Telefonica

Microwave POC overview and demo

Luis M. Contreras

Leganés, October 19th, 2016

Workshop on OpenDayLight and NFV/SDN Orchestration

Telefónica 19.10.2016

Index

- Motivation and Strategy
- SDN for MW Proofs of Concept
- ONF Information Model
- Demo
- Conclusions and next steps

Motivation, Framework and Opportunities for applying SDN for MW

- Motivation
 - <u>Road to simplification</u>: No common way of controlling and managing Wireless Transport Networks (e.g. Microwaves)
 - <u>Road to automation</u>: No advanced control plane features for rich functionalities nor multilayer coordination (SDN as an enabler)
- Framework
 - Work to define a (unified and standard) control plane for Microwave systems
 - Multi-vendor interworking, multi-layer control, network-wide coordination
- Foreseen Opportunities
 - ✓ Common operation of multi-vendor environments
 - ✓ Innovative Ecosystem for deployment of advanced applications
 - ✓ Multi-technology / Multi-layer coordination
 - Optimal control of the networks, e.g., adaptation of the MW resources to the real traffic demand

The fundamental change of SDN for MW

- Network programmability as the capability of installing and removing network behavior, in real time
 - This is not just to populate software line code to simple switches or offering APIs
 - End-to-end network abstraction is required for true technology and vendor integration
- Network services to be realized by programming instead of re-architecting the network
 - Managing the network in an integrated/coordinated way, not as a collection of individual boxes/layers
 - Stress on service modeling and Information modeling, lately propagated through standard interfaces (Netfconf, Yang, OpenFlow)
- SDN brings MW logic out of the box

The fundamental change of SDN for MW **Proprietary Firmware OPEN** Software One model for all OB's Vendor Vendor Fully disclosed to public B Α Applications can be Vendor provided by any SW-vendor С Processing anywhere (centrally or in-the-box) **Proprietary OSS**

- Proprietary services
- Processing only in the NE

- Provisioning anywhere

Short model description

• The ONF-model handles radio interface and traffic allocation

Jelefúnica

Telefonica Strategy

Current Implementation process Northbound OSS-system SNMP-Plugins

- Every new MW-type requires a new implementation (software plugin) in the OSSsystem
 - Invest for each new type
 - Implementation time

- ONE Netconf-Southbound-Interface for all standard MWfunctions
- Special functions with small SNMP-plugins

MW-vendors compliant with ONF-Model

- ONF-Model is connected to a SDN controller with Northbound Interface
- Same provisioning of all standard functions independent from Vendor, Frequency band and product
- Only special functions via SNMP plugins to Northbound

Mid-term target - Mobile Backhaul

- Separate, independent layers do not allow overall optimization
 - Multilayer approach for performing combined optimization
- Separated domains complicate the service provisioning and network adaptation
 - Interconnection of controllers for e2e optimization
- Separated control and management mechanisms require multiple interventions
 - Standard interfaces simplify heterogeneous device management

SDN control will allow the orchestration of the network resources

Ieletínica

E2E SDN Orchestration

- Network and Systems decoupling
- Multivendor systems interoperability
- Network domains (MW, Metro-IP) combining network elements from different vendors

What is needed?

- Common SBI per technology for MW, Metro/MBH and IP. Mediation layer
- Common SDN controller per technology. Mediation layer in first deployments while a common SBI is defined.
- Standard NBI between towards current systems and controllers

SDN for MW -Proofs of Concept

History of the PoCs

- First PoC held on October 2015, Madrid, organized by Telefonica
 - \circ $\,$ Focus on validating the concept of SDN for MW $\,$
 - Usage of OpenFlow and ONOS
- Second PoC held on April 2016, Munich, organized by Telefonica
 - Focus on validating Information Model suitability and Operational use cases
 - Usage of Netconf and OpenDayLight
- Third PoC to be hold on October 2016, US, organized by AT&T
 - Focus on completing the full implementation of the Information Model
- Fourth PoC foreseen for Q2 2017, organization and scope to be defined

