Nokia) ... 98

9.3. Control Plane Validation Plan .. 101

9.3.1. Validation of XCI MANO Components ... 101

9.3.2. Validation of XCI SDN Controllers ... 107

9.4. Mapping of test-cases, 5G-Crosshaul objectives and 5GPPP KPIs 114

 Conclusion ... 117

 Appendix I – Validation procedures of XCI MANO Components 118

11.1. XCI MANO for CDN .. 118

11.1.1. Starting up the VMs and running the vCDN node VNFs .. 118

11.1.2. Collection and storage of VM and VNF monitoring data .. 120

11.1.3. Orchestration and management of a vCDN infrastructure ... 122

11.2. XCI MANO for vEPC and energy management .. 124

11.2.1. Monitoring of XPU energy consumption... 124

11.2.2. Regulation of power-on/power-off status of XPUs ... 126

11.2.3. Instantiation of energy-efficient vEPC instances .. 128

11.3. OpenStack-based VIMaP ... 131

11.3.1. Topology detection ... 131

11.3.2. XPU status and capability discovery .. 133

11.3.3. Instantiation of Virtual Machines in remote locations ... 135

11.3.4. Flow configuration across Single- and Multi-domain networks 136

11.3.5. Functional assessment of the VIMaP NBI ... 138

11.3.6. External placement computation of VMs and flows ... 140

 Appendix II – Validation procedures of XCI SDN Controllers .. 142

12.1. SDN Controller for XPFE and energy management ... 142

12.1.1. Core XCI controller services in XPFE’s networks ... 142

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 6

12.1.2. Monitoring of XPFE power consumption via SNMP .. 144

12.1.3. Monitoring of XPFE power consumption via analytics ... 146

12.1.4. Analytics for computation of power consumption in virtual infrastructures 148

12.1.5. Modification of XPFE operational status ... 151

12.1.6. Setup and termination of energy-efficient paths on XPFE networks 153

12.2. SDN Controller for mmWave and WiFi mesh technology ... 156

12.2.1. Topology detection ... 156

12.2.2. Interface state monitoring and reconfiguration ... 157

12.2.3. Interface technology detection ... 159

12.2.4. Route establishment according to path priority ... 160

12.2.5. Link failure and restoration ... 162

12.2.6. Failure recovery and route verification ... 163

12.2.7. Interface monitoring ... 165

12.2.8. Interface configuration.. 167

12.2.9. End-to-end route validation .. 168

12.2.10. End-to-end route validation with link priority based on technology 169

12.2.11. End-to-end route validation with link priority based on link characteristics 171

12.2.12. End-to-end route validation with link priority based on link characteristic and link

occupation 172

12.2.13. End-to-end route validation and link failure recovery .. 174

12.3. SDN Controller for mmWave mesh technology .. 177

12.3.1. mmWave mesh stability .. 177

12.3.2. Computation and configuration of paths within mmWave mesh network 178

12.3.3. Traffic recovery upon mmWave link failure .. 179

12.3.4. Control plane impact on mmWave mesh network ... 180

12.4. ABNO-based hierarchical SDN Controller ... 181

12.4.1. Topology recovery ... 181

12.4.2. Connectivity Service provisioning across Multi-domain networks 183

12.4.3. Functional assessment of the SDN notifications ... 184

 Bibliography .. 186

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 7

List of Contributors

Partner No. Partner Short Name Contributor’s name

P01 UC3M Nuria Molner, Antonio de la Oliva

P02 NEC Andres Garcia Saavedra, Xi Li

P05 ATOS
Jorge Rivas Sánchez, Jose Enrique González

Blázquez

P06 NOK-N Thomas Deiß

P07 IDCC Luca Cominardi

P13 NXW Giada Landi, Francesca Moscatelli, Marco Capitani

P17 CTTC

Josep Mangues, Manuel Requena José Núñez,

Iñaki Pascual, Jorge Baranda, Josep Mangues,

Ramon Casellas, Ricard Vilalta, Raül Muñoz,

Ricardo Martínez.

P18 CREATE-NET
Leonardo Goratti, Domenico Siracusa, Raihana

Ferdous

P19 POLITO Claudio Casetti

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 8

List of Tables

Table 1: Software platforms used in XCI MANO prototypes. 28

Table 2: Software platforms used in XCI SDN controller prototypes. 29

Table 3: Topology and Inventory API. ... 45

Table 4: Topology and Inventory Information model. ... 47

Table 5: Provisioning and flow actions API: flow rules in physical devices. 50

Table 6: Provisioning and flow actions information model. .. 53

Table 7: IT infrastructure and inventory API. .. 55

Table 8: IT infrastructure and inventory information model. ... 57

Table 9: Statistics API .. 60

Table 10: Statistics information model. .. 62

Table 11: Virtual Infrastructure Manager and Planner API. .. 64

Table 12: Virtual Infrastructure Manager and Planner information model. 70

Table 13: NFV-O API. ... 74

Table 14: NFV-O information model. .. 76

Table 15: VNF Manager API. .. 78

Table 16: VNF Manager information model. ... 80

Table 17: Analytics for Monitoring API. ... 82

Table 18: Analytics for Monitoring Information model. .. 84

Table 19: Local Management Service API... 85

Table 20: Local Management Service information model. .. 86

Table 21: Multi-tenancy service API: Virtual Tenant Network (VTN) functions. 88

Table 22: Multi-tenancy service API: Virtual L2 forwarding element functions (virtual

switches). .. 89

Table 23: Multi-tenancy service API: Virtual L3 forwarding element functions (virtual

routers). ... 90

Table 24: Multi-tenancy service API: port mapping functions. 91

Table 25: Multi-tenancy service API: virtual link functions. ... 93

Table 26: Multi-tenancy service information model .. 95

Table 27: Test card template .. 97

Table 28: XCI MANO for CDN. Testing Procedures .. 103

Table 29: Testing procedures ... 104

Table 30: Validation procedures... 109

Table 31 – Mapping between test-cases, objectives and KPIs 114

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 9

List of Figures

Figure 1: 5G-Crosshaul architecture illustration. ... 17

Figure 2: 5G-Crosshaul data plane architecture. .. 19

Figure 3: Generic implementation of the 5G-Crosshaul switching node 20

Figure 4: XPFE functional architecture .. 21

Figure 5: XAF functional architecture.. 21

Figure 6: Multi-domain XCI architecture. .. 25

Figure 7: XCI design. ... 26

Figure 8: Arrangements for SDN controllers, combining hierarchical settings and peer

models. .. 31

Figure 9: Example of SDN control within a mixture of administrative, technological and

vendor domains, showing different peer and hierarchical modes. 34

Figure 10: General Scenario to optimize .. 37

Figure 11: Topology and Inventory Information model. .. 47

Figure 12 : Topology and Inventory workflow example. ... 49

Figure 13: Provisioning and flow actions information model. 52

Figure 14: Flow actions example.. 54

Figure 15: IT Infrastructure and Inventory information model. 57

Figure 16: IT infrastructure and inventory workflow example. 59

Figure 17: Statistics information model. .. 62

Figure 18: Statistics workflow example. .. 63

Figure 19: Virtual Infrastructure Manager and Planner information model. 70

Figure 20: Virtual Infrastructure Manager and Planner workflow example. 73

Figure 21: NFV-O information model. .. 75

Figure 22: NFV-O workflow example: Instantiate NS. ... 77

Figure 23: NFV-O workflow example: Terminate NS. .. 77

Figure 24: VNF descriptor information model. .. 79

Figure 25: VNF Manager workflow example: Instantiate VNF..................................... 81

Figure 26: VNF Manager workflow example: Terminate VNF. 81

Figure 27: Analytics for Monitoring Information model. .. 84

Figure 28: Analytics for monitoring workflow example. ... 85

Figure 29: Local Management Service information model .. 86

Figure 30: Local Management service workflow example. .. 87

Figure 31: Multi-tenancy service information model ... 94

file://///hercules.cttc.es/Public/D3.1.docx%23_Toc464813074

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 10

Figure 32: Multi-tenancy service workflow example... 96

Figure 33: (a) characterization set-up. (b) BER results .. 99

Figure 34 : XPFE test setup .. 100

Figure 35: Setup for split radio protocol stack ... 101

Figure 36: XCI MANO for CDN. Validation Environment ... 102

Figure 37: Validation environment... 104

Figure 38: Diagram of the involved components with VIMaP development and testing

 .. 105

Figure 39: Validation environment with Mininet emulated data-plane 109

Figure 40: Validation environment with Lagopus emulated data-plane 109

Figure 41: Validation environment for the SDN controller for mmWave/WiFi meshes

 .. 110

Figure 42: Validation environment for mmWave mesh controller 112

Figure 43: Diagram of the involved components with ABNO development and testing

 .. 113

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 11

List of Acronyms

Acronym Description

ABNO Application Based Network Operations

AF Adaptation Function

API Application Programming Interface

BBU Base-Band Unit

BER Bit Error Rate

BH Backhaul

BS Base Station

CDN Content Delivery Network

CDNMA Content Delivery Network Management Application

COP Common Orchestration Protocol

COTS Commercial Off-the-Shelf

CPRI Common Public Radio Interface

CPU Central Processing Unit

C-RAN Cloud Radio Access Network

CRUD Create, Read, Update, Delete

DB Data Base

DWDM Dense Wavelength Division Multiplexing

E2E End to End

EMMA Energy-Management and Monitoring Application

ETSI European Telecommunications Standards Institute

FH Fronthaul

GMPLS Generalized Multi-Protocol Label Switching

ID Identifier

IP Internet Protocol

IT Information Technology

JSON JavaScript Object Notation

LAN Local Area Network

LLDP Link Layer Discovery Protocol

LMS Local Management Service

MAC Media Access Control

MANO Management and Orchestration

MMA Mobility Management Application

MPLS Multiprotocol Label Switching

MTA Multi-Tenancy Application

MVNO Mobile Virtual Network Operator

NBI NorthBound Interface

NFV Network Functions Virtualization

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 12

NFVI Network Function Virtualization Infrastructure

NFV-O Network Function Virtualization Orchestrator

NS Network Service

NSD Network Service Descriptor

ODL OpenDayLight

ONF Open Networking Foundation

ONOS Open Network Operating System

OTN Optical Transport Network

OTT Over-The-Top

PBB Provide Backbone Bridging

PBSS Personal Basic Service Set

PCE Path Computation Element

PCP PBSS Code Point

PNF Physical Network Function

QoS Quality of Service

RAM Random Access Memory

RAN Radio Access Network

REST Representational State Transfer

ROADM Reconfigurable Optical Add and Drop Multiplexer

RRH Remote Radio Head

RRU Remote Radio Unit

SBI SouthBound Interface

SDK Software Development Kit

SDN Software-Defined Networking

SFC Service Function Chaining

SLA Service Level Agreement

SMF Single-Mode Fibre

SNMP Simple Network Management Protocol

SRLG Shared Risk Link Group

SUT System Under Test

TCAM Ternary Content Addressable Memory

TDM Time Division Multiplexing

TE Traffic Engineering

UE User Equipment

UML Unified Modeling Language

URL Uniform Resource Locator

VDU Virtual Deployment Unit

vCDN Virtual Content Delivery Network

vEPC Virtual Evolved Packet Core

VIM Virtual Infrastructure Manager

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 13

VIMaP Virtual Infrastructure manager and Planner Application

VLAN Virtual LAN

VM Virtual Machine

VNF Virtual Network Function

VNFC Virtual Network Function Component

VNFD Virtual Network Function Descriptor

VNFFG Virtual Network Function Forwarding Graph

VNFM Virtual Network Function Manager

VTN Virtual Tenant Network

WP Work Package

XAF 5G-Crosshaul Adaptation Function

XCF 5G-Crosshaul Common Frame

XCI 5G-Crosshaul Control Infrastructure

XCSE 5G-Crosshaul Circuit Switching Element

XFE 5G-Crosshaul Forwarding Element

XML Extensible Markup Language

XPFE 5G-Crosshaul Packet Forwarding Element

XPU 5G-Crosshaul Processing Unit

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 14

 Executive Summary

The 5G-Crosshaul project aims at developing a 5G integrated fronthaul and backhaul

transport network solution, enabling a flexible interconnection of the radio access with

the core network by software-defined reconfiguration of all network elements. In order

to achieve this, there is a need for high capacity and low latency transmission

techniques and novel unified data and control plane mechanisms.

This document provides a thorough description of the software-defined of the proposed

5G transport network solution: the 5G-Crosshaul Control Infrastructure (XCI). On top

of the XCI the project is proposing the logic for managing the integrated fronthaul and

backhaul infrastructure via an upper layer of external applications, which are described

in D4.1 [2]. The XCI represents the Management and Orchestration (MANO) platform

to operate all available types of resources: networking, computing, and storage. The

architecture of the XCI is based on Software Defined Network (SDN) and Network

Functional Virtualization (NFV) principles. To the upper layer, it provides a unified

platform via a Northbound Interface (NBI) to control and monitor the underlying data

plane by a common set of core services and primitives. The XCI interacts with the data

plane via its Southbound Interface (SBI) to:

 control and manage the packet forwarding behavior of the 5G-Crosshaul

forwarding elements (XFE) in the 5G-Crosshaul network;

 control and manage the physical configuration of the different link technologies;

and

 control and manage the 5G-Crosshaul Processing Units (XPU) via NFV.

The XCI consists of a part dealing with NFV and specific SDN controllers for the

different types of resources. The NFV part is aligned with ETSI NFV architecture. The

SDN controllers handle the network elements in the data plane. 5G-Crosshaul extends

the SDN controllers to handle the different link technologies, providing a common SDN

controlled network substrate, which can be reconfigured based on the needs of the

network tenants.

We expect the data plane to use different transmission technologies. Also, a part of the

data plane may be a legacy system, not consisting of XFEs, whereas other parts may

consist of XFEs. In both cases, the data plane consists of different technological

domains. The different domains can be combined by SDN controllers in a peer or a

hierarchical model. In the peer model, each SDN controller handles devices of multiple

domains. In the hierarchical model, a parent controller combines the different domains

into a single network and the dedicated child controllers handle a single technological

domain. For the design of the data plane, WP3 has worked jointly with WP2, especially

on the XFE and SBI design. A detailed description of the XFE and SBI has been

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 15

presented in D2.1 [1], covering both joint WP2 and WP3 as well as work done by WP3

only.

The SDN controllers provide different services to the NFV part of the XCI and upper

layer applications, such as a topology and inventory service. Other services provide

analytical or optimization algorithms. An example of an optimization algorithm is to

setup paths through the network to use as few resources as possible, in turn allowing to

reduce the power state of the unused resources. This deliverable presents several

analytical models of the network used as a basis for optimization algorithms

The services of the controllers have to be accessible by the upper layers via its NBI. The

NBI is REST based, following the paradigm used by many SDN and IT controllers. For

each of the services, this document defines initial versions of the information model, the

actual API, as well as workflows to use the API. If needed, these initial versions will be

refined when implementing the services.

The components of the data and control plane will be integrated in the demonstrations

of WP5. Each of these components has to be validated to ensure their maturity before

the integration. We define a validation approach based on test cards, defining the scope

of the individual tests and the test steps of each test. An overview of the tests is

provided in the main part of this document, the detailed steps are defined in appendices.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 16

 Key achievements

The key achievements reported in this document are summarized in the following.

The first important achievement presented in this document is a detailed description

of the central entity of the control plane architecture defined within the 5G-Crosshaul

network, the XCI. This description focuses on its different elements, interrelations

and deployments considerations within the 5G-Crosshaul network. This document

identifies possible software platforms for XCI’s implementation.

The second key achievement is the initial definition of the NBI based on REST, to

allow interaction between the different modules of the XCI and with the different

applications present in the application plane. This definition identifies the required NBI

services present in the XCI and proposes a specific API, the more relevant information

data models associated to this NBI service, and a workflow illustrating the use of this

service by a generic 5G-Crosshaul application or by an internal module inside the XCI

that, in turn, can expose an NBI.

Finally, the methodology adopted for the validation and evaluation of the data

plane and control plane components under development in WP3 is presented. The

scope of this validation activity is to assure the proper behaviour of the functions and

algorithms that are integral part of the components constituting the whole XCI control-

plane infrastructure and operating the heterogeneous resources in the data plane.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 17

 Introduction

This document provides a detailed description of the main elements of the proposed

control plane within the 5G-Crosshaul architecture, see Figure 1, the 5G-Crosshaul

Control Infrastructure (XCI). This description covers the design, implementation, and

deployment considerations of its different elements, namely, the Network Function

Virtualization (NFV) infrastructure, the Management and Orchestration (MANO)

elements, and the Software Defined Networking (SDN) controllers.

This document contains a short summary of the 5G-Crosshauling Forwarding Element

(XFE) and the Southbound Interface among the XCI and the XFEs. This was joint work

in collaboration with WP2 and is reported in more detail in D2.1 [1].

This description is completed with an explanation of the interaction of the XCI with the

other architectural planes (data plane and application plane) of the SDN and NFV

concepts by specifying a Southbound Interface (SBI) and Northbound Interface (NBI)

respectively. Finally, this deliverable presents of the validation methodology and plans

for the main 5G-Crosshaul components under development, not only the XCI but also

the XFE software.

More in detail, the document is structured as follows:

 Section 4 summarizes the unified data plane architecture proposed within the

5G-Crosshaul project, focusing on the architecture of the XFE.

 Section 5 describes in detail the proposed control plane architecture, focusing on

the different elements that constitute the 5G-Crosshaul XCI, their interrelations,

Figure 1: 5G-Crosshaul architecture illustration.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 18

XCI’s different deployment considerations required within the scope of

proposed 5G-Crosshaul network, and the identification of possible software

frameworks and platforms to be used for their implementation.

 Section 6 defines analytic algorithms adopted at the XCI level. Further

algorithms implemented at the application layer are addressed in WP4 and are

out of scope of this document.

 Section 7 and Section 8 describe the design of the SBI and the NBI, where the

former is required by the XCI to interact with the data plane and the latter is

used by the XCI to interact with the application plane.

 Section 9 presents the validation methodology and plans of the different 5G-

Crosshaul data plane and control plane elements: XFE prototypes, XCI MANO

components and XCI SDN controllers.

 Section 10 provides the main conclusions of the activity so far developed within

WP3.

 Appendix I and II, in Section 11 and Section 12, respectively, provide further

detail procedures of the validation methodology summarized in Section 9 for the

XCI components.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 19

 Data Plane Architecture

The data plane architecture has already been described in D2.1 [1]. For the sake of self-

containment, this section provides a summary of the more relevant elements in the data

plane architecture. The logical architecture of the 5G-Crosshaul data plane is illustrated

in Figure 2.

Figure 2: 5G-Crosshaul data plane architecture.

The fundamental block of the data plane architecture is the XFE that, in the most

general implementation, is a multi-layer switch, made up of a packet switch called the

5G-Crosshaul Packet Forwarding Element (XPFE) and a circuit switch called the 5G-

Crosshaul Circuit Switching Element (XCSE), see Figure 3. This two layer switching

architecture is able to combine the bandwidth efficiency given by statistical

multiplexing in the packet switch, with the deterministic latency ensured by the circuit

switch.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 20

Figure 3: Generic implementation of the 5G-Crosshaul switching node

It is not necessary that all the layers always coexist but one or two could be skipped

depending on the type of deployed network. Examples are: a mesh of packet switches

connected by dark fibers (where only the packet layer is exploited); 5G remote radio

heads (RRHs), based on new radio protocol split and packetized fronthaul interface,

connected to a Dense Wavelength Division Multiplexing (DWDM) network (where

only wavelength and packet switch are present); the same network where also Common

Public Radio Interface (CPRI) tributaries are carried and multiplexed over time-slots in

a wavelength, so that a Time Division Multiplexing (TDM) switch needs to be added.

This TDM switch can be based on optical transport network (OTN) or the simpler

framing protocol described in D2.1 [1].

The 5G-Crosshaul Common Frame (XCF) is a packet interface based on an evolution of

the Ethernet MAC-in-MAC standard, adding mechanisms to deal with time sensitive

applications, see Section 8 of D2.1 [1]. The XPFEs talk to each other using the XCF.

XCF is also the interface between XPFE and 5G-Crosshaul Processing Unit (XPU), the

virtualized unit in charge of hosting baseband processing and other virtual functions.

Packet switching enables statistical multiplexing when the peak to average radio access

traffic load in 5G is high enough. Figure 4 depicts an initial functional architecture for

the 5G-Crosshaul Packet Forwarding Element (XPFE).

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 21

Figure 4: XPFE functional architecture

The XPFE includes the following key functions:

 A common control-plane agent to talk to the common control infrastructure

(XCI).

 A common switching layer based on a common frame (XCF) to forward packets

between interfaces.

 A device agent common to all peripheral systems to talk with system

components. This agent exposes device-related information like CPU usage,

RAM occupancy, battery status, GPS position, etc., to the control infrastructure.

 Mappers for each physical interface. XCF can be mapped on any physical

interface as long as the XCF traffic requirements are satisfied.

 Physical interfaces to transmit the data on the link.

Figure 5 depicts an initial functional architecture for the 5G-Crosshaul Adaptation

Function (XAF), similar to the XPFE. It includes the following key functions:

 A common control-plane agent, a common switching layer, a common device

agent, mappers, and physical interfaces like in XPFE case.

 Adaptation layers from/to the common switching layer to/from the specific

fronthaul and backhaul protocols.

 Fronthaul and backhaul protocols (Ethernet, NGFI, CPRI, etc.).

Figure 5: XAF functional architecture

The adaptation layers are in charge of translating/adapting fronthaul and backhaul

protocols to XCF and enforcing the XCF forwarding control by adapting/translating the

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 22

commands to specific protocol interfaces. The following is a non-exhaustive list of

functions that will be defined in the adaptation layers:

 Mapping of fronthaul/backhaul traffic characteristics to the XCF format.

 Encapsulation and decapsulation of fronthaul and backhaul while dejittering and

retiming the associated traffic.

 Framing of fronthaul and backhaul traffic with particular attention to the frame

size in order to minimize delay, jitter, and to avoid fragmentation.

 Control Plane Architecture

In this section, we present our initial design of the 5G-Crosshaul Control Infrastructure

(XCI) platform. We can highlight that its design is led by the guidelines described in

D1.1 [3] within the System Architecture task. Figure 1 illustrates the baseline 5G-

Crosshaul system architecture presented in [3]. We divide the control plane into two

layers: a top layer for external applications (duly described in D4.1 [2]) and the 5G-

Crosshaul Control Infrastructure (XCI) below. The XCI is our 5G Transport

Management and Orchestration (MANO) platform that provides control and

management functions to operate all available types of resources (networking,

computing, and storage). The XCI is based on the SDN/NFV principles and provides a

unified platform that can be used by upper layer applications via a Northbound interface

(NBI) to program and monitor the underlying data plane through a common set of core

services and primitives. As mentioned in D1.1 [3], the XCI interacts with the data plane

entities via a Southbound interface (SBI) in order to:

1) Control and manage the packet forwarding behavior performed by 5G-
Crosshaul Forwarding Elements (XFEs) across the 5G-Crosshaul network;

2) Control and manage the PHY configuration of the different link technologies
(e.g. transmission power on wireless links); and

3) Control and manage the 5G-Crosshaul Processing Units (XPU) computing
operations (e.g. instantiation and management of Virtual Network Functions
(VNFs) via Network Function Virtualization (NFV)).

5.1. High-level Architecture (5G-Crosshaul MANO)

In the following, we describe in detail the 5G-Crosshaul main architecture building

blocks within the control plane briefly introduced above. The XCI is the brain

controlling the overall operation of the 5G-Crosshaul. The XCI part dealing with NFV

comprises three main functional blocks, namely: NFV orchestrator, VNF Manager(s)

and Virtual Infrastructure Manager (VIM) (following the ETSI NFV architecture [4]):

 The NFV-O (NFV Orchestrator) is a functional block that manages a Network

Service (NS) lifecycle. It coordinates the VNF lifecycle (supported by the VNFM)

and the resources available at the NFV Infrastructure (NFVI) (supported by the VIM)

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 23

to ensure an optimized allocation of the necessary resources and connectivity to

provide the requested virtual network functionality.

 The VNFMs (VNF Managers) are functional blocks responsible for the lifecycle

management of VNF instances (e.g. instance instantiation, modification, and

termination).

 The VIM (Virtualized Infrastructure Manager) is a functional block that is

responsible for controlling and managing the NFVI computing (via Computing ctrl),

storage (via Storage ctrl) and network resources (via SDN ctrl).

In addition to these modules, which are in charge of managing the different VNFs

running on top of the 5G-Crosshaul, the XCI includes a set of specialized controllers to

deal with the control of the underlying network, storage and computation resources:

 SDN Controller: This module is in charge of controlling the underlying network

elements following the conventional SDN paradigm. 5G-Crosshaul aims at

extending current SDN support of multiple technologies used in transport networks

(such as micro-wave links1) in order to have a common SDN controlled network

substrate which can be reconfigured based on the needs of the network tenants.

 Computing/Storage Controllers: Storage and Computing controllers are included in

what we call a Cloud Controller. A prominent example of this kind of software

framework is OpenStack.

Note that the SDN/Computing/Storage controllers are functional blocks with one or

multiple actual controllers (hierarchical or peer-to-peer structure) that centralize some or

all of the control functionality of one or multiple network domains. We consider the

utilization of legacy network controllers (e.g. MPLS/GMPLS) to ensure backward-

compatibility for legacy equipment.

5.1.1. Multi-domain control

The multi-domain transport control is a relevant aspect to consider in 5G-Crosshaul

both to enable the interaction of SDN with legacy control and to support the case where

more SDN controllers should interwork. We will report later in Section 5.3 a description

of the different models of control interaction (e.g. peer and hierarchical), providing their

comparison in different network scenarios. In this section, instead some key

requirements for the extensions of the 5G-Crosshaul MANO architecture to include

multi-domain transport are reported. This is actually a relevant topic that is currently

debated within the main standardization bodies though a conclusion has not been

reached yet. For example the IETF ACTN BoF [5] proposes a hierachical architecture

for the multi-domain transport but it is focused on the transport aspects with very

limited description about the interaction with the virtualization functions. In [4] instead,

most of the work is concentrated to the virtualization of the functions considering the

transport as available Point to Point resources, without considering the constraints

1 The ONF is actively working towards the definition of a southbound interface for micro-wave links: http://5g-crosshaul.eu/wireless-

transport-sdn-proof-of-concept/

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 24

related to the interaction among different domains. In most cases the interaction

between multi-domain transport and virtualization is solved considering a sort of

overprovisioning of the networking resources, but that could be a solution not viable in

future due to the need of reducing the cost of the transport. A practical solution to fix

such issue is to define a layer architecture that assures a complete decoupling between

the multi-domain transport and the virtualization layers. According to this principle the

multi-domain transport is in charge of optimizing the network resources, assuring a

suitable interworking among the heterogeneous transport domains, and providing a

suitable exposition of the transport resources to the virtualization layer (e.g. to NFV

orchestrator, VNF-I). The virtualization layer, instead, will operate on the network

resources working on the suitable abstract view of the transport. In this model the multi-

domain transport should provide the resource exposition according to service level

agreement (SLA) hiding the technological details of the several domains and simplifing

the tasks of the virtualization layer. Moreover, this model makes the management of the

virtualizacion functions agnostic to the evolution of the several transport domains from

legacy to the SDN. Consequently, this allows the XCI architecture to be quite general

and applicable in concrete scenarios where operators can move towards pure SDN

architecture smoothly.

The decoupling between the multi-domain transport and virtualization prevents any

dependency of the general architecture of the XCI on the specific transport technology,

and simplifies the interaction also with the legacy control. Anyway, some issues have to

be fixed to make the solution efficient. For example, the virtualized view provided by

the multi-domain transport should be quite stable in time, limiting the variation of

parameters and facilitating the task of the NFV-O. Again, this could be in contrast with

the resource optimization techniques applied on the transport layer where, continuous

change of information and data could be necessary. Actually, the challenge is to jointly

meet all previous requirements taking into account NFV and SDN reference paradigm.

5G-Crosshaul will address such topics in details in the rest of the project.

Figure 6 shows how to extend the XCI control architecture with multi-domain transport

control. In the picture it is highlighted the border between the virtualization and

transport layer represented by the abstract view of the transport resources, this border is

within the end-to-end (E2E) abstract exposition of the transport resources. Actually, the

multi-domain transport control is responsible to provide the E2E abstract view based on

SLA parameters and to guarantee that such values are met; while the virtualization layer

utilizes the E2E abstract view as networking resources to be combined with storage and

computation according to the procedures defined in [4].

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 25

Figure 6: Multi-domain XCI architecture.

5.1.2. Multi-tenant design (XCI recursion)

The main discussion and agreements on the design of a hierarchical recursive XCI are

presented in Section 3.3 of D1.1 [3]. We can report here that no substantial advances on

this topic have taken placed since then, and thus we refer the reader to D1.1 [3].

5.2. XCI Design

Figure 7 depicts the XCI design, also showing its interactions with the 5G-Crosshaul

SDN applications and VNFs, which are out of WP3 scope (represented in the green

boxes).

The picture highlights the two macro-modules of the XCI:

 The XCI MANO components, responsible for the instantiation, orchestration

and management of Virtual Network Functions and Network Services (in ETSI

NFV terminology, a Network Service is a collection of VNFs interconnected

through a VNF Forwarding Graph – VNFFG – and it can be considered as the

equivalent of a Service Function Chain);

 The XCI SDN controller, responsible for the configuration and management of

the network infrastructure.

Legacy
control

(e.g.
GMPLS,

etc)

SDN
domain

N

SDN
domain 1

Multi-domain transport control

E2E Abstract view exposition

…

V
ir
tu

a
liz

a
ti
o

n
T

ra
n

s
p

o
rt

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 26

Figure 7: XCI design.

As explained in the previous section, the XCI MANO components include the NFV

Orchestrator (NFV-O), the VNF Managers (VNFM) associated to the different 5G-

Crosshaul VNFs, and the Virtual Infrastructure Manager (VIM). In 5G-Crosshaul, the

VIM concept is extended with planning algorithms, which take efficient decisions about

virtual machines (VMs) placement and network configuration, towards integrated

Virtual Infrastructure Management and Planning (VIMaP) functions. The controllers, in

particular the SDN controller on the network side and the XPU controllers, including

both storage and computing, perform the enforcement of VIMaP decisions. XPU

controllers rely on State of the Art components (e.g. OpenStack NOVA for computing

controllers) and are out of scope for 5G-Crosshaul.

It should be noted that in this section we are assuming a single network domain, thus

operated by a single SDN controller. In case of a network infrastructure deployed in

multiple domains, the general considerations described in Section 5.3 should be applied.

In particular, the role of the SDN controller should be decomposed in several “child”

controllers operating at each domain and abstracting the internal details of the local

resources, with a hierarchical “parent” controller in charge of computing and allocating

end-to-end and inter-domain connections. This is done through the coordination of the

lower controllers’ actions, which are the final responsible of the actual, technology-

dependent resource configuration. Further details about the applicability of the SDN

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 27

hierarchical approach is provided in Section 5.3.2, where different deployment models

are investigated and compared.

