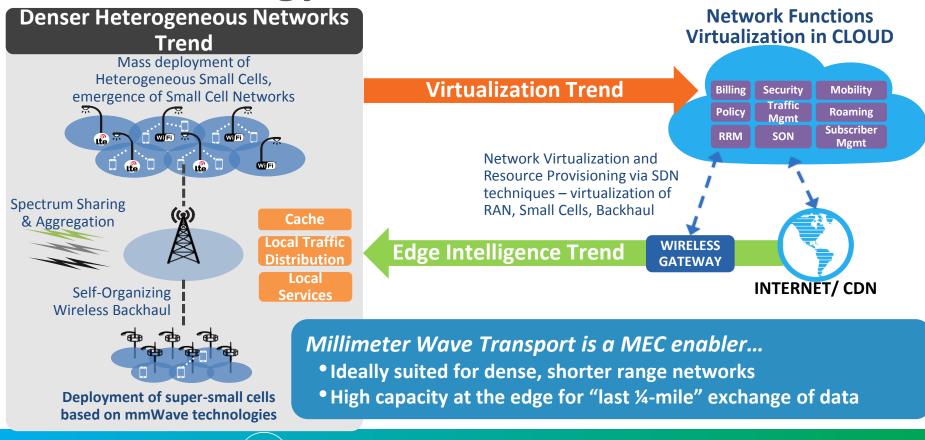
5G mmWave Transport and 5G-PPP 5G-Crosshaul project The 5G Integrated fronthaul/backhaul

16 November 2015 IEEE Pre-industrial Committee Workshop on Mobile Edge Piscataway, NJ

Doug Castor Alain Mourad

Agenda

- 5G Trends and Drivers
- High Capacity, Low-Latency Street Level Transport as a MEC enabler
- The 5G-PPP 5G-Crosshaul Project

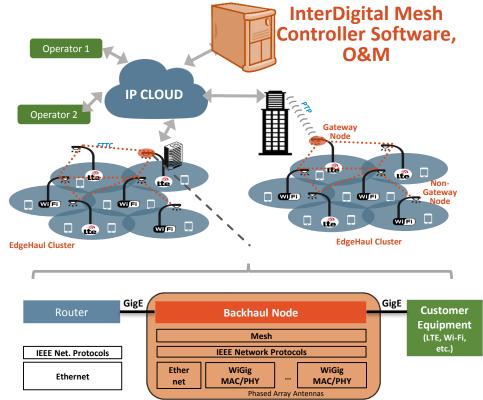


5G Technology Trends and Drivers

INTERDIGITAL.

لت ال

INTERDIGITAL.

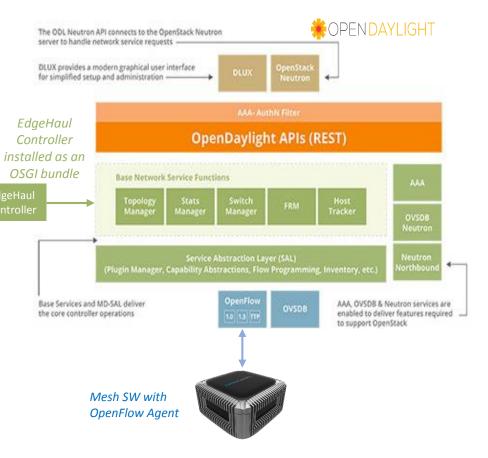


MWC2015 EdgeHaul™ Live Over-the-air Demo

- Low-Cost, High Capacity, Scalable design for today's Small Cell Backhaul and future 5G millimeter wave access
- 60GHz Phased Array with electronic beamsteering reduces installation cost an provides interference management
- WiGig (IEEE 802.11ad) based baseband chip enabling Gigabit data rates
- Three sectors, 270° coverage

EdgeHaul[™] System Architecture

- EdgeHaul is a centrally controlled multihop mesh network of mmWave backhaul nodes
- Clusters of initially ~10 nodes each are connected by mesh to Gateway
- System scales by replicating clusters
- Key System Components
 - EdgeHaul nodes contain virtual switch (OpenVSwitch) and mmWave MAC/PHY/RF air interface
 - Mesh Controller Software built on SDN framework (OpenDayLight) for flexibility
 - **O&M Software** run on cloud server with a webbased interface for remote O&M



Intelligent software to build a Carrier Grade Edge Network from commercial WiGig hardware

SDN Implementation

- SDN provides flexibility to integrate with modern 5G multi-vendor heterogeneous networks
- Common platform for extensibility and leveraging open-source components
- EdgeHaul Use
 - Mesh Controller functions hosted by the OpenDaylight SDN Controller
 - Standardized OpenFlow protocol
 - Programming Mesh nodes with frame forwarding flow rules
 - Collect standardized network measurements from OpenFlow agents
 - Future Integration with existing community of OpenDaylight services and applications

The 5G Integrated Fronthaul/Backhaul

• 5G-Crosshaul - An EU H2020 5G-PPP collaborative project developing an integrated fronthaul and backhaul solution for 5G networks

Funding	Duration	Effort	Start	Consortium
~8 m€	30 Months	981 PMs	July 01, 2015	21 partners

- Partners in the consortium include leading telecom industry vendors, ٠ operators, SMEs, and research institutes
 - Vendors and IT: NEC (TM*), Ericsson, Nokia Networks, InterDigital, ATOS
 - **Operators:** Telecom Italia, Orange, Telefonica
 - **SMEs:** CoreNetwork Dynamics, Telnet, EBlink, Visiona IP, Nextworks
 - **Research institutes:** University Carlos III of Madrid (PC*), Fraunhoffer Heinrich ٠ Hertz Institute, CTTC, CREATE-NET, Politecnico di Torino, Lunds University, ITRI