First PoC Use Cases

Capacity driven air interface

- ✓ It shows how the SDN controller optimizes the total power consumption in a wireless transport network
- The controller disables underlying physical ports of wireless L1
 LAG links when the utilization is below certain thresholds
 - The controller MUTE or UNMUTE physical ports (OFPWTIPPT_TX_MUTE)
- Flow basing shaping
 - Control of both wireless transport and switching equipment from the same SDN controller
 - The controller enables/disables policer on the router according to the observed wireless link capacity and some defined thresholds (OFPWTIPPT_TX_CURRENT_CAPACITY)

First PoC High Level Setup

First PoC Low Level Setup

WE CHOOSE IT ALL

16

Topology representation

Traffic shaping

Inventory of Devices in the Controller

80	0 c	NOS - Mozilla Firefox								
sm	WEB	LCT - Login to 1 🗙 🛛 👼 WEB	LCT - Login to 1 🗙 🜙 ON	105 ×	🚇 Problem loading page 🗙 🕂 🕂					
(+)	192	2.168.0.100:8181/onos/ui/index.	.html#/device			▼ C Q Search]	☆ 自 ♣	^ 9	∍ ≡
🛅 Mo	st Vis	ited 👻 🗌 Getting Started 📋	ONOS Login							
	-	2 Open Network Oper	rating System						lo	gout
De	evi	ces (12 total)					3			Ø
		Device ID	Master Instance	Ports	Vendor	H/W Version	S/W Version	Protocol		
~	B	of14:000000000a010ca0	192.168.0.100	12	Huawei Technologies Co., Ltd	Open vSwitch	2.1.4	OF_14		Â
~	B	of14:000000000a010ca2	192.168.0.100	12	Huawei Technologies Co., Ltd	Open vSwitch	2.1.4	OF_14		
1	B	of:000000000000041	192.168.0.100	14	NEC Corporation	IPASOLINK VR	Ver. V0.0.0.0	OF_13		
~	B	of:00000000000042	192.168.0.100	14	NEC Corporation	IPASOLINK VR	Ver. V0.0.0.0	OF_13		
~	B	of:000000000000051	192.168.0.100	7	SIAE Microelettronica	ALCplus2e IDU	N50010 01.07.06	OF_13		
1	8	of:00000000000052	192.168.0.100	7	SIAE Microelettronica	ALCplus2e IDU	N50010 01.07.06	OF_13		
V	B	of:0000000a25859353	192.168.0.100	5	Ceragon-Networks	OpenFlow 1.3 Reference Userspace Switch	Oct 9 2015 09:19:14	OF_13		
~	B	of:000000a2586988f	192.168.0.100	5	Ceragon-Networks	OpenFlow 1.3 Reference Userspace Switch	Oct 9 2015 09:19:14	OF_13		
~	B	of:0000044e0623b228	192.168.0.100	7	Ericsson	MINI-LINK Traffic Node AMM 2p B R1E/A	CXP9010021_3 MINI-LINK_TN_5.3FP.1_LH_1. 5FP.1_R30E07	OF_13		
1	B	of:0000044e0623b40e	192.168.0.100	7	Ericsson	MINI-LINK Traffic Node AMM 2p B R1C	CXP9010021_3 MINI-LINK_TN_5.3FP.1_LH_1. 5FP.1_R30E07	OF_13		
~	B	of:00fa4e7872d16108	192.168.0.100	26	Coriant	8615	dev	OF_13		
1	B	of:00fac2758dd8859e	192.168.0.100	26	Coriant	8615	dev	OF_13		

First PoC team

<u>Vendors</u>

CERAGON

Coriant₃

NEC

siae microelettronica

Standardization

WE CHOOSE IT ALL_

Organization and support

Universidad Carlos III de Madrid

First PoC outcomes

About

Certification

Technical Communities

New

Press Releases

Open Networking Foundation Completes Industry's First Wireless Transport SDN Proof of Concept

Member Companies Test Open SDN PoC Developed by ONF-sponsored OpenSourceSDN.org Community

SDN AND OPENFLOW WORLD CONGRESS, Düsseldorf, Germany, October 13, 2015 - The Open Networking Foundation (ONF), a non-profit organization dedicated to accelerating the adoption of open Software-Defined Networking (SDN), has completed the industry's first multi-vendor Wireless Transport SDN Proof of Concept (PoC). Furthering ONF's goal of promoting greater commercial adoption of SDN, the PoC was designed to encourage the development, testing, and implementation of open SDN for Wireless Transport and to demonstrate multi-layer optimization on an open SDN infrastructure. This PoC originated in ONF's Open Transport Working Group and evolved from a specification into an open source software project in the OpenSourceSDN.org community that ONF sponsors and that is open to the public.