The XCI SDN controller macro-architecture is structured in three internal layers: SBI

drivers for the interaction with heterogeneous devices at the data plane; network core

services implementing basic monitoring, configuration and inventory functionalities;

and network applications implementing the network level logic. Both network core

services and network applications provide north-bound interfaces (NBI) which can be

used by the XCI MANO components (mainly the VIMaP) and the 5G-Crosshaul

applications to program the network.

The list of network applications embedded in the SDN controller are the following:

 Analytics for monitoring: an advanced monitoring service used to correlate raw

network monitoring data originally provided by the statistics service. It can be used,

for example, to elaborate monitoring information related to a virtual network based

on statistics data on flows and physical ports. This functionality offers a NBI, which

is detailed in Section 8.8, to upper-layer applications.

 Network (re-)configuration: used to re-configure specific network elements, mainly

for management purposes. It is also used by the EMMA application to change the

status of the devices for energy saving issues. This functionality is embedded in the

Local Management service, whose NBI is detailed in Section 8.9.

 Path provisioning: service which establishes a network path between a source and

one (or more) destination end-point(s). It can take as input several constraints,

including the specification of the path itself. This option allows upper layer

applications to implement their own allocation algorithms and use the path

provisioning service as a sort of “configuration arm”. If the path is not included in

the input parameters, the internal path computation engine core service is invoked.

This functionality offers a NBI detailed specification in Section 8.2.

 Multi-tenant network virtualization: service which builds isolated and virtualized

networks over the shared physical infrastructure. The multi-tenancy logic (i.e. the

mapping between a Virtual Infrastructure –VI– and its tenant) can also be kept at the

SDN controller level as optional, but it may be also implemented at the upper layers

only (e.g. at the VIMaP, at the NFV-O or at the Multi-Tenancy Application (MTA)

level). This is related to an on-going discussion in WP4. For what concerns WP3,

the mandatory features of the network virtualization service are the consistency

between the VI description and the VI exposed at the SDN controller NBI level and

the isolation between coexisting VIs.

The SBI drivers have been specialized according to the latest outcomes of WP2 which

has identified the different technologies of the 5G-Crosshaul data plane. Each SBI

driver implements mechanisms for receiving inventory and monitoring data from the

devices, including technology specific parameters, and for configuring some of their

management parameters and their forwarding behavior. Further details are provided in

the Section 7.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 28

The following sections provide a preliminary matching between the components

identified in the XCI design and possible software frameworks and platforms that can

be used for their implementation.

5.2.1. Alternatives for NFV-O/NFVM/VIM

Some open source software alternatives for the XCI MANO components have been

analyzed in D1.1 [3]. The XCI architecture does not mandate any specific software

platform; the same XCI functions can be developed starting from different open source

or proprietary projects, with the unique constraint of being compliant with the interfaces

defined at the NBI and SBI of each component in order to support the proper workflows

and interactions.

Initial proof of concept prototypes planned by different 5G-Crosshaul partners will be

based on the components described in the following table:

Table 1: Software platforms used in XCI MANO prototypes.

Functional

Component

Software baseline Features / Use case 5G-Crosshaul

partner

NFV-O OpenBaton [6] Orchestration of virtual Evolved

Packet Core (vEPC).

NXW

Proprietary orchestrator

for CDNMA

Orchestration of CDN nodes. ATOS

VNFM OpenBaton VNFM SDK

(REST API)

Management of vEPC VNFs

lifecycle.

NXW

Proprietary VNFM for

CDN VNFs

Orchestration of CDN nodes

VNFs lifecycle.

ATOS

VIMaP OpenStack [7] Provisioning of vEPC VNFs and

their interconnections with

Quality of Service (QoS) and

energy constraints.

NXW

OpenStack Provisioning of CDN origin and

replica servers on XPUs and

Service Function Chaining (SFC)

 configuration.

ATOS

OpenStack + proprietary Allocation and management of

VMs and their interconnections.

CTTC

5.2.2. Alternatives for storage and computing control

Storage and computing controllers will be based on state-of-the-art components, for

example based on the corresponding OpenStack modules. No further extensions are

required.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 29

5.2.3. SDN controllers

As in the XCI MANO components case, the architecture does not impose any specific

choice on the SDN controller software platform for the reference implementation. An

analysis of possible alternatives has been provided in D1.1 [3].

The table below reports the plans of the 5G-Crosshaul partners for the implementation

of proof-of-concept prototypes.

Table 2: Software platforms used in XCI SDN controller prototypes.

Functional

Component

Software

baseline

Features / Use case 5G-Crosshaul

partner

SBI driver OpenDayLight

(ODL) [8]

XPFE forwarding control via OF.

Collection of energy consumption

parameters from XPFE.

Configuration of XPFE device state.

NXW

Ryu [9] Configuration and control of mmWave

nodes, based on OF for forwarding and

REST for retrieval and configuration

of port parameters.

CTTC

ODL Collection of energy consumption

parameters.

POLITO

ODL Configuration, control and

management of mmWave mesh nodes.

Forwarding control via OF for

mmWave mesh nodes.

IDCC

Network core

services

(inventory,

topology,

statistics, flow

actions)

ODL Extensions to topology & inventory

modules for power-consumption

information.

NXW

Ryu Core services for mmWave

technology.

CTTC

ODL Core services for mmWave mesh

nodes.

IDCC

Path

computation

ODL Path computation for energy-efficient

network path

NXW

--(analytical

algorithms)

Network optimization UC3M

--(analytical

algorithms)

Algorithms for optimal path

computation and service embedding in

multi-technology transport network

(ETH + mmWave).

CREATE-NET

ONOS[10]/ODL Computation of path between RRHs

and XPUs

NEC

Path

provisioning

ODL Path provisioning for energy-efficient

network path

NXW

ODL/ONOS Provisioning of SFC networking in

support of CDN infrastructure

ATOS

Network re-

configuration

ODL NBI methods to change the status of

XPFE (in support of EMMA app)

NXW

Analytics for ODL Elaboration of energy-related NXW

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 30

monitoring monitoring information for paths and

virtual infrastructures.

Parent SDN

controller (see

section 5.3)

Proprietary ABNO-based parent controller with

COP (open source YANG-based)

interaction with child SDN controllers.

CTTC

ODL/Ryu Distributed on-board/in-vehicle

controller and on-land controller.

ITRI

5.3. Deployment models of XCI

In this section, we will discuss different deployment instances that can fit within our

XCI architectural design. The following gathers the discussion taken place within the

project on different models to control and manage networking resources. The extension

to other types of resources (e.g. computing and storage) can be discussed in subsequent

reports. It is commonly accepted that deploying a single, integrated controller for a large

or complex network may present scalability issues, or may not be doable in practice. In

particular:

 The network size, in terms of controllable elements, has a direct impact on the

controller requirements on aspects such as the number of e.g. active and persistent

TCP connections on top of which control sessions are established, memory

requirements to store in memory e.g. a data structure representing the network graph

abstracting the network and CPU requirements for processing message exchange, or

implement control logic.

 The network complexity in terms of multiple deployed technologies (such as a

packet-switched layer for Layer2/Layer3 transport over a circuit-switched optical

layer, each having intrinsic and non-generalizable parameters and attributes) has an

impact on functionalities and protocols to be implemented by the controller. For

example, at the south-bound interface the controller needs to implement protocol

extensions depending on the specific network layer of the controlled elements.

Moreover, an inter-layer coordination function is also needed to deal with end-to-

end connections and associated inter-layer technology adaptation, increasing the

complexity of such unique controller.

To address such shortcomings, a current trend within SDN control plane design is to

consider the deployment of multiple controllers, arranged in a specific setting, along

with inter-controller protocols. Such architectures apply both to heterogeneous and

homogeneous control (different or same control plane and data plane technologies

within the domain of responsibility of a given controller). As detailed next, a

straightforward scheme to arrange the controllers is either in a flat (peer) or hierarchical

setting, but we will later qualify and challenge such simple model.

It is important to state that nothing precludes the deployment of two or more SDN

controllers for a given set of controlled network elements for robustness and availability

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 31

purposes as depicted in in Figure 8. For example, the OpenFlow protocol supports the

notion of primary or main and backup or secondary controllers. Two or more controllers

can cover the same, overlapping or disjoint sets of network elements (this is a

straightforward deployment choice for high availability reasons, where usually only a

controller, e.g. the master one, has control over a given resource at a given time). For

simplicity, from now on we assume a single SDN controller covering or spanning a set

of controlled network elements. Having two or more controllers (e.g. for redundancy

purposes) adds additional considerations such as inter-controller synchronization, and

whether such controllers are synchronized e.g. by means of a dedicated protocol

between them or via/by virtue of obtaining the information from the same set of

network elements.

Figure 8: Arrangements for SDN controllers, combining hierarchical settings and peer

models.

5.3.1. Basic SDN controller interconnection models

From a very basic, simplistic approach, SDN controllers can be arranged in two

canonical models: peer or flat model and hierarchical model (Figure 8).

5.3.1.1. Peer or flat model

This usually corresponds to a set of controllers, interconnected in an arbitrary mesh,

which cooperate to provision end-to-end services. In this setting, we can often assume

that the mesh is implicit by the actual (sub)domains connectivity. The controllers hide

the internal control technology and synchronize state using e.g. East/West interfaces.

Further, the controllers manage detailed information of their own, local topology and

connection databases, as well as abstracted views of the external domains and the

East/West interfaces should support functions such as network topology abstraction,

control adaptation, path computation, and segment provisioning.

SDN Controller SDN Controller

SDN Controller SDN Controller

SDN Controller SDN Controller

Administrative boundaries

Network
ElementNetwork

ElementNetwork
ElementNetwork

ElementNetwork
ElementNetwork

Element

Network
ElementNetwork

ElementNetwork
ElementNetwork

ElementNetwork
ElementNetwork

Element
Robustness

Network
ElementNetwork

ElementNetwork
ElementNetwork

ElementNetwork
ElementNetwork

Element

Vendor or technology
segmentation

Orchestrator

SDN Controller SDN Controller

High Availability Cluster

Network
ElementNetwork

ElementNetwork
ElementNetwork

ElementNetwork
ElementNetwork

Element

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 32

5.3.1.2. Hierarchical model

In this model, controllers are ranged in a topology, which is typically a tree with a given

root being the top-most controller. For a given hierarchy level, a centralized “controller

of controllers” or orchestrator (also referred to as parent controller) handles the

automation and has a certain number of high-level functions, while low-level controllers

(usually referred to as children) cover low-level, detailed functions and operations. A

recurring example is a 2-level hierarchy in which a parent SDN controller is responsible

for connectivity provisioning at a higher, abstracted level, covering inter-domain

aspects, while specific per-domain (child) controllers map the abstracted control plane

functions into the underlying control plane technology. Proper interfaces and protocols

are needed to enable this interaction between child and parent controllers; more generic

interfaces and protocols enable a wider applicability of the architecture to an arbitrary

number of hierarchy levels.

5.3.2. Generalizing hierarchical SDN controller interconnection models

In technological contexts such as the one defined by 5G-Crosshaul, there are multiple

considerations that challenge the somehow simplistic hierarchical models. Let us

identify a non-exhaustive list, noting that they are also strongly inter-dependent, since,

for example, different network segments may belong to one or more administrative

domains/operators who internally arrange the network in technological domains, which,

in turn, are commonly provided by different vendors.

 Network segment splitting. Defining an SDN control architecture for a network

that encompasses multiple network segments (such as access, aggregation, metro,

core) may be constrained in what concerns whether it is feasible to deploy a

hierarchical SDN control or not.

 Vendor constraints. Arranging controllers in a specific setting will highly depend

on the available interfaces and protocols (ideally open and standard) and the

corresponding level of support/implementation for a given vendor. It is reasonable

to expect that arranging SDN controllers from the same vendor in a hierarchy will

be straightforward if the vendor provides such functionality and there will be a high

level of expected inter-operability in that case.

 Redundancy, high availability, robustness. It is accepted that deployments of

SDN control in carriers’ networks will be strongly constrained by the expected

requirements in terms of robustness and high-availability. Best common practices

commonly consider deploying multiple elements and synchronizing state between

them. This is sometimes referred to as fat-trees, or forests, e.g. where the parents

communicate to each other.

 Widest definition and scope of “domain”. Strongly related to the previous ones,

the term domain has multiple definitions and sometimes applies to the arrangement

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 33

of network elements by their technology but also by their vendor or network

segment, or even administrative or geographical domains.

 Fitness for purpose. A specific controller arrangement may not fully correspond to

the intended logical SDN controller relationships, which sometimes can be better

mapped to a client/server or master/slave model. While master/slave can correspond

to a hierarchical setting, other relationships, functional splits and responsibilities

may fit better to a flat model

 Administrative domains, control and ownership. An often-recurring critique of

pure hierarchical models comes from the issue of top-most parent ownership. Unless

there is a clear function definition and demarcation points, business arrangements

and inter-connection models are based on a peer relationship in which no entity is

under the control or supervision of a higher-level entity.

 Confidentiality. This applies to either peer or hierarchical models, although

depends on the specifics of the northbound and west/east interfaces.

 Domains of applicability. The initial designs for hierarchical models addressed the

problem of arranging SDN controllers considering only e.g. the networking and data

communications for network service provisioning aspects. When considering, as in

5G-Crosshaul, the need to offer 5G services that involve heterogeneous resources

beyond the network (i.e. also storage and computing resources), the adoption of a

hierarchical, peer or hybrid model is not clear. A set of network or cloud controllers

may be under the control of an ETSI NFV VIM, or the VIM may include a cloud

controller that includes a network controller, and combinations hereof.

 Provisioning workflows. Intended provisioning workflows may also affect the

choice of hierarchical or peer models. For example, “end user driven”, “data driven”

or “event-driven” provisioning services may be better suited to a peer model (e.g. a

request from the Radio Access Network (RAN) to the core) while a “operator-

driven” pre-provision action may be better suited to a hierarchical model.

A main, direct consequence of the previous consideration and analysis, is that, in

general, a given deployment of a carrier class SDN-based control architecture for 5G

services (which combine heterogeneous networking/cloud resources over an

infrastructure spanning multiple network segments and/or technological domains and

vendors) will not correspond to a pure hierarchical or flat but will present a

combination of centralized/distributed and hierarchical/flat/peer models constrained by

the identified requirements and actual implementation choices (see Figure 9).

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 34

Figure 9: Example of SDN control within a mixture of administrative, technological and

vendor domains, showing different peer and hierarchical modes.

5.3.2.1. Hierarchical SDN approaches based on the definition of domain

As a summary of the previous section, constraining aspects that may condition the

deployment of hierarchical SDN controllers are mainly defined by the widest definition

of domain and the associated requirements of confidentiality, functional split and inter-

connection and business agreements. The following table summarizes and illustrates the

main cases.

Case examples

Deployments

Remarks in Hierarchical SDN architectures.

Same vendor within a

given technology and

administrative domain

 Best-fit model depends on vendor defined criterion; e.g. peer or

hierarchy and abstraction support provided by the SDN vendor.

 Straightforward and interoperable hierarchical SDN setting

 Straightforward and interoperable peer SDN setting

 Hierarchy introduced for scalability reasons

 Within a hierarchical setting, peer-models may be used for

robustness, or high-availability reasons (e.g. backup controller,

distributed systems acting as a logically centralized entity)

 Peer models commonly used when adhering to a distributed

approach (e.g controller mesh, redundancy or high availability

solutions)

 Hierarchical or peer architectures work at low-level interfaces

with binary encodings and byte-level protocol. High degree of

interworking, when applicable, proprietary extensions used.

 Hybrid approaches complementing peer/hierarchical

Different vendors

within a single

technology and

administrative

 Peer models available (e.g. GMPLS controllers) but with strict

constraints in interoperability. Issues in real deployments where

operators chose to scope and segment into vendor islands.

Network
ElementNetwork

ElementNetwork
ElementNetwork

Element

Network
ElementNetwork

ElementNetwork
Element

Layer L
Parent

Controller

Network
ElementNetwork

ElementNetwork
Element

Network
Element

Network
ElementNetwork

ElementNetwork
ElementNetwork

Element

Layer L
Child

Controller

Layer L
Child

Controller

Layer H
Controller

Domain
(Multi-Layer)
Orchestrator

Data Plane
Layer H

Data Plane
Layer L

Network
ElementNetwork

ElementNetwork
ElementNetwork

Element

H
IER

A
R

C
H

Y LEV
EL

A
B

STR
A

C
TIO

N

Domain
Orchestrator

Layer H Data Plane Link

Layer L domain1 Layer L domain2

DATA PLANE

CONTROL PLANE

Multi-Layer
Orchestration

Hierarchical
Control

Peer Model

Domain (Network Segment, Administrative,…)Domain

Vendor1
Controller

Vendor2
Controller

Sub-Domains
(Vendor Segmentation …)

OpenFlow,
Netconf
REST,…

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 35

domains Hierarchy as a means to orchestrate multiple vendors, scope inter-

operability to a limited subset of interfaces and protocols,

minimize risks.

 Hierarchy done by means of “plugins” constrained to what is

available or offered by vendors NBIs. Adopt an “NBI” standard if

available and agreed upon.

Multiple Network

Technologies within

single administrative

domains

 Peer models very constrained, requiring complex

implementations and frameworks (e.g. GMPLS Multi-layer and

Multi-region networks).

 Peer model not adapted to a market where vendors cover mostly a

horizontal technology or network segment

 Suitable hierarchical models in which an “orchestrator”

coordinates topology management and service provisioning

o Example: IP over optical.

 Hierarchy done by means of “plugins” constrained to what is

available or offered by vendors NBIs. Adopt an “NBI” standard if

available and agreed upon. The NBI is less straightforward since

it needs to cover multiple technologies applicability

Heterogeneous

Technologies and

Resources within

single administrative

domains

 High-level orchestration of e.g. cloud / storage / network

controllers based on high-level requirements and systems

behavior.

 Ad-hoc developments

Different

administrative

domains

 Peer models adopted due to business and peering agreements,

trust models

 Confidentiality and security issues.

 Issues of Ownership and subordination.

 Forests models. Commonly abstracts hierarchy within the

administrative domain.

Wider scope

infrastructures

spanning multiple

domains and network

segments

 Hybrid approaches combining centralized, distributed elements

and architectures.

 Hybrid SDN-based architectures combining hierarchy and peer

models, depending on inter-operability requirements,

orchestration models and feasible choices.

 Heavy use of abstraction and aggregation in hierarchies.

 Instances of hierarchical SDN architectures for low-level

interfaces (e.g. within vendor islands) and instances of

hierarchical SDN architectures for high-level orchestration.

 Constrained by inter-connection agreements between providers

and operators.

 Peer models for “data-triggered” or “event-triggered”

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 36

provisioning across multiple segments.

5.3.2.2. Hierarchical SDN approaches based on API classes

Although not fully decupled from the previous one, it is also possible to use API classes

as a criterion to identify potential SDN hierarchical architectures. For example, at a

given level, a hierarchical relationship may be based on a high-level API and

framework, relying on e.g. Intent based operation, control or orchestration. On the other

hand, another hierarchical relationship may apply at a low-level interface, in which,

macroscopically, the operation of children and parent (or sibling controllers) is

fundamentally similar and the portioning is motivated by scalability, confidentiality and

robustness reasons.

Uses Remarks

Low-level APIs
 Often tied to a specific low-level byte protocol.

 Difficult interoperability, often only reasonable if within the same

SDN controller vendor.

 Strongly dependent on the hierarchy support provided by the

SDN controller vendor.

 Implemented to scale by combining homogeneous small-size

systems into bigger ones in “stages”.

 Theoretical support or a loosely constrained or arbitrary number

or hierarchy levels.

 ~ “By design”

High-level APIs
 Commonly associated to high-level operations using high-level

frameworks and constructs (e.g. REST).

 APIs “exported” by the SDN controllers and “consumed”/”used”

by orchestration systems. It does not preclude the use of a

common, standard protocol within an implementation agreement

or standard.

 Often relies on implementing dedicated plugins at the

orchestration (parent) entity, drives the specification of (standard)

implementation agreements for APIs.

 Number of hierarchy levels limited (e.g. two in most common

deployments).

 Quite adapted to common uses of orchestration of heterogeneous

systems or vendors.

 ~ “By agreement”

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 37

 Analytical Description of Relevant Problems

Network applications in the SDN controllers attempt to use the network in an optimal

way. The applications perform the optimizations based on models of the network. This

section presents initial analytical descriptions for both network optimization and

computing power consumption.

6.1. Network optimization model

This section explains an algorithm to optimize the forwarding behavior of a 5G-

Crosshaul network comprised of multiple backhaul and fronthaul flows. Fronthaul

traffic is constraint to pass through an XPU first, in order to process Base Station (BS)

raw data, and then it is forwarded towards the core network. Backhaul (BH) traffic does

not necessarily have to be relayed by an XPU before leaving to the Internet.

Figure 10: General Scenario to optimize

We consider a scenario like the one shown in Figure 10. This scenario contains source

nodes generating backhaul traffic, source nodes generating fronthaul traffic,

intermediate nodes which simply forward traffic, XPUs that contain Base-Band Unit

(BBU) functionality to process fronthaul traffic, Internet gateways, and network links

with specific capacities connecting different nodes. As explained earlier, fronthaul

traffic must pass through at least one XPU providing BBU functionality, while backhaul

traffic has no such constraint. Finally, an XPU may provide multiple BBU functions (up

to a defined maximum). To avoid an overly complex model, we assume that each BBU

can process at most one fronthaul flow. Our task is thus to set the paths or routes from

sources (both fronthaul and backhaul flows) to one gateway to the Internet.

Our goal is to maximize the number of flows in the network by deciding on the paths

followed by each flow and by assigning BBU functions to XPUs, subject to the

constraints stated above.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 38

Assumptions: We assume that links can use any layer 2 forwarding technology,

providing a specific capacity on this link. Delay and jitter constraints are not considered.

Problem formulation: We formulate the problem with binary variables, which derives in

an Integer Linear Programming problem (ILP).

Input parameters:

 𝑓𝑘
𝑙 flow k from source l that goes to a BBU (fronthaul traffic)

 𝑔𝑘
𝑙 flow k from source l that goes to the Internet (backhaul traffic)

 𝑐𝑖𝑗 maximum capacity for the link (i,j)

All of these parameters, including 𝑓𝑘
𝑙 and 𝑔𝑘

𝑙 , are numerical values denoting a bitrate.

Variables:

 𝛽
𝑓𝑘

𝑙 binary variable to determine if the 𝑓𝑘
𝑙 flow enters in the network or not.

 𝛽
𝑔𝑘

𝑙 binary variable to determine if the 𝑔𝑘
𝑙 flow enters in the network or not.

 𝑥
𝑖𝑗 𝑓𝑘

𝑙 binary variable to determine if the (i, j) link is used for the 𝑓𝑘
𝑙 flow.

 𝑥
𝑖𝑗 𝑔𝑘

𝑙 binary variable to determine if the (i, j) link is used for the 𝑔𝑘
𝑙 flow.

 𝛿𝑖 binary variable to determine if the i-th XPU is used or not.

 𝑧𝑟𝑠 binary variable to determine if the s-th BBU in the r-th XPU is used or

not.

 𝑧
𝑟𝑠 𝑓𝑘

𝑙 binary variable to determine if the s-th BBU in the r-th XPU is used for

the 𝑓𝑘
𝑙 flow.

Objective function: 𝑚𝑎𝑥 ∑ (𝛽
𝑓𝑘

𝑙 + 𝛽
𝑔𝑘

𝑙)
𝑘,𝑙

Constraints:

 to determine if the 𝑓𝑘
𝑙 flow exits from the source: 𝛽

𝑓𝑘
𝑙 = ∑ 𝑥

𝑠𝑙 𝑗 𝑓𝑘
𝑙

𝑗
 ∀ 𝑓𝑘

𝑙 flow

 to determine if the 𝑔𝑘
𝑙 flow exits from the source: 𝛽

𝑔𝑘
𝑙 = ∑ 𝑥

𝑠𝑙 𝑗 𝑔𝑘
𝑙

𝑗
 ∀ 𝑔𝑘

𝑙 flow

 to impose that flows in a link cannot exceed the capacity of the link:

∑ 𝑓𝑘
𝑙 · 𝑥

𝑖𝑗 𝑓𝑘
𝑙

𝑘,𝑙
 + ∑ 𝑔𝑘

𝑙 · 𝑥
𝑖𝑗 𝑔𝑘

𝑙

𝑘,𝑙
 ≤ 𝑐𝑖𝑗 ∀ (i,j) link

 to impose that all backhaul flows in the network arrives to the Internet:

∑(𝑔𝑘
𝑙 ·

𝑘,𝑙

 𝛽
𝑔𝑘

𝑙 + 𝑓𝑘
𝑙 · 𝛽

𝑓𝑘
𝑙) = ∑ (∑ 𝑔𝑘

𝑙 · 𝑥
𝑖 𝐼𝑛𝑡𝑟 𝑔𝑘

𝑙

𝑘,𝑙𝑟,𝑖
+ ∑ 𝑓𝑘

𝑙 · 𝑥
𝑖 𝐼𝑛𝑡𝑟 𝑓𝑘

𝑙

𝑘,𝑙
)

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 39

 to impose that all fronthaul flows in the network arrives to the BBUs:

∑ 𝑓𝑘
𝑙 ·

𝑘,𝑙

 𝛽
𝑓𝑘

𝑙 = ∑ ∑ 𝑓𝑘
𝑙 · 𝑧

𝑟𝑠 𝑓𝑘
𝑙

𝑘,𝑙𝑟,𝑠

 if a BBU is used, the XPU where it is allocated is also used:

 𝑧
𝑟 𝑠 𝑓𝑘

𝑙 ≤ ∑ 𝑥
𝑖 𝑋𝑃𝑈𝑟 𝑓𝑘

𝑙

𝑖
 ∀ BBU s in the XPU r, ∀ 𝑓𝑘

𝑙 flow

 a fronthaul flow uses one XPU only: ∑ 𝑥
𝑖 𝑋𝑃𝑈𝑟 𝑓𝑘

𝑙

𝑖
 ≤ 𝛽

𝑓𝑘
𝑙 ∀ XPU r, ∀ 𝑓𝑘

𝑙 flow

 a fronthaul flow uses one BBU only: ∑ 𝑧
𝑟 𝑠 𝑓𝑘

𝑙

𝑟,𝑠
= 𝛽

𝑓𝑘
𝑙 ∀ 𝑓𝑘

𝑙 flow

 all the fronthaul flows that arrive to a XPU must be allocated in a BBU:

∑ 𝑥
𝑖 𝑋𝑃𝑈𝑟 𝑓𝑘

𝑙

𝑖
= ∑ 𝑧

𝑟 𝑠 𝑓𝑘
𝑙

𝑟,𝑠
 ∀ XPU r, ∀ 𝑓𝑘

𝑙 flow

 all the traffic that enters in a node must go out from it:

∑ 𝑥
𝑗𝑟 𝑓𝑘

𝑙

𝑗
= ∑ 𝑥

𝑟𝑖 𝑓𝑘
𝑙

𝑖
 ∀ node r, ∀ 𝑓𝑘

𝑙 flow

∑ 𝑥
𝑗𝑟 𝑔𝑘

𝑙

𝑗
= ∑ 𝑥

𝑟𝑖 𝑔𝑘
𝑙

𝑖
 ∀ node r, ∀ 𝑔𝑘

𝑙 flow

 to determine if a BBU is used or not:

𝑧
𝑖𝑗 𝑓𝑘

𝑙 ≤ 𝑧𝑖𝑗 ∀ BBU j in the XPU i, ∀ 𝑓𝑘
𝑙 flow

𝑧𝑖𝑗 ≤ ∑ 𝑧
𝑖𝑗 𝑓𝑘

𝑙

𝑘,𝑙
 ∀ BBU j in the XPU i

∑ 𝑧
𝑖𝑗 𝑓𝑘

𝑙

𝑘,𝑙
 ≤ 1 ∀ BBU j in the XPU i

 to determine if a XPU is used or not:

𝑧𝑖𝑗 ≤ 𝛿𝑖𝑗 ∀ BBU j in the XPU i

𝛿𝑖 ≤ ∑ 𝑧𝑖𝑗
𝑗

 ∀ XPU i

 backhaul traffic cannot enter in a XPU: ∑ ∑ 𝑥
𝑖 𝑋𝑃𝑈𝑟 𝑔𝑘

𝑙𝑘,𝑙𝑖 = 0 ∀ XPU r

 to impose a maximum number of BBUs in a XPU: ∑ 𝑧𝑖𝑗
𝑗

 ≤ 𝑁𝑖 ∀ XPU i

 single path for each fronthaul flow: ∑ 𝑥
𝑖𝑗 𝑓𝑘

𝑙

𝑗
≤ 𝛽

𝑓𝑘
𝑙 ∀ node i, ∀ 𝑓𝑘

𝑙 flow

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 40

 single path for each backhaul flow: ∑ 𝑥
𝑖𝑗 𝑔𝑘

𝑙

𝑗
≤ 𝛽

𝑔𝑘
𝑙 ∀ node i, ∀ 𝑔𝑘

𝑙 flow

 binary variables:

 𝛽
𝑓𝑘

𝑙 ⋲ {0,1} ∀ 𝑓𝑘
𝑙 flow

 𝛽
𝑔𝑘

𝑙 ⋲ {0,1} ∀ 𝑔𝑘
𝑙 flow

 𝑥
𝑖𝑗 𝑓𝑘

𝑙 ⋲ {0,1} ∀ (i,j) link, ∀ 𝑓𝑘
𝑙 flow

 𝑥
𝑖𝑗 𝑔𝑘

𝑙 ⋲ {0,1} ∀ (i,j) link, ∀ 𝑔𝑘
𝑙 flow

 𝑧𝑟𝑠 ⋲ {0,1} ∀ XPU r, ∀ BBU s

 𝑧
𝑟𝑠 𝑓𝑘

𝑙 ⋲ {0,1} ∀ XPU r, ∀ BBU s, ∀ 𝑓𝑘
𝑙 flow

 𝛿𝑖 ⋲ {0,1} ∀ XPU i

Applying integer linear programming to maximize the objective function under the

given constraints maximizes the number of flows that enter the network and are routed

until its destination, it solves the placement of BBUs to XPUs, and determines the route

each flow follows to reach its destination. Our goal is to minimize the number of used

resources while the maximum number of flows is maintained and to prioritize fronthaul

traffic over the backhaul traffic, which is not yet achieved by the initial objective

function given above. Work is ongoing to achieve our objective and introduce more

parameters in the network to control and optimize more aspects of it. Eventually, we

expect to control most of the parameters of a 5G network to allow the controller

determine the best route each flow has to follow based on the information available.

6.2. Power consumption computation model

Energy consumption of a backhaul network can be minimized by limiting the number of

active links and nodes, i.e., by (i) turning off link drivers whenever possible, resulting in

proportional (possibly non-linear) changes, and (ii) turning off those nodes whose links

are inactive.

