Technologies of 5G: An Introduction

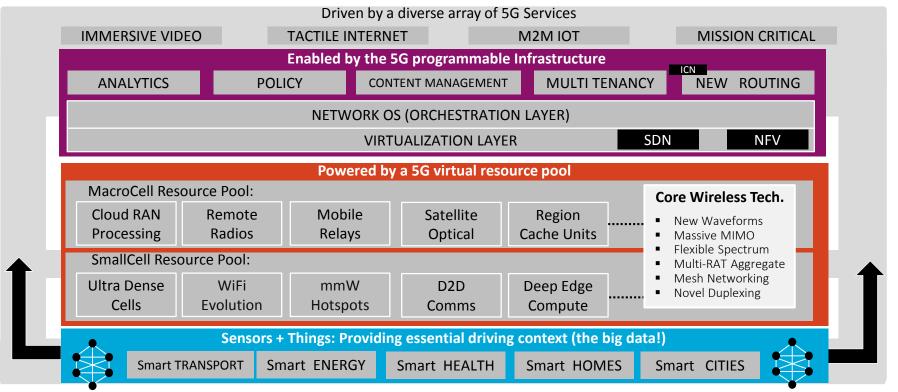
Alain Mourad

December 11, 2015

High Level Capabilities

Source: The EU 5G-PPP

- Providing **1000 times** higher wireless area capacity and more varied service capabilities compared to 2010
- Saving up to 90% of energy per service provided. The main focus will be in mobile communication networks where the dominating energy consumption comes from the radio access network
- Reducing the average service creation time cycle from 90 hours to 90 minutes
- Creating a secure, reliable and dependable Internet with a "zero perceived" downtime for services provision
- Facilitating very dense deployments of wireless communication links to connect over 7 trillion wireless devices serving over 7 billion people
- Enabling advanced User controlled privacy



Holistic Technology View

ر کر

INTERDIGITAL.

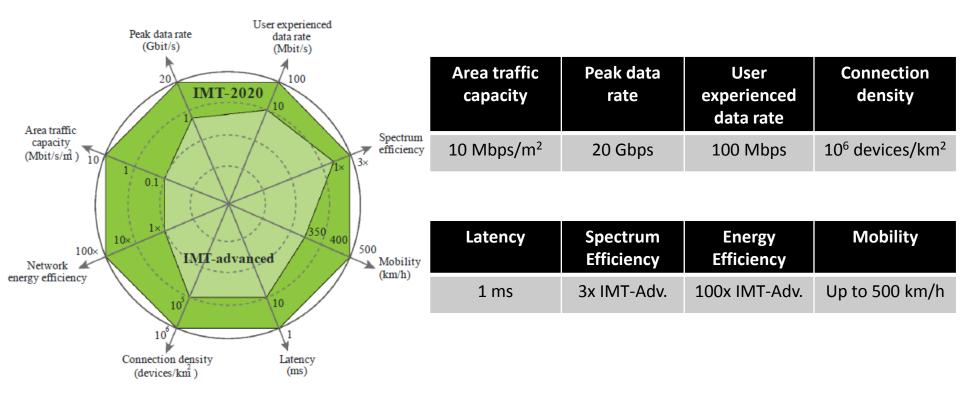
Source: InterDigital - The Living Network Vision

ICN=Information Centric Networking, SDN=Software Defined Networking, NFV=Network Function Virtualization, D2D=Device to Device Comms

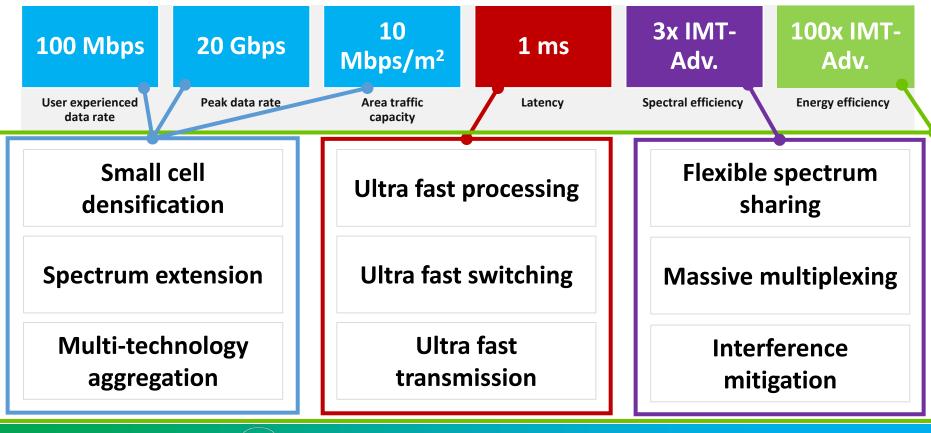
© 2015 InterDigital, Inc. All Rights Reserved.

