5G NORMA:

An adaptive mobile network architecture

EuCNC'16 Workshop on *Next Generation fronthaul/backhaul integrated transport networks*, 27 June 2016 Presented by Peter Rost, Nokia Bell Labs Contact: Peter.m.rost@Nokia.com

- Motivation and objectives
- Architecture framework
- Impact on RAN and CN
- Software-define mobile network control

Motivation and objectives

Motivation: It's time, again

Motivation: It's the mix

The focus of 5G NORMA is on <u>enabling</u> <u>new 5G business</u>.

But 5G NORMA's innovations will also help to

- increase wireless capacity,
- support very high terminal densities,
- Iower latency,
- improve cost efficiency,
- Iower energy consumption.

Motivation: NGMN Vision

"5G is an <u>end-to-end ecosystem</u> to enable a fully mobile and connected society. It empowers value creation towards customers and partners, through <u>existing and emerging</u> <u>use cases</u>, delivered with consistent experience, and <u>enabled by sustainable business models</u>."

he engine of broadband

5

EuCNC 2016, WS on Front-/Backhaul

- Motivation and objectives
- Architecture framework
- Impact on RAN and CN
- Software-define mobile network control

Architecture framework

5G NORMA Architecture Innovations and Views

Covering all layers: Control and Data Layer, Management & Orchestration, and Service

- The "5 Innovations" of 5G NORMA
 - 1. Adaptive function (de)composition and flexible placement
 - 2. Joint optimization of access/core functions
 - 3. Software defined mobile network control and orchestration (SDM C+O)
 - 4. Multi-service and context-aware adaptation of network functions
 - 5. Mobile network multi-tenancy
- Different architectural views for clarity
 - each highlighting specific aspects of 5G
 NORMA architecture and innovations

5G NORMA Architecture Framework

- Motivation and objectives
- Architecture framework
- Impact on RAN and CN
- Software-define mobile network control

Impact on RAN and CN

Flexible function allocation: Opportunities

• Flexible placement of network functions

EuCNC 2016, WS on Front-/Backhaul

10

Flexible function allocation: Interfacing

- Flexible CN/RAN split
 - As a result of the flexible network allocation, CN and RAN functions no longer (necessarily) reside in different nodes
 - The borderline between CN/RAN is blurred
 - CN and RAN functions may be co-located in the edge cloud or in the network cloud
- CN/RAN interface
 - The optimal CN/RAN interface may depend on the function allocation
 - If CN and RAN reside in the same locations, we can benefit from exchanging large amount of data at low latencies
 - If CN and RAN reside in different locations, the interface needs to be adapted to throughput/latency constraints
 - Even when co-located, different functionality can be provided depending on the location of both functions

Example: RAN Slicing

NORN

- Motivation and objectives
- Architecture framework
- Impact on RAN and CN
- Software-define mobile network control

Software-defined mobile network control

SDMC: Flexible Service Creation

SDM-C Interfaces

5G NORMA Consortium

5G NORMA in a nutshell

EU funded R&D project within 5GPPP Initiative, aiming on building consensus on E2E mobile network architecture and rapid implementation

<u>Duration</u>: Jul'15 – Dec'17 (30 months) <u>Project Mgmt</u>: Peter Rost, Nokia <u>Technical Mgmt</u>: Mark Doll, Nokia

Connect to 5G NORMA <u>Webpage</u>: https://5gnorma.5g-ppp.eu/ <u>Twitter</u>: @5G_NORMA <u>5GPPP</u>: <u>https://5g-ppp.eu/</u> <u>Email</u>: 5G-NORMA-Contact@5g-ppp.eu

