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Abstract 

This deliverable presents the refined design of the 5G-CORAL orchestration and control system, 

namely OCS, with emphasis on orchestration and federation. A distributed resource orchestrator 

is described along with an optimization algorithm for volatile and federated environments. Next, 

this document analyses the monitoring and live procedures needed by the identified 5G-CORAL 

use cases. Finally, it presents an experimental validation of some selected OCS features. Lessons 

learnt and future directions regarding the OCS conclude the document.   



D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 2 

H2020-761586 

                                                                                                                                  

Document properties 

Document number D3.2 

Document title Redefined design of 5G-CORAL orchestration and control system 
and future directions 

Document responsible UC3M 

Document editor Milan Groshev 

Editorial team Milan Groshev, Luca Cominardi 

Target dissemination level Public 

Status of the document Stable 

Version 1.0 

List of contributors 

Partner Contributors 

ADLINK Gabriele Baldoni 

IDCC Giovanni Rigazzi 

ITRI Samer Talat, Ibrahiem Osamah, Gary Huang, Chen Hao Chiu 

NCTU Li-Hsing Yen 

TELCA Aitor Zabala Orive, Pedro Bermúdez 

UC3M Luca Cominardi, Milan Groshev, Kiril Antevski, Jorge Martin-Pérez, Sergio 
Gonzáles, Nuria Molner 

Production properties 

Reviewers Li-Hsing Yen, Luca Cominardi, Giovanni Rigazzi, Samer Talat, Aitor Zabala 
Orive, Carlos Guimaraes, Alain Mourad 

Document history 

Revision Date Issued by Description 

1.0 31 May 2019 UC3M Public release 

Disclaimer 

This document has been produced in the context of the 5G-CORAL Project. The research leading 

to these results has received funding from the European Community's H2020 Programme under 

grant agreement Nº H2020-761586. 

All information in this document is provided “as is" and no guarantee or warranty is given that 

the information is fit for any particular purpose. The user thereof uses the information at its sole 

risk and liability. 

For the avoidance of all doubts, the European Commission has no liability in respect of this 

document, which is merely representing the authors view. 

  



D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 3 

H2020-761586 

                                                                                                                                  

Table of Contents 
List of Figures .................................................................................................................................................... 6 

List of Tables ..................................................................................................................................................... 7 

List of Algorithms .............................................................................................................................................. 8 

List of Acronyms ................................................................................................................................................ 9 

Executive Summary ........................................................................................................................................ 11 

1 Introduction ............................................................................................................................................. 12 

2 Refined design of the OCS ................................................................................................................. 13 

2.1 Overview of 5G-CORAL architecture and OCS components ............................................. 13 

2.2 Analysis of existing orchestrators ............................................................................................. 14 

2.3 Design of a distributed OCS ..................................................................................................... 16 

2.3.1 Distributed key-value store............................................................................................... 16 

2.3.2 Distributed VIM ................................................................................................................... 17 

2.3.3 Distributed EFS Stack and Resource Orchestrator ....................................................... 20 

2.4 Placement algorithm for volatile environments ...................................................................... 23 

2.4.1 EFS Stack analytical modelling ........................................................................................ 23 

2.4.2 EFS Virtualization Infrastructure analytical modelling ................................................. 23 

2.4.3 Placement heuristics ............................................................................................................ 24 

2.4.4 Performance evaluation .................................................................................................... 27 

2.4.5 Conclusions ........................................................................................................................... 28 

3 Live procedures and migration in the OCS ...................................................................................... 29 

3.1 OCS live procedures in 5G-CORAL use cases ....................................................................... 29 

3.1.1 Augmented reality navigation ......................................................................................... 29 

3.1.2 Virtual Reality ...................................................................................................................... 31 

3.1.3 Fog-assisted robotics .......................................................................................................... 32 

3.1.4 High-Speed Train ............................................................................................................... 36 

3.1.5 Software Defined Wide Area Network (SD-WAN) .................................................... 37 

3.2 Common OCS features overview and container-based migration .................................... 39 

4 Federation and resource provisioning .............................................................................................. 44 

4.1 Federation of resources .............................................................................................................. 44 

4.1.1 Federation roles .................................................................................................................. 44 

4.1.2 Federation interaction model ........................................................................................... 46 

4.1.3 Inter-domain connection (F2 interface) ........................................................................... 46 

4.1.4 Federation of resources ..................................................................................................... 49 

4.2 Profit maximization in a federated environment .................................................................. 51 

4.2.1 Instability in dynamic EFS federation ............................................................................. 51 



D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 4 

H2020-761586 

                                                                                                                                  

4.2.2 Profit allocation: fairness and stability ........................................................................... 52 

4.2.3 Identifying Best Federation Structure ............................................................................. 53 

4.2.4 Profit-Maximizing Resource Provisioning Configuration ............................................. 55 

4.2.5 Performance evaluation .................................................................................................... 56 

4.3 Advanced resource provisioning in federated EFSs ............................................................. 58 

4.3.1 System model ...................................................................................................................... 58 

4.3.2 Request dispatch by OCS ................................................................................................. 59 

4.3.3 Objectives of payment-free request dispatch .............................................................. 59 

4.3.4 Procedure for payment-free request dispatch ............................................................. 60 

4.3.5 Payment-Based Request Dispatch ................................................................................... 61 

4.3.6 Performance Evaluation ..................................................................................................... 63 

5 OCS experimental validation ............................................................................................................. 67 

5.1 Automated deployment .............................................................................................................. 67 

5.1.1 Results .................................................................................................................................... 69 

5.1.2 Conclusions ........................................................................................................................... 71 

5.2 Federation ..................................................................................................................................... 71 

5.2.1 Results .................................................................................................................................... 74 

5.2.2 Conclusions ........................................................................................................................... 76 

5.3 Migration of EFS function and application ............................................................................. 76 

5.3.1 Results .................................................................................................................................... 78 

5.3.2 Conclusions ........................................................................................................................... 79 

5.4 Network assisted D2D ................................................................................................................ 79 

5.4.1 Results .................................................................................................................................... 82 

5.4.2 Conclusions ........................................................................................................................... 84 

6 Lessons learnt ......................................................................................................................................... 85 

7 Conclusions and future directions ....................................................................................................... 87 

8 References .............................................................................................................................................. 88 

9 Appendix: Analysis of existing orchestrators .................................................................................. 91 

9.1 Open Source MANO (OSM) ...................................................................................................... 91 

9.2 Open Baton ................................................................................................................................... 93 

9.3 ONAP ............................................................................................................................................. 95 

9.4 Cloudify ......................................................................................................................................... 99 

9.5 OPNFV ........................................................................................................................................ 102 

9.6 Apache ARIA TOSCA ............................................................................................................... 105 

9.7 Kubernetes (K8s) ....................................................................................................................... 108 

10 Appendix: EFS Stack information model................................................................................... 112 

10.1 Virtualisation Deployment Unit (VDU) ................................................................................... 112 



D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 5 

H2020-761586 

                                                                                                                                  

10.2 Image .......................................................................................................................................... 113 

10.3 Command ................................................................................................................................... 113 

10.4 Computational Requirements .................................................................................................. 113 

10.5 Configuration ............................................................................................................................. 114 

10.6 Interface...................................................................................................................................... 114 

10.7 Connection Point ........................................................................................................................ 114 

10.8 IO Port ......................................................................................................................................... 114 

10.9 Life-Cycle Management (LCM) Hooks .................................................................................. 114 

10.10 Position.................................................................................................................................... 115 

10.11 Virtual Link ............................................................................................................................. 115 

10.12 EFS Entity/EFS Service ......................................................................................................... 115 

10.12.1 Latency .......................................................................................................................... 116 

10.12.2 DNS Rule ....................................................................................................................... 116 

10.12.3 Traffic Rule ................................................................................................................... 116 

10.12.4 Traffic Filter .................................................................................................................. 116 

10.12.5 Interface Type ............................................................................................................. 117 

10.12.6 Tunnel Info ..................................................................................................................... 117 

10.12.7 Transport Dependency ............................................................................................... 117 

10.12.8 Transport Descriptor ................................................................................................... 117 

10.12.9 Security Info ................................................................................................................. 117 

10.12.10 Service Descriptor ....................................................................................................... 118 

10.12.11 Category....................................................................................................................... 118 

10.12.12 Service Dependency ................................................................................................... 118 

10.12.13 Feature Dependency .................................................................................................. 118 

11 Appendix: Simulation settings for placement algorithm ........................................................ 119 

11.1 Simulation settings for EFS Stack and pricing ..................................................................... 119 

11.2 Simulation settings for infrastructure generation ................................................................ 119 

11.3 Simulation settings for infrastructure volatility .................................................................... 120 

12 Appendix: Simulation settings for federation .......................................................................... 121 

12.1 Simulation settings for federation formation ....................................................................... 121 

12.2 Simulation setting for resource provisioning in federated environments ....................... 121 

 

  



D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 6 

H2020-761586 

                                                                                                                                  

List of Figures 
Figure 2-1: 5G-CORAL system architecture ............................................................................................. 13 

Figure 2-2: VIM agent .................................................................................................................................. 18 

Figure 2-3: Distributed VIM global storage URI tree ............................................................................. 19 

Figure 2-4: EFS-RO components and internal architecture .................................................................... 21 

Figure 2-5: Distributed EFS-RO global storage URI tree ....................................................................... 22 

Figure 2-6: Lifetime cost of a reference EFS Stack as volatility increases ......................................... 27 

Figure 3-1: OCS workflow for the AR navigation application deployment ...................................... 30 

Figure 3-2: OCS workflow for VR application deployment.................................................................. 31 

Figure 3-3: OCS workflow for the virtual AP migration based on Wi-Fi signal level ..................... 33 

Figure 3-4: OCS workflow for the D2D communication based on localization ................................. 35 

Figure 3-5: OCS workflow for EFS application migration from on-board to on-land based on 

mobile network connection ........................................................................................................................... 36 

Figure 3-6: OCS workflow for traffic load balancing between LTE and broadband interfaces .. 38 

Figure 4-1: OCS federation interaction – advertisement/negotiation phase ................................... 47 

Figure 4-2: OCS federation interaction – termination phase ............................................................... 48 

Figure 4-3: OCS federation interaction – termination phase ............................................................... 49 

Figure 4-4: Sequence diagram for OCS resource federation .............................................................. 50 

Figure 4-5: Total profit in the federation structure vs cooperation intensity ..................................... 56 

Figure 4-6: Amount of allocated resources in the federation vs cooperation intensity ................... 56 

Figure 4-7: Amount of allocated resource in the federation vs mean unit of resources request ... 57 

Figure 4-8: Total profit in the federation vs mean unit price of resources ......................................... 57 

Figure 4-9: Amount of allocated resource in the federation structure vs. mean unit price of 

resource ............................................................................................................................................................ 57 

Figure 4-10: Total numbers of served requests in payment-free request dispatch ......................... 64 

Figure 4-11: Average latency per request in payment-free request dispatch ................................. 64 

Figure 4-12: Average latency per request in payment-based request dispatch ............................. 65 

Figure 4-13: Total revenue in payment-based request dispatch ......................................................... 66 

Figure 5-1: Workflow for on-boarding and instantiating an EFS Stack ............................................. 67 

Figure 5-2: EFS Stack Orchestrator web-based interface .................................................................... 69 

Figure 5-3: Experimental deployment time of an EFS Stack with an atomic EFS App .................... 70 

Figure 5-4: Federation architectural components under validation ..................................................... 72 

Figure 5-5: Phases of federation validation ............................................................................................ 73 

Figure 5-6: Experimental setup for federation validation .................................................................... 74 

Figure 5-7: Migration experimental set-up .............................................................................................. 77 

Figure 5-8:  Migration downtime comparison between stop-and-copy (SC) and pre-copy (PC) 

schemes for different containers ................................................................................................................. 78 

Figure 5-9: eCDF of Ubuntu application container (C2) migration ...................................................... 79 

Figure 5-10: Exemplary scenario leveraging network-assisted D2D .................................................. 80 

Figure 5-11: Fully centralized robotics control ........................................................................................ 81 

Figure 5-12: Network-assisted D2D robotics control .............................................................................. 81 

Figure 5-13: Wi-Fi channel and delay characterization for fog-assisted robotics .......................... 82 

Figure 5-14: Experimental CDF of distance between the two robots ................................................. 83 

Figure 9-1: OSM components ...................................................................................................................... 91 

Figure 9-2: Overview of the Open Baton architecture .......................................................................... 93 

Figure 9-3: ONAP platform components ................................................................................................... 96 

Figure 9-4: Functional view of the ONAP architecture ........................................................................... 96 

Figure 9-5: Overview of the Cloudify architecture ................................................................................. 99 

Figure 9-6: OPNFV architecture .............................................................................................................. 102 



D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 7 

H2020-761586 

                                                                                                                                  

Figure 9-7: Tacker architecture ................................................................................................................ 103 

Figure 9-8: Overview of the ARIA architecture .................................................................................... 105 

Figure 9-9: Declarative model-driven orchestration ............................................................................ 106 