Deep Dive into the 5G Radio Access Domain

A Tale of Two Spectrum Below and Above 6 GHz



5G Radio Access Capabilities


Source: ITU-R IMT for 2020 and beyond (M.2083-0)

ر ک

5G Radio Access – Enabling Technology (1)

INTERDIGITAL.

ر ک

5G radio access – Enabling Technology (2)

Advanced waveforms and multiple access

- More flexible waveforms than pure OFDM (e.g. F-OFDM; FBMC; etc.)
- Non-orthogonal multiple access (NOMA)
- Broader set of modulation and coding schemes

Advanced antenna and multi-site technologies

- 3D-beamforming and MU-MIMO
- Active Antenna System (AAS)
- Massive MIMO
- Network MIMO (Adv. CoMP)

Novel duplexing schemes

- Joint TDD-FDD operation
- Dynamic TDD
- Single channel full duplexing

New and flexible spectrum usage

- New large spectrum at mmW frequencies
- Carrier Aggregation of discontinuous bands
- Dual band split user and control plane
- Joint multi-RATs management
- Cognitive techniques (Spectrum Sensing)
- Advanced interference coordination and cancellation techniques
 - Flexible functional split (virtualization / cloudification)
 - Flexible backhauling and joint optimization with access

5G Radio Access – Spectrum Outlook

f	What Spectrum should be considered?	What should it be used for?	How should it be used?
6 GHz	 New Spectrum above 6 GHz: Larger bandwidths available (cmWave & mmWave) Different propagation characteristics and hardware constraints 	Ultra-Mobile Broadband for Indoor/Hotspot Access	New Radio: 5G Ultra-Mobile Broadband (Above 6 GHz)
	 New spectrum below 6 GHz: Opportunity to design a new non-backward compatible radio design Existing spectrum below 6 GHz: Leverage existing 4G deployments towards 5G 	Enhanced Mobile Broadband Everywhere & Connected World Use Cases (diverging requirements)	New Radio: 5G Flexible Access (Below 6 GHz) & Existing Radio: LTE Evolution

5G – Multiple-Layers of Connectivity

5G should be designed with native support for connectivity across multiple radio layers

Non-3GPP 5G Radio Access (e.g. WiFi)

5G Ultra-Mobile Broadband Above 6 GHz Radio Access

5G Flexible Access Below 6 GHz Radio Access

LTE Evolution Radio Access

Common design framework while allowing for spectrum and/or use case specific design aspects

- Radio Layers could be deployed as "Standalone" or using multiconnectivity framework (e.g. R12 Dual-Connectivity)
- Framework should enable splitting of data and control paths
- 5G operators have flexibility to deploy radio layers based on their individual roll out plans for 5G services
- Mature 5G networks (i.e. 2025+) envisioned to include all radio layers working together
- LTE expected to evolve as a key component of 5G

INTERDIGITAL

5G Flexible Access Below 6 GHz

Air interface design must be flexible to support diverging requirements in the same spectrum

At least 3 Operating Modes identified so far (with potentially more):

Enhanced Mobile Broadband

- Macro and small cells
- 1 ms Latency (air interface)
- Up to 8Gbps of additional throughput in new spectrum
- Support for high mobility

Low Power & Complexity

- Low data rate (1~100kbps)
- High density of devices (up to 200,000/km²)
- Latency: seconds to hours
- Low power: up to 15 years battery autonomy
- Asynchronous access

Ultra-High Reliability & Ultra-Low Latency

- Low to medium data rates (50kbps~10Mbps)
- <1 ms air interface latency</p>
- 99.999% reliability and availability
- Low connection establishment latency
- 0-500 km/h mobility

5G Ultra-Mobile Broadband Above 6 GHz

New spectrum above 6 GHz provides opportunity for Ultra-Mobile Broadband for indoor and hotspots

- However, frequencies above 6 GHz suffer from much higher pathloss, lower diffraction and higher losses due to penetration and human/selfblockage
- Massive antenna arrays are feasible due to shorter wavelengths

• –

- Leads to compact antenna array structures
- Provides beamforming gains required to overcome high pathloss