ONF member companies Ceragon Networks, Coriant, Ericsson, Huawei, NEC and SM Optics (SIAE MICROELETTRONICA group)participated in the PoC testing, held October 7-9, 2015 in Madrid. Participating member companies provided the networking equipment and software consistent with the SDN architecture and leveraged the Open Network Operating System (ONOS) open source SDN controller. Testing was hosted by Telefónica and IMDEA Networks Institute, with support from Universidad Carlos III de Madrid.

ONF Press release

https://www.opennetworking.org/news-and-events/pressreleases/2572-open-networking-foundation-completesindustry-s-first-wireless-transport-sdn-proof-of-concept

PoC Video https://youtu.be/1Y3MeGLANJ4

Wireless Transport SDN Proof of Concept White Paper

V1.0 2015-10-09

Ex	ecutive summary	4
1	Introduction	4
2	Test overview	5
3	Test case 1 – Capacity-Driven Air Interface	7
	3.1 Test Case Description	7
	3.2 Test Configuration	7
4	Test case 2 – Flow-Based Shaping	8
	4.1 Test Case Description	8
	4.2 Test Configuration	9
5	Test Results	9
	5.1 General Test Result	9
	5.2 Testing of Capacity-Driven Air Interface	9
	5.3 Testing of Flow-Based Shaping	
6	Conclusions	10

Wireless Transport SDN PoC White Paper

https://www.opennetworking.org/images/stories/downloa ds/sdn-resources/whitepapers/ONF_Microwave_SDN_PoC_White_Paper%20v1.0.pdf

ONOS Applications

From First PoC to Second PoC

- Extending the MW information model to cover a broader set of attributes (e.g. configuration, events, performance information)
- Aligning the microwave model with the ONF core information model
- Moving the focus from OpenFlow to Netconf/YANG, which is much better in handling information models
- Moving from ONOS to **OpenDaylight**, since we needed **to develop a flexible and open MW NBI**
- Focusing on **re-usable applications**
- Upstream all code and applications to be used by the community

Second PoC Use Cases

- Detection and configuration of new microwave devices
 - Automated detection of NEs, making them available for configuration
- Detection of aberrances
 - Comparing the actual network configuration with external reference data, informing about aberrances and offer correction
- Detection and Visualization of the configured microwave network
 - Graphical overview about the momentarily <u>configured</u> network (= time variant in SDN managed network)
- Detection and Visualization of the currently effective network
 - Graphical overview about the momentarily <u>actually effective</u> network, highlighting deviations from the configured network
- Receiving and displaying of alarm information
 - Listing of events

Network Topology for the Second PoC

Network Architecture for the Second PoC

Second PoC Participants

Telefonica AT&T Operators, who provided content Deutsche and organizational support: - Telefónica, – AT&T Microwave vendors: CERAGON Ceragon **ERICSSON** Fricsson HUAWEI Huawei NEC - NEC 5 ME - SIAE Integrators and Application siae microelettronica • highstreet Providers: technologies - Highstreet Technologies, Network solutions – Wipro, Tech Mahindra WIPRO - HCL Tech Mahindra **Other Participants:** - Viavi, ZTE, Deutsche Telekom ZTE Telefonica 26

Second PoC outcomes

• Report describing the PoC developments

 <u>https://www.opennetworking.org/images/st</u> <u>ories/downloads/sdn-resources/technical-</u> <u>reports/Wireless_Transport_SDN_PoC_Whit</u> <u>e_Paper.pdf</u>