Figure 9-10: Kubernetes architecture ..................................................................................................... 109 

Figure 9-11: Kubernetes node architecture ........................................................................................... 110 

Figure 10-1: EFS Stack information model ............................................................................................ 112 

Figure 11-1: Reference 5G transport network architecture [43] ...................................................... 119 

Figure 11-2: Randomly generated infrastructure ................................................................................. 120 

List of Tables 

Table 1-1: Scope of D3.1 and D3.2 documents ...................................................................................... 12 

Table 2-1: Overview of 5G-CORAL functional requirements and related support provided by 

the orchestrators ............................................................................................................................................. 15 

Table 2-2: Overview of 5G-CORAL non-functional requirements and related support provided 

by the orchestrators ....................................................................................................................................... 15 

Table 2-3: Placement algorithm notation .................................................................................................. 24 

Table 3-1: information exchanged in the EFS application instantiation procedure ......................... 30 

Table 3-2: Information exchanged in the EFS application instantiation procedure ......................... 32 

Table 3-3: Information exchanged in the EFS function migration procedure .................................... 34 

Table 3-4: Information exchanged in the EFS function migration procedure .................................... 36 

Table 3-5: Information exchanged in EFS application migration procedure ..................................... 37 

Table 3-6: Information exchanged in the EFS function procedure ....................................................... 39 

Table 3-7: Common OCS features across 5G-CORAL use cases ......................................................... 40 

Table 3-8: Specific OCS features of some 5G-CORAL use case ........................................................ 40 

Table 3-9: Pros and cons of stop-and-copy, pre-copy and post copy migration schemes ............ 41 

Table 4-1: Comparisons between static and dynamic federation ....................................................... 45 

Table 4-2: Federation advertisement interface endpoints .................................................................... 49 

Table 4-3: Federation instantiation and termination interface endpoints .......................................... 51 

Table 4-4: Profits of EFS Nodes in Different Federations ..................................................................... 51 

Table 4-5: Examples of VM Instance Types ............................................................................................. 58 

Table 5-1: OCS software implementation details and components under test ................................. 68 

Table 5-2: EFS App characteristics and configurations .......................................................................... 68 

Table 5-3: EFS Stack descriptor for instantiating the LXD-based EFS App on f0rce ....................... 68 

Table 5-4: Statistical characteristics of the experimental deployment time (s)................................. 71 

Table 5-5: Mapping of communication endpoints, phases and indexes ............................................. 73 

Table 5-6: Federation RTT latency results in ms ...................................................................................... 75 

Table 5-7: Federation jitter results in ms ................................................................................................... 75 

Table 5-8: Federation bandwidth results in Mbps .................................................................................. 75 

Table 5-9: Federation deployment times (s) for each of the component on the EFS ....................... 76 

Table 5-10: Hardware and Software specifications used in the experimental set-up ................... 78 

Table 5-11: Robotic system ROS components .......................................................................................... 80 

Table 5-12: Statistical characteristic of fog-assisted robotics downstream delay (s) ..................... 83 

Table 5-13: Statistical characteristics of the distance (m) between the two robots ......................... 84 

Table 9-1: Existing OSM capabilities suitable for 5G-CORAL OCS .................................................. 91 

Table 9-2: Missing OSM capabilities required for 5G-CORAL OCS ................................................. 92 

Table 9-3: 5G-CORAL OCS functional requirements and OSM support ........................................... 92 

Table 9-4: 5G-CORAL OCS non-functional requirements and OSM support ................................... 92 

Table 9-5: Existing Open Baton capabilities suitable for 5G-CORAL OCS ...................................... 94 

Table 9-6: Missing Open Baton capabilities suitable for 5G-CORAL OCS ...................................... 94 



D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 8 

H2020-761586 

                                                                                                                                  

Table 9-7: 5G-CORAL OCS functional requirements and Open Baton support .............................. 94 

Table 9-8: 5G-CORAL OCS non-functional requirements and Open Baton support ...................... 95 

Table 9-9: Existing ONAP capabilities suitable for 5G-CORAL OCS ................................................ 97 

Table 9-10: Missing ONAP capabilities suitable for 5G-CORAL OCS .............................................. 98 

Table 9-11: 5G-CORAL OCS functional requirements and ONAP support ...................................... 98 

Table 9-12: 5G-CORAL OCS non-functional requirements and ONAP support .............................. 98 

Table 9-13: Summary of Cloudify features .......................................................................................... 100 

Table 9-14: Existing Cloudify capabilities suitable for 5G-CORAL OCS ....................................... 100 

Table 9-15: Missing Cloudify capabilities required for 5G-CORAL OCS ...................................... 100 

Table 9-16: 5G-CORAL OCS functional requirements and Cloudify support ............................... 101 

Table 9-17: 5G-CORAL OCS non-functional requirements and ONAP support ........................... 101 

Table 9-18: Existing OPNFV capabilities suitable for 5G-CORAL OCS ........................................ 103 

Table 9-19: Missing OPNFV capabilities required for 5G-CORAL OCS ....................................... 104 

Table 9-20: 5G-CORAL OCS functional requirements and OPNFV support ................................. 104 

Table 9-21: 5G-CORAL OCS non-functional requirements and OPNFV support ......................... 104 

Table 9-22: Existing Apache ARIA capabilities suitable for 5G-CORAL OCS .............................. 107 

Table 9-23: Missing Apache ARIA capabilities required for 5G-CORAL OCS ............................. 107 

Table 9-24: 5G-CORAL OCS functional requirements and Apache ARIA support ....................... 107 

Table 9-25: 5G-CORAL OCS non-functional requirements and Apache ARIA support ............... 108 

Table 9-26: Existing K8s capabilities suitable for 5G-CORAL OCS................................................ 110 

Table 9-27: Missing K8s capabilities required for 5G-CORAL OCS .............................................. 110 

Table 9-28: 5G-CORAL OCS functional requirements and K8s support ........................................ 111 

Table 9-29: 5G-CORAL OCS non-functional requirements and K8s support ................................ 111 

Table 11-1: EFS Stack composition and pricing ................................................................................... 119 

Table 12-1: Simulation parameters for federation formation .......................................................... 121 

Table 12-2: Simulation parameters for server capacity .................................................................... 121 

List of Algorithms 
Algorithm 2-1: Greedy cost heuristic ......................................................................................................... 26 

Algorithm 2-2: Fog greedy heuristic .......................................................................................................... 26 

Algorithm 4-1: Merge-and-split federation formation mechanism ...................................................... 53 

Algorithm 4-2: Function can_merge(𝑭𝒊, 𝑭𝒋) .............................................................................................. 54 

  



D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 9 

H2020-761586 

                                                                                                                                  

List of Acronyms 
3GPP 3rd Generation Partnership Project 

AAU Active Antenna Unit 

AMQP Advanced Message Queuing Protocol 

AP Access Point 

API Application Programming Interface 

App Application 

AR Augmented Reality 

ARIA Agile Reference Implementation of 
Automation 

ARM Acorn RISC Machine 

ASE Autoscaling Engine 

AWS EC2 Amazon Elastic Compute Cloud 

BSS Business Support System 

CAM Cooperative Awareness Message 

CAPEX Capital expenditure 

CD Computing Device 

CHA Capacitated house allocation 

CLAMP Platform for designing and managing 
control loops. 

CPU Central Processing Unit 

CRIU Checkpoint and restore in user space 

D2D Device to Device 

DA Adapted deferred acceptance 

DA-T Adopted deferred acceptance with transfer 

DB Database 

DC Data Centre 

DENM Decentralized Environmental Notification 
Message 

CLI Command-line interface 

DNS Domain Name System 

EAP Extensible Authentication Protocol 

EBS Amazon Elastic Block Store 

eCDF Experimental Cumulative Density Function 

EFS Edge and Fog computing System 

EMS Element Management System 

ENI Experiential Networked Intelligence 

EPA Enhanced Platform Awareness 

ETSI European Telecommunications Standards 
Institute 

FPGA Field-programmable gate array 

FSM Finite State Machine 

FS File System 

GPIO General Purpose Input/Output 

GRE Generic Routing Encapsulation 

GTP GPRS Tunnelling Protocol 

GUI Graphical User Interface 

HDD Hard Disk Drive 

HST High Speed Train 

HTTP HyperText Transfer Protocol 

HTTPS HyperText Transfer Protocol Secure 

HV Hypervisor 

HW HardWare 

I/O Input/Output 

IaaS Infrastructure-as-a-Service 

ID Identifier 

IEEE Institute of Electrical and Electronics 
Engineers 

IETF Internet Engineering Task Force 

IoT Internet of Things 

IP Internet Protocol 

JSON JavaScript Object Notation 

K8 Kubernetes 

KDL Kullback-Leibler distance 

KPI Key Performance Indicator 

KVM Kernel-based Virtual Machine 

LCM Life Cycle Management 

LRF Local resource first 

LSF Local service first 

LSO Local service only 

LTE Long Term Evolution 

LXC LinuX Containers 

LXD Next generation system container manager 

MAC Media Access Control 

MANO MANagement and Orchestration 

MEC Multi-access Edge Computing 

MEF Metro Ethernet Forum 

MP Maximal profit 

MQ Messaging queue 

MQTT Message Queuing Telemetry Transport 

MUSIC Multi-site State Coordination Service 

NAS Network Attached Storage 

NFS Network File System 

NFV Network Function Virtualisation 

NFVO Network Function Virtualization 
Orchestrator 

NGINX Open source software for web serving 

NS Network Service 

NSD Network Service Descriptor 

OASIS Open standards. Open source. 

OBU On Board Unit 

OCS Orchestration and Control System 

ONAP Open Network Automation Platform  

ONF Open Networking Foundation 

OOM ONAP Operation Manager 

OPEX Operating expenditure 

OPNFV Open Platform for NFV 

OS Operating System 

OSM Open Source MANO 

OSS Operations Support System 

OVS Open Virtual Switch 

P2P Peer to Peer 

PaaS Platform-as-a-Service 

pc Pre-copy 

PNF Physical Network Functions 

PoS Point of Sale 

QoE Quality of Experience 

QoS Quality of Service 

RAM Random Access Memory 

RAT Radio Access Technologies 

REST Representational state transfer 

RO Resource Orchestrator 

ROS Robot Operating System 

RPC Remote Procedure Call 

RTT Round-trip time 

sc Stop-and-copy 

SD-WAN Software Defined Wide Area Network 

SDC Service Design and Creation 

SDN Software Defined Network 

SDK Software Development Kit 

SFC Service Function Chaining 

SHA Secure Hash Algorithm 

SLA Service Level Agreement 

SO Stack Orchestrator 

SSD Solid State Disk 



D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 10 

H2020-761586 

                                                                                                                                  

TCP Transmission Control Protocol 

TMPFS Temporary file system 

TOSCA Topology and Orchestration Specification 
for Cloud Applications 

UDP User Datagram Protocol 

UE User Equipment 

URI Uniform Resource Identifiers 

URL Uniform Resource Locator 

USB Universal Serial Bus 

UUID Universally Unique IDentifier 

VDU Virtualisation Deployment Unit 

VIM Virtualisation Infrastructure Managers 

VL Virtual links 

VLAN Virtual Local Address Network 

VM Virtual Machine 

VNF Virtual Network Functions 

VNFC VNF Components 

VNFD VNF Descriptors 

VNFM VNF Manager 

VPN Virtual Private Network 

VR Virtual Reality 

VVP VNF Validation Program 

VXLAN Virtual Extensible Local Area Network 

WAN Wide Area Network 

WP Work Package 

XML eXtensible Markup Language 

YAML Human-readable data-serialization 
language 

ZSM Zero touch network & Service Management 

 

  



D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 11 

H2020-761586 

                                                                                                                                  

Executive Summary 
This second and last deliverable from 5G-CORAL Work Package 3 focuses on the refined design 

of the Orchestration and Control System (OCS). It first identifies the gaps of existing 

orchestration systems with regards to the edge and fog environment. The resulting analysis serves 

as the basis for designing next the 5G-CORAL OCS targeted at filling all the identified gaps. 

Emphasis is put on state distribution and federation optimization, including optimal placement of 

functions and applications in a volatile environment. An experimental validation of selected 

features of the refined OCS design is also presented. 