Both approaches can be studied by building a directed network graph whose vertices

represent the network nodes and edges correspond to links connecting the nodes. Let us

then consider that the network includes N nodes and L links and denote by N and L the

set of nodes and links, respectively. Let a link (i,j) ∈ L, with i,j integers, have a capacity

C(i,j) bits/s. Let F(t) denote the set of flows at time t, with each flow, fsd∈F(t),

characterized by a source-destination pair, a traffic volume, and QoS constraints that in

our case correspond to the required data rate R(fsd).

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 41

Let xij(t) be a binary variable indicating whether link (i,j) ∈ L is “on” (xij(t) = 1) or “off”

(xij(t) = 0), at time t. Likewise, yi(t) is a binary variable indicating whether node i∈N is

active at time t (yi(t)=1) or not (yi(t)=0). Also, let a path π be an ordered sequence of

links. We indicate by the binary variable zπ,f
sd (t) whether flow fsd ∈ F (t) is routed

through path π at time t (zπ,f
sd (t) = 1) or not (zπ,f

sd (t) = 0).

We consider that the generic node i has zero power consumption when “off”, and Pidle

when “on” but idle. The power consumption associated with a link (i,j) at time t linearly

depends on the traffic that flows over the link and is denoted by P(i, j, t). It follows that

the total power consumption of a node i that is “on” is given by:

The traffic flowing over link (i, j) at time t, τij(t), is expressed in bit/s and is given by the

sum of the traffic associated with all flows that are routed through the link, i.e.,

The power consumption of an OpenFlow switch that is “on” can be written as the sum

of the power consumed by its three major subsystems: Pctr + Pevn + Pdata, where Pctr

accounts for the power needed to manage the switch and the routing functions, Pevn is

the power consumption of the environmental units (such as fans), and Pdata indicates the

data plane power consumption. The latter can be decomposed into (i) a constant

baseline component, and (ii) a traffic load dependent component. In other words, when

a switch is powered on but it does not carry any data traffic, it consumes a constant

baseline power. When a device is carrying traffic, it consumes additional load-

dependent power for header processing, as well as for storing and forwarding the

payload across the switch fabric. Combining the power model in [11] with that for

OpenFlow switches in [12], we can write Pidle as the sum of Pctr , Pevn and the baseline

component of Pdata , while the load-dependent component of Pdata is given by:

In the above expression,

 Elookup is the energy consumed per bit in the lookup stage of a switch, which

involves searching the Ternary Content Addressable Memory (TCAM) for the

received flow-key and retrieving the forwarding instructions;  

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 42

 Erx is the energy consumed per bit in the reception stage, which involves

receiving a packet from the physical media, extracting important fields to build a

flow-key and streaming the packet into the input memory system;  

 Exfer is the energy consumed per bit in the xfer stage, which involves reading a

packet from the inbound memory, all of the logic required to initiate a transfer

across the fabric, driving the fabric connections and crossbar, as well as writing

the packet into the remote outbound memory;  

 Etx is the energy consumed per bit in the transmission stage, which involves

reading a packet from the outbound memory and transmitting it on the physical

media.  

Example values for energy consumption are Erx = Etx = 0.2 nJ/bit, Exfer = 0.21 nJ/bit,

Elookup = 0.034 nJ/bit, and Pidle = 90 W [13].  

Let us now consider that a generic node i is used by i(t) slices at time t. Also, let us

denote by (i,j,t) the fraction of traffic that flows over link (i,j) at time t belonging to

slice , and by w(i,t) the binary indicator function that is 1 if node i is part of slice at

time t, and 0 otherwise. Note that (i,j,t)=0 if link (i,j) is not part of slice We can

therefore write the total power consumption associated with slice as:

To derive the above equation, we considered that the baseline power cost of an active

switch is evenly divided among the slices insisting on the node, while the variable

component depends on the actual traffic carried by the slice.

The power consumption related to IT and VM migration is currently under study.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 43

 Southbound Interface

The goal of this section is to provide a brief summary of the main outcomes of the

initial specification of the XCI controller interfaces at the Southbound, namely SBI.

Such interface is the common language spoken between the controller and the switches

and enables remote entities to control the forwarding behaviour of the switches.

Although the SBI is usually considered part of the control plane, it can be also

considered part of the data plane since switches require a SBI agent in charge of

communicating with the controller and enforcing its decisions that are encoded

according to the SBI protocol. In this project we followed a bottom-up approach where

SBI is data-plane focused and its design is constrained by XFE and its ability of

forwarding XCF over different transmission technologies. On the contrary, a top-down

approach would mainly focus on the controller requirements and partially on the

switching capabilities. Consequently, XCF and SBI have been already described in

D2.1 [1], however a summary is given here to keep this deliverable self-contained.

There are two differentiated types of southbound protocols depending on their purpose:

control and management. The control protocols primarily control the forwarding/routing

and the management protocols convey information regarding the configuration and

administration of the network elements. A number of SBI protocols have been studied

for controlling the forwarding/routing of packets through the 5G-Crosshaul network

(e.g. OpenFlow, ForCES – Forwarding and Control Element Separation), for

management of the switch/device (e.g. OF-Config, OVSDB, SNMP, NETCONF), and

for interacting with legacy systems (e.g. BGP, CoAP, etc). The detailed introduction of

each protocol can be found in [1].

The OpenFlow (OF) protocol [21] follows a bottom-up approach and is considered as

the main candidate for the SBI interface for controlling the 5G-Crosshaul network

elements (e.g. XFEs) on the forwarding/routing. The selection is motivated by the high

support of the OF protocol within the current SDN deployments, and moreover the

latest version of this protocol (OpenFlow 1.5.1 specification [21]) can fulfil the XPFE,

AF, and XCF design requirements, as explained in the analysis presented in [1].

ForCES is an example of SBI designed following a top-down approach that, despite of

being well standardized, is proven to be difficult to implement on hardware switches.

However, the OF protocol will require extensions to handle the heterogeneous

transmission technologies considered at the data plane of the 5G-Crosshaul network,

including millimeter, microwave, optical wireless, optical fixed access, copper, etc. [1]

presents a methodology for such purpose and a detailed analysis of the required

extensions for each of the identified transmission technologies. It is worth noting that

this analysis provides a choice of the relevant SBI parameters for each considered

technology. The selection of new parameters and their granularity was based on the

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 44

modus operandi adopted in the definition of Optical Transport Protocol Extensions by

ONF [14] that has been extended to 5G-Crosshaul transmission technologies.

 Northbound Interface

This section provides a preliminary specification of the XCI controller interfaces at the

Northbound, namely the Northbound Interface (NBI). In particular, the specification of

the XCI NBI API is based on the REST paradigm, with HTTP as reference protocol for

the exchange of messages between NBI services consumers and providers. REST is

indeed one of the most used paradigms for specifying Northbound services for both

SDN and IT controllers (e.g., ODL [8], ONOS [10], and OpenStack [7]). Note that this

does not preclude the use of other protocols such as proprietary ones or the use of

WebSockets [15]. In particular, the use of WebSockets can be of primal importance for

certain modules to provide, for instance, asynchronous notifications of network or

compute events from XCI services towards 5G-Crosshaul applications.

The NBI specification is still in progress in the main standardization fora. Organizations

such as the ONF Northbound Interface Working Group and the ETSI NFV Industry

Specification Group (ISG) are working towards this goal, defining APIs for the most

relevant services provided by SDN controllers and ETSI MANO components.

Regarding the specifics on the REST APIs, we leave open the choice of whether REST

APIs to implement will have full compliance with RESTCONF protocol [16]. In this

way, there is no need to define a YANG data model associated to the REST APIs. This

will be a design decision that will be later defined in stages closer to the implementation

phase.

The selection of XCI services is the result of the work initiated in the initial phase of

WP3 activities. Specifically, the set of XCI NBI services is based on the Northbound

functionalities identified in this initial phase and the requirements of the 5G-Crosshaul

applications, which are included in D4.1 [2]. Note that the details reported in this

section will be used as initial input for the subsequent development of the 5G-Crosshaul

NBI. The XCI NBI services will be implemented internally in the SDN controller, the

IT controller, which is mapped to the compute and storage controller in the Crosshaul

architecture and as part of the MANO components, namely: the NFV Orchestrator

(NFV-O), the VNF Manager (VNFM), and the Crosshaul VIM referred to as the Virtual

Infrastructure Manager and Planner (VIMaP).

The following subsections provide the specification of the APIs for the NBI services

exposed by the XCI towards the 5G-Crosshaul applications or towards other XCI

modules. In particular, for each NBI service we provide the APIs, the more relevant

information elements used to model the data associated to this NBI service, and a

workflow illustrating the use of this service by generic 5G-Crosshaul applications or by

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 45

internal modules inside the XCI that, in turn, can expose their own NBI. As for the

APIs, we include a table indicating the protocol, the URIs, the operation, and the

input/output parameters associated to the operation. As for the data model, we provide a

UML diagram specifying the most relevant elements involved in the NBI service.

Finally, we include a workflow example, in the shape of a sequence diagram, which

illustrates some examples of each NBI service. Note that the low-level implementation

details of the APIs, workflows, and information data models are beyond the scope of

this deliverable.

8.1. Topology and Inventory

The Topology service maintains information regarding the physical network and all

created networks on top of the physical network. It abstracts the learnt physical

topology information that may be collected by some automated process also involving

the network elements (e.g., using protocols like LLDP). This abstraction offers the

possibility of creating subnetworks (or subnets) that are formed by a subset of the whole

physical topology, and/or to enhance the topology with other kind of information (e.g.,

TE topology including TE metrics, SRLGs, etc.) providing the REST APIs to create,

remove networks (i.e., a subnet which is different concept from that of tenant),

add/remove node links to a network.

On the other hand, the Inventory component provides query network inventory services.

In particular, it provides REST APIs to query inventory data from the inventory

database. In this way, the network node and port capabilities can be obtained from this

service.

8.1.1. APIs

The Northbound APIs defined in the following table give access to the network

topology stored and maintained by the SDN controller (i.e., the one formed by XFEs).

These APIs also provide primitives to create, delete, and modify the subnetworks in the

physical network infrastructure. The APIs detailed below also expose network inventory

resources, such as the list of nodes and their capabilities. In what follows, we provide a

description of the APIs offered by the Topology and Inventory services.

Table 3: Topology and Inventory API.

Prot. Type URI Parameters

REST GET ../topology/default

Retrieve the whole physical

network infrastructure.

../ topology/{network_id}

Retrieve the specified network

topology with identifier

network_id.

Input
network_id (optional)

Output network_object

REST POST ../topology/{network_id} Input network_id

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 46

Register a new network. Output Success: Status Code of

normal end

Failure: Error code

REST PUT ../topology/{network_id}

Add subnetwork with id

network_id to the physical

network as specified by

network_object.

Input network_id

network_object

Output Success: Status Code of

normal end

Failure: Error code

REST PUT ../topology/{network_id}/{link_i

d}

Add new link link_id to

network_id.

Input network_id

link_id

Output Success: Status Code of

normal end

Failure: Error code

REST DELE

TE

../topology/{network_id}

Delete an existing network with

identifier network_id.

Input network_id

Output Success: Status Code of

normal end

Failure: Error code

REST GET ../topology/default/nodes/

Retrieve all the nodes.

../topology/{network_id}/nodes

Retrieve the specific nodes in

subnet with network_id.

Input network_id (optional)

Output node_list

REST GET ../topology/nodes/node_id

Retrieve node information

details of node_id.

Input node_id

Output node_object

REST GET ../topology/{src_node_id}_{dst_

node_id}

Get the shortest path in terms of

number of hops between two

infrastructure devices.

Input src_node_id

dst_node_id

Output path_object

WebS

ockets

SUBS

CRIB

E

../topology/{network_id}_{even

t}

Input network_id

event

Output Success: Status Code of

normal end

Failure: Error code

WebS

ockets

ASYN

C

notification event Input event

Output N/A

8.1.2. Information Model

We consider the notion of a physical topology that is comprised of a list of the

networks. These networks are subnets from the physical network. Each of the multiple

topologies has the notion of multiple nodes. Each node has multiple ports. Each network

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 47

has multiple links, where each one connects two ports of different nodes. Based on the

technology, the object “Port” can have different technologic-specific attributes.

Network

network_id

Node

node_id

Link

link_id

Port

port_id

wireless

tech-specific-params

fixed

tech-specific-params

optical

tech-specific-params

*

*

21

1

Topology and
Inventory 1

*

1
*

1

*

Figure 11: Topology and Inventory Information model.

A more detailed description of the attributes of some relevant information models

associated with the Topology and Inventory services is provided next.

Table 4: Topology and Inventory Information model.

Parameters Type Description

network_id String Identifier of the network.

network_object Set<Links> Object describing the network as a set of links in JSON or

XML format. Each link has the following attributes:

 EndpointA; String; Node

 EndpointB; String; Node

 Bandwidth; Integer; Bandwidth of the link.

 State: Enum, whether the link is active or not

 Technology; Enum; Indicate type of the link (e.g.,

mmWave, optical)

network_event Enum The specific set of network event will be decided in the

implementation stage.

{node_up, node_down, link_up, link_down, port_up,

port_down}.

node_id String Identifier of the node.

node_object Node Contains the identifier and the type of the node, as

a set of properties in JSON or XML format.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 48

Parameters (variable; type; description):Identifier:

String, identifier of the node

 Type: String, type of node

 Name: String, name of the node

 Number of Ports: Integer, number of ports

path_object Object Object describing the path as set of links between two

endpoints (in XML or JSON format).

Request/response media types can be in the form JSON and/or XML. It is important to

note that the URIs specified in the request by the consumer shall be independent of the

chosen representation in the implementation. For instance, in what follows we illustrate

a part of the response body in JSON format of a network topology corresponding to a

link connecting a node with a switch. In particular, the request will have the following

form: GET ../topology/n1, where n1 is the identifier of the network. A part of the

output of the physical network topology corresponding to subnetwork n1 follows:

"network":[

{

 "id":"n1",

 "name":"net_example",

 "link":{

 "id": "1",

 "EndPointA":{

 "id":"00:00:00:00:00:00:00:01",

 },

 "EndPointB":{

 "id":"00:00:00:00:00:00:00:51",

 },

 "name": {

 "value": "s1-eth1",

 },

 "state": {

 "value": 1,

 },

 "bandwidth": {

 "value": 100; // Data rate in Mbps

 }

 }

 "link":{….} //More links can be specified

}

]

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 49

8.1.3. Workflow

GET /topology/default

GET reply: network_object

Topology and
Inventory

POST /topology/{network_id}

POST reply: Success or Failure

POST /topology/{network_id}:event

GET POST: URL

DELETE /topology/{network_id}

DELETE reply: Success or Failure

Consumer

WEBSOCKET asynchronous notification event

 loop

 until websocket closes

WEBSOCKET subscribe:URL

PUT /topology/{network_id}_{network_object}

PUT reply: Success or Failure

(2)

(1)

(3)

(4)

(5)

(7)

(6)

Figure 12 : Topology and Inventory workflow example.

In what follows, we provide a message exchange sequence to illustrate the use of the

service by an application referred to as the consumer. This consumer can be an

application located on top of the XCI. The goal is to illustrate the use of the Topology

and Inventory services. In particular, the workflow in Figure 12 illustrates the creation

of a physical subnetwork forming part of the physical network topology. As shown in

Figure 12, this process can consist of the following major steps between an application

(represented as Consumer in the picture) and the Topology and Inventory service:

1. The consumer application gets the physical network inventory from the Topology

and Inventory service.

2. The consumer application decides to register a new subnetwork. A physical

subnetwork is specified and registered from the consumer to the Topology and

Inventory service.

3. The elements of the physical subnetwork are specified for the previously registered

network identifier. A physical subnetwork from the consumer to the Topology and

Inventory service.

3.1. Selection of a private or public subnetwork based on the range of defined IPs.

3.2. Selection of VLAN associated to the registered physical subnetwork.

4. Subscription to an event of interest related to this physical subnetwork (e.g., link

failure). An URL is returned as a result of a successful subscription.

5. Creation of a WebSocket to receive asynchronous notifications from the Topology

and Inventory service for the event to which the consumer application is subscribed.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 50

6. Asynchronous notifications of the previously subscribed event by the Topology and

Inventory service to the consumer.

7. The consumer application decides to deallocate the physical subnetwork.

8.2. Provisioning and Flow Actions

This service provides the flow programming service for 5G-Crosshaul applications. In

particular, this service is in charge of offering, on the northbound (applications or

certain modules inside the XCI), an API that allows to perform queries related with the

management of flow rules in network nodes.

8.2.1. APIs

The table below provides the set of Northbound APIs that are available to perform

different operations on the flows whereby an SDN controller (e.g. ONOS, ODL). These

interfaces, in the form of REST API, allow creating, deleting, and modifying flow rules

in physical nodes. In this specific context, nodes are intended as XPFE. The response to

these operations is in XML or JSON format.

Table 5: Provisioning and flow actions API: flow rules in physical devices.

Prot. Type URI Parameters

REST POST ../sdn_ctrl/flows/{

node_id}

or

../sdn_ctrl/flows/{

node_id}/{table_i

d}

Create a new flow

rule.

Input node_id

table_id (optional)

flow_object

Output Success: flow_id

Failure: Error code

REST DELET

E

../sdn_ctrl/flows/{

node_id}/{flow_id

}

or

../sdn_ctrl/flows/{

node_id}/{table_i

d}/{flow_id}

Input node_id

table_id (optional)

flow_id

Output Success: Status Code of normal end

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 51

Delete an existing

flow rule.

Failure: Error code

REST GET ../sdn_ctrl/flows/{

node_id}

or

../sdn_ctrl/flows/{

node_id}/{table_i

d}

Retrieve the list of

all flow rules on a

specific node or

table.

Input table_id

node_id

Output flow_object

List of flow rules on the specified node,

or out of a specific flow table

REST GET ../sdn_ctrl/flows/

Retrieve all the

flow rules

Input -

Output List of all flow rules

REST GET ../sdn_ctrl/statistic

s/flows/

{node_id}/{port_i

d}/

Retrieve statistics

for all flows

passing over a

port of a node

Input node_id

port_id

Output Aggregate values

 Bytes counter

 Rate [bytes/s]

Time of last statistics collection

REST GET ../sdn_ctrl/streams

/flows/{event_id}

Input event_id

Output URL to the notification service

(e.g. Websocket)

WEBS

OCKE

SUBSC

RIBE

../sdn_ctrl/streams

/flows/{event_id}

Input event_id

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 52

T Output Success: Status Code of normal end

Webso

cket

ASYN

C

notification event Input event_id

Output event_object

8.2.2. Information Model

Description of the parameters used for setting up flow rules in the switching elements

are shown herein below in Table 6. The UML diagram describing the process of

assigning flow rules in a node (i.e. switching element) is shown in Figure 13.

Figure 13: Provisioning and flow actions information model.

Next, the main data objects are presented in more detail:

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 53

Table 6: Provisioning and flow actions information model.

Parameters Type Description

node_id String Identifier of the node

table_id String Identifier of the flow table

port_id String Identifier of a port

flow_id String Identifier of a flow

flow_object Object table_id: string

 flow_id: string

 flow_match: string denoting the matching rule

 flow_instruction: string denoting the instructions

 Time out: Integer denoting the time the flow rule exists

 Priority: Integer indicating the priority of a flow rule

 Meter: Integer denoting statistics such as packet and

byte counters

event_id String Identifier of a specific event to subscribe

event_object Object Object which contains the set of information specific to the

subscribed event

8.2.3. Workflow

The workflow provided in Figure 14 illustrates the installation of flow rules (e.g.

FlowMod in OpenFlow) in a node. Any 5G-Crosshaul application (e.g. MMA) or even

the VIM, can request the SDN controller to create, delete and modify flow rules in one

or more switching elements at the data plane.

 The workflow shown in Figure 14 includes the following steps:

1. A consumer application requests the creation of new flow rules in a specific

device

a. The SDN controller will create new flow rules specifying the matching

rules, instructions, priority and time out, just to name a few.

2. A consumer application decides to request the details of a specific flow rule

a. The SDN controller returns an object describing the parameters of the

flow (i.e. flow identification, flow match, flow actions, flow priority and

time out)

3. A consumer application decides to request the statistics for all the flows passing

through a specific port

a. Upon receiving the request, the SDN controller shall return related

statistics such as bytes counter, rate and the time at which statistics were

collected.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 54

4. A consumer application decides to subscribe to the notification of a specific

event of interest (e.g. arrival of a new flow). An URL is returned in response.

5. A WebSocket is created in order to subscribe to the notification service for the

event of interest.

6. Asynchronous notifications are received for the specific event of interest. An

object is returned in response containing the set of information for the

subscribed event.

7. A consumer application decides to remove (delete) a specific flow rule from a

device.

Figure 14: Flow actions example.

8.3. IT Infrastructure and Inventory

The IT infrastructure and inventory NBI is based on the REST protocol. In particular,

we use the NBI of several OpenStack [7] modules (e.g., Nova,), as the NBI offered by

the IT infrastructure and inventory service. These modules will form part of the IT

controller inside the XCI as a set of plugins.

To offer such an API, the IT infrastructure and inventory service must comprise several

modules. For instance, the set of instantiated VMs must be maintained by an IT

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 55

infrastructure and inventory database. Also, an IT infrastructure and inventory scheduler

will need the list of available servers to determine where the VM must be instantiated.

8.3.1. APIs

In what follows, we provide a description of the APIs offered by the IT infrastructure

and inventory services.

Table 7: IT infrastructure and inventory API.

Prot. Type URI Parameters

REST GET ../it/vms

../it/tenant/{tenant_id}/vms

Retrieve all/per_tenant VM

elements.

../it/vms?type=”type”

../it/{tenant_id}/vms?type=”type”

Retrieve all VM elements of

specified type.

Input type (optional) tenant_id

Output vm_list

REST GET ../it/vm/{vm_id}

Retrieve information of VM with

identifier vm_id.

Input vm_id

Output vm_object

REST POST ../it/vm

../it/tenant/{tenant_id}/vm

Create a new VM for tenant_id.

Input vm_object

tenant_id

Output vm_id

REST PUT ../it/vm/{vm_id}

../it/tenant/{tenant_id}/vm/{vm_id}

Update information of VM with

identifier vm_id.

Input vm_id

tenant_id

vm_object

Output Success: Status Code of

normal end

Failure: Error code

REST DELE

TE

../it/vm/{vm_id}

../it/tenant/{tenant_id}/vm/{vm_id}

Delete the VM (in tenant_id) with

identifier vm_id.

Input vm_id

tenant_id

Output Success: Status Code of

normal end

Failure: Error code

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 56

REST GET ../it/tenant/{tenant_id}/os_host

List compute/storage nodes in

tenant_id

Input tenant_id

Output List of compute/storage

nodes

REST GET ../it/tenant/{tenant_id}/os_hosts/{h

ost_name}

List details of host_name

Input tenant_id

host_name

Output host_object

REST GET ../it/tenant/{tenant_id}/os_hosts/{h

ost_name}/start

Start a compute node host_name

in tenant tenant_id

Input tenant_id

host_name

Output Success: Status Code of

normal end

Failure: Error code

REST GET ../it/tenant/{tenant_id}/os_hosts/{h

ost_name}/shutdown

Shutdown a compute node

host_name in tenant tenant_id

Input tenant_id

host_name

Output Success: Status Code of

normal end

Failure: Error code

REST GET ../it/tenant/{tenant_id}/os_hypervi

sors

Get list of hypervisor in tenant

tenant_id

Input tenant_id

Output Hypervisor_list

REST GET ../it/tenant/{tenant_id}/os_hypervi

sors/{hypervisor_id}

Input tenant_id

hypervisor_id

 Get hypervisor object from

hypervisor id

Output hypervisor_object

8.3.2. Information Model

The data model comprises the computing, storage, and network functions associated to

a given tenant (or owner/user). Each tenant has associated a set of VMs and can

comprehend one or more virtual networks. Each virtual network is formed by a set of

endpoints defining the connection patterns between each pair of VMs.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 57

IT Infrastructure
and Inventory

Tenant

tenant_id

VM

*

1

IT Infrastructure
and Inventory *1

1

*

Virtual
Network

network_id

*

1

vm_id
name
ip
mac
network_id
hypervisor
node_id
endpoint_id
flavour

1 *

EndPoint

endpoint_id

1

*

1

1..*

Compute
Node

id
hypervisor_info*

1

1

*

Figure 15: IT Infrastructure and Inventory information model.

A more detailed set of the attributes for the object VM is detailed in Table 8:

Table 8: IT infrastructure and inventory information model.

Parameters Type Description

vm_id String Identifier of the VM.

vm_object Object Object describing the VM as a set of properties in JSON or

XML format.

Parameters (variable; type; description):

 Name; String; name of the VM.

 Flavor; String; Hardware template,

 Image_name; String; VM template,

 NetworkId; String; L2 Network identifier.

 SubnetId; String; L3 Network identifier.

 Id; String; unique identifier of the VM.

 MAC address; String; L2 address

 IP address; Ipv4; L3 address

 Hypervisor; String; Identifier of the compute node

on which is deployed the VM.

 Node_id; String; DpId of the switch attached

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 58

 Endpoint_id; String; Network identifier of where

the VM is attached.

type String Type of the VM (compute or storage).

Endpoint_id String Unique identifier of the endpoint.

Endpoint_object Object The endpoint object represents the termination point of a

network connectivity service. It is described as a set of

properties in JSON or XML format:

Parameters (variable; type; description):

 endpoint_id; String; Unique identifier of the

termination point of a network connectivity service

(Call).

 node_Id; String; Identifier of the network node to

which the endpoint is connected.

 net_interface_id; String; Identifier of the network

port component to which the endpoint is

connected.

8.3.3. Workflow

In what follows, we provide a message exchange sequence to illustrate the use of the IT

Infrastructure and Inventory service by the VIMaP upon the creation and management

of Over the Top (OTT) network services. In this example, the consumers are the NFV-

O and the VIMaP, both located inside the XCI. The goal is to illustrate the use of the IT

infrastructure and inventory services for the ETSI NFV use case. In particular, the

workflow in Figure 16 illustrates the creation of a network service layout composed by

a set of VMs and their direct interconnection. As shown in Figure 16, this process can

consist of the major steps:

1. The NFV-O requests the instantiation of a network service layout to the VIMaP

composed by a set of VMs. Note that the network service layout is associated to a

tenant, which is the owner of this network service layout.

2. The VIMaP parses the template specified by the NFV-O and requests to the IT

infrastructure the instantiation of the following resources:

2.1. The creation of a virtual network layout, returning an identifier in case of

successful creation.

2.2. In case of successful creation, the IT controller returns an identifier for this

virtual network layout.

2.3. The instantiation of the VMs forming the virtual network layout with the

identifier previously returned by the IT infrastructure and inventory.

2.3.1. Based on the template introduced to the VIMaP, the IT controller creates

instantiates a set of VMs.

2.3.2. The number of instantiated VMs will be based on the profile requested

by the NFV-O.

2.3.3. A zone (physical location) will be selected where each VM will be

geographically deployed.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 59

3. The VIMaP (e.g., by request of the VNF Manager or the NFV-O, or internally by

request of the VIMaP) may request at any point in time of the lifecycle of the

network service layout to update the profile of the network service layout previously

created.

4. The VIMaP receives a request to terminate the network service layout. This implies

the interaction with the IT infrastructure and inventory service for the subsequent

deallocation of VMs.

The entities involved in this process are the NFV-O, the VNF manager, and the IT

infrastructure and inventory.

IT Infrastructure
and Inventory

POST reply: network_layout_id

create subnet to allocate network
service layout

VIMaP

NFV-O

create_netserv_layout()

netservice_layoutID

POST ../it/tenant/{tenant_id}/network_layout

POST ../it/tenant/{tenant_id}/network_layout/{network_layout_id}/vm

POST reply: vm_id

PUT ../it/tenant/{tenant_id}/vm_id

PUT reply: Success or Failure

delete_netserv_layout(id)

Success or Failure

 loop

 until all VMs are deleted or failure deleting VM

DELETE ../it/tenant/{tenant_id}/network_layout/{network_layout_id}/vm

PUT reply: Success or Failure

 loop

 until all VMs are created or failure creating VM

(1)

(2)

(2.1)

(2.2)

(2.3)

(3)

(4)

Figure 16: IT infrastructure and inventory workflow example.

8.4. Statistics

Initally, two services have been considered for the collection of monitoring information

(one for network-related statistics and the other for IT-related statistics). Our

discussions have now led us to design a unified common service, namely Statistics

service, which integrates the functionality of the two. Note that this API is based on

OpenStack’s Ceilometer [17]. This service shall offer to any consumer (or client) a

network- computing- and storage- related statistics service per tenant basis, including

metering, alarm, and collection of samples.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 60

8.4.1. APIs

In the following, we provide a description of the APIs offered by the Statistics service.

Table 9: Statistics API

Prot. Type URI Parameters

REST GET ../stats/{tenant_id}

Retrieve a list of

stats that can be

polled

Input

tenant_id

Output Success: Return list of stats in the

response body.

Failure: Error code

REST GET ../stats/{tenant_id}/{

stat_id}/samples

Retrieve samples

Input

tenant_id

stat_id

Output Success: Return stat structure in the

response body.

Failure: Error code

REST POST ../stats/{tenant_id}/{

stat_id}/samples

Post a list of

samples

Input tenant_id

stat _id

samples

Output Success: Return list of meters in the

response body.

Failure: Error code

REST GET ../stats/{tenant_id}/{

stat_id}/statistics

Make statistics out

of samples

Input tenant_id

stat _id

stat_info

Output Success: Return statistics of samples

according to stat_info in the response

body.

Failure: Error code

REST GET ../stats/{tenant_id}/{

stat_id}/statistics/fu

nctions

Retrieve list of

Input

tenant_id

stat_id

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 61

available aggregate Output List of aggregate functions XCI can

perform to obtain aggregated statistics

(e.g., mean, stdev, percentiles..).

REST GET ../stats/{tenant_id}/{

stat_id}/alarms

Retrieve list of

available alarms

Output Success: Return list of alarms structure

in response body.

Output Failure: Error code

Failure: Error code

REST PUT ../stats/{tenant_id}/{

stat_id}/alarms/{ala

rm_id}

Set alarm_id

Input

tenant_id

stat_id

alarm_id

alarm_info

Output Success: Status Code of normal end

Failure: Error code

REST DELE

TE

../stats/{tenant_id}/{

stat_id}/alarms/{ala

rm_id}

Delete alarm_id

Input

tenant_id

stat_id

alarm_id

Output Success: Status Code of normal end

Failure: Error code

WEBS

OCKE

T

SUBS

CRIBE

../stats/{tenant_id}/{

stat_id}/alarms/{ala

rm_id}

Subscribe to an

alarm

Input tenant_id

stat_id

alarm_id

Output Alarm flag

WebSo

ckets

ASYN

C

notification event Output tenant_id

stat_id

alarm_id

alarm_info

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 62

8.4.2. Information Model

The Statistics service information model supports the collection of samples of different

types of information: bytes transmitted/received, bytes stored, free storage space, CPU

load, etc., a simple data processing (e.g. aggregation of samples), and setting up alarms

for monitoring. Note that this information is collected per tenant_id.

stat

stat_id: string
tenant_id: string
resource_id: string
type: string
unit: string

sample

stat_id: string
tenant_id: string
timestamp: datetime
type: string
unit: string
metadata: string
source: string
resource: resource_id

stat_info

stat_id: string
tenant_id: string
aggregate: string
count: int32
start_time: datetime
end_time: datetime
groupby: string
max: float
min: float
sum: float
unique: float array
density: float array
unit: string

Tenant

tenant_id: string
description: string
status: string

*1

alarm_info

alarm_id: string
event: string

1

*

*

1

1

1..*

Figure 17: Statistics information model.