• Demonstration environment available

- Opportunity to access the information model developments at this stage
- It can be exploited positively by operators and developers to assess the viability of the model
- <u>http://highstreet-</u>
 <u>tech.ddns.net:8181/index.html</u>
- Contribution of the already developed artifacts to OpenDaylight

• APPLICATION #1: Usage of Opendaylight interface to Get node and interface parameters and check respect to planning:

	WTN Compare					
OMWTN Config	Network: ONF-MWTN-PoC-02					
% Topology	> Required network elements					
1 Yang Ul	> Unknown network elements					
Nang Visualizer	> Network element: "Ceragon-11"		Required value	T	Actual value	Unit
WWWTW Topology	> Network element: "Ceragon-12"	airInterfaceName	airInterface.1		airInterface.1	
MWTN Events	> Network element: "Ericsson-21"	radioSignalId	71		71	
	> Network element: "Ericsson-22"	txFrequency	22307000		22307000	kHz
	> Network element: "Huawei-41"	rxFrequency	23315000		23315000	kHz
	> Network element: "Huawei-42"	txChannelBandwidth	56000		56000	kHz
	> Network element: "NEC-51"	rxChannelBandwidth	56000		56000	kHz
	> Network element: "NEC-52"	powerlsOn	true		true	
	> Network element: "SIAE-71"	transmitterlsOn	true		true	
		txPower	23		23	dBm
	> Network element: "SIAE-72"	adaptiveModulation IsOn	true		true	
		modulationMin	4		4	symbols
	PLANNED	modulationMax	256		256	symbols
		xpiclsOn	false		false	
WE CHOOSE IT A	ALL_	28				elefonica

• APPLICATION #2: Usage of Opendaylight interface to Configure interface and node parameters

	MWTN Config					
MWTN Config	NetworkElement	TerminationPoint	LayerProtocol	MW_AI_Config	MW_Structure_Pac	MW_Container_Pac
% Topology	MW_AirInterface_Pac					
📥 Nodes						A 1997 March 1997
1 Yang Ul						
 Yang Visualizer 						
Some MWTN Compare				Ceragon-11		
WWTN Topology				LP-MWPS-TTP-26845		
Sector MWTN Events				Radio: Slot 2 Port 2		Ē
				12		
				15090000		
				14780000		
				56000		
				56000		
			powerlsOn:	o true ⊙ false		
			transmitterisOn:	o true ⊙ false		*
				20		
			adaptiveModulationIsOn:	o true		Telefonica

• APPLICATION #3: Usage of Opendaylight interface to see deployed topology:

• APPLICATION #4: APP developed to get notificatios/alarms from the network elements:

Microwave Transport Notifications

Websocket api : ws://192.168.1.18:8085/websocket

Object Creation

Object Deletion
Attribute Value Changed

 SI No:
 Notifications

 1
 You are connected to the Opendaylight Websocket server and scopes are : {"data":"scopes"; "scopes": ["ObjectCreationNotification","ObjectDeletionNotification","AttributeValueChangedNotification","ProblemNotification"]}

1

Problem Notification

A new line will raise in case

Subscribe

• APPLICATION #5: APP developed to represent graphically the topology and the connectivity among nodes:

Third PoC

• Third Proof Of Concept (PoC) starting October 24th

- Organized by AT&T and hosted in the "Winlab" (Rutgers University) in New Jersey.
- Scope of the PoC:
 - Extend the standardized µWave/mmWave model in a multivendor microwave network from the so-called "Priority 1" attributes to be inclusive of Priority 2 and Priority 3 attributes as well
 - Re-execute the use cases herein carried forward from the 2nd PoC with the Priority 1/2/3 model
 - Verify/validate the extensibility of the Priority 1/2/3 model to mmWave equipment (both indoor and outdoor)
- Participants: AT&T, Telefonica, DT, Ceragon, Ericsson, Fujitsu, NEC, Nokia, SIAE, ZTE, Highstreet Technologies, Brocade, FRINX, Wipro,