The key achievements in this deliverable are highlighted below: 

• Analysis and comparison of existing VIM and Orchestrators against 5G-CORAL OCS 

requirements for edge and fog environments; 

• Design of a distributed VIM and Orchestrator leveraging a distributed key-value store 

to cope with resource-constrained devices and error-prone environments [1]; 

• Proposal and validation of a descriptor, namely EFS Stack, enabling zero-touch 

deployment at orchestration level; 

• Proposal and evaluation of a placement algorithm addressing the volatility of the 

resources comprising the virtualization and computing fabric; 

• Characterization and analysis of monitoring requirements and triggered procedures at 

OCS level for dynamically adapting to varying environment conditions [2][3]; 

• Characterization and evaluation of OCS federation including pricing insight, federation 

formation dynamics, and advanced resource provisioning; 

• Experimental assessment of selected OCS features, such as automated deployment, 

federation establishment, container-based migration, and network-based D2D 

communication establishment; 

• Refactoring of fog05 to act as distributed VIM following the state distribution paradigm 

proposed in this deliverable [4]; 

• Prototyping and publication as open source of f0rce (i.e., fog orchestration engine) 

implementing the distributed orchestrator paradigm proposed in this deliverable [5]. 
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1 Introduction 
The overall concept of the 5G-CORAL Orchestration and Control System (OCS), including its 

benefits, challenges, requirements, and architecture was introduced and described in depth in the 

first deliverable of WP3 (see D3.1 [6]). In brief, the OCS has the following tasks: (i) to build and 

maintain the EFS, by enabling automatic discovery of available EFS resources, integrating and 

federating them into a unified hosting environment, despite their heterogeneity, multiple owners 

and volatility (e.g., on the move); (ii) to manage the lifecycle of the EFS Functions, Applications, 

and Service Platform, by performing their instantiation, live migration and scaling to dynamically 

adapt to changing requirements and monitoring information. 

The first deliverable of WP3 [6] mainly focused on the support of heterogeneous and dynamic 

resources, dynamic migration, monitoring, and third-parties interaction with the OCS. This resulted 

in the initial design of some of the OCS components, namely VIM and EFS Entity Descriptor. 

Moreover, D3.1 proposed a baseline solution for resource discovery and integration across 

multiple access technologies, such as IEEE 802.11, 3GPP, Bluetooth/ZigBee, and Ethernet. Finally, 

D3.1 introduced the concept of resource federation and three federation models.  

Departing from those findings, this second deliverable elevates the focus from the VIM up to the 

EFS Orchestrator and presents validation results for the OCS components. The different scope 

between D3.1 and D3.2 (the present document), as well as the OCS components being 

investigated, is highlighted in Table 1-1. Specifically, D3.2 addresses the design of the EFS 

Resource Orchestrator and the EFS Stack Descriptor in Section 2. This includes a distributed key-

value store and a placement algorithm suited for volatile environments. Then, Section 3 analyses 

the monitoring requirements and identifies the necessary OCS procedures for each of the 5G-

CORAL use cases, resulting in a novel container-based migration mechanism. Section 4 proposes 

a baseline solution for resource federation and allocation, including pricing insight and in-

sourcing and out-sourcing of resources between distinct administrative domains. Section 5 

presents the experimental validation of some of the OCS features, such as automated 

deployment enabled by the EFS Stack, federation instantiation, live migration, and network 

assisted Device-to-Device (D2D) communication. Finally, Section 6 presents the lessons learnt 

while Section 7 draws the conclusions and future directions for the OCS.  

TABLE 1-1: SCOPE OF D3.1 AND D3.2 DOCUMENTS 

 D3.1 D3.2 

Architecture Design of the overall OCS architecture, 
including the OCS components and  
interfaces 

No refinement at architectural level, 
refinement done at OCS component 
level (e.g., VIM, Orchestrator, etc.) 

VIM Design of Finite State Machine (FSM) 
abstraction for EFS Entities, EFS Entity 
Descriptor, support of dynamic and 
heterogeneous resources and 
virtualization substrates 

Experimental validation of 
heterogeneous virtualization substrates, 
integration with the EFS Resource 
Orchestrator 

EFS 
Manager 

Defined scope, interaction and 
interfaces 

Monitoring procedures addressed for 
each use case with focus on migration 
and scaling of EFS Entities 

EFS 
Orchestrator 

Defined scope, interaction and 
interfaces 

Design and validation of EFS Resource 
Orchestrator with focus on state 
distribution, resource federation and 
federation algorithms 

EFS Stack 
Descriptor 

Defined scope and high-level 
information model 

Design and experimental validation of 
EFS Stack Descriptor 

EFS Entity 
Descriptor 

Defined scope and detailed 
information model 

Refinement, integration in the EFS Stack 
Descriptor and experimental validation 
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2 Refined design of the OCS 
In this section, we first provide an overview of the OCS architecture to help the reader to better 

understand this document. Next, we evaluate the capabilities of the most popular orchestration 

solutions suitable for 5G-CORAL and several conclusions are drawn in Section 2.2. The outcome 

of this study is then used to support the design of the EFS Stack Orchestrator and EFS Resource 

Orchestrator in Section 2.3. Finally, Section 2.4 describes and validates the placement algorithms 

of the EFS Resource Orchestrator. 

2.1 Overview of 5G-CORAL architecture and OCS components 

The following paragraphs summarise the main concept and components of the OCS as introduced 

in D3.1 [6]. While no architectural refinement is performed in this document, the internal design 

of some of the OCS components is further refined in the following sections. 

 
FIGURE 2-1: 5G-CORAL SYSTEM ARCHITECTURE 

Figure 2-1 shows the 5G-CORAL system architecture with the two main components:  

• Edge and Fog computing System (EFS): an EFS is a logical system subsuming Edge and 

Fog resources that belong to a single administrative domain. An EFS provides service 

platforms, functions, and applications on top of available resources, and may interact 

with other EFS domains. See D2.1 [7] and D2.2 [8] for additional information on EFS. 

• Orchestration and Control System (OCS): an OCS is a logical system in charge of 

composing, controlling, managing, orchestrating, and federating one or more EFS(s). An 

OCS comprises Virtualisation Infrastructure Managers (VIMs), EFS managers, and EFS 

orchestrators. An OCS may interact with OCSs of other administrative domains. 

The OCS components, which are shown from bottom to top in Figure 2-1, are:  

• A Virtualisation Infrastructure Manager (VIM) comprises the functionalities that are 

used to control and manage the interaction of the service platforms, functions, and 

applications with the edge and fog resources under its authority;  
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• An EFS Manager is responsible for the lifecycle management (e.g. instantiation, update, 

scaling and termination) of the service platforms, functions, and applications in the EFS;  

• An EFS Orchestrator is in charge of the orchestration and management of edge and fog 

resources and composing the EFS. An EFS Orchestrator comprises an EFS Resource 

Orchestrator and an EFS Stack Orchestrator. An EFS Resource Orchestrator supports 

accessing the edge and fog resources in an abstracted manner independently of any 

VIM. An EFS Stack Orchestrator is responsible for the EFS Stack lifecycle management 

operations (e.g. instantiation, update, query, scaling and termination); 

• An EFS Stack can be viewed architecturally as a forwarding graph of functions and/or 

application interconnected by supporting edge and fog resources and/or service 

platforms. An EFS Stack extends the ETSI NFV Network Services by also considering 

interconnections with applications and service platforms;  

• An EFS Stack Descriptor extends the ETSI NFV Network Service Descriptor by also 

considering applications and service platforms in addition to network functions. It 

describes the requirements and interconnections of one or more EFS Functions and EFS 

Applications between them or with the EFS Service Platform;  

• An EFS Entity Descriptor extends and combines ETSI NFV VNF and ETSI MEC App 

descriptors to uniformly describe the various characteristics of EFS Functions, EFS 

Applications, and EFS Service Platform. EFS Entity Descriptors are referenced and 

included into an EFS Stack Descriptor. 

2.2 Analysis of existing orchestrators 

In this section, we explore some of the most prominent orchestration solutions emerged from 

open-source communities, research projects and standardization groups, with the goal of 

assessing their benefits and their limits with respect to the 5G-CORAL framework. For the sake of 

completeness, in Appendix 9 we provide an exhaustive review of each orchestrator. We first 

introduce their key capabilities and highlight the specific features required in 5G-CORAL that 

are not yet supported. Also, we report in more details whether functional and non-functional 

requirements (see D3.1 [6]) are met or not. Also, Table 2-1 and Table 2-2 help the reader to 

understand how the reviewed orchestrators satisfy the 5G-CORAL requirements as well as to 

quickly identify which features are fully or partially supported. 

Among the existing capabilities suitable for 5G-CORAL, we note that auto-scalability and fault-

management are well supported by the most popular orchestrators, such as Open Source MANO, 

ONAP and OPNFV, as well as monitoring plugins and the presence of a pub/sub-based event 

engine, which are relevant features in 5G-CORAL. Moreover, some orchestrators, such as ONAP, 

provide support for complex lifecycle operations, including healing, scaling and recovery policies 

that can be defined at design time. It is also worth noting that Network Service Descriptor (NSD)1 

onboarding and basic validation are extensively supported by most of the orchestrators 

reviewed. In terms of non-functional requirements, we point out that large-scale deployment and 

multi-tenant support feature in all the solutions, which are key capabilities in 5G-CORAL.  

By contrast, federation is not yet supported by most of the orchestrators. When supported, like in 

the Kubernetes (K8s), it relates to the federation of multiple instances of the same orchestrator. 

Similarly, dynamic resource discovery and dynamic migration are not supported, which are 

crucial operations within the 5G-CORAL framework to ensure automatic service deployment and 

zero-touch management. As an example, ONAP does not currently provide clear guidelines on 

                                                 
1 Network Service Descriptor (NSD) is the terminology used in ETSI NFV [10] to describe a graph of Virtual 
Network Functions and their requirements. In 5G-CORAL we use the term EFS Stack to encompass and unify 
both ETSI NFV and ETSI MEC descriptors. 
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how to discover and add physical resources at runtime, neither does Cloudify, which does not 

track the resource availability in the managed infrastructure. Ultimately, the lack of such features 

and capabilities raises the need for enriching 5G-CORAL and incorporating new features into 

the framework, as it will be described in detail in the following sections. 

TABLE 2-1: OVERVIEW OF 5G-CORAL FUNCTIONAL REQUIREMENTS AND RELATED SUPPORT 

PROVIDED BY THE ORCHESTRATORS 

Functional Requirement 
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Support of harvesting computing 
capabilities from low-end 
resources 

Yes No No Partial Yes Partial No 

Support of harvesting computing 
capabilities from mobile 
resources 

Partial No No Partial Partial Partial No 

Support of discovery, 
configuration, monitoring, 
allocation, etc. of relevant 
hardware capabilities  

Yes Partial No Yes Partial Partial Yes 

Support of integration including 
at runtime of heterogeneous 
resources in terms of software 
and hardware capabilities  

Yes Yes Yes Yes Yes Partial Partial 

Support of federation including 
at runtime of OCS components 

No No Partial No No Partial  Partial 

Support of the interworking with 
resources external to the OCS  

Yes Yes Yes Yes Yes Partial  Partial 

TABLE 2-2: OVERVIEW OF 5G-CORAL NON-FUNCTIONAL REQUIREMENTS AND RELATED SUPPORT 

PROVIDED BY THE ORCHESTRATORS 

Non-Functional Requirement 
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Support of deployment of OCS 
on low end devices  

No No No No No Partial  No 

Support of deployment of OCS 
on mobile devices  

No No No No No Partial No 

Availability and self-healing 
mechanisms in error-prone 
environments 

No Partial Yes Yes Partial Partial Yes 

Support of large deployments in 
terms of number of resources and 
geographic areas 

Yes Yes Yes Yes Yes Partial Yes 

Support of plugins for 
extensibility 

Yes Yes Yes Yes No Partial Partial 

Capability to adapt to workload 
changes by provisioning and de-
provisioning resources in an 
automated manner 

No Partial Yes No Partial Partial Yes 

Support of multiple tenants 
participating and co-existing in 
the same environment 

Yes Yes Yes Yes Yes Partial  Yes 
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2.3 Design of a distributed OCS  

As it can be seen from Table 2-2, the 5G-CORAL non-functional requirements for the OCS are 

far from being met by current orchestrators. Particularly, today’s implementations are tailored to 

datacentre environments where resources are fixed, and high bandwidth is available. However, 

this assumption is not true for fog and edge environments where heterogeneous resources are 

geographically distributed. This makes it difficult to support OCS deployment on low-end devices 

which may also be mobile and distributed across multiple locations. In D3.1 [6], we introduced 

the development of an OCS prototype (i.e., VIM) which had started under the name of fog05 

and the initial code was released as open source on GitHub [4]. D3.1 focused on defining a 

plugin-based architecture and a Finite State Machine (FSM) abstraction for the EFS Entities. In this 

deliverable, we tackle the problem of how to distribute the various OCS components, including 

the VIM (e.g., fog05) and the newly designed EFS Resource and Stack Orchestrators. The 

prototype of the orchestrators, dubbed as f0rce (i.e., fog orchestration engine), is published as 

open source on GitHub [5]. 

The key idea for enabling the OCS deployment on low-end and mobile device is to move away 

from the monolithic and datacentre-focused implementation. That is, the VIM and the 

Orchestration should be decomposed in atomic functionalities and their internal state distributed 

across the network. In this way, each resource can contribute to the overall OCS functionalities 

and the same functionalities can be replicated within the network to provide increased fault-

tolerance and availability. State distribution can be thought as a distributed database where the 

information meaningful for the OCS is stored. However, in contrast to classical database design 

where data is meant to be persistently stored, state distribution in our case relates more to the 

capability to store the runtime information useful for any OCS procedures. In practical terms, this 

can be reduced to storing the internal variables of OCS in such a way that they can be read and 

written anywhere. Therefore, we consider a distributed key-value store as the most suitable 

choice for distributing the OCS state information.  