In the following table, the main data objects are presented in more detail.

Table 10: Statistics information model.

Parameter Type Description

stat_id Integer Unique identifier of a type of data (bytes

transmitted/received, storage used, storage free). The

identifier is unique across different tenants which removes

the need to specify a tenant_id.

tenant_id Integer Unique identifier of a virtual tenant

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 63

alarm_info Object It contains an alarm_id to uniquely identify the alarm and a

description of the event that triggers the alarm, e.g. when

bytes transmitted reaches a threshold.

sample Object Object that contains a sample collected for a stat, including

timestamps, source of the sample and other metadata.

stat_info Object This object is aimed to generate and store process information

for a stat. This structure may contain a numeric value (e.g.

maximum sample in a certain period of time), or an array of

samples (number of occurrence of each unique sample). An

important element of this object is the aggregate function

which let us request personalized processing of a data shape

by providing a mathematical function.

8.4.3. Workflow

GET /stats/{stat_id}/statistics

GET reply: result

Statistics

PUT /stats/{stat_id}/alarms/{alarm_id}

PUT reply: Success or Failure

WEBSOCKET asynchronous notification event

Aggregate samples in stat_id
according to stat_info parameters

Set an alarm on stat_id based
on alarm_info parameters

App (e.g. EMMA)

Event triggers alarm

 loop

 until websocket closes

DELETE /stats/{stat_id}/alarms/{alarm_id}

DELETE reply: Success or Failure

Figure 18: Statistics workflow example.

Figure 18 illustrates how a consumer (e.g., an application like EMMA) can poll for

statistics performed over a dataset:

1. Consumer requests Statistics service to aggregate a set of samples of stat_id

according to certain parameters e.g. within a period of time, and an aggregate

function, e.g. average. The statistics service replies with the processing result.

2. A consumer may set up an alarm should an event occur. A WebSocket is created

so that Statistics service can notify asynchronously the consumer when such an

event occurs.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 64

8.5. Virtual Infrastructure Manager and Planner

The NBI of the VIMaP service is based on the REST paradigm. The VIMaP is in charge

of performing CRUD operations for the network service layout elements (a set of VMs

and their interconnections) for the ETSI NFV architecture [4]. The VIM also offers an

API to conduct CRUD operations for the network slice or virtual infrastructure concept

(i.e., a set of not only VMs but also virtual switches, and virtual routers associated to the

creation of virtual infrastructures for the Mobile Virtual Network Operator (MVNO) use

case. As for the former, it corresponds to the deployment of Network Service elements

as defined within the ETSI MANO architecture. In particular, it is in line with the ETSI

use case #4 VNF Forwarding Graphs in [20]. As for the latter, it tackles the instantiation

of virtual infrastructures with ultimate user control composed by a coherent set of

network, compute, and storage infrastructure. In this case, the infrastructure is totally

provided to the tenant (e.g., XFEs, cards, ports) including XPU resources. In fact, the

VIMaP main goal is to offers to the consumer the services offered by the SDN and IT

(compute and storage) controller in a unified manner.

8.5.1. APIs

In what follows, we provide a description of the APIs offered by the IT infrastructure

and inventory services.

Table 11: Virtual Infrastructure Manager and Planner API.

Prot. Type URI Parameters

REST POST ../vimap/

tenant/{tenant_id}/

vm

Create a new VM for

tenant_id.

Input
vm_object

tenant_id

Output vm_id

REST GET ../vimap/

tenant/{tenant_id}/

vm/{vm_id}

Get information for vm_id in

tenant tenant_id.

Input
vm_id

tenant_id

Output vm_object

REST DELE

TE

../vimap/

tenant/{tenant_id}/

vm/{vm_id}

Delete VM vm_id for

Input
vm_id

tenant_id

Output Success: Status Code of normal

end

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 65

tenant_id. Failure: Error code

REST PUT ../vimap/

tenant/{tenant_id}/

vm/{vm_id}

Update vm_id information

with vm_object in tenant

tenant_id.

Input
vm_id

tenant_id

vm_object

Output Success: Status Code of normal

end

Failure: Error code

REST GET ../vimap/

tenant/{tenant_id}/

vm

Retrieve all VM elements in

tenant_id.

../ vimap /

tenant/{tenant_id}/

vm?filter={“networkId”:”net

1”}

Retrieve all VM elements

within net1

Input
tenant_id

filter (optional) JSON_Object

(Object containing a key/value

array with properties to filter the

list)

Output vm_list

REST POST ../vimap/

tenant/{tenant_id}/

connectivity_service/

Specify connectivity

provisioning between

endpoints with call_object in

tenant_id.

Input
tenant_id

call_object

Output
tenant_id

call_id

REST GET ../vimap/

tenant/{tenant_id}/

connectivity_service/{call_id}

Get connectivity provisioning

object between endpoints

identified by call_id in

tenant_id.

Input
tenant_id

call_id

Output call_object

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 66

REST PUT ../vimap/

tenant/{tenant_id}/

connectivity_service/{call_id}

Modify connectivity

provisioning between

endpoints in tenant_id

specified in call_id.

Input
tenant_id

call_id

call_object

Output
Success: Status Code of normal

end

Failure: Error code

REST DELE

TE

../vimap/

tenant/{tenant_id}/

connectivity_service/{call_id}

Delete connectivity

provisioning between

endpoints in tenant_id.

Input
tenant_id

call_id

Output
Success: Status Code of normal

end

Failure: Error code

REST GET ../vimap/

tenant/{tenant_id}/

connectivity_service

Obtain connectivity

provisioning information

between endpoints in

tenant_id

Input
tenant_id

Output
connectivity_service_list

REST GET ../vimap/

tenant/{tenant_id}/hypervisor/

{hypervsisor_id}

Get hypervisor information of

hypervisor hypervisor_id in

tenant tenant_id.

Input
tenant_id

hypervisor_id

Output
hypervisor_object

REST GET ../vimap/

tenant/{tenant_id}/hypervisor

Get list of hypervisors in

tenant tenant_id.

Input
tenant_id

Output
hypervisor_list

REST GET ../vimap/

tenant/{tenant_id}/

network_topology/{network_i

d}

Input
tenant_id

network_id (sec.2.1)

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 67

Get network information for

network_id in tenant_id.

Output network_object (sec.2.1)

REST POST ../vimap/

tenant/{tenant_id}/

Slice_provisioning_service

Creation of a slice specified

by slice_object in tenant_id.

Input
tenant_id

slice _object

Output
tenant_id

slice_id

REST GET ../vimap/

tenant/{tenant_id}/

Slice_provisioning_service/{sl

ice_id}

Obtain information details of

slice_id in tenant_id.

Input
tenant_id

slice_id

Output
slice _object

REST PUT ../vimap/

tenant/{tenant_id}/

Slice_provisioning_service/{sl

ice_id}

Update information details of

slice_id in tenant_id with

slice_object.

Input
tenant_id

slice_id

slice _object

Output Success: Status Code of normal

end

Failure: Error code

REST

DELE

TE

../vimap/

tenant/{tenant_id}/

Slice_provisioning_service/{sl

ice_id}

Delete slice_id in tenant_id.

Input
tenant_id

slice_id

Output Success: Status Code of normal

end

Failure: Error code

REST GET ../vimap/

tenant/{tenant_id}/

Slice_provisioning_service

Obtain information details of

all slices in tenant_id.

Input
tenant_id

Output
slice_objects_list

REST POST ../vimap/

tenant/{tenant_id}/

NetworkServiceSupportLayout

Input
tenant_id

netserv_layout_object

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 68

Create netser_layout_object in

tenant_id.

Output
tenant_id

netserv_layout_id

REST GET ../vimap/

tenant/{tenant_id}/

NetworkServiceSupportLayout

/{ netserv_layout_id}

Obtain information details of

netserv_layout_id in

tenant_id.

Input
tenant_id

netserv_layout_id

Output
netserv_layout_object

REST PUT ../vimap/

tenant/{tenant_id}/

NetworkServiceSupportLayout

/{ netserv_layout_id}

Update netserv_layout_id with

netser_layout_object in

tenant_id.

Input
tenant_id

netserv_layout_id

netserv_layout_object

Output Success: Status Code of normal

end

Failure: Error code

REST/

DELE

TE

../vimap/

tenant/{tenant_id}/

NetworkServiceSupportLayout

/{ netserv_layout_id}

Delete netserv_layout_id in

tenant_id.

Input
tenant_id

netserv_layout_id

Output Success: Status Code of normal

end

Failure: Error code

REST/ GET ../vimap/

tenant/{tenant_id}/

NetworkServiceSupportLayout

Obtain information details of

all network service layouts in

tenant_id.

Input
tenant_id

Output
netserv_layout_objects_list

REST/

GET ../vimap/

tenant/{tenant_id}/

streams/

topology_update/

{network_id}

Obtain URL to subscribe to

network topology events.

Input
tenant_id

network_id (sec.2.1)

Output URL to subscribe to notification

service (e.g., websocket)

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 69

REST

GET ../vimap/

tenant/{tenant_id}/

streams/

connectivity_service_update/{

call_id}

Obtain URL to subscribe to

connectivity service events.

Input
tenant_id

call_id

Output URL to subscribe to notification

service (e.g., websocket)

WEBS

OCKE

T

SUBS

CRIBE

../vimap/

tenant/{tenant_id}/

streams/

connectivity_service_update/{

call_id}

Subscription to connectivity.

service specified by call_id.

Output call_object

8.5.2. Information Model

The VIMaP information data model supports the concept of tenant. A tenant, at the

VIMaP service, may be composed of different slices (virtual infrastructure use case) and

different network service layouts (OTT use case). Both the network slice and

network_service_layout objects are considered a virtual network from the point of view

of the IT infrastructure and inventory service. A slice or a network service layout entails

a set of calls defining the flow patterns between these components.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 70

VIMaP

*

1..2

Tenant

tenant_id

Slices

slice_id

*1

1

Net_Service_Layout

network_service_layout_id

1

*
Call

call_id

*

*
1

1

*

Virtual Network

VIMaP

1

*

VM
*

vm_id

*

EndPoint

endpoint_id

1..*

1

1

1..*

1..*

1

Figure 19: Virtual Infrastructure Manager and Planner information model.

In what follows, see a more detailed information of the most relevant objects forming

part of the VIMaP NBI service.

Table 12: Virtual Infrastructure Manager and Planner information model.

Parameters Type Description

tenant_id String Identifier of the tenant who is requesting the VIMaP service.

vm_id String Identifier of the Virtual Machine (VM).

vm_object Object Object describing the VM as a set of properties in JSON or

XML format:

Parameters (variable; type; description):

 Name; String; name of the VM.

 Flavor; String; Hardware template.

 Image_name; String; VM template.

 NetworkId; String; L2 Network identifier.

 SubnetId; String; L3 Network identifier.

 Id; String; unique identifier of the VM.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 71

 MAC; String; L2 address

 IP; Ipv4; L3 address

 Hypervisor; String; Identifier of the compute

(physical) node on which is deployed the VM.

 Node_id; String; DpId of the switch attached

 Endpoint_id; String; Network identifier of where

the VM is attached.

call_id String Identifier of the connectivity service (Call)

call_object Object Intent-based connectivity service request object described as

a set of properties in JSON or XML format:

Parameters (variable; type; description):

 aEnd; Endpoint; Source connectivity service

endpoint

 zEnd; Endpoint; Destination connectivity service

endpoint

 transport_layer; TransportLayerType; Connectivity

service description (L0, L2, L3…)

 traffic_parameters; TrafficParams; QoS parameters

describing the connectivity service (Bandwidth,

Latency…).

Endpoint_id String Unique identifier of the endpoint.

Endpoint_objec

t

Object The endpoint object represents the termination point of a

network connectivity service. It is described as a set of

properties in JSON or XML format:

Parameters (variable; type; description):

 endpoint_id; String; Unique identifier of the

termination point of a network connectivity service

(Call).

 node_Id; String; Identifier of the network node to

which the endpoint is connected.

 net_interface_id; String; Identifier of the network

port component to which the endpoint is connected.

slice_id

Slice _object

String

Object

Identifier of the virtual infrastructure slice (Slice)

Slice object described as a set of properties in JSON or

XML format:

Parameters (variable; type; description):

 virtual_IT_infrastructure; JSON; object

containing the description of the virtual IT

infrastructure requested. It should contain the

description of computing and storage resources,

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 72

requested for the slice.

 virtual_tenant_network; VTN (sec 2.10.1);

abstract representation of the network slice

requested.

 network_service_layout:

NetworkServiceSupportLayout;

object containing a set of service endpoints (VMs)

connected by a graph representation (layout).

 control_stack: JSON: object describing the

Software-Defined control stack for the slice. This

object may contain the addressing and security

parameters to access the control instances.

netserv_layout

_object

Object A network service layout object described as a set of

properties in JSON or XML format:

Parameters (variable; type; description):

 service_endpoints; list(Endpoint); list of service

endpoints

 virtual_machine_list; list(VM); list of VMs.

 transport_layer; TransportLayerType; Connectivity

service description (L0, L2, L3…)

 traffic_parameters; TrafficParams; QoS parameters

describing the connectivity service (Bandwidth,

Latency…).

 topology_layout; Topology; graph representation

of service endpoints connectivity.

8.5.3. Workflow

In what follows, we provide a message exchange sequence to illustrate the use of the

VIMaP service by an NFV-O when managing the creation and management of OTT

network services. In this example, the consumer is the NFV-O, which is located inside

the XCI. The goal is to illustrate the use of the VIMaP services for the ETSI NFV use

case. In particular, the workflow in Figure 20 illustrates the creation of a network

service layout composed by a set of VMs and their direct interconnection.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 73

POST /vimap/tenant/{tenant_id}/NetworkServiceSupportLayout

POST reply: netservice_layoutID

VIMaP

GET /vimap/tenant/{tenant_id}/NetworkServiceSupportLayout/{netservice_layoutID}

GET reply: netservice_layout_object_parameters

PUT /vimap/tenant/{tenant_id}/NetworkServiceSupportLayout/{netservice_layoutID}

GET reply: Success or Failure

DELETE /vimap/tenant/{tenant_id}/NetworkServiceSupportLayout/{netservice_layoutID}

DELETE reply: Success or Failure

allocate net_serv_layout in phy infrastrucutre
through SDN and Compute controllers

delete net_serv_layout in phy infrastrucutre
through SDN and Compute controllers

update net_serv_layout in phy infrastrucutre
through SDN and Compute controllers

NFVO

Figure 20: Virtual Infrastructure Manager and Planner workflow example.

As shown in Figure 20, this process can consist of the major steps:

1. The NFV-O creates a network service layout formed by a set of VMs.

1.1. The VIMaP conducts the necessary operations to create and interconnect the

VMs forming the network service layout

1.2. Note that in this case the default algorithm used by VIMaP offers the logic

for the placement of the VMs. However, this does not preclude the

specification of the placement of VMs by other entities (e.g., the NFV-O or

the MTA).

2. In case the VIMaP can allocate the indicated set of VMs (with their associated

characteristics specified by a template) returns an id of the successfully created

network service layout.

3. The NFV-O can request the characteristic and status of the created network

service layout.

4. At a given point, the NFV-O can update the characteristics or the template of the

previously created network service layout. For instance, it can request to change

the location, the characteristics of a given VM, or the way the VMs are

connected between them. This change triggers the interaction of the VIMaP

either with the SDN or compute controllers, or with both entities.

5. At a given point in time, the NFV-O may decide to deallocate the network

service layout from the physical infrastructure. This requires the interaction of

the VIMaP with both the SDN and compute controllers.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 74

8.6. NFV Orchestrator

The NFV-O offers an NBI that allows 5G-Crosshaul applications to request the

instantiation, orchestration and management of Network Services (NSs). A NS, as in

ETSI NFV terminology, is composed by multiple virtual or physical network functions

(VNFs or PNFs), which are interconnected through a VNF Forwarding Graph.

8.6.1. APIs

The NFV-O provides mechanisms to create, retrieve and remove NSs, as described in

the following table.

Table 13: NFV-O API.

Prot. Type URI Parameters

REST POST ../nfvo/ns

Create a new

network service for

a given tenant

Input NS Id

ServiceDeploymentFlavour

NS Tenant Id2

Output NS Id

REST GET ../nfvo/ns/ns_id

Retrieve

information about

the given network

service

Input NS Id

NS Tenant Id

Output NS record

REST DELE

TE

../nfvo/ns/ns_id

Remove an existing

network service

Input NS Id

NS Tenant Id

Output Success: Status Code of normal end

Failure: Error code

8.6.2. Information Model

The main entity managed by the NFV-O is the Network Service (NS), a chain of VNFs

interconnected through a VNF Forwarding Graph (VNFFG). The characteristics of a NS

are defined according to a standard template, called NS Descriptor (NSD), which

defines:

2 A tenant is one or more NFV MANO service users sharing access to a set of physical, virtual or service

resources. An NS tenant is a tenant to which NSs are assigned. (See ETSI GS NFV-IFA 010, v2.1.1,

April 2016)

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 75

 NS generic information, like vendor, version, human readable description, etc.

 The VNFs that compose the NS, identified through their VNF Descriptors (see

the VNFM in section 8.7).

 The Physical Network Functions (PNF) that compose the NS (optional).

 The Virtual Network Function Forwarding Graphs (VNFFGs) that interconnect

the VNFs (and the PNFs if available), identified through their VNFFG

Descriptor. Both Virtual Network Function Descriptors (VNFDs) and VNFFG

Descriptors are stored in repositories at the NFV-O level.

 The dependencies between the VNFs.

 The scripts and configuration parameters to be launched at the various stages of

the NS lifecycle (e.g. during the instantiation, scale up/down or termination).

 The KPIs to be monitored.

 The criteria and the constraints for automated and on-demand scaling of the NS.

The VNF Descriptior information model is reported in Figure 24. VNFDs are stored in

the VNFD Database (DB), a shared DB which is accessed by both VNFM and NFV-O.

Suitable management APIs are exposed by the NFV-O to load new VNFDs in the

repository. This procedure is defined by ETSI NFV MANO standard and it is out of the

scope of this document. During the instantiation of a VNF, the VNFD is specified in the

request through its unique identifier.

VnfDependency

srcVnfdId: string
targetVnfdId: string

NetworkServiceDescriptor

id: string
vendor: string
version: string
vnfdId: string
vnffgId: string
vlld: string
lifecycleEvent: string
vnfDependency: VnfDependency
monitoringParameter: string
serviceDeploymentFlavour:
ServiceDeploymentFlavour
autoScalePolicy: string
connectionPoint: ConnectionPoint
pnfdId: string
nsdSecurity: string

*

0..1

ConnectionPoint

id: string
type: string

ServiceDeploymentFlavour

id: string
flvaourkey: string
constituentVnf: ConstituentVnf

1

ConstituentVnf

vnfdId: string
vnfFlvaourId: string
redundancyModel: string
affinity: string
numberOfInstances: unsigned int

1 *

1

*

1 *

Figure 21: NFV-O information model.

Next, the main data objects are presented in more detail:

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 76

Table 14: NFV-O information model.

Parameter Type Description

NS Id String Descriptor of the NS to be instantiated, , including

deployment flavours, external connections points and

dependencies among NS components.

ServiceDeploy

mentFlavour

Object Defines the size, the characteristics and the components

(VNFs and virtual links) of the NS to be instantiated.

NS record Object Description of the instantiated NS, its VNF instances, its

status and its parameters

8.6.3. Workflow

Figure 22 and Figure 23 show the workflow to create and terminate a Network Service

when triggered by a generic NFV-O client. In the two figures, we have assumed a

simplified scenario where the Network Service includes only VNFs, without any

Physical Network Function (PNFs). If this requirement is not met, an additional

interaction between the NFV-O and the SDN controller responsible for the physical

network infrastructure would be required in order to enable the interconnection between

the VNFs and the PNFs at the physical network level (which is not managed by the

VIM). Moreover, we are also assuming the following:

1. The VNF Managers are already up and running.

2. No preliminary check of resource availability or resource reservation is

performed before allocation (these actions are considered as optional in ETSI

NFV specifications, but are usually not supported at the VIM level in state-of-

the-art cloud platforms).

The detailed workflows for the instantiation and termination of VNFs are described in

the section dedicated to the VNFM (see Section 8.7).

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 77

Figure 22: NFV-O workflow example: Instantiate NS.

Figure 23: NFV-O workflow example: Terminate NS.

8.7. VNF Manager

This module exposes NBI services to manage single VNF instances. In particular, this

module offers an API to the NFV-O to conduct CRUD operations in VNFs. The role of

this service is aligned with the role specified by ETSI NFV [4]. An open source

implementation compliant with the ETSI NFV specification can be found, for instance,

in OpenBaton [6], bundled with an NFV-O.

8.7.1. APIs

The VNF Manager provides mechanisms to create, retrieve and remove VNFs, as

described in the following table.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 78

Table 15: VNF Manager API.

Prot. Type URI Parameters

REST POST ../vnfm/vnf

Create a new VNF

for a given tenant.

Input VNFD Id

VNF Tenant Id3

Deployment flavour Id

NS Id

External virtual links Ids

(List<String>): identify the external

virtual links the VNF must be

connected to (through its external

connection points).

Output VNF ID

REST GET ../vnfm/vnf/vnf_id

Retrieve the

information related

to a given VNF.

Input VNF Id

VNF Tenant Id

Output VNF record

REST DELE

TE

../vnfm/vnf/vnf_id

Remove an existing

VNF.

Input VNF Id

VNF Tenant Id

Output Success: Status Code of normal end

Failure: Error code

8.7.2. Information Model

The main entity managed by the VNF Manager is the VNF. The VNFs are defined

according to a standard template, called VNF Descriptor (VNFD), which defines:

 VNF generic information, like vendor, version, human readable description, etc.

 The VNF Components (VNFC), which compose the VNF and their

characteristics, through the definition of associated Virtual Deployment Units

(VDUs).

 The internal and external Connection Points and the virtual links the VNF and

VNFCs are attached to.

 The dependencies between the VNFC, i.e. between VDUs.

 The scripts and configuration parameters to be launched at the various stages of

the VNF lifecycle.

 The KPI to be monitored at the whole VNF and single VNFCs level.

3 A tenant is one or more NFV MANO service users sharing access to a set of physical, virtual or service

resources. A VNF tenant is a tenant to which VNFs are assigned. (See ETSI GS NFV-IFA 010, v2.1.1,

April 2016)

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 79

 The criteria and the constraints for automated and on-demand scaling of the

VNF.

The VNF Descriptor (VNFD) information model is reported in Figure 24. VNFDs are

stored in the VNFD DB, a shared DB which is accessed by both VNFM and NFV-O.

Suitable management APIs are usually exposed by the NFV-O to load new VNFDs in

the repository. This procedure is defined by ETSI NFV MANO standard and it is out of

the scope of this document. During the instantiation of a VNF, the VNFD is specified in

the request through its unique identifier.

Vdu

id: string
vmImage: string
computationRequirement
virtualMemory
virtualNetworkBw: int
lifecycleEvent: string
constraint: string
highAvailability: string
scale_in_min: uint
scale_out_max: uint
vnfc: Vnfc
monitoringParameter: string

VnfDescriptor

id: string
vendor: string
descriptorVersion: string
version: string
vdu: Vdu
connectionPoint: ConnectionPoint
lifecycleEvent: string
dependency: VduDependency
monitoringParameter: string
deploymentFlavour: DeploymentFlavour
autoScalePolicy: string
manifestFile: string
manifestFileSecurity: string

*

0..1

VduDependency

srcVduId: string
targetVduId: string

VirtualLink

id: string
connectivityType: string
connectionPointId: string
leafRequirement: uint
rootRequirement: uint
qos: string
testAccess: string

1

ConstituentVdu

vduId: string
numberOfInstances: int
constituentVnfc: string

1

*

1

*

1 *

DeploymentFlavour

id: string
flavourKey: string
constraint: string
constituentVdu: ConstituentVdu

ConnectionPoint

id: string
type: string
virtualLinkReference: string

Vnfc

id: string
connectionPoint: ConnectionPoint

1

0..1

*

1 *

*

*

*

**

1

*

Figure 24: VNF descriptor information model.

Next, the main data objects are presented in more detail:

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 80

Table 16: VNF Manager information model.

Parameter Type Description

VNFD Id String ID of the VNFD according to the VNF needs to be

instantiated.

Deployment

flavour Id

Object Defines the size and the characteristics of the VNF to be

instantiated.

VNFD

descriptor

Object Description of the VNF to be instantiated, including its

elements (e.g. VNFC and VDU, virtual links, connection

points).

VNF record String ID of the VNFD according to the VNF needs to be

instantiated.

8.7.3. Workflow

This section describes the workflows for instantiation and termination of single VNFs,

modelled according to the option of resource allocation specified by the NFV-O. In

other terms, while the VNFM is responsible for coordinating the whole instantiation

procedure, the request for resource allocation to the VIM is mediated by NFV-O. These

workflows are parts of the whole Network Service instantiation and termination

workflows; in this case, the VNFM client is actually the NFV-O itself.

As shown in Figure 25, the VNFM receives a request to instantiate a VNF, receiving as

input the VNF Descriptor (VNFD), together with other parameters which indicate the

size of the VNF (i.e. its deployment flavour) and how the VNF must be interconnected

to the whole Network Service (e.g. through the specification of already established

external virtual links). The VNFM generates a VNF Id which is immediately returned

and used as reference ID for further asynchronous notifications or requests related to the

lifecycle of that VNF. The VNFM elaborates the VNFD and identifies the virtual

resources (network, storage, computing) which must be allocated to build all the VNF

Components (VNFCs) and the internal virtual links that compose the VNF itself. The

resulting resources are requested to the NFV-O that can optionally perform some

algorithms to decide the optimal resource placement and finally forwards the request to

the VIM. The VIM allocates all the resources, typically starting from the network side,

and when finished notify the NFV-O which, in turns, sends an acknowledgement to the

VNFM. Once the allocation procedure is finished, the VNFM takes care of the

configuration of the VNF and its VNFCs and finally notifies the originating requester

about the instantiation result.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 81

Figure 25: VNF Manager workflow example: Instantiate VNF.

Figure 26 shows the termination procedure. The VNFM sends the VNF the commands

required to (gracefully) shutdown the running applications, as specified in the VNFD.

Then it asks the NFV-O to delete the virtual resources previously allocated, an action

which is executed interacting with the VIM to remove VMs and network resources.

Once all the resources are deleted, the originating requester is information with an

asynchronous message.

Figure 26: VNF Manager workflow example: Terminate VNF.

8.8. Analytics for Monitoring

This service is in charge of offering to the consumer elaborated information obtained

from the processing of the network and computing statistics gathered by the stats

module specified in Section 8.4. Analytics involve studying data to evaluate the

performance or to analyze the effects of certain decisions or events, and produces

specific results. This elaborated information could be, for instance, used by the Energy

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 82

Management and Monitoring Application (EMMA) to determine whether it is

convenient to change the power status of some XFE or XPU in the infrastructure.

8.8.1. APIs

The analytics for monitoring module through the Northbound APIs provided in the

following table allows getting specific information about different resources or defined

meters. These APIs also provide primitives to create new meters in case the services

require it, where a meter can be seen as a measure of a specific resource. This dataset

can be used for subsequent retrieval and analysis, and trigger actions when it is

necessary.

Table 17: Analytics for Monitoring API.

Prot. Type URI Parameters

REST GET ../analytics/resources

Retrieve the whole resources

../analytics/resources/(resource_id)

Retrieve details about one resource

with the resource_id

Input resource_id (optional)

Output list(resource)

resource

REST GET ../analytics/meters

Return all known meters

../analytics/meters/(meter_name)

Return samples for the meter with

the meter_name

Input meter_name (optional)

Output list (meter)

list (samples)

REST POST ../analytics/meters/(meter_name)

Post a new meter

Input

meter_name

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 83

Output Success: Status Code of

normal end

Failure: Error code

REST GET ../analytics/samples

Return all known samples

../analytics/samples/(sample_id)

Return a sample with the

sample_id

Input sample_id (optional)

Output list (sample)

sample

REST GET ../analytics/event_types

Get all event types

../analytics/event_types/(event_typ

e)

Return an event_type

../analytics/events

Return all events matching the

filters

../analytics/events/(event_id)

Return an event with the event_id

Input event_type (optional)

event_id (optional)

Output List (event types)

event_type

list (event)

event

8.8.2. Information Model

The information data model supported by the analytics for monitoring service is shown

in Figure 27:

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 84

Figure 27: Analytics for Monitoring Information model.

The main parameters are described in the following table:

Table 18: Analytics for Monitoring Information model.

Parameters Type Description

resource_id Unicode Identifier of the resource

meter_name Unicode Identifier of the meter

sample_id Unicode Identifier of the sample

event_type Unicode Identifier of the event type

event_id Unicode Identifier of the event

8.8.3. Workflow

This section shows the workflow followed by an application that requires the analytics

for monitoring service. Figure 28 illustrates the request of the samples for a specific

meter and the request for creating a new meter for monitoring in these two steps:

1. Gathering the monitoring data from existing services or by polling the

infrastructure.

2. Configuring the kind of data gathered to meet different operating

requirements.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 85

Figure 28: Analytics for monitoring workflow example.

8.9. Local Management Service

The Local Management Service offers to Northbound applications the possibility of

managing the status of the 5G-Crosshaul XFEs and XPUs. By status in an XFE we

refer, for instance, to the capability of reconfiguring the properties of a port, or a set of

ports. Also, the reconfiguration of XFE and XPU status (e.g., device on or device off)

and their associated properties is also considered as a potential feature offered by this

service. Consequently, this module will require a DB related to the status of network

and IT components that can be potentially modified by a 5G-Crosshaul application.

8.9.1. APIs

The Local Management Service is in charge of the modification of the status of XFEs

and XPUs. For instance, it provides the Energy Management and Monitoring

Application (EMMA) with REST APIs that can be used to perform the network (re-

)configuration (switching on/off physical nodes) if such action leads to the minimization

of the energy expenditure while ensuring an acceptable quality of service.

Table 19: Local Management Service API.

Prot. Type URI Parameters

REST GET ../lms/{node Input Node id

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 86

id}/stts

Retrieve Node

Status (On/Off)

Output Success: n_status

Failure: Error Code

REST POST ../lms/{node

id}/stts/n_status}

Set Node Status

to On or Off

Input Node id

Output Success: n_status

Failure: Error Code

8.9.2. Information model

The information data model supported by the Local Management service is shown in

Figure 29, and it supports the identification of a specific node and its status.

