

# Mobile Edge Network for Wireless 5G

# Fang-Chu Chen / ITRI March 2016



# **Keep Local Traffic in Local** i.e. at the edge of the network with **Direct Communications when possible** and still in the control of the Networks



# Rationale for Mobile Edge Network

- A lot of traffic occur in local areas
  - Shopping malls, sport stadium, mobile edge computing, enterprise applications, moving vehicles, vehicular communications, IoT
- Keep the traffic in a confined areas will
  - Offload the traffic from the core, therefore increase the total system capacity
- Direct communications
  - Offload most of the traffic between communicating devices and equipment
  - The best way to achieve low latency
- Network controlled and assisted
  - To reduce interference
  - To increase the efficiency of resource usage



# Key Challenge

 Traffic being kept local and between communications nodes, but still monitored and controlled by the networks



## **Mobile Edge Network**





### **Network Assisted Direct Communications**

- Operators not involved
- Unlicensed bands
- Short range (<100m)
- Interference
- connected devices (<100)</li>
- Slow device discovery (>10s)
- Low reliability



Stand-alone and Self-organizing

WLAN D2D

(E.g. WiFi Direct, Bluetooth, NFC)



WAN + WLAN D2D

(E.g. LTE + WiFi Direct)

WAN D2D

(E.g. 3GPP LTE D2D)



## Direct Communications Relay Based ME Network Application Scenario



### 工業技術研究院 Industrial Technology NetWork Assisted Direct Communications Offloading







• The transport network of the edge network can leverage the 5G-Crosshaul technologies





#### Please note that:

- Suitable extent of harmonization and integration to be researched in METIS-II
- METIS-II takes orientation in 3GPP protocol names, but does not exclude changes
- Key research in METIS-II is to see how Network Slicing is reflected in RAN design



## **ITRI ExpoGlobal Mall Test Bed**

- 1. Complete Experimental Trail-Field of ProSe Offload Service in Hsinchu Taiwan Pavilion ExpoGlobal Mall. The contractor of Global Mall signs the MOU •
- 2. Finish deploying in July FY104, and Finish the first deploying and test of D2D/Multicast Offloading App Service in September FY 104
- 3. Deploying LTE Small Cells will be completed in October in FY104, so it is convenient to offer and transmit the offloading-controlling signal by LTE Network to UE \$\lambda\$ for testing of offloading capability of D2D/Multicast.





### **Deploying Sites of 2F**







### ITRI Direct Communications Based Edge Network - in Shopping mall

D2D/Multicast Offloading Release : FY104 IP Level (3GPP ANSDF Specification); 2. FY105 EPC level



### 業技術研究院 **ITRI's Current LTE HSR project** Industrial Technology - LTE HSR Test Field





#### Field Test Bed : 30Km 12Km В HSR HSR HSR HSR Hsinchu Yangmei Hsinchu Taoyuan Station Station Station Station

### **Deployment:**

Time: 2014/01/01~2014/12/31 **Technology: LTE** Number of eNB: 4 (10) (Based on WiMAX Deployment) Number of EPC: 1 Number of RoF pair: 10 (16) Backbone & RoF's Fibers : 96C

Research Institute



## HSR Test Bed - On Board Edge Network

- Road Side backhaul
  - Roadside base stations provide wireless backhaul connectivity
- On-board Edge Network
  - small Cell + direct communications backhaul





