Develop, Deploy and Deliver with
NetIDE: An Integrated Service Level
Network Programming Framework

A, Aranda (TID -

S This project has received funding from the European Union’s Seventh Framework Programme for
L research, technological development and demonstration under grant agreement no 619543

3 &) NetIDE

Challenges for the current

Network
Apps

Can’t easily debug them:
Only few SW development
tools are available for
SDN, in most cases
controller-specific

Can’t easily port them:
You implement for
Controller X, you can’t
make same code run
on Controller Y

¥ NetIDE \g

The NetIDE Framework

NetIDE aims at supporting the whole development lifecycle of
network apps in a platform-independent fashion:
* Integrated SDN development environment
* Covering the full lifetime of SDN applications
* It brings all the goodies of Software Design and Development
to Networking:
* Platform independence

* Code re-usability
* Developer tools (debugger, profiler, logger, etc.)

¥ NetIDE

e

The Network Engine

* Client/Server SDN controller
paradigm of ONF

* Network Application’s modules are
given the runtime environment they
expect in the client controller

* Multi-controller support (ONOS,
OpenDaylight, Ryu, Floodlight, ...)

* Backend: southbound plugin

** Core Layer: provides a controller-
independent means to resolve

conflicts between apps, interfaces
with the tools

* Shim Layer: northbound plugin

AIIZI

module

module

module| |module

Client Controller Framework 1

Client Controller Framework 2

1 1
|NetIDE Intermediate Pmtocoll

Tools

Core Layer

1 1
lNetIDE Intermediate Proloco!l

Shim layer

Server Controller Framework

Network
Element

Network
Element

Network
Element

suibu3 yomjon

*
*
*

& NetIDE %
Develop, Deploy and Test

Automatically deploy

P LaTest 3 ; & *C1] . .
1 VHY ‘M B) N Network Apps the SDN applications
0] L 0“
3-from ryu.base import app_manager
4 from ryu.controller import ofp_event Y Topology Model
5 from ryu.controller.handler import M
6 from ryu.controller.handler import s ¢
class L2Switch(app_manager.RyuApp): Configure Network Engine and Apps Mininet Configuration
def __init__(self, *args, **kwag
1 super(L2Switch, self).__inj €1(127.0.0.1:6633) ¢
11
X3k ' (ofp_event .Event0 Network Engine Configuration L #{ Configure the VM ’
13 def packet_in_handler(self,
14 msg = ev.msg
15 dp = msg.datapath y
1 ofp = dp.ofproto [J
1 ofp_parser = dp.ofpp Deploy Network App
1
1 actions = [ofp_par, Y
out = ofp_parser.
datapath=dp, - Test and debug the / Readydo-Run VM
actions=act,
x%o & 2000 o0y applications Y

10, in_port=3, actions=output:2, priocs

Start Mininet and NetIDE Engine on VM

Develop the code and ¢]
configure the Running VM
topology !

Work on running Mininet via SSH Open SSH Tunnel to VM

<

NetIDE

* X %

* *

* *

* * J
* 5 x

The Integrated Development Environment

*

pology

Code Editors

Code Editors (PyDeyv,
CDT, Java)

8-class L2Switch(app_manager.Ryd
def __init_ (self, *args, *
10 super (L2Switch, self).__1

Topology editor 1

134 defVpacket_in_handler(self, ev):
14 msg = ev.msg

**kwargs)

v_cls(ofp_event.EventOFPPacK AIN_DISPATCHER)

Interface with the 5 o datapath
16 ofp = dp.ofproto
N etWO rk E ngl ne a nd 7 ofp_parser = dp.ofproto_parser
i out = ofp_parser.OFPPacketOut (
t00|s 21 datapath=dp, buffer_id=msg.buffer_id, in_port=msg.in_port,

22 actions=actions)
23 dp.send_msg(out)

actions = [ofp_parser.0FPActionQutput(ofp.0FPP_FLOOD)]

Access underlying

) Lorest ¢

Graphical

& DemoTopology 33

od »
i} S

IEEEEE Topology Editor

Ul

CreateHost

l CreatePort

D CreateNetwork

l CreateController

(= Edges o
= CreateConnector

***" CreateControllerConn

network , s] ,
E) Console §3 . [Properties = O | B Console % (] % 8
* ACCESS to the 2 g @ @ MEvVEY D pology [NetIDE Controller Deployment] /usr/bin/vagrant
L R L") packetOut: {'outport': 1, 'srcmac': '36:e9:(

Mininet CLI

IDemoTopology [NetIDE Controller Deployment] /usr/bin/vagrant

*** Adding links: &
(Ni_h1, Ni_s1) (N1_h2, Ni_s2) (Ni_s1, Ni_s2)

*** Configuring hosts

N1_h1 N1_h2

*** Starting controller

* Network Elements

handlers:

*** Starting 2 switches
Ni_s1 N1_S2 ...
*** Starting CLI:

*** ping: testing ping reachability
N1_h1 -> N1_h2

Ni_h2 -> Ni_h1

*** Results: 0% dropped (2/2 received)

Send to OF client
New message from the client:
Backend. Datapath:
Datapath 1 current state 1:
l
Ryu flowMod:
cl 00:00:00:00:00:00
send_install pred:
Actions [OFPActionOutput(max_len=G
Action List: [{'outport': 2}]

Send to OF client

packetOut:

Send to OF client

New message from the client:
Al|Backend. Datapath:

{'outport': 2, 'dstip': '10.0.0.2"

version: Ox1 msg_type Oxe xid §

Tools for debugging and
inspecting of the control
channel

packet
1 packet_in: version: 0;
main message

{'switch': 1, 'ds

packet
2 packet_in: version: 0x1 msg_type Oxa xid ,

) c

> C >

Launching DemoTopology: (24%) (D &

)NetIDE u\

Developer tools

Enabling the developer to systematically test, profile, and tune
their Network App

* Logger: tracing capabilities to judge the performance of the
deployed Network App

* Garbage Collector: Cleans the switches’ memory from unused
flow rules

* Model Checker: systematically exercises app behaviour and flag
actions that lead to violations of the desired safety properties

* Profiler: judging the impact of network failures on the Network
App behaviour

* Debugger: supports debug of packet processing (OFReplay,
packet inspection and flow table checking)

¥ NetIDE

Try our code?

L —m—

A

We assure survival of NetIDE results
by contributing them to different
FOSS projects

Source code of IDE, Network Engine
and Tools are publicly available on
Github under Eclipse Public License
v1.0

Usecases contains implementations
of target scenarios that validate the
NetIDE framework.

https://github.com/fp7-netide

' ‘ Delivering a single environment to support the whole development lifecycle of SDN programs in a vendor/controller-
) independent fashion

hitp:/fwww.netide.eu

QRtposilofies People 18 Teams § {} Settings
IDE Java k4 P2

Provides editor support for various network programming and other specifications
languages used in the development lifecycle.

Updated 5 days ago

Engine Java w4 o

App Engine to enable Network App programs to be executed, systematically tested, and
refined on a variety of concrete SDN platforms

Updated 5 days ago

Tools Python w1 b0

Contains tools to enable network application developers to systematically test, profile,
and tune their Network Apps

Updated 19 days ago

Usecases Python w1 150

Contains the implementations of the use cases and target scenarios generated in the
project

Updated on Oct 22, 2015

People 18)

D07
l@lﬁl Py
6

“ ?'(\
X

Invite someone

@ NetIDE \v.

Thank You!

10/19/16 9