2.3.1 Distributed key-value store 

Key-value stores work in a very different fashion from the better-known relational databases 

(e.g., MariaDB, MySQL, etc.). Relational databases pre-define the data structure in the database 

as a series of tables containing fields with well-defined data types. In contrast, key-value stores 

treat the data as a single opaque collection (e.g., associative arrays or hash tables), which may 

have different fields for every record. This offers considerable flexibility and more closely 

follows modern concepts like object-oriented programming. Inherently, a distributed key-value 

store is a key-value store whose data is not stored in a single location but rather at different 

locations across the network. Several approaches exist for distributing the store: full replica, 

partial replicas, on-demand, etc., differing on the amount of data being replicated and on the 

timeliness of replication. However, the traditional approaches and existing implementations are 

not well suited for constrained, mobile and very distributed resources as in the edge and fog 

environment. This is because they have been designed with a data-centre infrastructure in mind. 

The approach adopted in 5G-CORAL is a distributed key-value store characterised by eventual 

consistency, scalability and location transparency. This allows to share data across distinct 

devices along the cloud-to-thing continuum and across different technologies and networks. As a 

result, the OCS is provided with a unified access to those data so that each portion of the OCS 

only needs to retain, store and manage the status information that are local to the specific node. 

That is, data is globally accessible without requiring local replication as in traditional key-value 

stores. In this way, the OCS as a whole can access data that are locally managed by each 

portion of the OCS without the need to know where the data resides, providing location 

transparency. In order to fully support such characteristic, the distributed key-value store needs 
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to leverage a transport protocol tailored for such scenario. In 5G-CORAL we consider Zenoh [9] 

as reference transport protocol for the distributed key-value store. Additional information, as 

well as performance evaluation, can be found in D2.2 [8]. Finally, eventual consistency informally 

guarantees that, if no new updates are made to a given data item, eventually all accesses to 

that item return the last updated value. This allows the OCS to keep operating (to some extent) 

upon failure of some of its components.  

The distributed key-value store organizes the data in a tree structure following the Uniform 

Resource Identifier (URI) definition [11]. Hence, the key of each value has the following format: 

/s1/s2/…/sn 

As an example, let’s consider the key “/ocs/vim/id1/entity/id2/info” as to contain the 

information regarding the entity with id2 under the control of vim id1. By using the URI format, it 

is possible to use wildcard and queries when accessing the data, thus enabling a fine control on 

the data. For example, the key “/ocs/vim/id1/entity/*/info” can be used to access the data of 

all the entities under the control of vim id1. Each value is defined as a tuple: 

𝑣 = < 𝑒, 𝑐, 𝑡 > 

Where e is the encoding, c represents the content and t is a logical timestamp for ordering. In 

addition, a pub/sub mechanism is considered for notification to promptly react to changes in the 

internal state of OCS. For instance, the EFS Resource Orchestrator can subscribe to the monitoring 

information of a given resource and being notified whenever the RAM consumption is updated. 

Finally, a Remote Procedure Call (RPC) is considered in order to allow different OCS components 

and portions to interact with each other without the need to store the data in the network. 

Finally, the following primitives are defined: 

• Put, update, remove, get: data are published via put/update. OCS components can 

then query the data with get. Finally, remove deletes the data from the data store; 

• Subscribe/unsubscribe: an OCS component can subscribe to specific keys (including 

wildcards) and being notified whenever the value associated to that key changes. 

Unsubscribe removes the subscription; 

• Register_eval, unregister_eval, eval: OCS components can expose functionalities to 

other components by registering specific functions for RPC. OCS components can 

remotely execute functionalities via the eval primitive. 

In the following section, we report few examples on how to use the distributed key-value store 

concept and primitives to implement the VIM and Orchestrator, namely fog05 and f0rce.  

2.3.2 Distributed VIM 

Each EFS resource participating in the distributed VIM is requested to run an agent for the 

management of the node. Specifically, such agent takes care of advertising the node to the other 

nodes composing the distributed VIM, instantiating and terminating the EFS Entities on the node, 

etc. Moreover, the agent needs to keep and share the state of the EFS resources in such a way 

that all the nodes composing the distributed VIM can cooperate and operate as a single logical 

entity. Figure 2-2 illustrates the EFS resource (i.e., node)2, the agent and the various distributed 

storages envisaged for enabling a distributed VIM along the cloud-to-thing continuum. Three 

types of storage are considered for the VIM: 

                                                 
2 The agent running on each node may simultaneously support multiple virtualization technologies. The 
necessary support at VIM level is provided by configurable plugins which expose a Finite State Machine 
(FSM) abstraction for EFS Entities. More information is available in D3.1 [6]. 
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• Local storage: this storage is used to store the status of the compute node locally on the 

node itself. This storage is used for communication between the agent and various 

plugins running on the node3. This storage also stores the configuration of the node and 

the real time status of the node. This storage is not shared on the network. 

• Constrained storage: this storage is a special case of the local storage and it is needed 

by those resource-constrained devices uncapable of running the VIM agent (e.g., 

microcontrollers). In this case, a powerful node can host the local storage of a third node 

which in turn it is updated it over the network (e.g., using TCP, Zenoh, etc.). In practical 

term, the powerful node acts as a proxy for the constrained device in similar fashion as 

happens today with an IoT gateway. 

• Global storage: this storage is shared across the network and stores the global state of 

the whole VIM. It is worth mentioning that this storage as a whole includes the complete 

state of the VIM. However, each node is not required to store locally all the state. 

Indeed, each node contains a portion of the overall state which can be combined with 

other portions from the other nodes to form the global state. 

 

FIGURE 2-2: VIM AGENT 

Summarising, each compute node that is powerful enough to run an agent will have its own 

instance of the distributed key-value store. Such instance takes care of the node-local information 

and portion of the global information. In the case of constrained devices, the agent and the store 

are remotely hosted on a third node acting as a proxy. Finally, one of the main duties of the 

agent is to bridge information across the different storages in the VIM in such a way that 

information can be read from the global storage and written on the local storage and vice versa. 

To tackle the volatility and the errors that could occur in a distributed environment, each of the 

three types of storage is decomposed in two sub-storages: 

• Actual storage: it stores the actual stable state; 

• Desired storage: it stores the next desired stable state. 

This separation allows to implement atomic transactions in the VIM. An atomic transaction is an 

indivisible and irreducible series of operations such that either all occur, or nothing occurs. By 

doing so, the consistency on the VIM global state is guaranteed in case of errors. Indeed, in the 

unfortunate case of some operation failing, all the VIM components and nodes can roll back to 

the state stored in the actual storage. Only when all the operations succeed, the actual storage is 

then updated. Using an analogy coming from control theory, the desired storage can be seen as 

                                                 
3 Details about the plugin-based architecture of the VIM to support multiple virtualization technologies can 
be found in D3.1 [6]. 
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the set point (i.e., the state to achieve) and the actual storage as the expected exit of the system. 

Combining the three main storages with the two sub-types, it turns out that the distributed VIM 

consists of a total of six storages: 

• Desired global storage: it stores the desired state of the whole VIM. It can be used to 

send requests to the VIM; 

• Actual global storage: it stores the actual state of the whole VIM. It can be used to 

retrieve information from the VIM; 

• Desired node-local storage: it stores the desired state of a single node. This store is 

hidden inside the VIM and is used for VIM operations. It can be written only by the VIM. 

• Actual node-local storage: it stores the actual state of a single node. It is internal to the 

VIM and it can be written only by the VIM agent running on the node hosting it; 

• Desired node-local constrained storage: like the desired node-local but for constrained 

compute nodes; 

• Actual node-local Constrained Storage: like the actual node-local but for constrained 

computing nodes. 

After having described how the state is distributed in the VIM, the following describes how data 

is organised in the distributed key-value store. Specifically, it describes the URI structure used by 

the VIM to archive data separation between the different storages, minimizing data replication, 

and support multi-tenancy. Namely, in order to minimize differences between the six storages, 

the VIM adopts a three tree structures: 

• Global Tree: for both actual/desired global storages; 

• Local Tree: for both actual/desired node-local storages; 

• Constrained Local Tree: for both actual/desired node-local constrained storages. 

This allows to easily switch between the actual and desired storages facilitating the development 

and making the information in the different storages semantically coherent. 

 
FIGURE 2-3: DISTRIBUTED VIM GLOBAL STORAGE URI TREE 

Figure 2-3 depicts part of the URI structure for the global storage4. It is possible to see an 

organization in systems, that can be mapped to administrative domains and tenants in order to 

facilitate the multi-tenancy support. It is worth highlighting that portions of this tree are meant to 

be stored in persistent storages and replicated through the whole VIM, like information about the 

tenants, users and configurations. The other two tree structures can be considered as portions of 

                                                 
4 For sake of space and readability it is not possible to report the full tree structure in this document. The 
full structure is available on GitHub: https://github.com/eclipse/fog05  

https://github.com/eclipse/fog05


D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 20 

H2020-761586 

                                                                                                                                  

the global tree. In particular, they can be seen as sub-trees starting from the node-id, thus limiting 

the global view of the VIM and pointing to the information relevant to a specific node. 

To better understand how to use the trees, let’s consider the example of an EFS Entity already 

onboarded on a given node that needs to be executed. The information about the EFS Entity is 

stored in the actual global tree in the following key: 

/agfos/id1/tenants/id2/nodes/id3/fdu/id4/instances/id5/info 

The tenant owning the EFS Entity is identified by id2. The node is identified by id3 and the EFS 

Entity is identified by id4. Finally, the specific EFS Entity instance5 is identified by id5. Let’s call 

this key as key1. In this example, the information contained in key1 returns that EFS Entity is in the 

CONFIGURED state6. The goal is to execute the EFS Entity that implies changing its state to RUN. 

In order to achieve the state transition, it is necessary to write the target state in the desired 

global store at the following URI (let’s call it key2): 

/dgfos/id1/tenants/id2/nodes/id3/fdu/id4/instances/id5/info 

The value written in key2 is the same value that is contained in key1 with status field updated to 

RUN. The write in the desired global storage causes the triggering of the agent in the node id3, 

that (i) verifies if the instance is actually in the node, (ii) finds the plugin in charge of the instance, 

and (iii) writes the target state required in the desired local store using a different key (let’s call it 

key3): 

/dgfos/id3/runtimes/id6/fdu/id4/instances/id5/info 

This write triggers the plugin id6 (e.g., LXD runtime) to start the EFS Entity. Upon successful 

operation, the agent updates the instance state in the actual local store. This update results in the 

agent updating the new instance state on key1 on the actual global store. At this point, the 

execution request is considered finalized. The information in the desired global store is finally 

removed and the transaction is complete. 

2.3.3 Distributed EFS Stack and Resource Orchestrator 

Like the distributed VIM presented in Section 2.3.2, we leverage a distributed key-value store 

also for the design of the 5G-CORAL distributed EFS Stack and Resource Orchestrator. Figure 

2-4 shows the components and the internal architecture of the EFS Stack and Resource 

Orchestrator. For what concerns the EFS Stack Orchestrator (EFS-SO) (shown in orange in Figure 

2-4), multiple instances can be available, where each instance may be responsible of a subset of 

the overall EFS Stacks managed by the OCS. The information model of the EFS Stack as treated 

by the EFS-SO can be found in Appendix 10. The main features of the EFS-SO are, therefore, 

the following: 

• Expose a REST API to the users/OSS/BSS to manage the lifecycle of the EFS Stacks, 

including onboarding, instantiation, and termination. EFS-SO REST API could be 

presented as a Graphical User Interface (GUI) to ease the interaction with the human 

user. An example of such GUI is presented later in Section 5.1; 

• Validate the EFS Stack according to the information model of Appendix 10; 

• Contact the EFS-RO to enforce lifecycle management decisions; 

• Keep a catalogue of existing EFS Stacks in the system. 

For what concerns the EFS-RO (shown in green in Figure 2-4), three main components can be 

identified: 

                                                 
5 An EFS Entity may have multiple instances, e.g., for load balancing and/or high availability. 
6 Additional information on the Finite State Machine (FSM) abstraction can be found in D3.1 [6]. 
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• EFS Resource Orchestrator Engine: it oversees keeping track of the resources under its 

control and allocating/arbitrating the usage of those resources. It works on an abstract 

network graph representation of the underlying infrastructure. It is also in charge of 

mapping the EFS Stack (which is represented in form of a graph) received by the EFS-

SO onto the underlying infrastructure. Section 2.4 proposes a placement algorithm for 

volatile environments;  

• VIM connector: it oversees the connection to the VIMs and translates the abstractions 

used in the EFS-RO Engine to the different VIM implementations. This includes 

authentication with the VIMs, implementations of VIM-specific APIs and information 

models. For example, the information model reported in D3.1 [6] can be used with 

fog05 as a VIM. Moreover, the VIM connector retrieves the infrastructure graph (i.e., 

nodes and links) from the VIM and exposes it to the EFS-RO Engine; 

• Cloud connector: it oversees the connection to various Clouds. It fulfils the same tasks as 

the VIM connector, without retrieving the infrastructure graph. By definition, public Clouds 

(e.g., Amazon Web Services, Microsoft Azure, etc.) do not expose their internal 

infrastructure topology.   