WE CHOOSE IT ALL_

34

Set-Up Details • NEC LINK: Mw link Optical Optical Single Link Vendor Y 1G (SFP) ETH link 70GHz or 80GHz 1G (SFP) ERICSSON LINK: Single Link 2+0 RLB 1G 1G 1G 23GHz or 10G 80GHz **CERAGON LINK:** ٠ CERAC endor Y 1G 1G 15GHz NOKIA LINK: • 2+0 LAG, ~630Mbs of capacity 6Ghz Vendor X Vendor Y 1G 5.8Ghz 1G SIAE LINK: • Single Link Vendor X Vendor Y 1G 1G 80GHz ZTE LINK: • Single Link Vendor Y endor X 1G 1G 11GHz

35

WE CHOOSE IT ALL_

11GHz **Telefonica**

Software Architecture

https://github.com/OpenNetworkingFoundation/CENTENNIAL/tree/master/03-WTP-PoC/code

Third PoC Use Cases

- Same use cases presented to second PoC
 - $\circ~$ Detection and configuration of new microwave devices
 - Semi-automated configuring of microwave devices according to reference data
 - Detection and Visualization of the configured microwave network
 - Detection and Visualization of the currently effective network
 - Receiving, displaying and storing of alarm information
- New use cases:
 - Test automation -> automatic NetConf test of the model
 - Spectrum management
 - Closed loop automation (including performance management)
 - Event Management (improvement of the second PoC)

Log

HEAVLIGHT	wT	N L	.og				
S Topology	12	~	Timestamp + ·	Туре ⊻	Component ~	Message	=
A Notes							
1 Yang Ul	2	0	2016-10-19T09:32:38.759Z	into	mwtnTestCtrl	mwtnTestCtrl started	
👁 Yang Visualizer	12	0	2016-10-19T09:32:38.758Z	info	SmwtnTest	SmwtnTest started!	
🗲 MWTN Connect	1	0	2016-10-19T09:32:30.534Z	info	unknown	mwtnClosedLoopCtrl started!	
Q∄ J//WEN Config	2	0	2016-10-19T09:31:00:853Z	into	mwtnSpectrumCtrl	mwtnSpectrumCtrl started	
S MWTN Compare	2	0	2016-10-19T09:29:50.986Z	info	mwtnConfigCtrl	mwtnConfigCtrl started	
WMWTN Topology	2	0	2016-10-19T09:27:39.821Z	info	mwtnConfigCtrl	mwtnConfigCtrl started	
ad MWTN Spectrum	1	0	2016-10-19T09.27.39.819Z	info	SmwtnConfig	SmwtnConfig started	
O MWIN Closed Loop Automation	2	0	2016-10-19T08:49:32.618Z	info	mwinConnectCtrl	mwtnConnectCtrl startedt	
4 MWTN Events	1	0	2016-10-19T08 49:32 612Z	info	SmwtnConnect	SmwtnConnect started!	
B MWIN Test	1	0	2016-10-19T07:38:28.692Z	info	SmwinCommons	Mounting Point deleted. Simulator-99	
I≣ MWTN Log	1	0	2016-10-19T07:38:21.505Z	info	mwtnConnectCtrl	mwtnConnectCtrl starled	
🗣 Chail	×.	0	2016-10-19T06:39:02.257Z	info	mwthTestCtrl	mwtnTestCtrl started!	
	1	0	2016-10-19T06:38:42.622Z	info	SmwtnCommons	Mounting Point deleted. Simulator-99	
	2	0	2016-10-19T06:38:32.721Z	Info	mwtnConnectCtrl	mwtnConnectCtrl started1	
	\sim	0	2016-10-19T06:38:32.720Z	info	SmwtnConnect	SmwtnConnect started!	
	1	0	2016-10-19T05-38:26.027Z	info	mwtnTestCtr1	mwtnTestCtrl startedl	
	1	0	2016-10-19T06:38:26.026Z	info	SmwtnTest	SmwtnTest started!	
	2	0	2016-10-19T06:34:18:094Z	into	mwtnTestCtrl	mwtnTestCtrl startedl	
	2	0	2016-10-19T06:34:08,829Z	into	SmwtnCommons	Mounting Point deleted. Simulator-99	
	1	0	2016-10-19T06:33:40.222Z	info	mwtnConnectCtrl	mwtnConnectCtrl started/	
		0	2016-10-19T05-33:34.796Z	Info	mwtnTestCtrl	mwtnTestCtrl started!	
	Tota	il Iter	ms: 41				
							* Clear log C Refresh
	Buik	d: 20	16-10-18 20:14 UTC				