Free-Space Path Loss

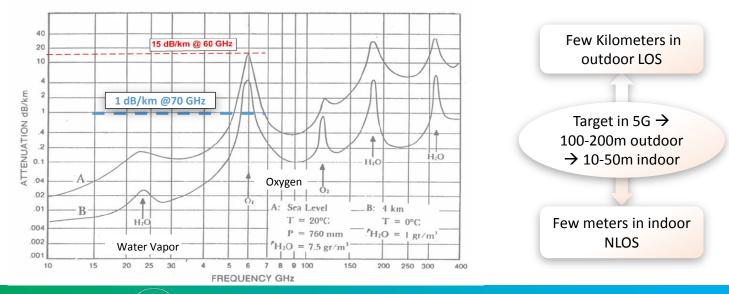
Distance	2.4GHz	28GHz	60GHz
d = 1m	-40 dB	-62 dB	-68 dB
d = 100m	-80 dB	-102 dB	-108 dB
		28 dB	

Key Requirements

- 20 Gbps (peak user throughput)
- 1 ms Latency (air interface)
- Standalone and/or macroassisted access
- Joint access/backhaul

Key Enablers

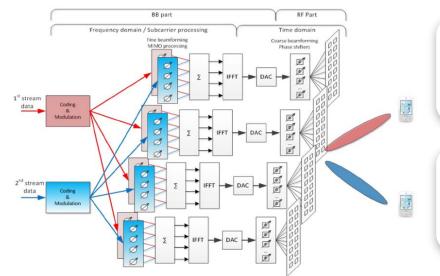
- Large amounts of spectrum
- Massive antenna arrays
- Cell densification


Key Challenges

- Timely availability of globally harmonized spectrum
- Low-cost and low-complexity implementations
- Discovery and initial access
- Frequent and abrupt loss of radio link(s)

5G UMB Above 6 GHz – The Range

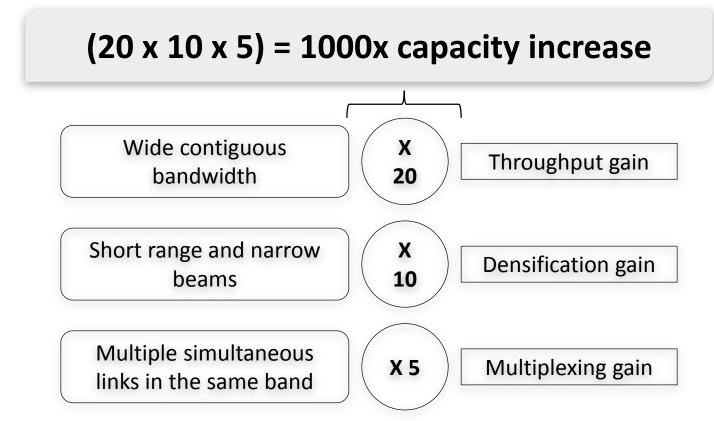
 ~ 20 dB free space path loss attenuation compared to below < 6 GHz + additional gaseous (Water Vapor / Oxygen) attenuation
 → Inherently short range → Enables X factor of densification


INTERDIGITAL.

bì

5G UMB Above 6 GHz – The Beam

 2-3 degrees beam width → array of antennas for wide angular coverage & multiple simultaneous beams/links @low interference → Enables high multiplexing gain


 \bigcirc

Electronically steerable phased array antennas to enable dynamic (re)configuration for guaranteed link reliability (in particular in mobile scenarios)

Small form factor (thanks to small antenna aperture and short inter-antenna distance) enabling the support of large number of antennas at the TX and RX

5G UMB Above 6 GHz – The Capacity

InterDigital Confidential and Proprietary © 2015 InterDigital, Inc. All rights reserved.

Few Take-Aways

- There is **much more in 5G** than just a new radio access interface
- A programmable E2E infrastructure leveraging **SDN**, **NFV** and the (Central/Edge) Cloud is at the core of the 5G system
- The 5G radio access domain is a tale of two spectrum, below and above 6 GHz (mmWave), with multiple layers of connectivity
- The below 6 GHz is **primary** and needs to provide a flexible common framework for the support of various traffic/service profiles
- The above 6 GHz is a complementary **capacity booster** for ultra-mobile broadband in ultra-dense hotspots or indoor environments
- The success of the 5G radio access design lies in the **integration** of below and above 6 GHz technologies under a common framework

•

Thank You!

Alain MOURAD, PhD Senior Manager – 5G Wireless Technology InterDigital Europe, Ltd. 64 Great Eastern Street London, EC2A 3QR +44 7920 798 685 Alain.Mourad@InterDigital.com

53