 
FIGURE 2-4: EFS-RO COMPONENTS AND INTERNAL ARCHITECTURE 

Multiple instances of each EFS-RO component (i.e., EFS-RO Engine, VIM connector, and Cloud 

connector) can be available for high-availability and redundancy, by leveraging a distributed 

key-value store. In this way the internal state of the EFS-SO and EFS-RO is distributed across the 

network in different instances which can be retrieved at any time. Four storages are considered: 

• Stack storage: it contains the information shared between the EFS-SO and the EFS-RO 

regarding the existing EFS Stacks. There is no information stored about the underlying 

infrastructure available in this storage; 

• Global storage: it contains the information about the overall underlying infrastructure, 

including the status, and the mapping of the EFS Stack onto the underlying infrastructure; 

• VIM storages: they contain the information about the infrastructure managed by the 

different VIMs and the status of the entities running on each VIM. Additionally, each VIM 

reads and writes information from a separate storage in order to avoid direct leaks 

between VIMs; 
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• Cloud storages: they contain the information about the status of the entities running on 

each Cloud. Additionally, each Cloud connector reads and writes information from a 

separate storage in order to avoid direct leaks between Cloud; 

Similar to the distributed VIM proposed in Section 2.3.2, in order to tackle the volatility and the 

errors that could occur in a distributed environment, each of the four storage types is further 

decomposed in two additional sub-storages: 

• Actual storage: it stores the actual stable state; 

• Desired storage: it stores the next desired stable state. 

For additional information about the actual and desired storages see Section 2.3.2. Figure 2-5 

shows the URI tree for the EFS-RO global storage. In order to minimize the differences between 

the global stack (referenced as tenant), vim, and cloud storages, the global storage is structured 

in such a way the vim, stack, and cloud storages are sub-trees of the global storage. Specifically, 

the vim tree has the vim-id as a root while the stack storage has the tenant-id in as root. 

 
FIGURE 2-5: DISTRIBUTED EFS-RO GLOBAL STORAGE URI TREE 

In the following we provide an example of how to use the proposed storages. Let’s consider the 

case of instantiating an EFS Stack starting from the EFS-SO. A user (e.g., tenant id1) uploads the 

EFS Stack descriptor on the EFS-SO. After validating the descriptor, the EFS-SO writes on the 

desired stack storage (i.e., dsf0rce) the descriptor to notify the EFS-RO. The URI is the following: 

/dsf0rce/tenant/id1/entity/id2 

At this point the EFS-RO starts the onboarding of the entity (i.e., adding the entity to the 

catalogue). Once the onboarding is completed, the EFS-RO writes the descriptor from the desired 

to the actual storage. Next, the EFS-SO may request the instantiation of the entity by writing the 

desired state to: 

/dsf0rce/tenant/id1/entity/id2/instance/id3 

At this point, the EFS-RO execute the placement algorithm to identify the target VIM with the 

necessary resources to host the entity. Next, the EFS-RO writes the desired state to the VIM:  

/dvf0rce/domain/id1/ entity/id2/instance/id3 

As a next step, the VIM connector proceeds to instantiate the entity on the VIM. Upon successful 

instantiation, the VIM connector writes the state of the entity on the actual storage. In turn, the 

EFS-RO writes the actual state on the global storage and on the stack storage to finally notify 

the EFS-SO.  

The resulting implementation of the EFS-SO and EFS-SO has been published as open source 

under the name of f0rce (i.e., fog orchestration engine) [5]. This implementation and exemplary 

procedure are then experimentally validated and evaluated in Section 2.3.3. 
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2.4 Placement algorithm for volatile environments 

As introduced in D3.1 [6], the EFS Stack harmonizes and extends the ETSI MEC and ETSI NFV 

information model to encompass information that is relevant in the edge and fog environment, 

such as I/O devices, network interfaces, hardware accelerators, and location constraints. In D3.1 

[6] we reported the information model relevant at VIM level. In this deliverable, we extended 

that information model up to the orchestrator level. By doing so, there is no need for the 

developer to specify the target infrastructure for the deployment upon on-boarding7. Instead, 

the EFS Resource Orchestrator identifies the most suitable resource for running the EFS Stack 

based on the requirements. The full EFS Stack information model can be found in the Appendix 

10. The process of mapping the EFS Stack onto the underlying infrastructure is called placement. 

In the following, we design a placement algorithm suitable for the edge and fog environment 

where the following constraints are considered: 

• EFS Atomic Entities requirements (e.g., CPU, memory, disk); 

• Virtual Links (VL) requirements (e.g., bandwidth, delay); 

• EFS Stack location; 

• Radio Access Technologies (RAT); 

• Infrastructure volatility; 

• Infrastructure devices’ lifetime (e.g., remaining battery of a fog node). 

2.4.1 EFS Stack analytical modelling 

The EFS Stack is encoded as a directed labelled graph 𝐺𝐸𝐹𝑆, with its EFS Atomic Entities 𝑣 ∈

𝑉(𝐺𝐸𝐹𝑆) and virtual links 𝐸(𝐺𝐸𝐹𝑆). Every EFS Atomic Entity 𝑣 ∈ 𝑉(𝐺𝐸𝐹𝑆) imposes an amount of 

cpu 𝑐(𝑣), memory 𝑚(𝑣), and disk 𝑘(𝑣); and it needs to be deployed on hardware equipment 

capable of providing such resources. Similarly, an EFS Atomic Entity may require to be executed 

within a specific geographical region (e.g., area, location), which we describe as a circle 

𝐵(𝑝(𝑣), 𝑠(𝑣)) of center p(v) and radius s(v). Additionally, it may require a set of Radio Access 

Technologies (RATs) that must be available on the edge/fog node in order to be executed. 

In the EFS Stack, the VLs are directed edges (𝑣1, 𝑣2) ∈ 𝐸(𝐺𝐸𝐹𝑆) interconnecting two EFS Atomic 

Entities. They represent the traffic flowing in a specific direction (from 𝑣1 to 𝑣2) with a specific 

bandwidth requirement 𝑏(𝑣1, 𝑣2) in Mbps. In the EFS Stack, the end-to-end propagation delay is 

controlled throughout the delay constraints of the VLs, and the physical links used to transport 

their traffic have to satisfy the imposed delays 𝑑(𝑣1, 𝑣2),  ∀(𝑣1, 𝑣2) ∈ 𝐸(𝐺𝐸𝐹𝑆). 

2.4.2 EFS Virtualization Infrastructure analytical modelling 

Similar to the EFS Stack, the compound of infrastructure resources is a directed graph 𝐺𝑖𝑛𝑓𝑟𝑎 that 

includes the edge and fog resources (e.g., nodes, servers, switches, antennas, etc.). Every EFS 

resource is a node ℎ ∈ 𝑉(𝐺𝑖𝑛𝑓𝑟𝑎) with a CPU 𝑐(ℎ), memory 𝑚(ℎ), disk 𝑘(ℎ), and a set of RAT 

features 𝑟(ℎ) . The connection between the infrastructure nodes is done with directed edges 

(ℎ1, ℎ2) that belong to the edges of the infrastructure graph 𝐸(𝐺𝑖𝑛𝑓𝑟𝑎), and each of them 

provides a traffic capacity 𝑏(ℎ1, ℎ2) ensuring an end-to-end delay 𝑑(ℎ1, ℎ2). 

Given the volatility of the edge and fog environment, each EFS resource is characterized by a 

reliability parameter ν(ℎ) ∈ [0,1] to rank their capability of providing an uninterrupted service. 

In our work, this parameter is multiplied by a time interval (𝑡0, 𝑡1) to determine for how long the 

                                                 
7 The EFS Resource Orchestrator takes the decision of where deploying each EFS Atomic Entity. Therefore, 
such information needs to be provided to the VIM and properly described in the descriptor at VIM level. 
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resource is continuously available. In our model the reliability of a link between two infrastructure 

nodes is given by the minimum of the two nodes that it connects (i.e., ν(ℎ1, ℎ2) =

min{ν(ℎ1), ν(ℎ2)}). Regarding the cost of using the infrastructure (i.e., pricing), we associate the 

costs ρ𝑐(ℎ), ρ𝑚(ℎ), ρ𝑘(ℎ), for the usage of the CPU, memory and disk, respectively. Finally, 

ρ𝑏(ℎ1ℎ2) represents the cost of allocating a Mbps on a link (ℎ1, ℎ2) ∈ 𝐸(𝐺𝑖𝑛𝑓𝑟𝑎). Table 2-3 

reports the notation used in the placement algorithm for a quick reference. 

TABLE 2-3: PLACEMENT ALGORITHM NOTATION 

Notation Type Description 

𝑮𝑬𝑭𝑺 Graph EFS Stack directed labelled graph 

𝑽(𝑮𝑬𝑭𝑺) Set EFS Atomic Entities composing the EFS Stack 

𝑬(𝑮𝑬𝑭𝑺) Set EFS Stack VLs 

𝑮𝒊𝒏𝒇𝒓𝒂 Graph Infrastructure directed graph 

𝑽(𝑮𝒊𝒏𝒇𝒓𝒂) Set Infrastructure nodes (e.g., fog, edge, cloud, switches) 

𝑬(𝑮𝒊𝒏𝒇𝒓𝒂) Set Infrastructure links 

𝒄(𝒗) Parameter CPU required by EFS Atomic Entity 𝑣 

𝒎(𝒗) Parameter Memory required by EFS Atomic Entity 𝑣 

𝒌(𝒗) Parameter Disk required by EFS Atomic Entity 𝑣 

𝒃(𝒗𝟏, 𝒗𝟐) Parameter Bandwidth required by VL (𝑣1, 𝑣2) 

𝒅(𝒗𝟏, 𝒗𝟐) Parameter Maximum delay required by VL (𝑣1, 𝑣2) 

𝒓(𝒗) Set Radio technologies required by EFS Atomic Entity 𝑣 

𝒑(𝒗) Parameter Centre of region 𝐵(𝑝(𝑣), 𝑠(𝑣)) where EFS Atomic Entity 𝑣 

must be deployed 

𝒔(𝒗) Parameter Radius of region 𝐵(𝑝(𝑣), 𝑠(𝑣)) where EFS Atomic Entity 𝑣 

must be deployed 

𝒓(𝒉) Set Radio technologies offered by infrastructure node ℎ 

𝒑(𝒉) Parameter Coordinates of infrastructure node ℎ 

𝛒𝒄(𝒉) Parameter CPU unit cost at infrastructure node ℎ 

𝛒𝒎(𝒉) Parameter Memory unit cost at infrastructure node ℎ 

𝛒𝒌(𝒉) Parameter Disk unit cost at infrastructure node ℎ 

𝛒𝒃(𝒉𝟏, 𝒉𝟐) Parameter Bandwidth unit cost at link (ℎ1, ℎ2) 

𝛎(𝒉) Parameter Reliability of infrastructure node ℎ 

𝛎(𝒉𝟏, 𝒉𝟐) Parameter Reliability of link (ℎ1, ℎ2) 

𝛅𝒉(𝒗) Variable Binary variable to tell if EFS Atomic Entity 𝑣 is deployed at 

infrastructure node ℎ 

𝛅𝒉𝟏,𝒉𝟐
(𝒗𝟏, 𝒗𝟐) Variable Binary variable to tell if VL (𝑣1, 𝑣2) is deployed at link 

(ℎ1, ℎ2) 

2.4.3 Placement heuristics 

Upon the arrival of an EFS Stack instantiation request, the placement algorithm needs to decide 

if an infrastructure node ℎ is capable of hosting the EFS Atomic Entity 𝑣, i.e., δℎ(𝑣) = 1, and if 

the traffic between (𝑣1, 𝑣2) can be steered over an infrastructure link (ℎ1, ℎ2), i.e., δℎ1,ℎ2
(𝑣) =

1. Such decision affects the consumption of resources across the infrastructure, and how much 

delay is induced by the propagation delay of the selected physical links. 

