Industrial perspective in 5G optical transport

Thomas Deiß thomas.deiss@nokia.com Tyrrhenian International Workshop on Digital Communication 2016

1 14/09/2016 © Nokia 2016

NOKIA

Overview

- Background
- · Packet switching over fibre links vs. optical links
- 5G requirements
- Network densification
- Example device: mini-ROADM
- Summary

NOKIA

Background / Perspective to look onto optical transport

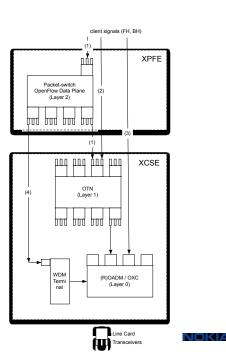
- Specification of transport features
- Definition of network configurations
 - LTE S1/X2 interfaces
 - WCDMA lub interfaces
 - Any type of technologies: ATM, MWR, electrical, optical, leased lines, ...
- 5G-Crosshaul project
 - Transport networks for both backhaul and fronthaul
 - Heterogenous technologies: MWR, PON, optical, ...
 - Multi-layer switches: wavelength, TDM, packet

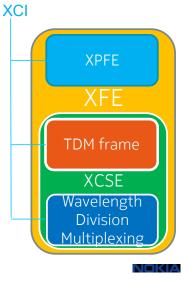
3 14/09/2016 © Nokia 2014 Confidential

Uses of optical transport

- ,Dark fibre'
 - Squeeze as high as possible bit rate over as many as possible wavelengths
 - Long range
- Ethernet over fibre
 - IP over Ethernet (backhaul, control and management, data center)
 - Radio over Ethernet (fronthaul)
- Some obvious (dis)advantages of optical vs. Electrical
 - + Longer range, higher bandwidth, better surge insulation
 - No power transmission (PoE)

Multi-layer forwarding element / Overview

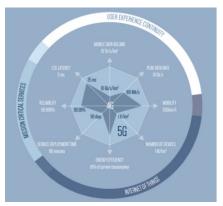

- XFE: Forwarding Element
 - XPFE: packet forwarding
 - Statistical multiplexing
 - XCSE: circuit
 - Low and deterministic delay
 - Packet switch off loading
- Layers are optional
- XCI: Control infrastructure
 - Software defined networks


5 14/09/2016 © Nokia 2014 Confidential

Multi-layer forwarding element / forwarding

- XPFE interfaces
 - Optical, electrical, MWR, ...
- XCSE interfaces
 - All optical
- Different paths through node
 - 1. Packet TDM WDM
 - 2. TDM-WDM
 - 3. WDM
 - 4. Packet-WDM

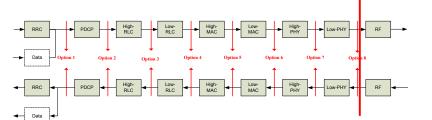
5. ... 6 14/09/2016 © Nokia 2014 Confidential



5G Requirements

- 5G mobile networks will offer disruptive network and service capabilities
- Use cases envisioned by 5G PPP, NGMN and METIS envision disruptive end user SLAs
 - e2e Delay: <= 1ms for e.g. industrial automation
 - end user datarate: >= 1Gbps e.g. for virtual reality office
 - Large traffic volumes per area: Tbps/km^2
- User scenarios
 - eMBB (extended Mobile Broadband)
 - 10Gbps peak throughput per user
 - 1Gbps experienced throughput per user
 - URLLC (ultra reliable low latency communication)
 - mMTC (massive Machine Type Communication)

7 14/09/2016 © Nokia 2014 Confidential

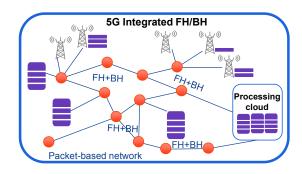


Source: 5GPPP 5G Vision document

NOKIA

3GPP, 38.801

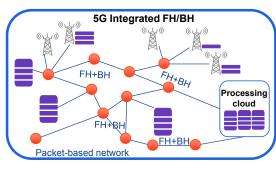
5G RAN Functional Splits

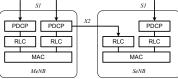

	Number of	Frequency System Bandwidth		
Bandwidth at fronthaul interface depends on antenna configuration,	Antenna Ports	20 MHz	200 MHz	1GHz
carrier bandwidth FH compression to reduce	2	2Gbps	20Gbps	100Gbps
bandwidth, no miracles	8	8Gbps	80Gbps	400Gbps
	64	64Gbps	640Gbps	3200Gbps
100G '	256	256Gbps	2560Gbps	12800Gbps
14/00/2016 @ Nobio 2014				