Spectrum Management

ualizer:											
onnect					🔺 IN	TERFERENCE A	LARMIII				
tonity											
lompare											
olagolik.											
spectrum		Clear									
Insed Loop Automation											C Refresh
ents.	All fr	equenc	es în kHz								
est	1	Id ~	Name	 Connection status 	Airinterface name	Radio signal id~	TX (plan) 🔍	TX (actual) ~	RX (plan) ~	RX (actual)	=
93-								Ռո			
	1	99	Simulator-99	.al connected	AirInterface#1	98	14800000	0 ?	14800000	7	<u>}.</u>
	1	99	Simulator-99	.al connected	Airinterface#2	99	-1	15000000	-1	-1	
	10	11	Ceragon-11	disconnected	AirInterface#1	11	14800000	?	14800000	7	6 I.
	4	12	Ceragon-12	disconnected	Airinterface#1	11	14800000	?	14800000	3	
	\sim	31	Fujitsu-31	disconnected	AirInterface#1	31	14800000	?	14800000	3	
	1	32	Fujitsu-32	disconnected	AirInterface#1	31	14800000	?	14800000	2	
	\sim	31	Fujitsu-31	disconnected	Airinterface#2	32	-1	?	-1	2	
	×.	32	Fujitsu-32	disconnected	AirInterface#2	32	-1	?	-1	2	
	2	51	NEC-51	disconnected	Airinterface#1	51	14800000	?	14800000	7	
	1	52	NEC-52	disconnected	AirInterface#1	51	14800000	?	14800000	7	e
	14	61	Nokia-61	disconnected	AirInterface#1	61	14800000	?	14800000	3	
	\sim	62	Nokia-52	disconnected	AirInterface#1	61	14800000	?	14800000	3	
	2	61	Nokia-61	disconnected	AirInterface#2	62	-1	?	-1	2	
	1	62	Nokia-62	disconnected	Airinterface#2	62	-1	?	-1	3	
	1	71	SIAE-71	disconnected	AirInterface#1	71	14800000	?	14800000	7	

Configuration

PPEN Config					
Configuration					Collapse all
A. Notes NetworkElement Layer Kong Mixualizer Layer protocol	Simulator-99 Microwave Physical Section (M LP-MWPS-ifIndex1	WPS)			
og MVTN Control Air interface name	AirInterface#1234	Radio signal identifier	ارد ا		
Transmit frequency	14800000 KH	z Receive frequency	14800000	kHz	
Like stWTM Bpecfrum txChannelBandwidth	28000000 KH	z rxChannelBandwidth	28000000	кнz	
O behr/M Christian Automation - polarization	horizontal	* powerisOn	×		-
SF 45W(N) Test		transmitterisOn			
Chail receiver(sOn	2	txPower	10	dBm	
encryptionIsOn	m	cryptographicKey			
adaptiveModulationIsOn		modulationMin	-1	symbols	
modulationMax	1 sy	mbols xpiclsOn	8		
alicista	13	mimolsOn 📑			
atpcThreshUpper		m atpcThreshLower	99	dBm	
autoFreqSelectisOn	0	autoFreqSelectRange	-1	channels	
modulationIsOn	2	loopBackisOn	z		
maintenanceTimer	s				
			Арріу	Close	•

Information Model

Information model is the key for the work being done:

- It is operator-driven
- It incorporates inputs from all key MW vendors
- It provides the ability to read/configure attributes and alarms/PMs handling
- It includes around 350 MW attributes
- A subset of 64 priority 1 attributes was covered by 2nd MW PoC
- The complete model is intended to be tested in 3rd PoC