We denote κℎ(𝑣)  as the cost of deploying an EFS Atomic Entity 𝑣 ∈ 𝑉(𝐺𝐸𝐹𝑆) , and 

κℎ1,ℎ2
(𝑣1, 𝑣2)  as the cost of mapping VL (𝑣1, 𝑣2) ∈ 𝐸(𝐺𝐸𝐹𝑆)  on top of link (ℎ1, ℎ2) ∈

𝐸(𝐺𝑖𝑛𝑓𝑟𝑎). Formally they can be defined as: 
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κℎ(𝑣) = ρ𝑐(ℎ) ⋅ 𝑐(𝑣) + ρ𝑚(ℎ) ⋅ 𝑚(𝑣) + ρ𝑘(ℎ) ⋅ 𝑘(𝑣),  ℎ ∈ 𝑉(𝐺𝑖𝑛𝑓𝑟𝑎),  𝑣 ∈ 𝑉(𝐺𝐸𝐹𝑆) (1) 

κℎ1,ℎ2
(𝑣1, 𝑣2) = ρ𝑏(ℎ1, ℎ2) ⋅ 𝑏(𝑣1, 𝑣2),  (ℎ1, ℎ2) ∈ 𝑉(𝐺𝑖𝑛𝑓𝑟𝑎),  (𝑣1, 𝑣2) ∈ 𝐸(𝐺𝐸𝐹𝑆) (2) 

The proposed placement algorithms solve the following optimization problem in a greedy 

fashion: 

min ∑ ∑ δℎ1
(𝑣1)κℎ1

(𝑣1)

(𝑣1,𝑣2)∈𝐸(𝐺𝐸𝐹𝑆)(ℎ1,ℎ2)∈𝐸(𝐺𝑖𝑛𝑓𝑟𝑎)

+ δℎ2
(𝑣2)κℎ2

(𝑣2)

+ δℎ1,ℎ2
(𝑣1, 𝑣2)κℎ1,ℎ2

(𝑣1, 𝑣2) 

(3) 

s. t. : ∑ c(v)δh(v)

v∈\V(GEFS)

≤ c(h),  ∀h ∈ V(Ginfra) (4) 

∑ m(v)δh(v)

v∈\V(GEFS)

≤ m(h),  ∀h ∈ V(Ginfra) (5) 

∑ k(v)δh(v)

v∈\V(GEFS)

≤ k(h),  ∀h ∈ V(Ginfra) (6) 

∑ b(v1, v2)δh1,h2
(v1, v2)

(v1,v2)∈E(GEFS)

≤ b(h1, h2),  ∀(h1, h2) ∈ E(Ginfra) (7) 

∑ d(h1, h2)δh1,h2
(v1, v2)

(h1,h2)∈E(Ginfra)

≤ d(v1, v2),  ∀(v1, v2) ∈ E(GEFS) (8) 

∑ ∑ 1r(h)(γ)

γ∈r(v)h∈V(Ginfra)

⋅ δh(v) > 0,  ∀v ∈ V(GEFS):  |r(v)| > 0 (9) 

δh(v)D(p(v), p(h)) ≤ s(v),  ∀h ∈ V(Ginfra),  v ∈ V(GEFS):  s(v) ≠  ∞ (10) 

Where 𝐷: ℝ2 × ℝ2 → ℝ  denotes the Haversine distance [12] between two coordinates. 

Equations (3)-(10) represent the optimization problem that minimizes the deployment cost of 

those solutions that keep below the available resources and meet location constraints and radio 

requirements of the EFS Atomic Entities. In the following sections, two heuristic algorithms are 

proposed: the first focuses on cost optimization and the second on lifetime maximization. 

2.4.3.1 Cost greedy heuristic 

Our first heuristic aims to minimize the deployment cost stated in (1) and (2), while meeting all the 

other constraints. It iterates through each VL present in the EFS Stack, and then finds the cheapest 

infrastructure nodes capable of hosting the EFS Atomic Entities and the VLs. Then it looks for the 

shortest path to steer the virtual link traffic, using as weight for the shortest path graph algorithm 

the bandwidth cost of each link. Algorithm 2-1 illustrates the pseudo-code of the algorithm. 
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ALGORITHM 2-1: GREEDY COST HEURISTIC 
 Data: 𝐺𝐸𝐹𝑆, 𝐺𝑖𝑛𝑓𝑟𝑎 

 Result: {δℎ(𝑣)}ℎ∈𝐺𝑖𝑛𝑓𝑟𝑎,𝑣∈𝐺𝐸𝐹𝑆
, {δℎ1,ℎ2

(𝑣1, 𝑣2)}
ℎ1,ℎ2∈𝐺𝑖𝑛𝑓𝑟𝑎,𝑣1,𝑣2∈𝐺𝐸𝐹𝑆

 

1. for (𝑣1, 𝑣2) ∈ 𝐸(𝐺𝐸𝐹𝑆): 
2. ℎ1 ← 𝑐ℎ𝑒𝑎𝑝𝑒𝑠𝑡_ℎ𝑜𝑠𝑡(𝑣1) if δℎ(𝑣1) < 1,  ∀ℎ ∈ 𝐺𝑖𝑛𝑓𝑟𝑎 

3. ℎ2  ← 𝑐ℎ𝑒𝑎𝑝𝑒𝑠𝑡_ℎ𝑜𝑠𝑡(𝑣2) if δℎ(𝑣2) < 1,  ∀ℎ ∈ 𝐺𝑖𝑛𝑓𝑟𝑎 

4. 𝐺’_{𝑖𝑛𝑓𝑟𝑎}  ← ⟨𝑉(𝐺_{𝑖𝑛𝑓𝑟𝑎}), 𝐸(𝐺_{𝑖𝑛𝑓𝑟𝑎})  ∖ { (ℎ_1, ℎ_2):  𝑏(ℎ_1, ℎ_2)  
<  𝑏(𝑣_1, 𝑣_2)  ∨ 𝑑(ℎ_1, ℎ_2)  >  𝑑(𝑣_1, 𝑣_2) } ⟩ 

5. 𝑝𝑎𝑡ℎ ← 𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎(𝐺’𝑖𝑛𝑓𝑟𝑎 , 𝑤𝑒𝑖𝑔ℎ𝑡 = ρ𝑏) 
6. 𝑐𝑜𝑛𝑠𝑢𝑚𝑒_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠(ℎ1, 𝑣1) 
7. 𝑐𝑜𝑛𝑠𝑢𝑚𝑒_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠(ℎ2, 𝑣2) 
8. 𝑐𝑜𝑛𝑠𝑢𝑚𝑒_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠(𝑝𝑎𝑡ℎ, (𝑣1, 𝑣2)) 
9. δℎ1

(𝑣1) = 1 
10.  δℎ2

(𝑣2) = 1 
11. δℎ1,ℎ2

(𝑣1, 𝑣2) = 1,  ∀(ℎ1, ℎ2) ∈ 𝑝𝑎𝑡ℎ 
12. end for 

Where 𝑐ℎ𝑒𝑎𝑝𝑒𝑠𝑡_𝑐𝑜𝑠𝑡(𝑣1) is a function that finds the minimum cost host to deploy EFS Atomic 

Entity 𝑣1, and 𝑐𝑜𝑛𝑠𝑢𝑚𝑒_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠(ℎ1, 𝑣1) allocates the CPU, memory and disk for 𝑣1 on host 

ℎ1 , and 𝑐𝑜𝑛𝑠𝑢𝑚𝑒_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠(𝑝𝑎𝑡ℎ, (𝑣1, 𝑣2))  allocates bandwidth for VL (𝑣1, 𝑣2)  along a 

physical path. 

2.4.3.2 Fog greedy heuristic 

In this second heuristic, rather than minimizing the deployment cost, the algorithm tries to 

maximize the lifetime of the deployed EFS Stack. That is, objective function (3) becomes: 

max ∑ ∑ 𝛿ℎ(𝑣)𝑙(ℎ)

𝑣∈𝑉(𝐺𝐸𝐹𝑆)ℎ∈𝑉(𝐺𝑖𝑛𝑓𝑟𝑎)

 
(11) 

which implies that the selection of hosts for each EFS Atomic Entity 𝑣  now depends on the 

reliability provided by the infrastructure node. For example, imagine that an EFS Atomic Entity 𝑣 

periodically sends sensor-related information. Such EFS Atomic Entity is expected to run in the 

time interval (𝑡0=12:00, 𝑡1 =15:00). Then, let’s consider a fog compute node with reliability 

ν(ℎ1) = 0.8 and a second one with reliability ν(ℎ2) = 0.5. This means that ℎ1 guarantees 𝑣 to 

be available for 0.8 ⋅ 3 hours, while it would only be available only for 0.5 ⋅ 3 hours at ℎ2. Then, 

no matter the deployment cost, the fog greedy heuristic will choose ℎ1. The same procedure is 

done when looking for the physical links that steer each VL traffic, so the weight in the Dijkstra 

heuristic will be the link reliability. Algorithm 2-2 illustrates the pseudo-code of the algorithm. 

ALGORITHM 2-2: FOG GREEDY HEURISTIC 
 Data: 𝐺𝐸𝐹𝑆, 𝐺𝑖𝑛𝑓𝑟𝑎 

 Result: {δℎ(𝑣)}ℎ∈𝐺𝑖𝑛𝑓𝑟𝑎,𝑣∈𝐺𝐸𝐹𝑆
, {δℎ1,ℎ2

(𝑣1, 𝑣2)}
ℎ1,ℎ2∈𝐺𝑖𝑛𝑓𝑟𝑎,𝑣1,𝑣2∈𝐺𝐸𝐹𝑆

 

1. for (𝑣1, 𝑣2) ∈ 𝐸(𝐺𝐸𝐹𝑆): 
2. ℎ1 ← 𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒_ℎ𝑜𝑠𝑡(𝑣1) if δℎ(𝑣1) < 1,  ∀ℎ ∈ 𝐺𝑖𝑛𝑓𝑟𝑎 

3. ℎ2 ← 𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒_ℎ𝑜𝑠𝑡(𝑣2) if δℎ(𝑣2) < 1,  ∀ℎ ∈ 𝐺𝑖𝑛𝑓𝑟𝑎 

4. 𝐺’_{𝑖𝑛𝑓𝑟𝑎}  ← ⟨𝑉(𝐺_{𝑖𝑛𝑓𝑟𝑎}), 𝐸(𝐺_{𝑖𝑛𝑓𝑟𝑎})  ∖ { (ℎ_1, ℎ_2):  (ℎ_1, ℎ_2)  
<  𝑏(𝑣_1, 𝑣_2)  ∨ 𝑑(ℎ_1, ℎ_2)  >  𝑑(𝑣_1, 𝑣_2) } ⟩ 

5. 𝑝𝑎𝑡ℎ ← 𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎(𝐺’𝑖𝑛𝑓𝑟𝑎 , 𝑤𝑒𝑖𝑔ℎ𝑡 = ν) 
6. 𝑐𝑜𝑛𝑠𝑢𝑚𝑒_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠(ℎ1, 𝑣1) 
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7. 𝑐𝑜𝑛𝑠𝑢𝑚𝑒_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠(ℎ2, 𝑣2) 
8. 𝑐𝑜𝑛𝑠𝑢𝑚𝑒_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠(𝑝𝑎𝑡ℎ, (𝑣1, 𝑣2)) 
9. δℎ1

(𝑣1) = 1 
10.  δℎ2

(𝑣2) = 1 
11. δℎ1,ℎ2

(𝑣1, 𝑣2) = 1,  ∀(ℎ1, ℎ2) ∈ 𝑝𝑎𝑡ℎ 
12. end for 

Where 𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒_ℎ𝑜𝑠𝑡(𝑣1) finds the most reliable host to deploy 𝑣1. 

2.4.4 Performance evaluation 

For the sake of testing the performance of the two heuristics, we consider the reference 

infrastructure architecture and EFS Stack composition described in Appendix 11. In the following 

we report the performance evaluation based on simulations. 

Figure 2-6 shows the ratio of cost per hour of deploying the reference EFS Stack comprising 5 

EFS Entities. Results show that although the cost greedy algorithm is supposed to minimize costs, it 

stays always above the fog greedy deployments in terms of cost/hour. Since the fog greedy 

algorithm looks for more reliable nodes to deploy the EFS Entities, this causes mappings with 

higher lifetime, i.e., the EFS stack runs for longer time before stopping due to errors (such as 

running out of battery). This leads to a larger denominator in the cost/hour resulting in a better 

lifetime cost as shown in Figure 2-6. 

In this performance evaluation, we consider the deployment of the reference EFS Stack for 𝑡1 −

𝑡0=24 hours, and we increase the average volatility of fog and edge nodes from μ𝑓 = 0.1 to 

μ𝑓 = 0.5, and μ𝑒 = 0.01 to μ𝑒 = 0.1, respectively. 

 

FIGURE 2-6: LIFETIME COST OF A REFERENCE EFS STACK AS VOLATILITY INCREASES 

The experiment varies the values of fog and edge resources prices, 𝛿𝑓  and 𝛿𝑒 , respectively. 

Figure 2-6 shows that higher values of 𝛿𝑓 and 𝛿𝑒 lead to higher lifetime cost, as both fog and 

edge resources become more expensive. And among 𝛿𝑓 and 𝛿𝑒 , the most important parameter is 

𝛿𝑒 , since those EFS Entities deployed at the edge are the ones contributing more for the 

deployment cost. In fact, the two scenarios (𝛿𝑒 = 1.25, 𝛿𝑓 = 1.75)  and (𝛿𝑒 = 1.25, 𝛿𝑓 = 2) 
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yield same results for both heuristics, since the increase of resource cost in the fog with respect to 

the edge is negligible. 

As final remark, Figure 2-6 shows that as the infrastructure nodes increase their volatility (as 

μ𝑓 , μ𝑒  increase), the cost of mapping the EFS Stack increases as well because the lifetime of 

mapped EFS Stacks decreases. 

