
This	project	has	received	funding	from	the	European	Union’s	Seventh	Framework	Programme for	
research,	technological	development	and	demonstration	under	grant	agreement	no	619543

Develop,	Deploy	and	Deliver	with	
NetIDE:	An	Integrated	Service	Level	
Network	Programming	Framework

Pedro	A,	Aranda	(TID)



2

Challenges	for	the	current	SDN	landscape

Can’t easily port	them:
You	implement	for	

Controller	X,	you	can’t	
make	same	code	run	

on	Controller	Y

Can’t	easily	combine	them:
You	can’t	run	an	LB	app	
together	with	an	FW	app

on	top	of	the	same	network

Can’t	easily	debug	them:
Only	few	SW	development	

tools	are	available	for
SDN,	in	most	cases	
controller-specific

Network	
Apps



NetIDE aims	at	supporting	the	whole	development	lifecycle	of	
network	apps	in	a	platform-independent	fashion:
* Integrated	SDN	development	environment
* Covering	the	full	lifetime	of	SDN	applications
* It	brings	all	the	goodies	of	Software	Design	and	Development	
to	Networking:
* Platform	independence
* Code	re-usability
* Developer		tools	(debugger,	profiler,	logger,	etc.)

3

The	NetIDE Framework



* Client/Server	SDN	controller	
paradigm	of	ONF

* Network	Application’s	modules	are	
given	the	runtime	environment	they	
expect	in	the	client	controller

* Multi-controller support	(ONOS,	
OpenDaylight,	Ryu,	Floodlight,	…)

* Backend:	southbound	plugin

* Core	Layer:	provides	a	controller-
independent	means	to	resolve	
conflicts	between	apps,	interfaces	
with	the	tools

* Shim	Layer:	northbound	plugin

The	Network	Engine



Develop,	Deploy	and	Test

10/19/16 5

Develop	the	code	and
configure	the	
topology

Automatically		deploy	
the	SDN	applications

Test	and	debug	the	
applications



Code	Editors
Graphical	

Topology	Editor

Tools	for	debugging	and		
inspecting	of	the	control	

channel

The	Integrated	Development	Environment

* Code	Editors	(PyDev,	
CDT,	Java)

* Topology	editor

* Interface	with	the	
Network	Engine	and	
tools

* Access	underlying	
network

* Access	to	the	
Mininet CLI

* Network	Elements



Enabling	the	developer	to	systematically	test,	profile,	and	tune	
their	Network	App
* Logger:	tracing	capabilities	to	judge	the	performance	of	the	
deployed	Network	App

* Garbage	Collector:	Cleans	the	switches’	memory	from	unused	
flow	rules

*Model	Checker:	systematically	exercises	app	behaviour and	flag	
actions	that	lead	to	violations	of	the	desired	safety	properties

* Profiler:	judging	the	impact	of	network	failures	on	the	Network	
App	behaviour

* Debugger:	supports	debug	of	packet	processing	(OFReplay,	
packet	inspection	and	flow	table	checking)

Developer	tools



We	assure	survival	of	NetIDE results	
by	contributing	them	to	different	
FOSS	projects
Source	code	of	IDE,	Network	Engine	
and	Tools	are	publicly	available	on	
Github under	Eclipse	Public	License	
v1.0
Usecases contains	implementations	
of	target	scenarios	that	validate	the	
NetIDE framework.	

https://github.com/fp7-netide

Try	our	code?



Thank	You!

10/19/16 9