Node

node_id: integer

*1 1

Node Status

n_status: integer

*

Figure 29: Local Management Service information model

In the following, we describe the relevant parameters:

Table 20: Local Management Service information model.

Parameter Type Description

node_id Integer Unique identifier of a physical node

n_status Integer Status (e.g., On/Off/Sleep) of a physical node

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 87

8.9.3. Workflow

LMS

POST reply: Success (n_status) or Failure (error_code)

EMMA

GET /emm/{node_id}/stts

POST /emm/{node_id}/stts/{n_status}

POST reply: Success (n_status) or Failure (error_code)

 Figure 30: Local Management service workflow example.

As shown in the first interaction of the workflow of Figure 30, the Energy Management

and Monitoring Application (EMMA) can ask the local management service (LMS) to

return the status of a physical node, univocally identified by its node ID. Possible status

indicators (n_status) are associated to On, Off or Sleep status. This status is then used

by EMMA to run its energy saving algorithms. The LMS service can reply with an error

code if, e.g., the node is non-existent or its status cannot be determined (if the node has

been disconnected). A possible output of EMMA algorithms is the request that a

physical node is turned On, Off, or set to Sleep (low energy consumption) state. This

can be achieved (second interaction of the workflow of Figure 30) by asking the LMS to

set the node to a specific status (On, Off or Sleep status). The LMS service can reply

with an error code if, e.g., the node is non-existent or its status changed is denied

(different error codes can be defined in order to specify possible reasons why the status

change has been denied).

8.10. Multi-tenancy

The Multi-tenancy service allows the MTA application [2] to enforce its decisions on

slicing the physical 5G-Crosshaul infrastructure and allocating virtual resources to

multiple tenants. It provides REST APIs to map virtual components such as virtual

L2/L3 forwarding elements and virtual links that belong to a virtual network to the

physical substrate.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 88

8.10.1. APIs

The Northbound APIs in the following table provide primitives to create, modify, delete

and visualize the mapping between Virtual Tenant Networks (VTNs) and the physical

infrastructure.

Media types can be in the form of JSON and/or XML. It is important to note that the

URIs specified in the request by the consumer shall be independent of the chosen

representation in the implementation. Table 21 shows the most important functions to

create, modify and delete a VTN.

Table 21: Multi-tenancy service API: Virtual Tenant Network (VTN) functions.

Prot. Type URI Parameters

REST GET

../mt/vtns/{tenant_id}

Retrieve list of

Virtual Tenant

Networks

Input tenant_id

Output Success: List of VTN_info structures in

response body

Failure: Error code

REST POST

../mt/vtns/{tenant_id}

 Creates a Virtual

Tenant Network

Input tenant_id

Request body contains VTN_info

Output Success: Status Code of normal end

Returns tenant_id

Failure: Error code

REST GET

../mt/vtns/{tenant_id}

/{vtn_id}

Retrieve information

related to a VTN

Input tenant_id

vtn_id

Output Success: VTN_info of tenant_id structure in

response body

Failure: Error code

REST POST

../mt/vtns/{tenant_id}

/{vtn_id}

Modify information

of a VTN

Input tenant_id

vtn_id

Request body contains VTN_info

Output Success: Status Code of normal end

Failure: Error code

REST DELE

TE

../mt/vtns/{tenant_id

}/{vtn_id}

Input tenant_id

vtn_id

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 89

Remove a VTN Output Success: Status Code of normal end

Failure: Error code

Table 22 shows the most important functions to add, modify and delete virtual switches

(layer-2 forwarding elements) into a VTN.

Table 22: Multi-tenancy service API: Virtual L2 forwarding element functions (virtual

switches).

Prot Type URI Parameters

REST GET

../mt/{tenant_id}/{vtn

_id}/v_switches

Retrieve list of

virtual switches that

belong to tenant_id

Input tenant_id

vtn_id

Output Success: List of v_switch_info structures in

response body

Failure: Error code

REST POST

../mt/{tenant_id}/{vtn

_id}/v_switches/

 Creates a virtual

switch

Input tenant_id

Request body contains v_switch_info

Output Success: Status Code of normal end

Returns v_switch_id

Failure: Error code

REST GET

../mt/{tenant_id}/{vtn

_id}/v_switches/{v_s

witch_id}

Retrieve information

related to a virtual

switch

Input tenant_id

vtn_id

v_switch_id

Output Success: v_switch_info of v_switch_id

structure in response body

Failure: Error code

REST POST

../mt/{tenant_id}/{vtn

_id}/v_switches/{v_s

witch_id}

Modify information

of virtual switch

Input tenant_id

vtn_id

v_switch_id

Request body contains v_switch_info

Output Success: Status Code of normal end

Failure: Error code

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 90

REST DELE

TE

../mt/{tenant_id}/{vtn

_id}/v_switches/{v_s

witch_id}

Remove a virtual

switch

Input tenant_id

vtn_id

v_switch_id

Output Success: Status Code of normal end

Failure: Error code

Table 23 shows the most important functions to add, modify and delete virtual routers

(layer-3 forwarding elements) into a VTN.

Table 23: Multi-tenancy service API: Virtual L3 forwarding element functions (virtual

routers).

Prot Type URI Parameters

REST GET

../mt/{tenant_id}/{vt

n_id}/v_routers

Retrieve list of

virtual routers that

belong to tenant_id

Input tenant_id

vtn_id

Output Success: List of v_router_info structures in

response body

Failure: Error code

REST POST

../mt/{tenant_id}/{vt

n_id}/v_routers/

Creates a virtual

router

Input tenant_id

vtn_id

Request body contains v_router_info

Output Success: Status Code of normal end

Returns v_router_id

Failure: Error code

REST GET

../mt/{tenant_id}/{vt

n_id}/v_routers/{v_r

outer_id}

Retrieve information

related to a virtual

router

Input tenant_id

v_router_id

Output Success: v_router_info of v_router_id

structure in response body

Failure: Error code

REST POST

../mt/{tenant_id}/{vt

n_id}/v_routers/{v_r

outer_id}

Modify information

Input tenant_id

vtn_id

v_router_id

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 91

of virtual router Request body contains v_router_info

Output Success: Status Code of normal end

Failure: Error code

REST DELE

TE

../mt/{tenant_id}/{vt

n_id}/v_routers/{v_r

outer_id}

Remove a virtual

router

Input tenant_id

vtn_id

v_router_id

Output Success: Status Code of normal end

Failure: Error code

Table 24 shows the most important functions manage the mapping between physical

ports (e.g. of XFEs) and virtual forwarding elements.

Table 24: Multi-tenancy service API: port mapping functions.

Prot Type URI Parameters

REST GET

../mt/{tenant_id}/{vt

n_id}/v_switches/{v_

switch_id}/v_ifaces

or

../mt/{tenant_id}/{vt

n_id}/v_routers/{v_r

outer_id}/v_ifaces

Retrieve list of

interface mapping

that belong to a

virtual switch or a

virtual router

Input tenant_id

vtn_id

v_switch_id/v_router_id

Output Success: List of v_iface_info structures in

response body

Failure: Error code

REST POST

../mt/{tenant_id}/{vt

n_id}/v_switches/{v_

switch_id}/

or

../mt/{tenant_id}/{vt

n_id}/v_routers/{v_r

Input tenant_id

vtn_id

v_switch_id/v_router_id

Request body contains v_iface_info

Output Success: Status Code of normal end

Returns v_iface_id

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 92

outer_id}/

Creates an interface

mapping

Failure: Error code

REST GET

../mt/{tenant_id}/{vt

n_id}/v_switches/{v_

switch_id}/{v_iface_

id}

or

../mt/{tenant_id}/{vt

n_id}/v_routers/{v_r

outer_id}/{v_iface_i

d}

Retrieve information

related to a virtual

interface mapping

Input tenant_id

vtn_id

v_switch_id/v_router_id

v_iface_id

Output Success: v_iface_info structure in response

body

Failure: Error code

REST POST

../mt/{tenant_id}/{vt

n_id}/v_switches/{v_

switch_id}/{v_iface_

id}

or

../mt/{tenant_id}/{vt

n_id}/v_routers/{v_r

outer_id}/{v_iface_i

d}

Modify information

of virtual interface

mapping

Input tenant_id

vtn_id

v_switch_id/ v_router_id

v_iface_id

Request body contains v_iface_info

Output Success: Status Code of normal end

Failure: Error code

REST DELE

TE

../mt/{tenant_id}/{vt

n_id}/v_switches/{v_

switch_id}/{v_iface_

id}

or

../mt/{tenant_id}/{vt

n_id}/v_routers/{v_r

outer_id}/{v_iface_i

d}

Input tenant_id

vtn_id

v_switch_id/ v_router_id

v_iface_id

Output Success: Status Code of normal end

Failure: Error code

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 93

Remove a virtual

interface mapping

Table 25 shows the most important functions to manage virtual links between virtual

forwarding elements.

Table 25: Multi-tenancy service API: virtual link functions.

Prot Type URI Parameters

REST GET

../mt/{tenant_id}/{vtn

_id}/v_links

Retrieve list of virtual

links

Input tenant_id

vtn_id

Output Success: List of v_link_info structures in

response body

Failure: Error code

REST POST

../mt/{tenant_id}/{vtn

_id}/v_links/

Creates an virtual

link

Input tenant_id

vtn_id

Request body contains v_link_info

Output Success: Status Code of normal end

Returns v_link_id

Failure: Error code

REST GET

../mt/{tenant_id}/{vtn

_id}/v_links/{v_link_i

d}

Retrieve information

of a virtual link

Input tenant_id

vtn_id

v_link_id

Output Success: v_link_info structure in response

body

Failure: Error code

REST POST

../mt/{tenant_id}/{vtn

_id}/v_links/{v_link_i

d}

Modify information

of virtual link

Input tenant_id

vtn_id

v_link_id

Request body contains v_link_info

Output Success: Status Code of normal end

Failure: Error code

REST DELE ../mt/{tenant_id}/{vtn Input tenant_id

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 94

TE _id}/v_links/{v_link_i

d}

Remove a virtual link

vtn_id

v_link_id

Output Success: Status Code of normal end

Failure: Error code

8.10.2. Information Model

The Multi-tenancy information model described in

Figure 31 supports virtualization of networking resources through a mapping between

virtual and physical entities. The main parameters are described in Table 26.

Multi-tenancy

v_switch_info

id: string
port_mapping: v_port
vlan_mapping: vlan_mapping
status: string
tenantId: tenant_id v_iface_info

id: string
type: string
vlan: uint32
phy_node_id: string
phy_port_id: string
mac_address: string
status: string

1

VTN_info

tenant_id: integer
vtn_id: integer
description: string
status: string

*

1

Virtual router

id: string
port_mapping: port_mapping
status: string
tenantId: tenant_id

Virtual link

id: string
src_port: v_port
dst_port: v_port
NetworkConstraints: net_constraints
tenant_id

*

inetport_mapping

id: string
type: string
ip: uint64
prefix: uint32
status: string

*

1

0..1

net_constraints

bandwidth: int32
delay: int32
jitter: int32

1

1

1

*

2

2

1

*

1

*

Figure 31: Multi-tenancy service information model

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 95

Table 26: Multi-tenancy service information model

Parameter Type Description

tenant_id Integer Unique identifier of a virtual tenant

vtn_id Integer Unique identifier of a virtual network

v_switch_id Integer Unique identifier of a virtual switch

v_router_id Integer Unique identifier of a virtual router

v_link_id Integer Unique identifier of a virtual link

v_switch_info Object Object describing a virtual switch (e.g., status)

v_router_info Object Object describing a virtual router (e.g., status)

v_iface_info Object Object describing a virtual interface mapping (e.g. status,

mapping to physical interfaces)

v_link_info Object Object describing a virtual link mapping (e.g. status, mapping

to physical links/paths)

8.10.3. Workflow

Figure 32 illustrates an example of usage of the multitenancy service by MTA or

VIMaP, who are the consumers of the service in this case. This represents a very simple

example of the creation of a virtual tenant network (VTN) through a process that

comprises the following steps:

1. The consumer requests the creation of a new network tenant. The multitenancy

allocates space to store information on the new tenant and generates a new

identifier if successful.

2. The consumer iteratively requests the creation of virtual switches. The

multitenancy service generates identifiers for each of the new entities.

3. The consumer iteratively requests the creation of virtual routers. The

multitenancy service generates identifiers for each of the new entities.

4. The consumer iteratively requests a mapping between a physical port and a

virtual port that belongs to a virtual switch or virtual router. In the latter case, an

IP configuration is also required.

5. The consumer iteratively requests the creation of virtual links by routing pairs of

virtual ports. To do so, the multitenancy service requests the SDN controller a

route between two mapped physical ports given a set of network constraints

(net_constraints).

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 96

POST /mt/vtns/{tenant_id}

POST reply: vtn_id

Multitenancy

allocate VTN_info

MTA/VIMaP

 loop

 until all virtual switches are created

POST /mt/vtns/{tenant_id}/{vtn_id}/v_switches

POST reply: v_switch_id

Set up virtual
switches

 loop

 until all virtual routers are created

POST /mt/vtns/{tenant_id}/{vtn_id}/v_routers

POST reply: v_router_id

Set up virtual
routers

 loop

 until all physical interfaces are mapped into virtual interfaces

POST /mt/vtns/{tenant_id}/{vtn_id}/v_ifaces

POST reply: v_ifce_id

Map virtual to
physical interfaces

 loop

 until all virtual switches are created

POST /mt/vtns/{tenant_id}/{vtn_id}/v_links

POST reply: v_link_id

Set up virtual
links

Figure 32: Multi-tenancy service workflow example.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 97

 Validation and Evaluation

9.1. Methodology

This section describes the global methodology adopted for the validation of the data

plane and control-plane components under development in WP3. The scope of the

validation activities within WP3 is to assure the proper behaviour of the functions and

algorithms that are integral part of the components constituting the whole XCI control-

plane infrastructure and operating the heterogeneous resources in the data plane. In the

same way, the different kinds of technology adopted to perform forwarding in the data

plane will be tested to guarantee the proper functionality of the 5G-Crosshaul network

substrate infrastructure. The definition of proper testing procedures for each XFE/XCI

prototype and algorithm is an important base in order to facilitate the whole system

integration and verification process that will take place in WP5. Indeed, the preliminary

structured unit tests of each function will reduce consistently the number of

integration’s issues during the process of verification and evaluation of the whole 5G-

Crosshaul architecture. In detail, the validation methodology adopted and formalized

below is based on the definition of a set of functional objectives that are the final goals

of each test performed on specific hardware/software prototypes or algorithm. Each test

is structured with the aim to verify a particular functionality or expected behavior of the

System Under Test (SUT), in a simplified environment which emulates the interaction

with other architectural components or the data consumed by the component/algorithm

itself. This approach allows identifying possible inappropriate behaviours that depend

on the single component/algorithm in an isolated and controlled environment, so that

potential bugs can be efficiently fixed on the single modules before the final integration

phase takes place. The following test card template, reported in Table 27, represents a

formalization of the validation procedure for software prototype components. Each test

is divided in sequential steps with expected results. During the test execution, the status

of each step will be completed with the actual result (i.e. Passed/Failed). The final

objectives are achieved through the validation of each single step in the workflow, so

the execution of the whole test card will be considered successful only if all the single

steps will be executed with a positive result. Furthermore, the test procedure specifies

the environment where executing the test, defining a reference topology made up by

interfaces, data plane resources and external components, eventually emulated, in order

to check the whole software functionalities and interactions.

Table 27: Test card template

Test Card # Execution Status

Test Name

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 98

Objectives

Related Use

Cases

Responsible

Related Test

Cards

Additional

Comments

SUT and topology

SUT Components under test

Test

environment

topology

Data plane topology; control plane components

External

components
External components required to perform the test

Test description

Step # Step description and expected results Status

1.
Description:

Expected Results:

2.

Description:

Expected Results:

Comments:

9.2. Data Plane Validation Plan (Nokia)

In the data plane, three different types of elements will be validated: circuit switches

(XCSEs), packet switches (XPFEs), and the split ratio protocol stack.

Two types of XCSEs have been evaluated, the silicon photonics Reconfigurable Optical

Add and Drop Multiplexer (ROADM) and an XCSE using the deterministic delay

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 99

protocol described in [1], both developed by TEI. For each of the XCSEs one dedicated

setup has been defined, on which the corresponding measurements have been

performed. The test setup for the silicon photonics ROADM is shown in Figure 33(a).

Figure 33: (a) characterization set-up. (b) BER results

We used two packaged ROADMs: ROADM-1 output bus was connected to the

ROADM-2 input bus through a 10km long single-mode fibre (SMF) spool. The adjacent

channels 1, 2, 4 were sent on the ROADM-1 input bus coming from another DWDM

system. The signal 3 was sent to the dedicated add port of the ROADM-1 to multiplex

it with the other channels on the bus. The four multiplexed signals were coupled out of

the ROADM-1 and reached the ROADM-2 after propagating through the 10km fibre

spool. Here 3 was dropped and sent to another DWDM system. Bit Error Rate (BER)

measurements versus received power were performed. Figure 33(b) shows the measured

BER performance of the link. We successfully obtained error free operations with a

power penalty lower than 0.7dB at BER=10-12.

Two XPFEs will be validated, the nodes in the Interdigital Edgelink mmWave mesh

technology and the software switches provided by Nokia. In both cases the correct

forwarding of frames and the correct encapsulation/decapsulation of frames will be

tested. Additionally, latency/jitter measurements will be performed for the software

switch. These measurements take into account different types of fronthaul (FH) and

backhaul (BH) like traffic as well as the impact on flow entry modifications. The test

setups consist typically of several XPFEs connected to traffic sources and sinks and

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 100

being controlled by an SDN controller. As an example see Figure 34.

XPFE

XPFE

XPFE

SDN Controller

Traffic source
(UE, generator,
RRU, small cell)

Traffic destination
(UE, sink,
BBU, GW)1 hop

2 hops

SUT

SUT

SUT

Figure 34 : XPFE test setup

Test Card # Test Name
IDCC_XPFE_01 Forwarding of non-XCF frames

IDCC_XPFE_02 Multiplexing of non-XCF frames

IDCC_XPFE_03 Encapsulation and decapsulation of XCF frames

IDCC_XPFE_04 Validate correct forwarding of XCF frames over mmWave mesh

network

IDCC_XPFE_05 Multiplexing of XCF frames

NOKIA_XPFE_01 Forwarding of XCF frames

NOKIA_XPFE_02 Encapsulation and decapsulation of non-XCF frames

NOKIA_XPFE_03 Exchange of information relevant for the Topology and Inventory

Service of the XCI

NOKIA_XPFE_04 Validation of simulations against the switch behaviour

NOKIA_XPFE_05 Baselining of pure XCF forwarding and encapsulation/decapsulation

functionality

NOKIA_XPFE_06 Evaluation of the C-plane load on latency and jitter

NOKIA_XPFE_07 Validate latency and jitter for heterogeneous traffic flows

NOKIA_XPFE_08 Validate latency and jitter requirements for pure CPRI traffic

The split radio stack has been evaluated both with a direct Ethernet connection among

the Remote Radio Head (RRH) and Baseband Unit (BBU) as well as using mmWave

technology developed by Interdigital. Figure 35 shows the setup using mmWave

technology among radio remote unit (RRU) and BBU.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 101

Figure 35: Setup for split radio protocol stack

The validation procedures cover setup of the S1-connection, validation of Cell-

broadcast, user equipment (UE) attachment and traffic exchange.

Test Card # Test Name
CND_FHBH_1 Validate S1 Setup of C-RAN eNodeB over

FH/BH

CND_FHBH_2 Validate Cell Broadcast

CND_FHBH_3 UE attachment over FH and BH, downlink and

uplink user plane traffic and detachment

CND_FHBH_4 UE attachment over FH and BH, downlink and

uplink user plane traffic and detachment with

fronthaul over mmWave

CND_FHBH_5 UE attachment over FH and BH, downlink and

uplink user plane traffic and detachment using

SDR board

CND_FHBH_6 UE attachment over FH and BH, downlink and

uplink user plane traffic and detachment using

SDR board and fronthaul over mmWave

9.3. Control Plane Validation Plan

This section presents the XCI prototype validation plan taking into consideration the

different types of components that coexist within the 5G-Crosshaul Control

Infrastructure, in particular dividing the argument in three subsections dealing

respectively with the XCI MANO components, the SDN controllers and the algorithms

running within the XCI itself. More in detail, each component/algorithm is validated on

the base of the management and orchestration target resources, focusing the test

procedure on the software component related use case.

9.3.1. Validation of XCI MANO Components

9.3.1.1. XCI MANO for CDN

The goal of the test with regard to the functional validation is to prove the feasibility of

the virtual content delivery network (vCDN) implementation concept, as defined in [2],

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 102

using the functions developed within the XCI MANO components. To that end, the

main aspects that the test aims at are the following:

 Processing of a CDN service instantiation request. The NFV Orchestrator

through its northbound must understand the network service request, manage the

data provided in it (network service template) and interact with the VNF

Manager and the VIM in order to deploy the vCDN infrastructure required.

 Starting up the VMs through the VIM and instantiate and configure the vCDN

nodes through the VNF Manager.

 Enabling the proper end-to-end connectivity between the vCDN nodes through

the VIM functions.

 Monitoring the status of the vCDN node containers (VMs) and specific

information related to the vCDN node performance through VNF probes

configured by the VNF Manager. These data have to be available at the

application level.

Figure 36: XCI MANO for CDN. Validation Environment

The validation environment where all components under test will be developed is

located in a cloud environment. The testbed will be composed of a NFV Orchestrator

and a VNF Manager developed based on open source software. There will also be a

VIM based on OpenStack Mitaka 4 version, which will manage an infrastructure

composed of a controller node and three compute nodes where it will be instantiated the

vCDN nodes. The connection between the vCDN nodes will be configured through the

OpenStack module Neutron functions. The vCDN nodes are based on Wowza

4 https://www.openstack.org/software/mitaka/

https://www.openstack.org/software/mitaka/

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 103

Streaming Engine5 media server software and for the simulation of the network service

request will be used a REST client interacting with the NFV Orchestrator northbound.

The following test cards have been defined in order to describe the validation

procedures that will be carried out for testing the components.

Table 28: XCI MANO for CDN. Testing Procedures

Test Card # Test Name
ATOS_vCDN_MANO_01 Starting up the VMs and running the vCDN node VNFs

ATOS_vCDN_MANO_02 Collection and storage of VM and VNF monitoring data

ATOS_vCDN_MANO_03 Orchestration and management of a vCDN infrastructure

9.3.1.2. XCI MANO for vEPC and energy management

The validation procedures of the XCI MANO components are focused on the functional

testing of the following main features:

 Monitoring of power consumption from the XPUs, performed at the VIM level

based on data collected through its South Bound Interface from the compute

nodes of the physical infrastructure. These data must be made available through

a suitable monitoring interface exposed by the VIM component at its north

bound.

 The capability to regulate the status (switch-on/off) of the compute nodes based

on their working load, making use of suitable NBI at the VIM level.

 The capability to instantiate vEPC instances taking into account energy

constraints, with the possibility to select and specify the optimum set of compute

nodes from a power consumption perspective.

5 https://www.wowza.com/products/streaming-engine

https://www.wowza.com/products/streaming-engine

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 104

Figure 37: Validation environment

The validation environment (see Figure 37) requires the deployment of the following

components of the System Under Test (SUT):

 NFV-O and VNFM(s) based on the extended OpenBaton6 software, installed in

a server;

 VIM, based on OpenStack Mitaka version, deployed with a controller node and

three compute nodes. The required OpenStack modules are Nova, Neutron,

Ceilometer, Glance, Keystone, and Horizon. The generation of energy

monitoring data is emulated by software, based on models that take into account

the number of running VMs.

The interaction with the client entities at the northbound interface (i.e. the EMMA

application) is emulated through a REST client like curl7 or Postman8.

The functional validation will be performed through the execution of testing procedures

defined in the following testcards.

Table 29: Testing procedures

Test Card # Test Name
NXW_EMMA_MANO_01 Monitoring of XPU energy consumption

6 http://openbaton.github.io/
7 https://curl.haxx.se/
8 https://www.getpostman.com/

http://openbaton.github.io/
https://curl.haxx.se/
https://www.getpostman.com/

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 105

NXW_EMMA_MANO_02 Regulation of power-on/power-off status of XPUs

NXW_EMMA_MANO_03 Instantiation of energy-efficient vEPC instances

9.3.1.3. Openstack-based VIMaP

Macroscopically, the goal is to validate the VIMaP component implementation and its

ability to instantiate interconnected Virtual Machines, as previously defined in Section

8.5. Figure 38 provides a schematic diagram of the involved components with VIMaP

development and testing.

Figure 38: Diagram of the involved components with VIMaP development and testing

The main objectives of the planned tests to be carried out are the following:

 Functional validation and experimental assessment of the VIMaP NBI interface, that

is, enabling a test application to request VIMaP services. For the testing, Command

Line Interface (CLI) clients will be used. The main service will be the instantiation

of interconnected Virtual Machines, following a client specified constrained graph.

This is the main macroscopic objective and includes, as sub-objectives, the

following ones.

 Functional validation of the interaction with the cloud controller (OpenStack) This

objective aims at validating the VIMaP as a consumer of OpenStack services and its

use to instantiate VMs in constrained locations, for the considered operating system

images. For the testing, generic Linux images (medium size) will be considered.

 Functional validation of the interaction with the SDN controller Likewise, this

objective targets the consumption of the SDN controller(s) NBIs for the

provisioning of connectivity services in one (or multiple) domains. By design, a

hierarchical arrangement of controllers is considered. In this sense, the VIMaP

component only needs to interact with one SDN controller, which, depending on the

OpenStack
Cloud

Controller

Network
Orchestrator

VIM

Network
Controller

Network
Controller

P-
Component

P-Interface

VIMaP
NBI

VIM-SDN Interface
(e.g. ETSI Nf-Vi)
COP Protocol

OpenStack
API

Scope of the implementation
and testing

CLI app

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 106

scenario, is either a parent controller – also known as network orchestration and

implemented either following the Application-Based Network Operation (ABNO)

architecture – or, in simpler deployments, a single SDN controller. In either case, it

is expected that the SDN controllers implement a YANG-based API such as

Control Orchestration Protocol (COP)9, the Transport API186 defined by the ONF

Transport Group [22] , or IETF TEAS topology and tunnel models [23] .

 Functional validation of the P-interface The P-interface will be tested to see if the P

component (provided as a separate component) is able to execute the placement

function independently.

These main objectives involve the following features and functionality (only

considering the VIMaP component)

 The ability to query, from the OpenStack cloud controller, the status of the compute

nodes, and their capabilities. This includes querying attributes of the system and

retrieving the number and type of instances, etc.

 The ability to upload images into the cloud controller, which will be launched when

a VM instance is allocated.

 The ability to launch VMs with a set of associated resources and to specify the

image to be launched for that Virtual Machine. Likewise, the ability to query the

status of the images and to terminate an image when it is no longer needed.

 The ability to query, from the SDN controller, the topology of the transport network,

which needs to be augmented with the location and capabilities of the XPU nodes

(OpenStack configured compute nodes) to have an enhanced Traffic Engineering

Database (TED).

 The ability to query, from the SDN controller, the status of existing and/or

configured flows, and their properties and attributes.

 The ability to provision, invoking the correct API from the SDN controller, one or

multiple flows that will constitute the inter-VM connectivity

 Finally, the ability to instantiate and terminate interconnected overlay VMs as

defined by the VIMaP NBI.

For the time being, all the VMs, which will be assumed to belong to the same IP subnet,

will be instantiated within the administrative project / tenant and connectivity will be

provided at layer 2 (MAC) level.

The validation environment is the CTTC testbed, which is composed of two existing

internal testbeds, namely, the ADRENALINE and EXTREME testbeds [18]. It is worth

noting, though, that specific integration, and regression tests may be carried out with

only a subset of the components and function entities. The CTTC testbed includes

several data plane technologies, namely, an mmWave/WiFi mesh network domain, an

access and aggregation packet switched network domain and an optical circuit switched

network domain, as detailed in D5.1 [18].

9 https://github.com/ict-strauss/COP

https://github.com/ict-strauss/COP

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 107

From the point of view of the control and VIMaP aspect, software applications and

components (VIMaP, ABNO, SDN controllers, Active Stateful Path Computation

Element (PCE) etc.) will run on dedicated commercial off-the-shelf (COTS) hardware

(Intel CPUs with GNU/Linux Operating System) and with diverse hardware

configurations depending on hardware requirements for each application or component.

An OpenStack deployment will include a controller node, a network node where

applicable and, depending on the scenario, multiple compute nodes deployed in diverse

locations.

For testing specific mock-up components or simplified settings will be used. For

example, we are considering using available OpenFlow SDN controllers to be run in

virtualized environments (e.g. Mininet10) for simplified testing.

A detailed description of the validation procedures and its associated test cards can be

found in Appendix (Section 11.3). As a general description, the validation procedures

involve, mainly,

 the implementation and use of interfaces between the VIMaP and OpenStack

keystone, nova, glance and neutron.

 the implementation and use of interfaces between the VIMaP and the SDN

controller (either a standalone controller or an ABNO orchestrator).

Test Card # Test Name
CTTC-VIMaP-T001 Topology detection

CTTC-VIMaP-T002 XPU status and capability discovery

CTTC-VIMaP-T003 Instantiation of Virtual Machines in remote locations

CTTC-VIMaP-T004 Flow configuration across Single- and Multi-domain networks

CTTC-VIMaP-T005 Functional assessment of the VIMaP NBI

CTTC-VIMaP-T006 External placement computation of VMs and flows (P component)

9.3.2. Validation of XCI SDN Controllers

9.3.2.1. SDN controller for XPFE and energy management

The validation procedures of the XPFE SDN controller are focused on the functional

testing of the following main features:

 The OpenFlow-based interaction between XPFEs and SDN controller to collect

information about the capabilities of the network devices, to build their

topology, to monitor their status and statistics and to configure flow entries (i.e.

support of core XCI controller services for XPFEs).

 For XPFEs supporting power consumption monitoring, the collection of power-

related parameters via SNMP protocol. For XPFEs not supporting explicit power

consumption monitoring, the capability to compute power consumption

parameters following a model based on traffic load.

10 http://mininet.org/

http://mininet.org/

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 108

 Aggregation of power consumption monitoring data to measure global power

consumption at the physical infrastructure level and power consumption per

network path or per tenant.

 The capability to regulate the status (switch-on/off) of the network nodes based

on their working load, making use of suitable SBIs (e.g. SNMP or NETCONF).

 The capability to compute, instantiate and terminate tenant-specific network

paths, triggered via NBI interface requests. Network path setup is managed

through the suitable configuration of flow entries across the flow tables in the

XPFE’s pipeline via OpenFlow messages. The resulting configuration allows

encapsulating traffic at the network edge, making use of the MAC-in-MAC

feature as defined in the XCF format, in order to manage proper isolation

between tenants.