2.4.5 Conclusions 

After running the fog and cost greedy algorithms for the scenario described in Appendix 11, 

Section 2.4.4 showed that the fog greedy algorithm leads to better mappings than the cost 

greedy algorithm in terms of lifetime cost ratio. 

Finally, results showed that volatile nodes within the infrastructure harm the lifetime cost of the 

EFS Stack. This means that the pricing of the edge resources has higher influence in the EFS Stack 

lifetime cost, than the pricing of fog resources. Therefore, ensuring a good level of connectivity 

and availability between the users and the edge resources may result in a lower overall cost 

since the edge resources appear less volatile from the user’s perspective. 
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3 Live procedures and migration in the OCS 
The edge and fog environments are highly dynamic due to the heterogeneity of the resources. 

Monitoring allows to collect metrics that capture such dynamicity and provides the OCS with 

inputs to make appropriate decisions. Hence, the OCS can perform and optimize the system 

lifecycle based on the data collected and provided by the EFS. Monitoring data can be either 

exposed by the resources or by the EFS Entities. Additional information on how to perform the 

monitoring in the EFS is available in D2.2 [8]. After having analysed each 5G-CORAL use case, a 

novel migration approach is proposed for EFS Entities targeted at downtime minimization. 

3.1 OCS live procedures in 5G-CORAL use cases 

This section first analyses how the OCS can leverage monitoring data in the context of each of 

the 5G-CORAL use cases, such as augmented reality navigation, virtual reality, fog-assisted 

robotics, high-speed train, and software defined wide area network. Next, it analyses the 

procedures required in each of those use cases. 

3.1.1 Augmented reality navigation 

The augmented reality (AR) navigation use case comprises one scenario envisioned in a shopping 

mall. The scenario envisions the end user being navigated in the shopping mall with help of AR 

navigation and map navigation. To that end, the end users require a stable navigation service 

access provided by AR navigation applications. A virtual AR navigation application is in the form 

of an EFS Application. This application allows visual indicators to show on screens to navigate 

end users. In addition, the application further connects to the Localization module in the form of 

an EFS Function to navigate the users with the current user location shown on the corner map in 

screen. These EFS Function and EFS Application are bundled together in a single EFS Stack for the 

complete deployment and lifecycle management of the AR Navigation services. Furthermore, 

OCS is aware of that an AR navigation application re-distributes navigation requests to other 

nearby applications if the AR navigation service load at the application is heavy. Therefore, the 

OCS, by taking such behaviour into consideration, is able to responsively instantiates a new 

application nearby once the burst situation happens, instead of scaling up the capability of the 

busy application. 

3.1.1.1 Orchestrated Offload Mechanism of AR Navigation Service 

In this OCS procedure, the EFS Service platform is capable of provisioning Wi-Fi Access and AR 

Navigation service in the Shopping Mall. Figure 3-1 shows the procedure: based on Resource 

Utilization information provided by the EFS Service platform, the instantiation of a new AR 

Navigation application is triggered. Such procedure is described as follows: 

(A.0) An EFS App/Func Manager continuously performs the CPU utilization and network 

bandwidth utilization check to identify whether or not an AR Navigation Application is in 

a busy state (i.e., each of the utilizations is over a pre-defined threshold). In addition, the 

EFS App/Func Manager receives localization statistics from a Localization function in 

order to monitor user trajectory, which synthesizes both Bluetooth beacon-based 

Localization data service and image recognition Localization data service. The involved 

reference point is O5. 

(A.1) Based on the information received from AR navigation applications and the Localization 

function, the EFS App. Manager decides whether a new instantiation of an AR 

Navigation application near the busy AR navigation application at the EFS Service 

Platform is required. If so, the EFS App. Manager requests the EFS Stack Orchestrator for 

a new AR navigation application deployment with the suggested deployment sites 

(Target EFS URI(s)). The involved reference point is O3. 
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FIGURE 3-1: OCS WORKFLOW FOR THE AR NAVIGATION APPLICATION DEPLOYMENT 

(A.2) The EFS Stack Orchestrator then contacts the EFS Resource Orchestrator for allocating the 

required resources (e.g., CPU, RAM) on the EFS. Optionally, the EFS Stack Orchestrator 

may request a reconfiguration of the busy AR navigation applications and the other low-

loaded AR navigation applications so as to enable offloading from busy applications to 

low-loaded applications. For example, once OCS found an over-loaded AR navigation 

application, the OCS associates the application with another application which is usually 

low-loaded by reconfiguring their behaviour with an offloading mechanism so that the 

over-loaded is able to re-distribute some AR navigation user requests to the low-loaded 

one. The involved reference point is Oo1. 

(A.3) If the deployment request can be satisfied, the EFS Resource Orchestrator instructs the 

VIM to initiate a new AR navigation application at a nearby EFS Service platform and 

optionally to reconfigure the busy application. The involved reference point is O4.  

(A.4) Feedback is provided to all the OCS components on the result of the procedure (e.g., 

successful or not). The involved reference points are O4, Oo1, and O3.  

Table 3-1 reports the information exchanged during the EFS instantiation procedure. 

TABLE 3-1: INFORMATION EXCHANGED IN THE EFS APPLICATION INSTANTIATION PROCEDURE 

RP Src Dst Information Action ID 

O5 EFS Application EFS 
App/Func 
Manager 

Resource ID, 
Function Instance ID, 
Resource Utilization 
Status 

Consume EFS Services 
related to the Resource 
Utilization information.  

A.0 

O3 EFS App/Func 
Manager 

EFS Stack 
Orchestrator 

Target Function 
Instance ID, Target 
Resource ID 

Request the instantiation 
of the Function Instance 
ID to the target 
Resource ID 

A.1 

EFS Stack 
Orchestrator 

EFS 
App/Func 
Manager 

Instantiation status Feedback on the 
requested Instantiation 

A.3 

Oo1 EFS Stack 
Orchestrator 

EFS Resource 
Orchestrator 

EFS Stack Descriptor 
(Function Instance ID, 

Request the instantiation 
of the EFS Application 

A.2 

Wi-Fi

Access point

EFS App/Fun 
Manager

Stationary

AR Navigation Application(s)

(A.0) Report of Resource Utilization of 
AR Navigation Application(s)

EFS Stack 
Orchestrator

EFS Resource 
Orchestrator

VIM

(A.1) Request AR Navigation 
Application Deployment

(A.2) Request resource allocation for AR Navigation

(A.3) Instantiate AR Navigation 
Application and Reconfigure the 
requesting AR Navigation Application

(A.4) FeedbackO3

Oo1

O4

O5

Bluetooth 
beacon

Bluetooth

EFS Service Platform

(A.0) Report of User Locations

E2
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Links), Target Resource 
ID 

described by EFS Stack 
Descriptor 

EFS Resource 
Orchestrator 

EFS Stack 
Orchestrator 

Instantiation status Feedback on the 
requested Instantiation 

A.3 

O4 EFS Resource 
Orchestrator 

VIM EFS Stack Descriptor 
(Function Instance ID, 
Links), Target Resource 
ID 

Request the instantiation 
of the EFS Application 
described by EFS Stack 
Descriptor 

A.2 

VIM EFS Resource 
Orchestrator 

Instantiation status Feedback on the 
requested Instantiations 

A.3 

3.1.2 Virtual Reality 

The VR use case consists of a 360-degree live video streaming delivered to multiple end users 

equipped with a mobile phone or VR goggles capable of processing such multimedia content. 

Video input is generated by multiple 360 cameras connected to a DASH server located in a 

remote server, while a local edge server and multiple fog nodes are deployed to reduce end-to-

end latency and enhance system scalability.  

Key component of this use case is the EFS orientation application. This application is provided by 

the EFS platform and physically runs inside the fog nodes. Its main goal is to forward information 

on the visual orientation of each end user to the local edge server that exploits these data in 

order to optimize the video streaming delivery. The lifecycle of the EFS orientation application is 

managed by the OCS, which can scale the service in and out depending on the number of end 

users requesting the video streaming. In the following, we show how the OCS can adopt an 

offloading mechanism to accommodate more users whenever the fog node resources, i.e., CPU 

processing power, are not enough. 

3.1.2.1 Orchestrated Offload Mechanism of VR Navigation Service 

 

FIGURE 3-2: OCS WORKFLOW FOR VR APPLICATION DEPLOYMENT 
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In this OCS procedure, the EFS Service Platform is capable of providing the orientation 

application in the Shopping Mall by orchestrating resources running on the fog nodes A, B and C. 

Figure 3-2 shows the procedure: based on Resource Utilization information provided by the EFS 

orientation application, new resources for the orientation application are allocated based on the 

user demand. The detailed procedure is as follows: 

(A.0) The EFS App manager continuously monitors the CPU utilization and network bandwidth 

utilization provided by the EFS orientation app to identify whether new service instances 

must be created. The involved reference point is O5. 

(A.1) If a new instance is necessary, EFS App. Manager requests the EFS Stack Orchestrator 

for a new orientation app deployment. The involved reference point is O3. 

(A.2) Next, the EFS Stack Orchestrator contacts the EFS Resource Orchestrator for allocating 

the required resources (e.g., CPU, RAM, storage) on the EFS Service platform nearby. 

The involved reference point is Oo1. 

(A.3) If the deployment request can be accommodated, the EFS Resource Orchestrator instructs 

the VIM to allocate new resources. The involved reference point is O4. 

(A.4) Feedback is provided to all the OCS components on the result of the procedure (e.g., 

successful or not). The involved reference points are O4, Oo1, and O3. 

Table 3-2 reports the information exchanged in the EFS application instantiation procedure. 

TABLE 3-2: INFORMATION EXCHANGED IN THE EFS APPLICATION INSTANTIATION PROCEDURE 

RP Src Dst Information Action ID 

O5 EFS Orientation 
App 

EFS App. 
Manager 

Resource ID, 
Function Instance 
ID, Resource 
Utilization Status 

Consume EFS app info 
related to the Resource 
Utilization information.  

A.0 

O3 EFS Func 
Manager 

EFS Stack 
Orchestrator 

Target Function 
Instance ID, Target 
Resource ID 

Request the instantiation 
of the Function Instance 
ID to the target 
Resource ID 

A.1 

EFS Stack 
Orchestrator 

EFS Func 
Manager 

Instantiation status Feedback on the 
requested Instantiation 

A.4 

Oo1 EFS Stack 
Orchestrator 

EFS Resource 
Orchestrator 

EFS Stack 
Descriptor (Function 
Instance ID, Links), 
Target Resource ID 

Request the instantiation 
of the EFS Application 
described by EFS Stack 
Descriptor 

A.2 

EFS Resource 
Orchestrator 

EFS Stack 
Orchestrator 

Instantiation status Feedback on the 
requested Instantiation 

A.4 

O4 EFS Resource 
Orchestrator 

VIM EFS Stack 
Descriptor (Function 
Instance ID, Links), 
Target Resource ID 

Request allocation of 
new resources for EFS 
orientation app 

A.3 

VIM EFS Resource 
Orchestrator 

Instantiation status Feedback on the 
requested Instantiations 

A.4 

3.1.3 Fog-assisted robotics 

The Fog-assisted Robotics use case comprises two different scenarios, both envisioned in a 

Shopping Mall scenario. The first scenario envisions the robots cleaning the common areas of the 

shopping mall. The second scenario, instead, envisions the delivery of goods by a group of 

robots working synchronously. In both scenarios, robots are connected via Wi-Fi and move in the 

Shopping Mall to accomplish the different tasks. To that end, the robots require constant Wi-Fi 

coverage wherever they go. The Wi-Fi connectivity is provided by a virtual Access Point in the 

form of an EFS Function. This function allows the robots to communicate with their control engine, 
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which is deployed in the form of EFS Application. In the second scenario (delivery of goods) we 

also establish a low-latency Device-to-Device communication in order to maintain better 

coordination between the robots (e.g., moving in formation). The D2D connectivity is delivered as 

Wi-Fi P2P in the form of an EFS Function. These EFS Functions and EFS Application are bundled 

together in a single EFS Stack for the complete deployment and lifecycle management of the 

Fog-assisted Robotics services. 

3.1.3.1 Migration of virtual AP based on Wi-Fi signal level 

  

FIGURE 3-3: OCS WORKFLOW FOR THE VIRTUAL AP MIGRATION BASED ON WI-FI SIGNAL LEVEL 

In this OCS procedure, an EFS Function Manager is deployed and dedicated to the virtual Access 

Point in order to detect the movement of the robots and trigger the migration of the EFS Function 

so as to provide full connectivity coverage in the Shopping Mall. Figure 3-3 shows the procedure 

which relies on an EFS Service providing measurements and information regarding the signal 

level as seen by all the Wi-Fi-capable EFS resources. Such EFS service can provide the signal 

level of individual Wi-Fi stations as received at the virtual Access Point. The procedure of the 

measurement is the following: 

(A.1) A dedicated EFS Application (i.e., Wi-Fi mon in Figure 3-3) runs on every Wi-Fi-capable 

EFS Resource and performs the corresponding measurements on the signal level. 

(A.2) The Wi-Fi mon application publishes the signal level measurements via an EFS Service 

through the EFS Service platform. The involved reference point is E2. 