8 14/09/2016 © Nokia 2014 Confidential

5G System

- Heterogenous traffic
 - Traffic of different functional splits
 - Different radio technologies, 5G, 4G, WiFi, ...
- Densification
 - More small cells, which need to be connected
 - MWR, fibre, copper, self-backhauling
- Heterogenous networks
 - Different transmission technologies
 - New network nodes due to mobile edge computing
 - Mixture of connectivity and compute services
 - Hosts ,speaking' Ethernet
- Increased flexibility, reconfigurability
 - SDN, NFV seen as enabler

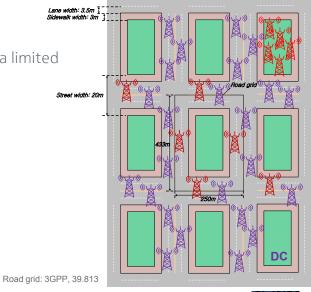

9 14/09/2016 © Nokia 2014 Confidential



NOKIA

Topology

- LTE
 - Tree-like: RRH-BBU, eNb-CN
 - Some X2-traffic among eNbs
 - ICIC, CoMP have significant traffic among eNbs (Baseband hotel)
- 5G
 - Dual connectivity like traffic
 - Coordination among small cells
 - Compute servers (MEC) communicating among each other


Software control

- SDN as enabler
- For example: Openflow optical extensions
 - Wavelengths, OTN channels correspond to ports
 - Port properties: wavelength, TX power, ...
 - Forwarding: port granularity
- OAM, connectivity checks to be kept local
- Active devices, controlled and managed
 - In-band control
 - Control and management channel needs to be accessed
 - Relatively easy for packet and TDM, unclear for DWDM

11 14/09/2016 © Nokia 2014 Confidential

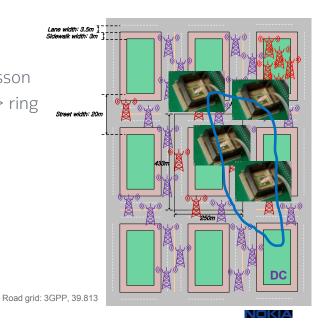
Densification

- How to connect many small cells in a limited geographical area?
 - Aggregation towards core
 - Traffic among BTSs
 - Regional Datacenter

Confidential

Densification / Possible impact of functional split

- ,Low' functional split
 - Bandwidth requirements according to radio, stringent latency requirements
 - Aggregate on optical level
 - ROADMs with small number of ports
 - Many of them: cost efficient, energy efficient
- ,High' functional split
 - Bandwidth requirements according end user traffic, higher latency tolerated
 - Ethernet over optical links for aggregation, BTSs and hosts might be connected electrically or with MWR
 - Packet switches with different connectors, ROADMs with packet interface


13 14/09/2016 © Nokia 2014 Confidential

Small ROADM Example

- Silicon Photonics ROADM by Ericsson
- One line input, one line output -> ring
- Twelve (wavelength) local ports
 - Add/drop of 10Gbps per port

14 14/09/2016 © Nokia 2014 Confidential

NAKA

10G optical becoming commodity

- Price of ,compatible' products, ,branded' products are more expensive
- At least 10KM reach, SFPx form factor, source http://www.fs.com/

Туре	1G	1G DWDM	10G	10G DWDM	40G	100G
Price [USD]	7	200	34	280	380	2800

- DWDM transceivers considerably more expensive than ,grey' transceivers
 - Example ROADM requires expensive SFPS
 - A packet switch might be cheaper, but it depends on statistical multiplexing gain whether 100G interface for ring could be avoided.
- Energy efficient (0,1Kw, 0.2€/Kwh → 175€ per year)

15 14/09/2016 © Nokia 2014 Confidential

Summary

- End user bandwidth increases considerably compared to 4G
- Additional functional splits may be in use
- Densification requires small aggregation devices for optical links
 - Packet based traffic
 - ROADMs
 - Cost efficient

Acknowledgements

• The author of this paper has been sponsored in part by the project H2020-ICT-2014-2 "5G-Crosshaul": The 5G Integrated fronthaul/backhaul" (671598)

17 14/09/2016 © Nokia 2014 Confidential NOKIA

Discussion

There is still a lot to defined for 5G... ... and even more to be seen what networks will actually be deployed

What devices for optical transport will you build in the future?