The validation environment requires the deployment of the following components of the

System Under Test (SUT):

 XCI SDN controller for the operation of XPFEs based on Lagopus software

switches (see Section 9.2). The SDN controller is based on OpenDaylight

Beryllium and includes the software bundles for OpenFlow plugin, core

services like inventory, topology, statistics and flow management, and web GUI

(i.e. the OpenDaylight DLUX service).

 Depending on the specific test case, further OpenDaylight-based service or

external SDN applications, e.g. SNMP plugin, analytics service for power-

consumption monitoring, path computation and provisioning service, network

nodes activator.

Concerning the data-plane, Mininet will be used to emulate network topologies

composed of several switches and hosts. Lagopus switches with XCF support will be

used to emulate the data plane in tests related to OpenFlow-based SBI functionalities,

while an SNMP Agent simulator11 will be used to verify the collection of monitoring

data via SNMP protocol. The interaction with the client entities at the northbound

interface (i.e. the EMMA application or the OpenStack-based VIM for virtual network

requests) is emulated through a REST client like curl or Postman.

11 http://snmpsim.sourceforge.net/

http://snmpsim.sourceforge.net/

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 109

Figure 39: Validation environment with Mininet emulated data-plane

Figure 40: Validation environment with Lagopus emulated data-plane

The following test cards define the testing procedure.

Table 30: Validation procedures

Test Card # Test Name
NXW_XCI_01 Core XCI controller services in XPFE’s networks

NXW_XCI_02 Monitoring of XPFE power consumption via SNMP

NXW_XCI_03 Monitoring of XPFE power consumption via analytics

NXW_XCI_04 Analytics for computation of power consumption in virtual infrastructures

NXW_XCI_05 Modification of XPFE operational status

NXW_XCI_06 Setup and termination of energy-efficient paths on XPFE networks

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 110

9.3.2.2. SDN controller for mmWave and WiFi mesh technology
The validation objectives can be decomposed into three main functional goals:

 Wireless link backhaul selection: first goal is the intelligent interface selection out of

those available in the wireless backhaul node. The SDN controller must recognize,

at this stage, a basic set of capabilities of every wireless backhaul interface available

in a wireless node. This also implies reaction for the detection of link failures and

the selection of the appropriate wireless interface for forwarding purposes according

to a wireless technology based criteria.

 Management of wireless backhaul interfaces: second goal is the remote

management of the wireless backhaul interfaces. Instead of manually configuring

the parameters associated to a wireless backhaul hardware interface, the SDN

controller would embed a software interface to allow the configuration and

reconfiguration of wireless interface parameters.

 Wireless backhaul path selection: third goal is to enable the proper end-to-end

selection of paths in the wireless mesh network environment using different

technologies as needed based on certain routing metrics.

A schematic illustration of the validation environment can be found in Figure 41. The

validation environment requires the deployment of the following components, which are

detailed in D5.1 [18]:

 From the control plane perspective, the SDN controller for mmwave/Wifi meshes.

 From the data plane perspective, forwarding nodes are equipped with IEEE

802.11ac cards and IEEE 802.11ad cards operating in the mmWave band.

SDN CONTROLLER

ENDPOINT A

OF SWITCH C OF SWITCH D ENDPOINT B

OF SWITCH A OF SWITCH B

Figure 41: Validation environment for the SDN controller for mmWave/WiFi meshes

A detailed description of the validation procedure and its associated test cards are

defined in Section 12.2.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 111

Test Card # Test Name
CTTC-mmWave-F01-T001 Topology detection

CTTC-mmWave-F01-T002 Interface state monitoring and reconfiguration

CTTC-mmWave-F01-T003 Interface technology detection

CTTC-mmWave-F01-T004 Route establishment according to path priority

CTTC-mmWave-F01-T005 Link failure and restoration

CTTC-mmWave-F01-T006 Failure recovery and route verification

CTTC-mmWave-F02-T001 Interface monitoring

CTTC-mmWave-F02-T002 Interface configuration

CTTC-mmWave-F03-T001 End-to-end route validation

CTTC-mmWave-F03-T002 End-to-end route validation with link priority based on

technology

CTTC-mmWave-F03-T003 End-to-end route validation with link priority based on link

characteristics

CTTC-mmWave-F03-T004 End-to-end route validation with link priority based link

characteristics and link occupation

CTTC-mmWave-F03-T005 End-to-end route validation and link failure recovery

9.3.2.3. SDN controller for mmWave mesh technology

Three validation objectives are identified for the mmWave mesh technology, namely:

 mmWave mesh bootstrap: the first validation objective consists of assessing the

capability of building the mmWave mesh network itself. The EdgeLink nodes will

need to discover their neighbours and setup a connection with the mesh Gateway

first in order to connect to the mesh controller.

 mmWave mesh data plane configuration: the second validation objective consists of

assessing the correct mmWave mesh network configuration by the network

controller related to the forwarding. the mesh controller needs to compute and

configure a primary and a secondary path for forwarding the traffic within the

network. The secondary path is the fall back path in case of the first path fails.

 mmWave mesh self-healing mechanisms: The third validation objective consists of

assessing the capability of the network controller to react to events that happen in

the mmWave mesh. For instance, once the primary path failed and the traffic is re-

routed on the secondary path, the network controller needs to re-compute and

reconfigure the primary and secondary paths in the mesh to restore the optimal

configuration.

The validation environment for the SDN mmWave mesh controller for EdgeLink

platform is detailed in [18] and summarized in Figure 42.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 112

XPFE

XPFE

XPFE

SDN Controller

SUT

SUT

SUT

Ctrl port

Ctrl port

Ctrl port

SUT

Primary path

Fall-back path

Aggregation
switch

Traffic source
(UE, generator,
RRU, small cell)

Traffic destination
(UE, sink,
BBU, GW)

Figure 42: Validation environment for mmWave mesh controller

The validation envisages three phases: the first phase will be devoted to the assessment

of the mesh stability in terms of node association; the second phase will consider the

computation and configuration of primary and fall back paths in the mesh network by

the network controller; finally, the third validation phase will assess the impact of the

control plane on the ongoing traffic. A detailed description of the validation procedures

and the associated test cards are defined in Section 12.3 and summarized in the

following.

Test Card # Test Name
IDCC_XCI_01 mmWave mesh stability

IDCC_XCI_02 Computation and configuration of paths within mmWave mesh network

IDCC_XCI_03 Connectivity recovery upon mmWave link failure

IDCC_XCI_04 Control plane impact on mmWave mesh network

9.3.2.4. ABNO-based hierarchical SDN controller
The main objective of this testing and validation activity is to demonstrate that the

ABNO-based hierarchical SDN controller component can provide hierarchical control

of underlying SDN controllers.

In the proposed implementation, recursive hierarchy is obtained through the extensive

usage of resource abstraction and a YANG-based API referred to as COP, which allows

the recursivity of basic SDN controller services, namely: Topology, Connectivity, Path

Computation and Notification. COP was first introduced by the STRAUSS project12,

but in this activity follow up on its extensions will be proposed. Figure 43 provides a

schematic diagram of the involved components with ABNO development and testing.

12 http://www.ict-strauss.eu/

http://www.ict-strauss.eu/

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 113

Figure 43: Diagram of the involved components with ABNO development and testing

In what follows, we describe the objectives of the planned tests:

 Functional validation and experimental assessment of the ABNO NBI interface, that

is, enabling a client application (e.g., such as VIMaP) to request SDN services. The

main service will be the instantiation of connectivity services. This is the main

macroscopic objective that includes topology recovery, path computation and

notification.

 Functional validation of the interaction with the child SDN controller(s) Likewise,

this objective targets the consumption of the SDN controller(s) NBIs based on COP

protocol for the provisioning of connectivity services in one (or multiple) domains.

By design, a hierarchical arrangement of controllers is considered. In this sense, the

parent SDN controller needs to interact with underlying SDN controllers, which are

expected to implement the COP protocol as defined.

These main objectives involve the following features and functionalities:

 The ability to query the topology of the transport network.

 The ability to query and update the status of existing and/or configured flows, and

their properties and attributes.

 The capability to perform constrained-based path computation queries and produce

their response.

 Finally, the ability to asynchronously send notification events to the client.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 114

The validation environment is the CTTC testbed [18], where components defined in the

Sections 9.3.1.3 and 9.3.2.2 of this document are extended to add the ABNO

orchestration layer. As a general description, the validation procedures involve, mainly:

 the implementation and use of interfaces between the ABNO and the client.

 the implementation and use of interfaces between the ABNO and the SDN

controller(s).

Test Card # Test Name
CTTC-ABNO-T001 Topology recovery

CTTC-ABNO-T002 Connectivity Service provisioning across Multi- domain networks

CTTC-ABNO-T003 Functional assessment of the SDN notifications

A more detailed description of the validation procedures and its associated test cards are

defined in Appendix II (Section 12.4).

9.4. Mapping of test-cases, 5G-Crosshaul objectives and 5GPPP KPIs

The 5G-Crosshaul project defines eight main objectives, which drive the execution of

the activities across the different work packages. Each objective is associated to a

number of 5GPPP KPIs and their evaluation (from a functional or non-functional

perspective). Table 31 analyses how the prototype test cases and analytical algorithms

verification procedures and results defined in this document match the relevant project

objectives and 5GPPP KPIs, identifying the WP3 contribution to the validation of the

whole project. It should be noted that, in several cases, the architecture and prototypes

built in WP3 constitute the functional enablers for the upper layer SDN applications

(WP4 scope), which actually implement the logic to meet the KPIs. This is reported as

“functional enabler for <application>” in the table below.

Table 31 – Mapping between test-cases, objectives and KPIs

Objective 5GPPP KPI impact Feature Test Case / Algorithm

Obj.1: Design
of the
Crosshaul
Control
Infrastructure
(XCI)

Increase the number
of connected devices
per area at least by a
factor of 10.

Multi-tenancy support
at XPFEs and XCI SDN
controllers
(Functional enabler for
Multi-Tenancy Appl.)

NOKIA_XPFE_01
NOKIA_XPFE_02
NXW_XCI_01
NXW_XCI_04

Network clustering for
hierarchical SDN
control

CTTC-ABNO-T001
CTTC-ABNO-T002
CTTC-ABNO-T003

Energy efficiency
improvement by at
least a factor of 3.

Energy monitoring at
XFEs and XPUs.
Management of status
changes in XFEs and
XPUs.
Computation of
energy efficient

NOKIA_XPFE_03
NXW_EMMA_MANO_01
NXW_EMMA_MANO_02
NXW_EMMA_MANO_03
NXW_XCI_02
NXW_XCI_03
NXW_XCI_04

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 115

network paths.
(Functional enabler for
Energy Monitoring
and Management
Appl.)

NXW_XCI_05
NXW_XCI_06
Power consumption
computation (Section 6.2)

Obj.2: Specify
the XCI’s
northbound
(NBI) and
southbound
(SBI)
interfaces

Enable the
introduction and
provisioning of new
5G Crosshaul
services in the order
of magnitude of
hours

Abstract network
information model for
5G Crosshaul
technologies
(Functional)

NOKIA_XPFE_03
NXW_XCI_01-02-05
CTTC-mmWave-F01-T001-
002-003
CTTC-mmWave-F02-T001-
002
IDCC_XCI_01-02
CTTC-ABNO-T001-003

XCI SBI actions
(Functional)

NOKIA_XPFE_0*
NXW_XCI_01-05
CTTC-mmWave-F01-T002
CTTC-mmWave-F02-T002
IDCC_XCI_02

XCI NBI actions
(Functional)

ATOS_vCDN_MANO_01-
03
NXW_EMMA_MANO_02-
03
CTTC-VIMaP-T005
NXW_XCI_05-06
CTTC-mmWave-F03-T001
IDCC_XCI_02

XCI automated
functions for service
provisioning

ATOS_vCDN_MANO_03
NXW_EMMA_MANO_03
CTTC-VIMaP-T003-006
NXW_XCI_06
CTTC-mmWave-F03-T00*
IDCC_XCI_02-03
CTTC-ABNO-T002
Network optimization
(section 6.1)

Obj.3: Unify
the 5G
Crosshaul
data plane

CAPEX and OPEX
savings due to the
unified data plane
(25%) and multi-
tenancy.

Support for multi-
tenancy in the unified
data plane.
(Functional)

NOKIA_XPFE_01
NOKIA_XPFE_02

Design the XFE
IDCC_XPFE_0*
NOKIA_XPFE_0*

Obj.6: Design
scalable
algorithms for
efficient 5G
Crosshaul
resource
orchestration

Increase of total
Xhaul network
throughput by > 20%
by means of
resource
optimization alone
compared to current

Novel 5G-capable

routing and traffic

engineering algorithms

Network optimization
(Section6.1)

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 116

operators’ practice.

Obj.7: Design
essential 5G
Crosshaul
integrated
(control &
planning)
applications

Reduce energy
consumption in the
5G Crosshaul by 30%
through energy
management.

Control of optimal
scheduling of
equipment sleep
cycles, routing and
function placement
(Functional enabler for
Energy Monitoring
and Management
Appl.)

NOKIA_XPFE_03
NXW_EMMA_MANO_01
NXW_EMMA_MANO_02
NXW_EMMA_MANO_03
NXW_XCI_02
NXW_XCI_03
NXW_XCI_04
NXW_XCI_05
NXW_XCI_06
Power consumption
computation (section 6.2)

Obj.8: 5G
Crosshaul key
concept
validation and
proof of
concept

Orchestration of 5G
Crosshaul resources
based on traffic load
variation

Resource
orchestration for CDN
(Functional enabler for
CDN Management
Appl.)

ATOS_vCDN_MANO_01-
03

Self-healing
mechanisms for
unexpected link
failures

Network path
recovery

CTTC-mmWave-F03-T005
IDCC_XCI_03

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 117

 Conclusion

This document provided a detailed description of the XCI design and its main elements,

which is in line with the 5G-Crosshaul System Architecture defined in WP1. It includes

a preliminary selection of the software building blocks inside the XCI, along with a

discussion of different deployment models of the XCI. Furthermore, it includes the set

of software frameworks and platforms that have been selected for the XCI

implementation.

This document also described the work during year 1 regarding XCI interfaces. In

particular, we provided the initial specification of the NBI that is exposed by several

XCI services towards the 5G-Crosshaul applications. Specifically, we have provided an

initial API design for each NBI service, the most relevant information of their data

model, and a workflow to illustrate the use of each service by a generic 5G-Crosshaul

application or by an internal module inside the XCI. With respect to the SBI, this

document merely provided a brief summary that links with WP2 and WP3-WP2 joint

work, which has been fully reported in D2.1[1] for the sake of self-completeness.

Finally, this document presented the initial methodology defined to validate the

functionalities of the XPFEs and XCI prototypes under development in WP3 as well as

to evaluate the performance of the related analytics algorithms for modelling

computational and network optimization. The initial procedures defined in this

document constitute an important step towards the development of stable prototypes to

WP5. Note that the aforementioned specification of the XCI procedures will be

continuously improved based on the feedback resulting of the development and testing

of each of the modules in WP3, and their subsequent integration in WP5.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 118

 Appendix I – Validation procedures of XCI MANO

Components

11.1. XCI MANO for CDN

This section contains the specification of the different tests to validate the XCI MANO

procedures for the CDN. The test procedures follow sequential steps. First, the

instantiation of VMs to run the VNFs on vCDN nodes is validated. Second, the statistics

collection of the performance of the vCDN deployment is tested. Finally, the validation

of the previous steps serves for the evaluation of the proper orchestration and

management of the vCDN infrastructure.

11.1.1. Starting up the VMs and running the vCDN node VNFs

Test Card # ATOS_vCDN_MANO_01 Execution Status Testing

Test Name Starting up the VMs and running the vCDN node VNFs

Objectives

Starting up the VMs through the VIM. Running the vCDN node VNFs on these

VMs. Enabling the proper end-to-end connectivity between the vCDN nodes

through the VIM functions.

Related Use

Cases
Media Distribution: vCDN

Responsible ATOS

SUT and topology

SUT

VIM – OpenStack Mitaka version

VNFs – vCDN nodes based on Wowza Streaming Engine media server

software

Test environment topology

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 119

External

components

Interaction with the VIM through Horizon, which is the OpenStack´s

dashboard and provides a web-based user interface to OpenStack services.

Test description

Step # Step description and expected results Status

1.

Description:

Initial configuration of OpenStack, set up of controller node and compute

nodes.

Expected Results:

OpenStack is running on the controller and compute nodes properly.

2.
Description:

Instantiation of the vCDN node VNFs on the compute nodes defined in

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 120

the previous step.

Expected Results:

vCDN node VNFs are correctly configured and provide the data required

(video files).

3.

Description:

Establishment of the proper connectivity between the vCDN nodes

through the VIM functions.

Expected Results:

Video files are properly sent from Origin vCDN node to Replica vCDN

nodes.

11.1.2. Collection and storage of VM and VNF monitoring data

Test Card # ATOS_vCDN_MANO_02 Execution Status Planned

Test Name Collection and storage of VM and VNF monitoring data

Objectives
Check the mechanisms to collect the monitoring data required for the vCDN

performance.

Related Use

Cases
Media Distribution: vCDN

Responsible ATOS

Related Test

Cards
N.A.

SUT and topology

SUT

VIM – OpenStack Mitaka version

VNFs – vCDN nodes based on Wowza Streaming Engine media server

software, supporting VNF probes for monitoring.

Test environment topology

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 121

External

components

 Interaction with the VIM through Horizon, which is the OpenStack´s

dashboard and provides a web-based user interface to OpenStack

services.

 REST client to check the monitoring data provided by the VNF probes.

Test description

Step # Step description and expected results Status

1.

Description:

Run OpenStack and the vCDN node VNFs.

Expected Results:

OpenStack is running on the controller and compute nodes properly.

vCDN node VNFs running on the compute nodes.

VNF probes (specific software installed on the VNFs) are configured and

running on the vCDN node VNFs.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 122

2.

Description:

Using the REST client to check the data collected from the VFN probes.

Expected Results:

Monitoring data specified are properly gathered.

The VNF probes have to provide the required data: status (up, down),

CPU load (%), memory load (%) and number of connected users (n).

11.1.3. Orchestration and management of a vCDN infrastructure

Test Card # ATOS_vCDN_MANO_03 Execution Status Planned

Test Name Orchestration and management of a vCDN infrastructure.

Objectives
Manage and process a CDN service instantiation request. Check the whole

process to deploy a vCDN infrastructure.

Related Use

Cases
Media Distribution: vCDN

Responsible ATOS

Related Test

Cards
N.A.

SUT and topology

SUT

VIM – OpenStack Mitaka version

VNFs – vCDN nodes based on Wowza Streaming Engine media server

software, supporting VNF probes for monitoring.

VNF Manager developed – Does the life cycle management of vCDN node

VNFs.

NFV Orchestrator developed – Manages the CDN service, Network Service

Descriptors (NSD), vCDN node VNF Descriptors (VNFD) and vCDN VNF-

FG Descriptors (VNF-FGD).

Test environment topology

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 123

External

components REST client to interact with the NFV Orchestrator.

Test description

Step # Step description and expected results Status

1.

Description:

Start the NFV Orchestrator, the VNF Manager and OpenStack, controller

node and compute nodes.

Configure the interaction between the NFV-O, VNFM and OpenStack.

Load the vCDN node VNFDs and the NSD in the catalogues.

Load the vCDN node VNF images in OpenStack.

Expected Results:

OpenStack is running on the controller and the compute nodes properly.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 124

NFV-O and VNFM are running and working correctly.

vCDN node VNFDs and NSD available in the NFV-O.

2.

Description:

Request the CDN service instantiation through the REST Client to the

NFV-O.

Expected Results:

The NFV Orchestrator through its northbound must understand the

network service request, manage the data provided in it (network service

template) and interact with the VNF Manager and the VIM in order to

deploy the vCDN infrastructure required.

The NFV-O takes the vCDN node VNFDs and NSD from the catalog.

The VIM has to instantiate the vCDN node VNFs on the compute nodes

required.

The VNF Manager has to configure the vCDN node VNFs instantiated by

the VIM.

The vCDN node VNFs are running with the correct configuration.

11.2. XCI MANO for vEPC and energy management

This section specifies additional details for the testing procedures and components of

the MANO for vEPC and energy management described in Section 9.3.1.2.

11.2.1. Monitoring of XPU energy consumption

Test Card # NXW_EMMA_MANO_01 Execution Status Planned

Test Name Monitoring of XPU energy consumption

Objectives
Verify the mechanisms to collect XPU monitoring data at the VIM and expose

them through the VIM’s NBI.

Related Use

Cases

Dense urban information society (however energy monitoring is a transversal

feature that can be applicable to other use cases, including MEC and CDN).

Responsible NXW

Related Test

Cards
N/A (not applicable)

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 125

SUT and topology

SUT OpenStack based VIM extended for power consumption monitoring.

Test environment topology

External

components

 REST client to interact with the VIM

 Network infrastructure for data plane (between compute nodes) and

control plane (between compute nodes and controller nodes). This

network infrastructure is statically configured, since out of scope for

this test.

Test description

Step # Step description and expected results Status

1.

Description: start the software components in compute and controller

nodes.

Expected Results: OpenStack software up and running in compute and

controller nodes.

SNMP agents and manager up and running in compute nodes and

controller node respectively. The SNMP manager sends periodical GET

requests to the SNMP agents.

Emulators of the power consumption data generator up and running in

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 126

compute nodes. Emulated data are periodically generated.

2.

Description: using the Wireshark13 tool verify the exchange of SNMP

messages between VIM and XPUs.

Expected Results: SNMP messages with power consumption data are

properly exchanged through the VIM SBI.

3.

Description: using the REST client retrieve power consumption

information from the VIM NBI. This data include real-time power

consumption values per single servers (their aggregation per VNF or

Network Service level is a task of upper layer analytics at the EMMA

application and at the NFV-O).

Expected Results: power consumption data are correctly retrieved.

11.2.2. Regulation of power-on/power-off status of XPUs

Test Card # NXW_EMMA_MANO_02 Execution Status Planned

Test Name Regulation of power-on/power-off status of XPUs

Objectives Verify the mechanisms to switch-on and switch-off XPUs through the VIM.

Related Use

Cases

Dense urban information society (however energy monitoring is a transversal

feature, which can be applicable to other use cases, including MEC and CDN).

Responsible NXW

Related Test

Cards
N/A (not applicable)

SUT and topology

SUT
OpenStack based VIM supporting power-on and power-off actions for the

hosts.

Test environment topology

13 https://www.wireshark.org/

https://www.wireshark.org/

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 127

External

components

 REST client to interact with the VIM

 Network infrastructure for data plane (between compute nodes) and

control plane (between compute nodes and controller nodes). This

network infrastructure is statically configured, since out of scope for

this test.

Test description

Step # Step description and expected results Status

1.

Description: start the software components in compute and controller

nodes.

Expected Results: OpenStack software up and running in compute and

controller nodes.

SNMP agents and manager up and running in compute nodes and

controller node respectively. The SNMP manager sends periodical GET

requests to the SNMP agents.

Emulators of the power consumption data generator up and running in

compute nodes. Emulated data are periodically generated.

2.

Description:

Use the REST client to retrieve the list and status of the compute nodes

and send a command to switch off compute node 1.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 128

Expected Results: Compute node 1 switched off.

Note: in a global workflow, the upper layer EMMA application will

initiate the action of switching off the hosts, although here the user (REST

client) manually triggers it through an explicit REST request.

3.

Description: using the REST client, retrieve the list and status of the hosts

and sends a command to switch on compute node 1.

Expected Results: compute node 1 switched on.

Note: in a global workflow, the upper layer EMMA application and NFV-

O, when VMs need to be allocated in hosts that were previously off, will

initiate the action of switching off the hosts, although here the user (REST

client) manually triggers it through an explicit REST request.

11.2.3. Instantiation of energy-efficient vEPC instances

Test Card # NXW_EMMA_MANO_03 Execution Status Planned

Test Name Instantiation of energy-efficient vEPC instances

Objectives

Verify the mechanisms to instantiate a vEPC instance selecting the more

suitable set of compute nodes to reduce the global power consumption.

This test will also verify the time needed to provision a vEPC instance,

including both cases where compute nodes are already available, up and

running as well as cases where the required compute nodes need to be switched

on. This allows to evaluate the additional delay required to switch on the nodes

that is introduced by the energy-efficient approach.

Related Use

Cases

Dense urban information society (however energy monitoring is a transversal

feature which can be applicable to other use cases, including MEC and CDN).

Responsible NXW

Related Test

Cards
NXW_EMMA_MANO_02

SUT and topology

SUT

OpenStack based VIM supporting power consumption monitoring and power-

on/power-off actions for the hosts. Images of vEPC VMs are pre-loaded in

OpenStack.

OpenBaton based NFV-O with algorithms for energy efficient provisioning of

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 129

Network Services. VNF and Network Service descriptors (VNFD and NSD)

for the vEPC must be loaded in the NFV-O catalogues.

OpenBaton based VNFM for the management of the vEPC VNFs lifecycle.

Test environment topology

The initial status of the infrastructure includes two compute nodes up and running and a

compute node in shutdown mode. This allows verifying that the algorithms initially select active

XPUs, while the third compute node is chosen only if no more resources are available on the

previous ones.

The resources made available for OpenStack on Compute Node 1 and Compute Node 2 are

enough to support only three instances of the vEPC service.

External

components

 REST client to interact with the VIM

 Network infrastructure for data plane (between compute nodes) and

control plane (between compute nodes and controller nodes). This

network infrastructure is statically configured, since out of scope for

this test.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 130

Test description

Step # Step description and expected results Status

1.

Description: start the software components in NFV-O-VNFM and VIM

compute and controller nodes.

Configure the NFV-O to use the OpenStack VIM (via NFV-O GUI).

Load the vEPC VNFDs and NSD in the NFV-O (via NFV-O GUI).

Expected Results: OpenStack software up and running in compute and

controller nodes. vEPC VM images already available in OpenStack.

SNMP agents and manager up and running in compute nodes and

controller node respectively. The SNMP manager sends periodical GET

requests to the SNMP agents.

Emulators of the power consumption data generator up and running in

compute nodes. Emulated data are periodically generated.

OpenBaton software up and running in the NFV-O andVNFM machines.

OpenBaton configured to interact with the OpenStack VIM. VNFD and

NSD for vEPC available in the NFV-O catalogues.

2.

Description: using the REST client, request the creation of 3 vEPC

service instances to the NFV-O. Measure the time required to provision

each service, including details about the delay contribution related to

deployment and configuration of each single VM.

Expected Results: the NFV-O algorithms select compute nodes 1 and 2

as target location for the VMs.

The NFV-O, through the VNFM, requests the allocation of the NFVI

resources to the VIM, specifying the location of the VMs in compute

nodes 1 and 2.

The VIM creates the virtual resources as specified by the NFV-O.

The VMs of the vEPC are instantiated on the compute nodes 1 and 2.

Compute node 3 is still in shutdown mode.

The vEPC VMs are up and running, with the correct configuration. The

VMs within each service instance are able to interact each other.

Collection of KPIs related to provisioning time (VMs deployment and

VMs configuration).

3. Description: using the REST client, request the creation of an additional

vEPC service instance to the NFV-O. Measure the time required to

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 131

provision the service, as in the previous step, and including also the time

required to switch on the additional compute node.

Expected Results: the algorithms at the NFV-O select compute node 3 as

target location for the VMs.

The NFV-O requests the VIM, through its NBI, to switch on compute

node 3 (see the procedure in test case NXW_EMMA_MANO_02).

Compute node 3 is properly started.

The NFV-O, through the VNFM, request the allocation of the NFVI

resources to the VIM, specifying the location of the VMs in compute node

3.

The VIM creates the virtual resources as specified by the NFV-O.

The VMs of the vEPC are instantiated on the compute node 3.

The vEPC VMs are up and running, with the correct configuration. The

VMs are able to interact each other.

Collection of KPIs related to provisioning time (host switching on, VMs

deployment and VMs configuration).

11.3. OpenStack-based VIMaP

This section specifies the testing procedures to validate the different operations and

components of the OpenStack based VIMaP described in Section 9.3.1.3. The VIMaP

operations are namely: topology detection, XPU status and capability discovery, VMs

instantiation, and flow provisioning under different network domains. The last two

defined procedures focus on testing the offered NBI interface to interact with the

application plane and the integration of the P-component, which performs constrained

VM placement.

11.3.1. Topology detection

Test Card # CTTC-VIMaP-T001 Execution Status Planned

Test Name Topology detection

Objectives

To be able to retrieve the transport network topology from the SDN controller

or ABNO orchestrator, following YANG-based API such as COP, topology

management service. Note that the ONF Transport API [22] or IETF TEAS

topology [23] are other potential alternatives.

To validate that the topology is correct and can be used for path computation

and resource reservation processes.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 132

Related Use

Cases
All use cases defined in D1.1 [3].

Responsible CTTC

Related Test

Cards
N/A (not applicable).

Additional

Comments

This test involves a software module that requests the topology from the SDN

controller and is able to store it in an internal database.

SUT and topology

SUT
VIMaP and SDN controller (or ABNO orchestrator for multi-domain).

Both applications interconnected in a LAN network (IP reachability).

Test

environment

topology

External

components

Basic control plane infrastructure to enable IP reachability between functional

entities.

An (emulated or real) network topology that is retrieved by the VIMaP

application and exported by the SDN controller for testing purposes.

Test description

Step # Step description and expected results Status

1.

Description: configure a transport network topology in one or multiple

domains, with one SDN controller or multiple ones allocated in a

hierarchy.

Expected Results: SDN controller normal operation. It should be

possible to consume SDN controller or ABNO orchestrator API by

Network
Orchestrator

VIM

Query (enhanced) topology including nodes (XPFE.
XCSE), etc., and attachment of XPUs to XPFE. To
perform topology management, and constrained path
computation

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 133

means of COP protocol, and retrieve topological information.

2.

Description: execute VIMaP application and provide the IP address and

port of the services exported by the SDN controller or ABNO

orchestrator. Trigger an event that results in the VIMaP requesting the

topology using the COP protocol (the event can typically later be

mapped to a client request). Measure the time required by the VIMaP

application to retrieve the network topology.

Expected Results: the VIMaP stores topological information that can be

exported, e.g., to an external file or other entities. The VIMaP uses that

topology information, e.g., for the purposes of path computation. The

topology is correct and as intended.

Collection of topology retrieve time related operations. The comparison

of VIMaP topology recovery execution time between different network

deployments provides an idea of the degree of scalability.

11.3.2. XPU status and capability discovery

Test Card # CTTC-VIMaP-T002 Execution Status Planned

Test Name XPU status and capability discovery.

Objectives

To be able to retrieve the resources controlled by the OpenStack controller

and, in particular, the number of compute nodes and availability zones, their

capacities, the number of instantiated Virtual Machines and the consumed

resources.

Validate that the resource view is correct and can be used for VM allocation

purposes.

This includes the ability to consume Keystone (identity), Glance (software

images) and Nova (computing) services.