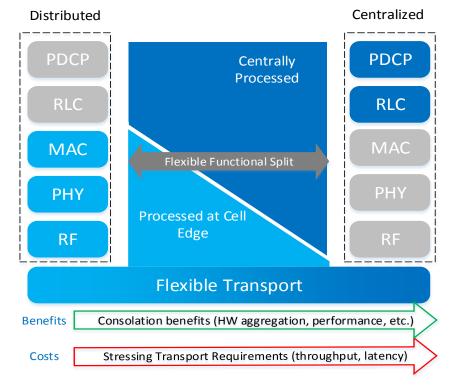
*TM – Technical Manager; PC – Project Coordinator

The Context

- The drivers: An ambitious set of 5G KPIs (e.g. capacity, latency, efficiency) at a time network operators are challenged to reduce costs (TCO) and expand their service offer!
- SDN, NFV and the Cloud are instrumental tools to help operators meet their 5G network requirements.
- However, these tools cannot be deployed independently, but rather **jointly in an optimized way** to meet the 5G network infrastructure needs at a given time and in a given service area.
- The transport network (interconnecting the access and the core) is a key part of the overall network infrastructure, and hence shall evolve along with the access and the core to meet the 5G requirements.

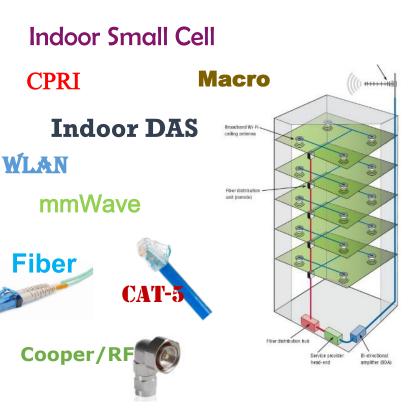
The Challenges

- High level of **densification** foreseen in 5G, raises the challenge of **small cell backhaul**, where fiber-like capacity over wireless is needed.
- **Macro backhaul** is (carrier-grade) packet-switching and embracing the SDN and NFV concepts to lower costs and improve flexibility.
- **Fronthaul** is evolving too, from fixed and costly CPRI PTP links to **Ethernet-switching** for scalability and lower cost, but not yet resolving the challenges of bandwidth and latency.
- The RAN is embracing virtualization too, with **new functional splits** (e.g. L1/L2) relaxing the bandwidth requirement of CPRI (and CPRI-like) fronthaul but not really the latency.
- This calls for a **unifying transport solution** that integrates the fronthaul and backhaul traffic mixture, in a common-haul packet switching under a common-haul SDN-based control. **This is the aim of the 5G-Crosshaul project!**

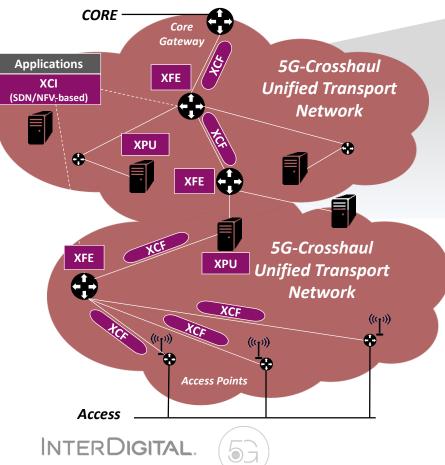


RAN Function Splits Challenge

- Centralization of RAN functions yield benefits from hardware consolidation and advanced signal processing (e.g. COMP)
- Cost and availability of transport (e.g. fiber) may prohibit full centralizations
- MEC is a part of optimizing
 - Flexibly choosing the functions to process at the edge
 - Edge servers provide equivalent to cloud functions



rosshaul


Example Motivation for Unifying Transport

- Diverse data transport systems exist at network edge, especially for indoor wireless
- Limitations
 - No common management system
 - No flexibility for evolving network architecture
- Unified transport enables integration across diverse transport systems
- Other cases
 - Multi-tenancy
 - Mobile Edge Computing
 - New applications with ultra-low latency
 - Network reconfiguration as local demands change

Simplified View of 5G-Crosshaul Architecture

Multi-tenar app manag		MEC man			CDN ap manag			Energy app manager				
Northbound Interface(s)												
SDN/NFV-based control infrastructure (XCI)												
Southbound Interface(s)												
Edge Nodes		XCF No		arding des FE)	XCF		Processing Units (XPU)					
Radio over Fiber	Passive Optical Network		Wave Division MUX		Micro Wave Link		mmW Link		Free Space Optics			

Main building blocks

- **XCF Crosshaul Common Frame** capable of transporting the mixture of various Fronthaul and backhaul traffic
- XFE Crosshaul Forwarding Element for forwarding the Crosshaul traffic in the XCF format under the XCI control
- **XPU Crosshaul Processing Unit** for executing virtualized network functions and/or centralized access protocol functions (V-RAN)
- **XCI Crosshaul Control Infrastructure** that is SDN-based and NFVenabled for executing the orchestrator's resource allocation decisions
- **Novel applications** (e.g. MEC app manager) on top to achieve certain KPIs or provide certain services

MEC in 5G-Crosshaul

- 5G-Crosshaul project has set its focus on 5 key use cases, 3 verticals (High speed train, media distribution, dense urban society) and 2 horizontals (multi-tenancy, and mobile edge computing).
- MEC schemes are envisaged in the **application plane** of the 5G-Crosshaul infrastructure, with benefits to the end user (QoE) and operators (e.g. managed backhaul capacity, service differentiation)
- 5G-Crosshaul focus areas on MEC use case include:
 - Mobile edge computing in the architecture
 - MEC Requirements on the NBI/SBI
 - Optimization of network and computing resources