ONF vs IETF

- ONF is working on SDN for MW since 2013
 - PoCs done, SW developed, Info Model defined
 - Mature work, real MW community, all Telefonica vendors represented
- Very recently (March 2016) some vendors have presented an alternative model in IETF
 - No real MW community in IETF
 - o Set-up of a Design Team for start drafting the model
 - Telefonica participating to avoid standards fragmentation (problem statement and gap analysis)
- Next actions:
 - \circ $\,$ Foster the public release of the ONF model
 - Ensure alignment in IETF and ONF (avoiding overlaps and contradictions)

A key concept introduced in the 2nd PoC were the mediators which translate the Netconf/YANG MW information model to vendor specific configuration and vice-versa

- This enabled working group to save time in development and debugging phase
- This enabled to share code between vendors (all mediators share the same NBI)

Migration Path and Legacy Networks

- Using the mediator concept operators will be able to deploy
 SDN apps in existing networks by running multiple mediators
 in the cloud to interact with existing MW NEs
- This facilitates to integrate legacy network elements in a smooth way, making the network *SDN-ready* from day 0
 - *investment protection, key for operators*
- Simple monitoring applications would smoothen transmission from trials to live network operation

The information model is incorporated into ODL via YANG model plugins

- In order to support event we extended the ODL source code (to be upstreamed to the ODL)
- A testing framework has also been developed which can be used for ODL continues integration
- Anyone is now able to download ODL, install the MW plugins and run MW apps

The Applications are addressed via Restconf APIs

- API directly derived from the YANG models read from the devices
- Applications from 4 different contributors managed hardware from 5 different vendors
- Applications will be made available on a demo platform (with Default Value Mediators beneath)

The mediators developed contain a pure SW implementation enabling the simulation of a MW network without the actual physical equipment

 Telefonica plans on maintaining a server running the ODL and MW apps leveraging the simulated mediator for future development

Future Steps

- Execution of the 3rd PoC for validation of the full WT information model (~300 attributes)
- Experimenting with the test environment available
- Formalizing the WT information model as an ONF TR document
- Hardening the SDN applications presented
- Contributing code artefacts to ODL
- Preparing for the next PoC in Q2 2017
- Engage other operators to join this effort, ensuring that the Information Model addresses operator's needs
 - Recent release of Telefónica RFQ for MW equipment already asking for support of the ONF model

Public website to track progress http://www.openmicrowave.com/

- Public repository collecting all the progress about SDN for MW (Information Model, use cases, applications, etc)
- Work for the 3rd PoC will be posted here

openMicrow Accessing Microwave via Open Interface	nMicrowave Domain ing Microwave Domain en Interface	openMicrowave	
Vision			
Activities			
Ecosystem			
Infrastructure and Bi	rain		
Next Steps		Vision	
Activities	~		
Contributions	~	This website is addressing microwave and SDN experts at operators,	
Visitors		software providers, integrators and hardware vendors. It promotes a	
		software driven ecosystem for wireless transport in 6GHz to 80GHz.	

We encouraging interested parties to

register and participate

Recognitions to Telefónica activity on SDN for Transport (in 2016)

 ONF Recognition to Thorsten Heinze (O2 Germany) for the outstanding contribution to the work related to the applicability of SDN to Wireless Transport Network

 Telefónica named winner of the LTE & 5G World Awards 2016 (<u>https://5gworldevent.com/</u>) in the category of "Best NFV/SDN Solution" for the work done around SDN applied to transport technologies with end to end scope (from access to core, including wireless and wired technologies).

 ★ ★ ★
 WINNER
 ★ ★ ★

 Best NFV/SDN Solution

TELEFÓNICA END 2 END SDN TRANSPORT SOLUTION

This work is partially funded by the European Commission within the H2020 Research and Innovation program 5G-Crosshaul (grant no. 671598)

5G Crosshaul <u>http://5g-crosshaul.eu/</u>

Jelefínica

Luis M. Contreras Technology and Planning Transport, IP and Interconnection Networks Global CTO Office

Telefónica I+D Telefónica, S.A. Distrito Telefónica, Edificio Sur 3, Planta 3 Ronda de la Comunicación, s/n 28050 Madrid (Spain) M +34 680 947 650

luismiguel.contrerasmurillo@telefonica.com

Thanks!! ... and stay tunned for the results of the 3rd PoC