Related Use

Cases
All use cases defined in D1.1 [3].

Responsible CTTC

Related Test

Cards
N/A (not applicable)

Additional

Comments

This test involves a software module that requests the aforementioned

services from the cloud controller.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 134

SUT and topology

SUT
VIMaP and OpenStack cloud controller.

Both applications interconnected in a LAN network (IP reachability).

Test

environment

topology

External

components

Basic control plane infrastructure to enable IP reachability between functional

entities. OpenStack deployment, with multiple compute nodes in different

availability zones.

Test description

Step # Step description and expected results Status

1.

Description: configure an OpenStack cloud management infrastructure

with multiple compute nodes, with emphasis on physical locations that

emulate placement of XPUs, retrieving information to integrate into

VIMaP databases.

Expected Results: Operative OpenStack infrastructure

2.

Description: launch manually instances from a set of predefined images

in one or more compute nodes.

- Single tenant / project (admin)

- Same GNU/Linux image

- Same IP subnet (prefix)

Expected Results: running instances as intended.

3.

Description: VIMaP retrieves the status of the compute nodes and the

running instances, being able to deduce which nodes can be used for a

service. Measure the time required by the VIMaP application to retrieve

the status of compute nodes under different compute nodes deployment.

Expected Results: the retrieved status is correct, and corresponds to the

dynamic status of the OpenStack infrastructure.

Collection of XPU status time releated operations to assess different

OpenStack
Cloud

Controller
VIM

Query Status of Compute Nodes,
Instances, …

Keystone (identity management, etc.)

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 135

XPU deployments.

11.3.3. Instantiation of Virtual Machines in remote locations

Test Card # CTTC-VIMaP-T003 Execution Status Planned

Test Name Instantiation of VMs in remote locations.

Objectives

The VIMaP application is able to allocate the set of Virtual Machines

provided in a request directly over the OpenStack Infrastructure.

This includes the ability to consume keystone (identity), glance (software

images) and nova (computing) services.

Related Use

Cases
All use cases defined in D1.1 [3].

Responsible CTTC

Related Test

Cards
N/A (not applicable)

Additional

Comments

This test involves a software module that requests the aforementioned

services from the cloud controller.

SUT and topology

SUT
VIMaP and OpenStack cloud controller.

Both applications interconnected in a LAN network (IP reachability).

Test

environment

topology

External

components

Basic control plane infrastructure to enable IP reachability between functional

entities. OpenStack deployment, with multiple compute nodes in different

availability zones.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 136

Test description

Step # Step description and expected results Status

1.

Description: configure an OpenStack cloud management infrastructure

with multiple compute nodes.

Expected Results: Operative OpenStack infrastructure.

2.

Description: VIMaP is able to launch instances from a set of predefined

images in one or more compute nodes. Measure the time required to

serve different VM provisioning requests.

- Single tenant / project (admin)

- Same GNU/Linux image

- Same IP subnet (prefix)

Expected Results: running instances as intended.

3.

Description: VIMaP retrieves the status of the compute nodes and the

running instances, being able to deduce which nodes can be used for a

service.

Expected Results: the retrieved status is correct, and corresponds to the

dynamic status of the OpenStack infrastructure. Collection of XPU status

time related operations to assess different XPU deployments. The

combination of this XPU status time operations with the VM

provisioning time provides information for further assessment of the

complete cycle.

NOTE: VMs may also appear in the topological database that is later on

retrieved from the SDN controller (as endpoints for the connectivity

services).

11.3.4. Flow configuration across Single- and Multi-domain networks

Test Card 4 CTTC-VIMaP-T004 Execution Status Planned

Test Name Flow configuration across Single- and Multi-domain networks

Objectives

The VIMaP is able to setup flows using a YANG-based API such as COP call

and connection control services from the SDN controller or ABNO

orchestrator.

Related Use

Cases
 All use cases defined in D1.1 [3].

Responsible CTTC

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 137

Related Test

Cards
N/A (not applicable).

Additional

Comments

This test involves a software module that provisions flows across the

abstracted topology.

SUT and topology

SUT
VIMaP and SDN controller or ABNO orchestrator.

Both applications to be interconnected in a LAN network (IP reachability).

Test

environment

topology

External

components

Basic control plane infrastructure to enable IP reachability between functional

entities.

An emulated or real network topology retrieved by the VIMaP application

and exported by the SDN controller for testing purposes.

Test description

Step # Step description and expected results Status

1.

Description: configure a transport network topology in one or multiple

domains, with one SDN controller or multiple ones allocated in a

hierarchy.

Expected Results: SDN controller normal operation. It should be

possible to consume SDN controller or ABNO orchestrator API and

retrieve topological information.

2.

Description: Execute VIMaP application and provide the IP address and

port of the services exported by the SDN controller or ABNO

orchestrator.

Network
Orchestrator

VIM

Setup flows (endpoints)

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 138

Trigger an event that results in the VIMaP provisioning of flows,

between provided end-points. Measure the time required to provision the

flow instance in the underlying network resources.

Expected Results: the endpoints VM are able to communicate as

intended (e.g. from VMa to VMb in unidirectional or bi-directional

settings)

Collection of flow-provisioning time related operations under different

transport network topology (one or multiple domains).

Comments:

This test is basic for the inter-VM connectivity provisioning.

11.3.5. Functional assessment of the VIMaP NBI

Test Card 5 CTTC-VIMaP-T005 Execution Status Planned

Test Name Functional assessment of the VIMaP NBI.

Objectives

The VIMaP exports a North Bound Interface consumed by applications

requesting the allocation of VM instances and the provisioning of

connectivity services in the 5G-Crosshaul network.

Related Use

Cases
All use cases defined in D1.1 [3].

Responsible CTTC

Related Test

Cards
N/A (not applicable)

Additional

Comments

This test involves a request / response protocol between a client and the

VIMaP.

SUT and topology

SUT

VIMaP and client application

(Once integrated, also the SDN controller or ABNO orchestrator, cloud

controller, optional P component).

Functional components interconnected in a LAN network (IP reachability).

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 139

Test

environment

topology

External

components

Basic control plane infrastructure to enable IP reachability between functional

entities.

An (emulated or real) network topology that is retrieved by the VIMaP

application and exported by the SDN controller for testing purposes.

One or more compute nodes to allocate instances.

Test description

Step # Step description and expected results Status

1.

Description: configure a transport network topology in one or multiple

domains, with one SDN controller or multiple ones allocated in a

hierarchy.

(As previous tests)

2.

Description: Configure an OpenStack deployment with multiple

compute nodes.

(As previous tests)

2.

Description: Execute VIMaP application and provide the IP address and

port of the services exported by the SDN controller or ABNO

orchestrator. Provide the endpoints for the cloud controller services.

(As previous tests)

3.

Description: Use a client mock-up application that consumes the VIMaP

NBI for the provisioning of an overlay of interconnected VMs across the

Crosshaul infrastructure deployed in CTTC testbed. Measure the time

required to serve different VM provisioning requests.

Expected Results:

Service provisioned as requested under different transport network

deployments.

Collection of KPIs related to VM provisioning time (VMs deployment

and VMs configuration) of different requests under different network

VIM

CLI app
REST Setup Overlay of
Interconnected VMs

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 140

deployment conditions (SDN hierarchy deployment and network

domains).

Comments:

This test means a complete integration between all the involved

components (except the P-component, which is optional and detailed in

the next test card).

11.3.6. External placement computation of VMs and flows

Test Card 6 CTTC-VIMaP-T006 Execution Status Planned

Test Name External placement computation of VMs and flows (P component).

Objectives
The VIMaP is able to delegate the placement of the VMs to a separate

component via the P-interface.

Related Use

Cases
 All use cases defined in D1.1 [3].

Responsible CTTC (in charge of the VIM part), TID (in charge of the P part).

Related Test

Cards
N/A (not applicable).

Additional

Comments

This test involves a request / response protocol between the VIM and the P-

component to perform constrained VM placement.

SUT and topology

SUT

VIMaP and SDN controller or ABNO orchestrator, cloud controller, and P

component.

Functional components interconnected in a LAN network (IP reachability).

Test

environment

topology

OpenStack
Cloud

Controller

Network
Orchestrator

VIM

P-
Component

P-Interface

VIM-SDN Interface
(e.g. ETSI Nf-Vi)
COP Protocol

OpenStack
API

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 141

External

components

Control plane infrastructure to enable IP reachability between functional

entities.

An emulated or real network topology retrieved by the VIMaP application

and exported by the SDN controller for testing purposes.

One or more compute nodes to allocate instances.

Test description

Step # Step description and expected results. Status

1.

Description: configure a transport network topology in one or multiple

domains, with one SDN controller or multiple ones allocated in a

hierarchy.

Expected Results: it should be possible to consume an SDN controller

or ABNO orchestrator API and retrieve topological information.

2.

Description: execute VIMaP application and provide the IP address and

port of the services exported by the SDN controller or ABNO

orchestrator. Provide the endpoints for the cloud controller services.

Trigger an event that results in the VIMaP requesting the P-component

the VMs to place and the flows to provision. Measure time required by

the P-component for the VM placement and flow provisioning.

Expected Results: the P-component replies with the compute nodes to

use for each VM and the flows to set up.

Collection of VMs and flow-provisioning setup time of the P-component

under different transport network topologies.

3.

Description: the VIMaP proceeds to instantiate the VMs and the flows

as given by the P-Component. Measure time required by the ViMAP to

serve the P-Component request (VMs instantiation and flow

provisioning).

Expected Results: service provisioned as requested.

Collection of VIMaP time related operations to VM instantiation and

flow provisioning. The combination of the P-component request

processing time with the VIMaP VM instantiation and flow provisioning

times provides information for further assessment of the complete cycle.

Comments: this test means a complete integration between all the

involved components. The actual use in a multi-domain real transport

network is orthogonal for VIMaP operation.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 142

 Appendix II – Validation procedures of XCI SDN

Controllers

This section presents the validation procedures related to the XCI SDN functionality. It

is divided in four subsections considering different functions each of the treats. The first

subsection considers the SDN control of XPFEs and the energy management

functionalities considering the power consumption of the switching elements in the

network. In the second subsection, we present the validation of the SDN controller used

for the general operation of mmWave and WiFi links. The third subsection focuses on

the specific SDN controller application for mmWave mesh technology. Finally, the

forth subsection highlights the hierarchy of SDN controllers and how to retrieve the

network topology from the underlying controller.

12.1. SDN Controller for XPFE and energy management

This subsection treats the issue of energy management, considering the reduction of

power consumption in the data plane elements of the network. The section also

considers the exchange of information between the XPFE and the SDN controllers in

the XCI, which is given through OpenFlow messages.

12.1.1. Core XCI controller services in XPFE’s networks

Test Card # NXW_XCI_01 Execution Status Planned

Test Name Core XCI controller services in XPFE’s networks

Objectives

Verify the mechanisms for basic operation of XPFE nodes based on software

switches:

 Connection between XPFE node and SDN controller

 Exchange of XPFE capabilities and building of the topology

 Configuration of flow entries in XPFE nodes for encapsulation,

decapsulation and forwarding of XCF frames.

Related Use

Cases
Dense urban information society

Responsible NXW

Related Test

Cards
NOKIA_XPFE_01, NOKIA_XPFE_02, NOKIA_XPFE_03

SUT and topology

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 143

SUT

OpenDaylight controller with the following software modules enabled:

 Core controller services

 L2 switch

 OpenFlow plugin

 DLUX (web GUI)

Test environment topology

External

components

 REST client to interact with the controller via REST API + web browser

to visualize the controller web GUI.

 Network infrastructure with XPFEs in the data plane. This network

infrastructure is based on Lagopus software switches.

Test description

Step # Step description and expected results Status

1.

Description: start OpenDaylight in the SDN controller and activate the

required software modules enabling the related karaf features.

Start the Lagopus software in the data plane nodes.

Expected Results: OpenDaylight software up and running in the SDN

controller.

Required OpenDaylight software bundles in active status.

2.

Description: start the Lagopus software in the data plane nodes.

Using the Wireshark tool verify the exchange of OpenFlow messages

between software switches and SDN controller.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 144

Expected Results: software switches connected to the controller.

Initial exchange of OpenFlow messages between switches and SDN

controller properly exchanged.

3.

Description: using OpenDaylight web interface visualize the network

topology and the nodes in the inventory page.

Expected Results: the three network nodes are available in the network

topology and in the list of nodes in the inventory.

4.

Description: using the controller REST APIs create flow entries in each

node in order to create a connection between host A and host B. In

particular, the first node should be configured with PUSH_PBB and

PUSH_VLAN actions, the second node with forwarding actions and the

third node with POP_PBB and POP_VLAN actions. The actual splitting

of these commands across the pipeline of flow tables in XPFE nodes is

still under discussion in T3.1.

Using OpenDaylight web interface visualize the flows installed in the

network nodes.

Using the Wireshark tool verify the exchange of OpenFlow messages

between software switches and SDN controller.

Expected Results: the FlowMod OpenFlow messages, corresponding to

the commands sent via the NBI, are exchanged between controller and

software switches.

OpenDaylight web interface reports the new flows.

The hosts are able to interact.

5.

Description: generate traffic data between the hosts and, using the

Wireshark tool, verify the exchange of statistics OpenFlow messages

between network nodes and controller. Making use of the REST APIs at

the controller, verify the statistics collected and stored at the controller.

Expected Results: OpenFlow messages about statistics exchanged

between controller and network nodes.

Statistics data available at the controller.

12.1.2. Monitoring of XPFE power consumption via SNMP

Test Card # NXW_XCI_02 Execution Status Planned

Test Name Monitoring of XPFE power consumption via SNMP

Objectives

Verify the mechanisms to collect XPFEs power consumption monitoring data,

store them at the core services level (inventory and topology) and expose them

through REST APIs.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 145

Related Use

Cases
Dense urban information society

Responsible NXW

Related Test

Cards
N.A.

Additional

Comments

SNMP agents on network nodes simulated via SNMP Agent Simulator14. The

reference SNMP MIBs are IANAPowerStateSet-MIB, ENERGY-OBJECT-

MIB and POWER-ATTRIBUTES-MIB specified in [19].

SUT and topology

SUT

OpenDaylight controller with the following software modules enabled:

 Core controller services

 L2 switch

 OpenFlow plugin

 SNMP plugin

 DLUX (web GUI)

Test environment topology

External

components

 REST client to interact with the controller via REST API + web browser

to visualize the controller web GUI.

 Network infrastructure with XPFEs in the data plane. This network

infrastructure is based on machines with Lagopus software switches

14 http://snmpsim.sourceforge.net/

http://snmpsim.sourceforge.net/

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 146

where the SNMP Agent Simulator is also installed.

Test description

Step # Step description and expected results Status

1.

Description: start OpenDaylight in the SDN controller and activate the

required software modules enabling the related karaf features.

In the data plane nodes, start Lagopus software and SNMP Agent

Simulator, configured with fake power consumption data.

Expected Results: OpenDaylight software up and running in the SDN

controller node with SNMP manager, extended inventory and topology.

SNMP agents up and running in network nodes. Emulated data are

periodically generated following the fake data loaded in the configuration.

The SNMP manager sends periodical GET requests to the SNMP agents.

2.

Description: using the Wireshark tool verify the exchange of SNMP

messages between SDN controller and XPFEs.

Expected Results: SNMP messages with power consumption data are

properly exchanged through the SDN controller SBI.

3.

Description: using the exposed REST APIs, retrieve power consumption

information from the extended topology module.

Expected Results: power consumption data are correctly retrieved.

12.1.3. Monitoring of XPFE power consumption via analytics

Test Card # NXW_XCI_03 Execution Status Planned

Test Name Monitoring of XPFE power consumption via analytics

Objectives

Verify the mechanisms to produce power consumption parameters, based on

traffic load information, for XPFE nodes that do not support natively power

consumption monitoring. The algorithms used to produce this kind of data are

described in Section 6.2.

Related Use

Cases
Dense urban information society

Responsible NXW, POLITO

Related Test

Cards
N.A.

Additional This feature must be enabled to activate power consumption monitoring in nodes

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 147

Comments without explicit power monitoring support. Monitoring data generated based on

an analytical model that takes into account the status of the node, the status of its

ports and the traffic load.

SUT and topology

SUT

OpenDaylight controller with the following software modules enabled:

 Core controller services

 L2 switch

 OpenFlow plugin

 Analytics for physical nodes power monitoring

 DLUX (web GUI)

Test environment topology

External

components

 REST client to interact with the controller via REST API + web browser

to visualize the controller web GUI.

 Network infrastructure emulated by Mininet (see picture above).

Test description

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 148

Step # Step description and expected results Status

1.

Description: start OpenDaylight in the SDN controller and activate the

required software modules enabling the related karaf features.

Start Mininet with preconfigured topology. On Mininet console, perform a

pingall command to allow the controller to detect the hosts.

Using OpenDaylight web interface visualize the network topology and the

nodes in the inventory page.

Expected Results: OpenDaylight software up and running in the SDN

controller node.

The controller and the emulated network nodes exchange OpenFlow

messages.

The controller computes the correct topology, which is shown in the web

GUI.

2.

Description: using REST APIs, retrieve power consumption information

from the topology.

Visualize analytics log to verify:

 the collection of information about network nodes, ports and

statistics from the proper OpenDaylight services through

periodical polling;

 the computation of power consumption values and their storage in

the topology information.

Expected Results: power consumption values available in the node

elements retrieved from the topology service.

Analytics log without errors.

3.

Description: emulate traffic between the hosts using iPerf and verify that

power consumption values are increased.

Expected Results: power consumption values available in the node

elements retrieved from the topology service are higher than the ones

collected in step 2.

12.1.4. Analytics for computation of power consumption in virtual infrastructures

Test Card # NXW_XCI_04 Execution Status Planned

Test Name Analytics for computation of power consumption in virtual infrastructures

Objectives
Verify the mechanisms to compute the power consumption related to the whole

physical network and to virtual infrastructures assigned to a given tenant. The

algorithms used to compute power consumption for physical networks and

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 149

virtual network slices are described in Section 6.2.

Related Use

Cases
Dense urban information society

Responsible NXW, POLITO

Related Test

Cards
NXW_XCI_01, NXW_XCI_03, NXW_XCI_06

Additional

Comments
N.A.

SUT and topology

SUT

OpenDaylight controller with the following software modules enabled:

 Core controller services, L2 switch and OpenFlow plugin

 Analytics for physical nodes power monitoring

 Path provisioning

 DLUX (web GUI)

SDN application for power consumption analytics.

Test environment topology

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 150

External

components

 REST client to interact with the controller via REST API + web browser

to visualize the controller web GUI.

 Network infrastructure emulated by Mininet (see picture above).

Test description

Step # Step description and expected results Status

Description: start OpenDaylight in the SDN controller and activate the

required software modules enabling the related karaf features.

Start Mininet with preconfigured topology. On Mininet console, perform a

pingall command to allow the controller to detect the hosts.

Using OpenDaylight web interface visualize the network topology and the

nodes in the inventory page.

Expected Results: OpenDaylight software up and running in the SDN

controller node.

The controller and the emulated network nodes exchange OpenFlow

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 151

messages.

The controller computes the correct topology, which is shown in the web

GUI.

2.

Description: using the REST APIs of the Path Provisioning service,

create network paths associated to different tenants.

Use the controller GUI to visualize the paths and the flows.

Expected Results: the network paths are correctly created and the flows

are available in the network nodes (see NXW_XCI_06 for further details

about path provisioning).

3.

Description: emulate traffic between the hosts using iPerf15 to simulate

traffic associated to the created paths. Verify power consumption values

for the network nodes in the topology.

Expected Results: power consumption values available in the node

elements retrieved from the topology service.

4.

Description: use the REST APIs of the power consumption analytics

application to retrieve:

- The power consumption of the global physical infrastructure

- The power consumption associated to resources consumed by

each tenant

Use the web GUI of the power consumption analytics applications to

visualize the graphs of the power consumption data.

Expected Results: retrieval of valid power consumption data for physical

infrastructure and virtual infrastructures (i.e. composed by the network

paths associated to a given tenant).

12.1.5. Modification of XPFE operational status

Test Card # NXW_XCI_05 Execution Status Planned

Test Name Modification of XPFE operational status

Objectives
Verify the mechanisms to change the operational status of XPFE devices via

NBI of the SDN controller.

Related Use

Cases
Dense urban information society

Responsible NXW

Related Test
N.A.

15 https://iperf.fr/

https://iperf.fr/

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 152

Cards

Additional

Comments

SNMP agents on network nodes simulated via SNMP Agent Simulator16. The

reference SNMP MIBs are IANAPowerStateSet-MIB, ENERGY-OBJECT-

MIB and POWER-ATTRIBUTES-MIB specified in [19].

The change of the status is performed through a SET on the

eoPowerAdminState MIB object.

SUT and topology

SUT

OpenDaylight controller with the following software modules enabled:

 Core controller services

 L2 switch

 OpenFlow plugin

 SNMP plugin

 DLUX (web GUI)

Test environment topology

External

components

 REST client to interact with the controller via REST API + web browser

to visualize the controller web GUI.

 Network infrastructure with XPFEs in the data plane. This network

infrastructure is based on machines with Lagopus software switches

where the SNMP Agent Simulator is also installed.

16 http://snmpsim.sourceforge.net/

http://snmpsim.sourceforge.net/

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 153

Test description

Step # Step description and expected results Status

1.

Description: start OpenDaylight in the SDN controller and activate the

required software modules enabling the related karaf features.

In the data plane nodes, start Lagopus software and the SNMP Agent

Simulator.

Expected Results: OpenDaylight software up and running in the SDN

controller node with SNMP manager, extended inventory and topology.

SNMP agents up and running in network nodes.

2.

Description: using Wireshark verify the exchange of SNMP messages

from the controller to the network nodes.

Using the REST APIs, retrieve the list and status of the network nodes by

the extended Topology.

Expected Results: the status of all the nodes is active.

SNMP messages to get the power status are properly exchanged through

the SDN controller SBI. The messages are GET on the eoPowerOperState

MIB object.

3.

Description: using the REST APIs, sends a command to put a network

node in sleeping mode.

Using Wireshark verify the exchange of SNMP messages from the

controller to the network nodes.

Expected Results: the controller sends an SNMP message with a SET on

the eoPowerAdminState MIB object and value emanSleep (1028).

12.1.6. Setup and termination of energy-efficient paths on XPFE networks

Test Card # NXW_XCI_06 Execution Status Planned

Test Name Setup and termination of energy-efficient paths on XPFE networks

Objectives

Verify the mechanisms to setup network paths associated to a given tenant

minimizing the energy consumption of the whole power consumption at the

physical infrastructure.

Verify the mechanisms to terminate an existing network path.

Related Use

Cases
Dense urban information society

Responsible NXW, POLITO

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 154

Related Test

Cards
NXW_XCI_061

Additional

Comments

This test card focuses only on the functional aspects of the procedures, in terms

of interaction between software components and generation of the suitable

commands to configure the XPFE forwarding behaviour. The performance

evaluation of the path computation algorithm is out of scope, since it is covered

through simulation analysis described in D4.1 [2]. In this test, we assume that

the path returned by the computation algorithm is the optimal one.

SUT and topology

SUT

OpenDaylight controller with the following software modules enabled:

 Core controller services

 L2 switch

 OpenFlow plugin

 Path provisioning

 Path computation

 DLUX (web GUI)

Test environment topology

External

components

 REST client to interact with the controller via REST API + web browser

to visualize the controller web GUI.

 Network infrastructure with XPFEs in the data plane. This network

infrastructure is based on machines with Lagopus software switches.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 155

Test description

Step # Step description and expected results Status

1.

Description: start OpenDaylight in the SDN controller and activate the

required software modules enabling the related karaf features.

In the data plane nodes, start the Lagopus.

Expected Results: OpenDaylight software up and running in the SDN

controller node. Network topology correctly loaded in the controller and

visible on the web GUI.

2.

Description: using the REST APIs of the Path Provisioning service create

a new network path associated to tenant 1 from host A to host B.

Using Wireshark verify the exchange of OpenFlow messages from the

controller to the network nodes.

Expected Results: the Path Computation service computes a path that

includes S1, S2, S3.

The Path Provisioning service maps the path in suitable OpenFlow

commands (specific mapping of OpenFlow Actions to XPFE flow tables

still to be decided). In particular, for the host A host B direction:

- S1: PUSH_PBB + PUSH_VLAN + forwarding action

- S2: forwarding action

- S3: POP_PBB + POP_VLAN + forwarding action

and similarly for the opposite direction (push on S3 and pop on S1). PBB

and VLANs are built to refer tenant 1 as defined in the XCF format.

The associated OpenFlow FlowMod messages are correctly exchanged

between the controller and the network nodes.

The flow entries are available in the network nodes and are visible on the

controller web GUI.

Using the REST API of the Path Provisioning service, the details of the

path are correctly returned.

3.

Description: perform again step 2 for tenant 2.

Expected Results: a similar path is created for tenant 2. Traffic for the

two tenants can be exchanged between the two hosts.

4.

Description: using the REST APIs of the Path Provisioning service

terminate the first network path associated to tenant 1.

Using Wireshark verify the exchange of OpenFlow messages from the

controller to the network nodes.

Expected Results: the OpenFlow messages to remove the flow entries

associated to the path are correctly exchanged between the controller and

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 156

the network nodes.

The flow entries have been removed from the network nodes and are no

more visible on the controller web GUI.

Using the REST API of the Path Provisioning service, the path is returned

with “status = terminated”.

12.2. SDN Controller for mmWave and WiFi mesh technology

This section provides details on the configuration and monitoring of WiFi and mmWave

elements summarized in Section 9.3.2.2.

12.2.1. Topology detection

Test Card # CTTC-mmWave-F01-T001 Execution Status Planned

Test Name Topology detection

Objectives
Detection of the switches conforming the network topology together with the

different equipped interfaces

Related Use

Cases
Dense urban information society

Responsible CTTC

Related Test

Cards
N/A (not applicable)

SUT and topology

SUT
Two Backhaul nodes equipped with different wireless technologies and the

mmWave SDN controller

Test

environment

topology

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 157

OF SWITCH A OF SWITCH B

SDN CONTROLLER

External

components
Ethernet switch allowing a wired control plane.

Test description

Step # Step description and expected results Status

1.

Description: configure manually two wireless backhaul links between

two wireless backhaul nodes: one for IEEE 802.11ad (primary link) and

the other for IEEE 802.11ac (redundant link). Start OF wireless switch at

each node.

Expected Results: link connection verified by means of ping command.

2.

Description: run SDN controller and detect OF wireless switches in the

network.

Expected Results: the SDN controller reports the detection of the

wireless switches and links and their properties through OpenFlow.

MAC address and interface name must match the actual ones.

Comments: from the set of properties reported by OpenFlow message,

we are only interested in MAC addresses and interface name.

12.2.2. Interface state monitoring and reconfiguration

Test Card # CTTC-mmWave-F01-T002 Execution Status Planned

Test Name Interface state monitoring and reconfiguration

Objectives
Basic validation of a software interface based on REST to interact with

backhaul nodes.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 158

Monitoring/configuration of the state of each of the interface (ON/OFF)

present in the wireless node.

Related Use

Cases
Dense urban information society

Responsible CTTC

Related Test

Cards
CTTC-mmWave-F01-T001

Additional

Comments

The interface state (e.g., link up or down) could be monitored with the

OpenFlow Switch specification; however, OpenFlow Switch specification

does not provide the possibility to configure the interface status. Because of

this, we propose to use a REST-based interface for the configuration of the

wireless interfaces.

SUT and topology

SUT

A backhaul node equipped with different wireless technologies offering a

REST API interface for SBI monitoring/configuration and the mmWave SDN

controller.

Test

environment

topology

OF SWITCH A OF SWITCH B

SDN CONTROLLER

External

components
Ethernet switch allowing a wired control plane.

Test description

Step # Step description and expected results Status

1.

Description: configure manually two wireless interfaces at one backhaul

node, start software switch at node and run the SDN controller.

Expected Results: SDN controller detects the switch and provide

information about ON state of switch interfaces.

2. Description: the SDN controller makes GET query of the state of each

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 159

of the interfaces in the switch.

Expected Results: the query to the SBI REST API informs the SDN

controller about the ON state of the different interfaces.

3.

Description: the SDN controller makes a PUT query to switch off one of

the interfaces of the switch and a GET query to verify that this change

has been executed.

Expected Results: one interface of the switch is deactivated.

Comments: in addition to this, the SDN controller will receive a OF

message from the switch informing about the change in the state of the

interface. This event will be relevant for a subsequent test named CTTC-

mmWave-F01-T005.

12.2.3. Interface technology detection

Test Card # CTTC-mmWave-F01-T003 Execution Status Pending/Pass

Test Name Interface technology detection

Objectives

Basic validation of a software interface based on REST to interact with

backhaul nodes.

Monitoring of the wireless technologies present in the node.

Related Use

Cases
Dense urban information society.

Responsible CTTC

Related Test

Cards
CTTC-mmWave-F01-T002

Additional

Comments

Due to the current node possibilities, the technology detection is done by

querying the carrier frequency of each backhaul node interface. The carrier

frequency of IEEE 802.11ac technology can be in the 2.4/5 GHz band while

the carrier frequency of IEEE 802.11ad is in the 60GHz band (V-Band)

SUT and topology

SUT

A backhaul node equipped with different wireless technologies offering a

REST API interface for SBI monitoring/configuration and the mmWave SDN

controller

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 160

Test

environment

topology

OF SWITCH A OF SWITCH B

SDN CONTROLLER

External

components
Ethernet switch allowing a wired control plane.

Test description

Step # Step description and expected results Status

1.

Description: configure manually two wireless interfaces at one backhaul

node, start software switch at node and run the SDN controller.

Expected Results: SDN controller detects the switch and provide

information about the switch interfaces.

2.

Description: the SDN controller makes GET queries to gather the carrier

frequency of each of the interfaces in the switch.

Expected Results: query triggered from the SDN controller through

REST to gather the carrier frequency of each wireless interface, hence

discriminating the technology at each interface.

Comments: identifier assigned to the interface depending on the

technology in SDN controller DB.

12.2.4. Route establishment according to path priority

Test Card # CTTC-mmWave-F01-T004 Execution Status Planned

Test Name Route establishment according to path priority

Objectives
Establishment of a traffic connection between endpoints using prioritized

links

Related Use

Cases
Dense urban information society

Responsible CTTC

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 161

Related Test

Cards
CTTC-mmWave-F01-T003

Additional

Comments

mmWave (IEEE 802.11ad) interface/link is prioritized over Wi-Fi

interface/link (IEEE 802.11ac)

SUT and topology

SUT

Two backhaul nodes equipped with different wireless technologies offering a

REST API interface for SBI monitoring/configuration and the mmWave SDN

controller.

Test

environment

topology

OF SWITCH A OF SWITCH B

SDN CONTROLLER

ENDPOINT A ENDPOINT B

External

components
Ethernet switch allowing a wired control plane.

Two computer/VMs connected to the switches acting as traffic generators.

Test description

Step # Step description and expected results Status

1.

Description: configure manually two wireless interfaces at two different

backhaul nodes, start software switch at each node and run the SDN

controller.

Expected Results: SDN controller detects the switches and provides

information about the switch interfaces/links. It detects the technologies

present in the node by assigning the corresponding identifier in order to

prioritize traffic through mmWave (IEEE 802.11ad) link.

2.

Description: start a flow from EndpointA to EndpointB.

Expected Results: flow provisioning through the mmWave link because

this link has higher priority over the IEEE 802.11ac WiFi link.

Comments: verification of the use of mmWave through Wireshark.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 162

12.2.5. Link failure and restoration

Test Card # CTTC-mmWave-F01-T005 Execution Status Planned

Test Name Link failure and restoration.

Objectives

Establishment of a traffic connection between endpoints using prioritized

links.

Detection of link failure and restoration of connection.

Related Use

Cases
Dense urban information society.

Responsible CTTC

Related Test

Cards

CTTC-mmWave-F01-T002, CTTC-mmWave-F01-T003, CTTC-mmWave-

F01-T004

SUT and topology

SUT

Two backhaul nodes equipped with different wireless technologies offering a

REST API interface for SBI monitoring/configuration and the mmWave SDN

controller.

Test

environment

topology

OF SWITCH A OF SWITCH B

SDN CONTROLLER

ENDPOINT A ENDPOINT B

External

components
Ethernet switch allowing a wired control plane. Two VMs connected to the

switches acting as traffic generators.

Test description

Step # Step description and expected results Status

1.

Description: configure manually two wireless interfaces at two different

backhaul nodes, start software switch at each node and run the SDN

controller.

Expected Results: SDN controller detects the switches and provides

information about the switch interfaces/links. It also detects the

technologies present in the node and assigns the corresponding weights

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 163

prioritizing mmWave (IEEE 802.11ad) link.

2.

Description: start a flow from EndpointA to EndpointB.

Expected Results: the flow is provisioned through the mmWave link

because this link has higher priority over the IEEE 802.11ac link.

Comments: the verification of the use of mmWave link validated by

means of Wireshark.

3.

Description: manually switch down the mmWave interface of switch B.

We have to switch down the mmWave interface of the node acting as

station and not as the PBSS control point (PCP).

Expected Results: the SDN controller detects the link failure, the flow

interrupts and it is re-established through the IEEE 802.11ac link.

Comments: the verification of the use of IEEE 802.11ac link is done by

means of Wireshark software.

12.2.6. Failure recovery and route verification

Test Card # CTTC-mmWave-F01-T006 Execution Status Planned

Test Name Failure recovery and route verification

Objectives

Establishment of a traffic connection between endpoints using prioritized links

Detection of link failure and restoration of connection

Recovery from link failure, route verification

Related Use

Cases
Dense urban information society

Responsible CTTC

Related Test

Cards
CTTC-mmWave-F01-T005

SUT and topology

SUT

Two backhaul nodes equipped with different wireless technologies offering a

REST API interface for SBI monitoring/configuration and the mmWave SDN

controller.

Test

environment

topology

We divide the Test environment topology in two specific different variants:

a) two heterogeneous wireless backhaul interfaces

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 164

OF SWITCH A OF SWITCH B

SDN CONTROLLER

ENDPOINT A ENDPOINT B

b) three heterogeneous wireless backhaul interfaces (i.e., an

802.11ad link and two 802.11ac links)

OF SWITCH A OF SWITCH B

SDN CONTROLLER

ENDPOINT A ENDPOINT B
IEEE 802.11ac

External

components
An Ethernet switch allowing a wired control plane and two computer/VMs

connected to the switches acting as traffic generators.

Test description

Step # Step description and expected results Status

1.a

Description: in variant a), configure manually two wireless interfaces at

two different backhaul nodes, start software switch at each node and run

the SDN controller.

Expected Results: SDN controller detects the switches and provides

information about the switch interfaces/links. It also detects the

technologies present in the node and assigns the corresponding weights

prioritizing mmWave (IEEE 802.11ad) link.

1.b

Description: in variant b), configure manually two wireless interfaces at

two different backhaul nodes, start software switch at each node and run

the SDN controller.

Expected Results: SDN controller detects the switches and provides

information about the switch interfaces/links. It also detects the

technologies present in the node and assigns the corresponding weights

prioritizing mmWave (IEEE 802.11ad) link.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 165

2.

Description: start a flow from EndpointA to EndpointB.

Expected Results: the flow is established through the mmWave link

because this link has priority over the IEEE 802.11ac link/s.

Comments: the verification of the use of mmWave link is done by

means of Wireshark software.

3.

Description: manually switch down the mmWave interface of switch B.

We have to switch down the mmWave interface of the node acting as

station and not as the PBSS control point (PCP).

Expected Results: the SDN controller detects the link failure, the flow

interrupts and it is re-established through the IEEE 802.11ac link.

Comments: the verification of the use of IEEE 802.11ac is done by

means of Wireshark software.

4. a)

Description: in variant a) switch on the mmWave interface of switch B.

Expected Results: the SDN controller detects the link recovery and the

flow is re-established through the mmWave link because this link has

higher priority over the IEEE 802.11ac link.

Comments: The verification of the use of mmWave link is done by

means of Wireshark software.

4. b)

Description: in variant b) we switch down the free WiFi interface of

switch B.

Expected Results: the SDN controller detects the link failure and the

flow continues through the link established in step 3.

5. b)

Description: in variant b) we switch up the IEEE 802.11ac interface

switched off at switch B.

Expected Results: the SDN controller detects the link recovery but the

link is not re-routed through this link because this possible path presents

the same weight as the current established one.

12.2.7. Interface monitoring

Test Card # CTTC-mmWave-F02-T001 Execution Status Planned

Test Name Interface monitoring

Objectives
Get the configuration information of the interfaces of the switches in the

network topology.

Related Use

Cases
Dense urban information society.

Responsible CTTC

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 166

Related Test

Cards
N/A (not applicable).

Additional

Comments

The interface parameters information includes the interface status (ON/OFF),

transmission power, transmission rate, channel and frequency. The SDN

Controller will be able to get the values of these parameters as a whole or

each of them independently.

SUT and topology

SUT
One Backhaul node equipped with different wireless technologies and the

mmWave SDN controller

Test

environment

topology

OF SWITCH A OF SWITCH B

SDN CONTROLLER

External

components
Ethernet switch allowing a wired control plane

Test description

Step # Step description and expected results Status

1.

Description: manually configure two wireless interfaces at one backhaul

node and run the SDN controller. One interface with IEEE 802.11ac

technology and the other one with IEEE 802.11ad.

Expected Results: SDN controller detects the switch and provides

information about the ON state of the switch interfaces

2.

Description: trigger REST GET query to get the configuration

information of each of the interfaces in the switch.

Expected Results: the query to the SDN controller informs of the

interfaces configuration; all configuration values must match the

configuration set on step #1.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 167

12.2.8. Interface configuration

Test Card # CTTC-mmWave-F02-T002 Execution Status Planned

Test Name Interface configuration.

Objectives Configure the interfaces of the switches in the network topology.

Related Use

Cases
Dense urban information society.

Responsible CTTC

Related Test

Cards
CTTC-mmWave-F02-T001

SUT and topology

SUT
One backhaul node equipped with different wireless technologies and the

mmWave SDN controller.

Test

environment

topology

OF SWITCH A OF SWITCH B

SDN CONTROLLER

External

components
Ethernet switch allowing a wired control plane

Test description

Step # Step description and expected results Status

1.

Description: manually configure two wireless interfaces at one backhaul

node and run the SDN controller. One interface with IEEE 802.11ac

technology and the other one with IEEE 802.11ad.

Expected Results: SDN controller detects the switch and provides

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 168

information about ON state of switch interfaces

2.

Description: trigger REST PUT query to modify the configuration of

each of the interfaces in the switch.

Expected Results: manually check the interface configuration in the

node All configuration values must match the configuration values in the

PUT query.

Comments: None.

12.2.9. End-to-end route validation

Test Card # CTTC-mmWave-F03-T001 Execution Status Planned

Test Name End-to-end route validation.

Objectives
Traffic connection establishment between endpoints selecting one out of

several possible end-to-end paths.

Related Use

Cases
Dense urban information society.

Responsible CTTC

Related Test

Cards
N.A.

Additional

Comments

In this case, all links between adjacent nodes are IEEE 802.11ac, hence all the

possible paths have the same link weight.

SUT and topology

SUT

Four backhaul nodes equipped with several wireless interfaces offering a REST

API interface for SBI monitoring/configuration and the mmWave SDN

controller

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 169

Test

environment

topology

SDN CONTROLLER

ENDPOINT A

OF SWITCH C OF SWITCH D ENDPOINT B

OF SWITCH A OF SWITCH B

External

components
Ethernet switch allowing a wired control plane

Two computer/VMs connected to the switches acting as traffic generators

Test description

Step # Step description and expected results Status

1.

Description: configure manually two wireless interfaces at each

backhauling node to setup the network connections according to the test

environment, start software switch at each node and run the SDN

controller.

Expected Results: SDN controller detects the switches and provides

information about the switch interfaces/links. It also detects the

technologies present in the node and assigns the corresponding weights.

2.

Description: start a flow from EndpointA to EndpointB.

Expected Results: the flow is established through one of the possible

paths. In this case, the path selection is based on following a shortest

path approach in terms of number of hops. In case there are several paths

with an equivalent number of hops to reach the destination, a random

path is chosen out of those with an equivalent number of hops to reach

the destination.

12.2.10. End-to-end route validation with link priority based on technology

Test Card # CTTC-mmWave-F03-T002 Execution Status Planned

Test Name End-to-end route validation with link priority based on technology.

Objectives
Establishment of a traffic connection between endpoints selecting the path

with less accumulated weight.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 170

Related Use

Cases
Dense urban information society.

Responsible CTTC

Related Test

Cards
N.A.

Additional

Comments

In this case, there is one or several nodes interconnected with different

technologies, namely IEEE 802.11ac and IEEE 802.11ad.

SUT and topology

SUT

Four backhaul nodes equipped with several wireless interfaces offering a REST

API interface for SBI monitoring/configuration and the mmWave SDN

controller.

Test

environment

topology

SDN CONTROLLER

ENDPOINT A

OF SWITCH C OF SWITCH D ENDPOINT B

OF SWITCH A OF SWITCH B

External

components
Ethernet switch allowing a wired control plane.

Two VMs connected to the switches acting as traffic generators.

Test description

Step # Step description and expected results Status

1.

Description: configure manually the wireless interfaces at each

backhauling node to setup the network connections according to the test

environment, start software switch at each node, and run the SDN

controller.

Expected Results: SDN controller detects the switches and provides

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 171

information about the switch interfaces/links. It also detects the

technologies present in the nodes and assigns the corresponding weights

on a per technology basis.

2.

Description: start a flow from EndpointA to EndpointB.

Expected Results: the flow is established through the path with the less

accumulated weight, hence using the IEEE 802.11ad connection.

12.2.11. End-to-end route validation with link priority based on link

characteristics

Test Card # CTTC-mmWave-F03-T003 Execution Status Planned

Test Name End-to-end route validation with link priority based on link characteristics

Objectives

Establishment of a traffic connection between endpoints selecting the path

with less accumulated weight. Link weight is assigned in base on link

characteristics: transmission rate, that is, the physical link rate reported by the

hardware device.

Related Use

Cases
Dense urban information society.

Responsible CTTC

Related Test

Cards
N.A.

SUT and topology

SUT

Four backhaul nodes equipped with several wireless interfaces offering a REST

API interface for SBI monitoring/configuration and the mmWave SDN

controller

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 172

Test

environment

topology

SDN CONTROLLER

ENDPOINT A

OF SWITCH C OF SWITCH D ENDPOINT B

OF SWITCH A OF SWITCH B

External

components
Ethernet switch allowing a wired control plane and two computer/VMs

connected to the switches acting as traffic generators.

Test description

Step # Step description and expected results Status

1.

Description: configure manually the wireless interfaces at each

backhauling node to setup the network connections according to the test

environment, start software switch at each node and run the SDN

controller. In this case, nodes between adjacent nodes are configured

with different transmission rate.

Expected Results: SDN controller detects the switches and provides

information about the switch interfaces/links. It also detects the wireless

link characteristics in the nodes and assigns the corresponding weights

on a per link basis.

2.

Description: start a flow from EndpointA to EndpointB.

Expected Results: the flow is established through the path with the less

accumulated weight, hence using links with bigger transmission rate.

12.2.12. End-to-end route validation with link priority based on link

characteristic and link occupation

Test Card # CTTC-mmWave-F03-T004 Execution Status Planned

Test Name
End-to-end route validation with link priority based link characteristics and

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 173

link occupation

Objectives

Periodically monitoring of link statistics by means of OpenFlow messages to

derive a routing metric derived on the amount of bytes transmitted by a port.

Establishment of successive traffic connections between endpoints selecting

the path with less accumulated weight. Link weight is assigned in base on link

characteristics: transmission rate17 and the amount of bytes transmitted by a

port, which is obtained through OpenFlow OF_PORT_STATS message.

Related Use

Cases
Dense urban information society

Responsible CTTC

Related Test

Cards
CTTC-mmWave-F03-T003

SUT and topology

SUT

Four backhaul nodes equipped with several wireless interfaces offering a REST

API interface for SBI monitoring/configuration and the mmWave SDN

controller

Test

environment

topology

SDN CONTROLLER

ENDPOINT A

OF SWITCH C OF SWITCH D ENDPOINT B

OF SWITCH A OF SWITCH B

External

components
Ethernet switch allowing a wired control plane. Two computer/VMs

connected to the switches acting as traffic generators

17 We refer the transmission rate to the physical link rate reported by the hardware device.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 174

Test description

Step # Step description and expected results Status

1.

Description: configure manually the wireless interfaces at each

backhauling node to setup the network connections according to the test

environment, start software switch at each node and run the SDN

controller. In this case, nodes between adjacent nodes are configured

with different transmission rate to force different link weights.

Expected Results: SDN controller detects the switches and provides

information about the switch interfaces/links. It also detects the wireless

link characteristics in the nodes and assigns the corresponding weights

on a per link basis.

2.

Description: start a flow from EndpointA to EndpointB.

Expected Results: the flow is established through the path with the less

accumulated weight, hence using links with bigger transmission rate

because no other flow is in the network. In this case, the path will contain

the mmWave link.

3.

Description: check the periodical reception and update of statistics of

each port and of each switch in the network.

Expected Results: the SDN controller receives periodical OpenFlow

multipart messages from the switches reporting statistics of the port

utilization. This information is stored at the SDN controller to monitor

the utilization of the port during the periodical reporting time.

4.

Description: start another flow from EndpointA to EndpointB with

bigger required data rate than the previous flow.

Expected Results: the new flow is established through the path with the

less accumulated weight and less traffic utilization.

Comments: The path followed by new flow will try to follow a disjoint

route since the alternative path has not registered any traffic.

5.

Description: start a third flow from EndpointA to EndpointB with bigger

required data rate than the previous.

Expected Results: the new flow is established through the path with the

less accumulated weight weighted by the traffic utilization.

Comments: The path followed by the new flow will use the path found

in step #2 but using the IEEE 802.11ac link instead.

12.2.13. End-to-end route validation and link failure recovery

Test Card # CTTC-mmWave-F03-T005 Execution Status Planned

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 175

Test Name End-to-end route validation and link failure recovery

Objectives

Establishment of successive traffic connections between endpoints selecting

the path with less accumulated weight. Link weight is assigned in base on link

characteristics: transmission rate and the amount of bytes transmitted by a

port, which is obtained through OpenFlow OF_PORT_STATS message.

Storing state information of active flows in network. Route re-computation for

all traffic flows affected by a link failure.

Related Use

Cases
Dense urban information society.

Responsible CTTC

Related Test

Cards
N.A.

SUT and topology

SUT

Four backhaul nodes equipped with several wireless interfaces offering a REST

API interface for SBI monitoring/configuration and the mmWave SDN

controller

Test

environment

topology

SDN CONTROLLER

ENDPOINT A

OF SWITCH C OF SWITCH D ENDPOINT B

OF SWITCH A OF SWITCH B

External

components
Ethernet switch allowing a wired control plane.

Two computer/VMs connected to the switches acting as traffic generators.

Test description

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 176

Step # Step description and expected results Status

1.

Description: configure manually the wireless interfaces at each

backhauling node to setup the network connections according to the test

environment, start software switch at each node and run the SDN

controller. In this case, nodes can be configured with different

transmission rates.

Expected Results: SDN controller detects the switches and provides

information about the switch interfaces/links. It also detects the wireless

link characteristics in the nodes and assigns the corresponding weights

on a per link basis.

2.

Description: start a flow from EndpointA to EndpointB.

Expected Results: the flow is established through the path with the less

accumulated weight, hence using links with higher transmission rate. In

this case, the path will contain the mmWave link.

3.

Description: check the periodical reception and update of statistics of

each port and of each switch in the network.

Expected Results: the SDN controller receives periodical OpenFlow

multipart messages from the switches reporting statistics of the port

utilization. This information is stored at the SDN controller to monitor

the utilization of the port during the periodical reporting time.

4.

Description: start a new flow from EndpointA to EndpointB.

Expected Results: the new flow is established through the path with the

less accumulated weight and less traffic utilization.

5.

Description: manually switch down one of the links used by the second

defined flow.

Expected Results: the SDN controller detects the link failure, detects the

affected flow and provides a new path for this flow to re-establish the

flow.

Comments: the new path will contain the IEEE 802.11ac link of the

nodes connected by means of the mmWave link. Note that tests can be

extended for more complex topologies possible with the current

equipment configuring the data plane.

6.

Description: manually switch up the link previously switched off

Expected Results: the SDN controller detects the link failure but do not

redirect any flow because they are not affected by the link recovery.

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 177

12.3. SDN Controller for mmWave mesh technology

This section focuses on the impact the control plane has over the data plane, to infer and

retrieve the topology of the mesh network from the SDN controller with the target of

establishing the primary and fallback paths. The fact of having the fallback paths

improve the delivery of packets in case of link failure and avoid losses of traffic.

12.3.1. mmWave mesh stability

Test Card # IDCC_XCI_01 Execution Status Planned

Test Name mmWave mesh stability

Objectives

Validate the stability of the mmWave mesh network in terms of network

nodes association and connection with the network controller through in-

band signaling.

Related Use

Cases
mmWave mesh

Responsible IDCC

Related Test

Cards
IDCC_XCI_02, IDCC_XCI_03

SUT and topology

SUT Two and three XPFEs, SDN Controller

Test

environment

topology

XPFE

XPFE

XPFE

SDN Controller

SUT

SUT

SUT

Ctrl port

Ctrl port

Ctrl port

SUT

External

components
None

Test description

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 178

Step # Step description and expected results Status

1.

Description: align directional mmWave antennas.

Expected Results: mmWave mesh nodes are able to associate as mesh

neighbours.

2.

Description: creation of in-band signalling channel.

Expected Results: mmWave mesh nodes are able to connect to the

network controller.

3.

Description: creation of mmWave mesh network.

Expected Results: mmWave mesh nodes maintains the connection with

the network controller.

12.3.2. Computation and configuration of paths within mmWave mesh network

Test Card # IDCC_XCI_02 Execution Status Planned

Test Name Computation and configuration of paths within mmWave mesh network.

Objectives

Validate the capability of the network controller to retrieve the mesh network

topology, compute the primary and fallback paths, and configure the mesh

nodes.

Related Use

Cases
mmWave mesh.

Responsible IDCC

Related Test

Cards
IDCC_XCI_02, IDCC_XCI_03

SUT and topology

SUT Three XPFEs, SDN Controller

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 179

Test

environment

topology

XPFE

XPFE

XPFE

SDN Controller

SUT

SUT

SUT

Ctrl port

Ctrl port

Ctrl port

SUT

Primary path

Fall-back path

External

components
None

Test description

Step # Step description and expected results Status

1.

Description: the mmWave nodes connect to the SDN Controller.

Expected Results: the SDN Controller builds the mmWave mesh network

topology.

2.

Description: the SDN Controller computes the primary and fallback

paths.

Expected Results: the computed paths are the optimal ones.

3.

Description: the SDN Controller configures the primary and fallback

paths on the mmWave mesh nodes.

Expected Results: correct configuration of the forwarding rules on the

mmWave mesh nodes.

12.3.3. Traffic recovery upon mmWave link failure

Test Card # IDCC_XCI_03 Execution Status Planned

Test Name Connectivity recovery upon mmWave link failure.

Objectives
Validate the capability of restoring the connectivity for both control and data

planes.

Related Use

Cases
mmWave mesh.

Responsible IDCC

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 180

Related Test

Cards
IDCC_XCI_01, IDCC_XCI_02

SUT and topology

SUT Three XPFEs, SDN Controller

Test

environment

topology

XPFE

XPFE

XPFE

SDN Controller

SUT

SUT

SUT

Ctrl port

Ctrl port

Ctrl port

SUT

Primary path

Fall-back path

Aggregation
switch

Traffic source
(UE, generator,
RRU, small cell)

Traffic destination
(UE, sink,
BBU, GW)

External

components
2 nodes (physical or logical) generating/consuming test traffic.

Test description

Step # Step description and expected results Status

1.

Description: a mmWave link on the primary path fails.

Expected Results: XPFEs autonomously restore the connectivity on the

fallback path.

2.

Description: the SDN Controller reacts to the failure and re-computes and

re-configures the primary and fallback paths.

Expected Results: the computed paths are the optimal ones.

12.3.4. Control plane impact on mmWave mesh network

Test Card # IDCC_XCI_04 Execution Status Planned

Test Name Control plane impact on mmWave mesh network.

Objectives
Assess the impact of the control plane on the data plane in terms of

throughput, latency, jitter, packet loss.

Related Use

Cases
mmWave mesh.

Responsible IDCC

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 181

Related Test

Cards
IDCC_XCI_03

SUT and topology

SUT Three XPFEs, SDN Controller.

Test

environment

topology

XPFE

XPFE

XPFE

SDN Controller

SUT

SUT

SUT

Ctrl port

Ctrl port

Ctrl port

SUT

Primary path

Fall-back path

Aggregation
switch

Traffic source
(UE, generator,
RRU, small cell)

Traffic destination
(UE, sink,
BBU, GW)

External

components
2 nodes (physical or logical) generating/consuming test traffic

Test description

Step # Step description and expected results Status

1.

Description: the SDN Controller continuously reconfigure the mesh

network (e.g., moving one traffic flow from the primary path to the

secondary path and vice versa) considering different traffic profiles and

loads

Expected Results: the data plane will be temporarily affected by this

reconfiguration in terms of latency, jitter, and throughput

12.4. ABNO-based hierarchical SDN Controller

These tests are oriented to retrieve the multi-domain network topology from the

underlying ABNO-based hierarchical SDN controller and validate the correctness of

that retrieved topology, as covered in Section 9.3.2.4. This topology is used to compute

the available paths and allocate the required resources. The parent SDN controller offers

connectivity and connexion control services. This SDN controller exports web socket

notifications that can be consumed by client applications.

12.4.1. Topology recovery

Test Card 1 CTTC-ABNO-T001 Execution Status Planned

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 182

Test Name Topology recovery

Objectives

To be able to retrieve the multi-domain network topology from the underlying

SDN controller(s), using a YANG-based API such as COP topology service.

Validate that the topology is correct, it includes the Service End Points and it

can be used for path computation and resource reservation processes.

Related Use

Cases
All use cases defined in D1.1 [3].

Responsible CTTC

Related Test

Cards
N/A (not applicable)

Additional

Comments

This test involves a client that requests the topology from the parent SDN

controller.

SUT and topology

SUT

Parent SDN controller.

All applications to be interconnected in a management network (IP

reachability).

Test

environment

topology

External

components

Basic management network IP reachability between functional entities.

An (emulated or real) network topology retrieved by the parent SDN

controller from the underlying SDN controller(s), and exported to client.

Test description

Step # Step description and expected results Status

1. Description: configure a transport network topology in one or multiple

domains, with one SDN controller or multiple ones allocated in a

Chi ld SDN

control ler #1

Chi ld SDN

control ler #2

Parent SDN

control ler
Cl ient

Topology request

Topology request

Topology

Topology

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 183

hierarchy.

Expected Results: it should be possible to consume parent SDN

controller COP topology service and retrieve topological information

2.

Description: Execute client request for the topology using the COP

protocol.

Expected Results: the client receives a multi-domain topology that is

compliant with the expected one.

12.4.2. Connectivity Service provisioning across Multi-domain networks

Test Card 2 CTTC-ABNO-T002 Execution Status Planned

Test Name Connectivity Service provisioning across Multi- domain networks

Objectives

The parent SDN controller can provide connectivity services using a YANG

based APIS such as COP call and connection control services. The multi-

domain path is computed and the single-domain connectivity services are

requested to underlying SDN controller(s).

Related Use

Cases
All use cases defined in D1.1 [3].

Responsible CTTC

Related Test

Cards
N/A (not applicable)

Additional

Comments

This test involves a client that requests connectivity services across the multi-

domain topology.

SUT and topology

SUT

Client and parent SDN controller.

Both applications to be interconnected in a management network (IP

reachability).

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 184

Test

environment

topology

External

components

Control plane infrastructure to enable reachability between functional entities.

An (emulated or real) multi-domain network topology retrieved by the client.

Test description

Step # Step description and expected results Status

1.

Description: configure a multi-domain transport network topology, with

one parent SDN controller and underlying SDN controller(s) allocated in

a hierarchy.

Expected Results: Parent SDN controller normal operation.

2.

Description: Execute client application and provide the IP address and

port of the services exported by the parent SDN controller.

Trigger an event that results in the provisioning of a connectivity service,

between provided end-points.

Expected Results: a connectivity service established in each of the

necessary underlying network domains.

Comments: this test is basic for connectivity provisioning.

12.4.3. Functional assessment of the SDN notifications

Test Card 3 CTTC-ABNO-T003 Execution Status Planned

Test Name Functional assessment of the SDN notifications.

Objectives
The parent SDN controller exports a notification web socket that can be

consumed by client applications to receive asynchronous notifications.

Related Use

Cases
All use cases defined in D1.1 [3].

Responsible CTTC

Chi ld SDN

control ler #1

Chi ld SDN

control ler #2

Parent SDN

control ler
Cl ient

Connectivity Service
request

Connectivity Service requests

Connectivity Service

Connectivity Service

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 185

Related Test

Cards
N/A (not applicable)

Additional

Comments

This test involves a notification protocol between a client and the parent SDN

controller.

SUT and topology

SUT

Client, parent SDN controller and underlying SDN controller(s).

Functional components to be interconnected in a LAN network (IP

reachability).

Test

environment

topology

External

components

Basic control plane infrastructure to enable IP reachability between functional

entities.

An (emulated or real) network topology.

Test description

Step # Step description and expected results Status

1.

Description: configure a transport network topology in one or multiple

domains, with one SDN controller or multiple ones allocated in a

hierarchy.

2.

Description: execute parent SDN controller and connect it to underlying

SDN controller(s) web socket notifications.

Expected Results: Web sockets established.

3.

Description: use a client application that consumes the parent SDN

controller web socket for notifications.

Expected Results: if a notification is received in the parent SDN

controller, it is retransmitted to the client.

Chi ld SDN

control ler #1

Chi ld SDN

control ler #2

Parent SDN

control ler
Cl ient

Notification
Notification

Websocket

D3.1: XFE/XCI design at year 1, specification
of southbound and northbound interface.

H2020-671598 186

 Bibliography

[1] 5G-Crosshaul, Deliverable 2.1, Detailed analysis of the technologies to be integrated in the

XFE based on previous internal reports from WP2 and WP3.

[2] 5G-Crosshaul, Deliverable 4.1, Initial design of the 5G-Crosshaul applications and

algorithms.

[3] 5G-Crosshaul, Deliverable 1.1, Initial specification of the system architecture accounting

for feedback received from WP2/WP3/WP4.

[4] ETSI, "Network Functions Virtualisation (NFV); Virtual Network Functions Architecture,"

December 2014. [Online]. Available: http://www.etsi.org/deliver/etsi_gs/NFV-

SWA/001_099/001/01.01.01_60/gs_nfv-swa001v010101p.pdf.

[5] IETF Abstraction and Control of Transport Networks BoF.

https://sites.google.com/site/actnbof/.

[6] Open Baton [Online]. Available at http://openbaton.github.io.

[7] OpenStack. Available: [Online] http://www.openstack.org.

[8] OpenDaylight [Online]. Available: http://www.opendaylight.org.

[9] Ryu controller [Online]. Available at https://osrg.github.io/ryu/.

[10] ONOS [Online]. Available: http://onosproject.org.

[11] A. Vishwanath, K. Hinton, R. Ayre, R. Tucker, “Modeling Energy consumption in High-

Capacity Routers and Switches,” IEEE Journal  on Selected Areas in Communications,

vol. 32, no. 8, 2014.

[12] P. Congdon, P. Mohapatra, M. Farrens, V. Akella, “Simultaneously Reducing Latency and

Power Consumption in OpenFlow Switches,” IEEE/ACM Transactions on Networking,

vol. 22, no. 3, 2014.

[13] Cisco Catalyst 3750 Series Switches Data Sheet,

http://www.cisco.com/c/en/us/products/collateral/switches/catalyst- 3750- series-

switches/product data sheet0900aecd80371991.html.

[14] Optical Transport Protocol Extensions, Open Networking Foundation v1.0, ONF TS-022,

March 2015.

[15] WebSocket protocol. https://tools.ietf.org/html/rfc6455 .

[16] RESTCONF protocol. https://tools.ietf.org/html/draft-ietf-netconf-restconf-12.

[17] OpenStack Ceilometer [Online]. Available at

http://docs.openstack.org/developer/ceilometer/.

[18] 5G-Crosshaul, Deliverable 5.1, Testbed Setup and the integration and experimentation

validation plan.

[19] M. Chandramouli, B. Claise, B. Schoening, J. Quittek, T. Dietz, “Monitoring and Control

MIB for Power and Energy”, IETF RFC 7460, March 2015

[20] ETSI NFV Use Cases [Online]. Available at:.

http://www.etsi.org/deliver/etsi_gs/nfv/001_099/.../gs_nfv001v010101p.pdf.
[21] OpenFlow Switch Specification, Open Networking Foundation v1.5.1, ONF TS-025,

March 2015.

[22] Open Transport ONF. https://www.opennetworking.org.

[23] IETF Teas Working Group. https://datatracker.ietf.org/wg/teas/charter/.

http://www.etsi.org/deliver/etsi_gs/NFV-SWA/001_099/001/01.01.01_60/gs_nfv-swa001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-SWA/001_099/001/01.01.01_60/gs_nfv-swa001v010101p.pdf
http://openbaton.github.io/
http://www.openstack.org/
http://www.opendaylight.org/
https://osrg.github.io/ryu/
http://onosproject.org/
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/draft-ietf-netconf-restconf-12
http://www.etsi.org/deliver/etsi_gs/nfv/001_099/.../gs_nfv001v010101p.pdf
https://datatracker.ietf.org/wg/teas/charter/