The OCS procedure for the migration of the virtual AP based on Wi-Fi signal level is the 

following: 

Wi-Fi

Bluetooth

Access point
Migration

Slow mobility
Mobile

EFS App Manager 
(Access point)

Mobile

Stationary

Wi-Fi mon

Access point

Stationary

Wi-Fi mon

EFS Service Platform

(A.2) Publication of 
Wi-Fi measurements

(A.1) Measurement 
of Wi-Fi signal level

(CR.0) Consumption of 
Wi-Fi measurements

(CR.1) Coarse localization of the robot 

EFS Stack 
Orchestrator

EFS Resource 
Orchestrator

VIM

(CR.3) Request Access Point migration

(CR.2) Decision on Access Point migration

(CR.4) Request resource allocation for the Access Point

(CR.5) 
Instantiate 

Access Point

(CR.6) FeedbackO3

Oo1

O4

E2
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(CR.0) The EFS Func Manager associated to the virtual Access Point periodically consumes the 

EFS Service providing the Wi-Fi signal level as seen from the EFS Resources. The involved 

reference point is E2. 

(CR.1) Based on this information, the EFS Func Manager monitors the coarse location of the 

robots. This is a step internal to the EFS Func Manager. 

(CR.2) Based on the coarse localization of the robot, the EFS Func Manager decides when a 

migration of the virtual Access Point is needed (e.g., the robots are closer to a given EFS 

Resource than the one they are currently connected to). This is a step internal to the EFS 

Func Manager. 

(CR.3) The EFS Func Manager contacts the EFS Stack Orchestrator to request the migration of 

the EFS function. The involved reference point is O3. 

(CR.4) The EFS Stack Orchestrator then it contacts the EFS Resource Orchestrator for allocating 

the required resources (e.g., CPU, RAM, storage) on the target EFS Resource. The 

involved reference point is Oo1. 

(CR.5) If the migration request can be satisfied, the EFS Resource Orchestrator instructs the VIM 

to migrate the virtual Access Point to the target EFS Resource. The involved reference 

point is O4. 

(CR.6) Feedback is provided to all the OCS components on the result of the procedure (e.g., 

successful or not). The involved reference points are O4, Oo1, and O3. 

TABLE 3-3: INFORMATION EXCHANGED IN THE EFS FUNCTION MIGRATION PROCEDURE 

RP Src Dst Information Action ID 

E2 EFS Service 
Platform 

EFS Func 
Manager 

Resource ID, 
Wi-Fi station IDs, 
Wi-Fi signal level 

Consume EFS Services 
related to the Wi-Fi 
information of 
surrounding Wi-Fi 
stations. 

CR.0 

O3 EFS Func 
Manager 

EFS Stack 
Orchestrator 

Function Instance 
ID, Dst Resource ID 

Request the migration 
of the Function ID to the 
target Resource ID 

CR.3 

EFS Stack 
Orchestrator 

EFS Func 
Manager 

Migration status Feedback on the 
requested migration  

CR.6 

Oo1 EFS Stack 
Orchestrator 

EFS Resource 
Orchestrator 

Function Instance 
ID, Src Resource 
ID, Dst Resource ID 

Request the migration 
of the Function ID from 
Src Resource ID to Dst 
Resource ID 

CR.4 

EFS Resource 
Orchestrator 

EFS Stack 
Orchestrator 

Migration status Feedback on the 
requested migration  

CR.6 

O4 EFS Resource 
Orchestrator 

VIM Function Instance 
ID, Src Resource 
ID, Dst Resource ID 

Request the migration 
of the Function ID from 
Src Resource ID to Dst 
Resource ID 

CR.5 

VIM EFS Resource 
Orchestrator 

Function Instance 
ID, Src Resource 
ID, Dst Resource ID 

Feedback on the 
requested migration 

CR.6 

3.1.3.2 Low-latency D2D communication based on Localization 

In this OCS procedure, an EFS Function Manager is deployed and dedicated to the D2D 

communication in order to monitor the location of the robots and establish or terminate the Wi-Fi 

P2P channel. Figure 3-4 shows the procedure which relies on an EFS Service providing 

localization information regarding the current coordinates of the robots. The procedure of the 

measurement is the following: 
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(A.1) A dedicated EFS Application (i.e., Localization mon in Figure 3-4) runs in the Robot 

intelligence and performs probabilistic localization of the robots. The probabilistic 

localization is based on adaptive (or KDL-sampling) Monte Carlo localization approach. 

By employing the data from the LiDAR, the robot pose is traced on a known map. 

(A.2) The Localization mon application publishes the coordinates of the robots via an EFS 

Service through the EFS Service platform. The involved reference point is E2. 

 

FIGURE 3-4: OCS WORKFLOW FOR THE D2D COMMUNICATION BASED ON LOCALIZATION 

The OCS procedure for the lifecycle management of Low-latency D2D communication based on 

localization is the following: 

(CR.0) The EFS Func Manager associated with the D2D connection periodically consumes the EFS 

Service providing the 2D localization coordinates on the map for the robots. The involved 

reference point is E2. 

(CR.1) Based on this information, the EFS Func Manager computes the Euclidean distance. This is 

a step internal to the EFS Func Manager. 

(CR.2) Based on the Euclidean distance between the robots, the EFS Func Manager decides 

when the D2D connection can be established (e.g., the robots are closer to a given EFS 

Resource than the one they are currently connected to). This is a step internal to the EFS 

Func Manager. 

(CR.3) The EFS Func Manager contacts the VIM in order to instantiate the D2D connection 

according to the Wi-Fi Direct procedure [13]. The involved reference point is O2. 

(CR.4) Feedback is provided by the VIM on the result of the instantiation procedure (e.g., 

successful or not). The involved reference point is O2. 

Table 3-4 reports the information exchanged in the EFS function migration procedure. 
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TABLE 3-4: INFORMATION EXCHANGED IN THE EFS FUNCTION MIGRATION PROCEDURE 

RP Src Dst Information Action ID 

E2 EFS Service 
Platform 

EFS Func 
Manager 

Robot ID, 
Robot x point on 
the map, Robot y 
point on the map 

Consume EFS Services 
related to the 
localization information 
of the robots 

CR.0 

O2 EFS Func 
Manager 

VIM Function Instance 
ID, Dst Resource ID 

Request the migration 
of the Function ID to the 
target Resource ID 

CR.3 

VIM EFS Func 
Manager 

D2D status Feedback on the 
requested instantiation  

CR.4 

3.1.4 High-Speed Train 

In the high-speed train use case, the EFS platform plays the key role of monitoring and managing 

the EFS applications on-board. In the example below, we describe a potential benefit of 

employing the monitoring feature, consisting of a procedure to allow the EFS application on-

board to migrate to another EFS node residing in shopping mall. The ability of monitoring and 

migrating EFS application at run-time is mission-critical in order to retain the edge service 

availability for the large number of users. 

3.1.4.1 EFS application migration from on-board to on-land based on mobile connection 

 

FIGURE 3-5: OCS WORKFLOW FOR EFS APPLICATION MIGRATION FROM ON-BOARD TO ON-LAND 

BASED ON MOBILE NETWORK CONNECTION 

In this OCS procedure, the OCS makes the migration decision and moves EFS application on-

board to on-land based on the information from the EFS service platform, to provide the service 

continuity for each user using the edge service on-board. Figure 3-5 illustrates the OCS workflow 

for the EFS application migration. We assume that the EFS platform is capable of collecting 

migration-related information on each node in order to support the EFS application migration 

operation.  

The OCS procedure for EFS application migration from on-board to on-land based on mobile 

network connection is as the following: 
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(HST.1) The EFS Func Manager associated with the edge DC periodically consumes the EFS 

services as mobility info, QoS, UE IP, EFS app ID and source EFS node ID. The involved 

reference point is E2. 

(HST.2) Based on the mobility info, the EFS Func Manager decides when a migration of the EFS 

application is needed to retain the service continuity for each user using the edge service 

on-board. If it decides to do the migration, the EFS Func manager selects the EFS 

application to be migrated based on UE IP, EFS app ID and source EFS node ID and 

selects the destination EFS node based on mobility info. This output as source EFS node 

ID, destination EFS node ID, EFS app ID is then forwarded to the EFS stack orchestrator 

via the O3 interface.  

(HST.3) The EFS stack orchestrator enforces the request received from the EFS Func manager. 

(HST.4) The EFS stack orchestrator requests the EFS resource orchestrator for resource allocation 

for the destination EFS node by communicating over the Oo1 interface. 

(HST.5) If the migration request can be satisfied, the EFS Resource Orchestrator instructs the VIM 

to instantiate the resources in the destination EFS node for edge service migration. The 

involved reference point is O4. 

(HST.6) Feedback is provided to all the OCS components on the result of the procedure (e.g., 

successful or not). The involved reference points are O4, Oo1, and O3. 

Table 3-5 reports the information exchanged in the EFS application migration procedure. 

TABLE 3-5: INFORMATION EXCHANGED IN EFS APPLICATION MIGRATION PROCEDURE 

RP Src Dst Information Action ID 

E2 EFS Service 
Platform 

EFS Func 
Manager 

Mobility info, QoS, 
UE IP, EFS app ID, 
src EFS node ID and 
other info 

Consumes info from 
EFS service platform 

HST.1 

O3 EFS Func 
Manager 

EFS Stack 
Orchestrator 

Src EFS node ID, dst 
EFS node ID, EFS 
app ID and other 
info 

Request the migration 
of the EFS application 

HST.2 

EFS Stack 
Orchestrator 

EFS Func 
Manager 

Migration status Feedback on the 
requested migration 

HST.2 

Oo1 EFS Stack 
Orchestrator 

EFS Resource 
Orchestrator 

Dst EFS node ID, 
EFS app ID and 
other info 

Request resource 
allocation for the dst 
EFS node 

HST.4 

EFS Resource 
Orchestrator 

EFS Stack 
Orchestrator 

Migration status Feedback on the 
requested migration 

HST.4 

O4 EFS Resource 
Orchestrator 

VIM Dst EFS node ID, 
EFS app ID and 
other info 

Instantiate the 
resources in the dst 
EFS node 

HST.5 

VIM EFS Resource 
Orchestrator 

Migration status Feedback on the 
requested migration 

HST.5 

3.1.5 Software Defined Wide Area Network (SD-WAN) 

Software Defined Wide Area Network (SD-WAN) technology is the new generation of Wide 

Area Networks (WANs) which leverages Software Defined Network (SDN) in the scope of 

WANs. This use case integrates Edge and Fog infrastructure to virtualize network functions in 

order to provide a low latency and distributed network service that permits the deployment of 

an organization’s WAN interconnecting the headquarters, branches and Cloud. The envisaged 

scenario is the shopping mall, where branch shops can use this service to establish a local network 

and to connect it to the company WAN. Also, a Point of Sale (PoS) application is defined, where 

banks can establish a secure connection with the shopping mall using SD-WAN. Those shops that 
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use the payment service will connect to the WAN access point with their POSs and process 

payments. Isolation features make this scenario feasible to become a multi-tenancy environment, 

while resilience, fault-tolerance and flexibility are features that also enhance the use case. 

3.1.5.1 Traffic balancing switching between LTE and broadband interface 

This use case presents a Fog CD where a Kubernetes cluster has been installed. A couple of LXD 

containers are instantiated which execute different functions in order to get a reliable procedure. 

This procedure focuses on how to provide PoS terminals with a connection to the bank avoiding a 

direct VPN connection. For the case of PoS terminals, nowadays it can be expected that all the 

shops in the shopping mall accept credit card payments. Usually the procedure is to establish a 

secure connection between the terminal and the bank, which then processes the payment. 

Leveraging SD-WAN, many PoS can connect to the SD-WAN access point, which will establish a 

single secure connection with the bank, instead of multiple connections for each device. Also, the 

coverage can be enhanced inside the shopping mall leveraging the IEEE 802.11 access points. 

 
FIGURE 3-6: OCS WORKFLOW FOR TRAFFIC LOAD BALANCING BETWEEN LTE AND BROADBAND 

INTERFACES 

The steps involved in the above procedure are described in the list below: 

(SW.0) Point of Sale sends payment information to the AP function (e.g., Dockerized Access 

Point) by AP interface (i.e., dongle USB)  

(SW.1) Information is forwarded to the SD-WAN function. 

(SW.2) SD-WAN function collects statistic information about physical interfaces (i.e., LTE and 

Broadband), and current use of the network such as RTT latency or bandwidth currently 

being used. 

(SW.3) The statistics measured at the physical interface are sent to the EFS Service Platform 

(Publisher/Subscriber node) by the SD-WAN function which publishes interfaces-related 

information to the service. 

(SW.4) The EFS Resource orchestrator is subscribed to the EFS Service Platform where the SD-

WAN monitoring data will be aggregated. 
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(SW.5) EFS Resource Orchestrator processes the aggregated data in the SD-WAN orchestrator 

and when necessary commands the EFS App/Func Manager to take action and 

rebalance the flows going through SW.3. 

(SW.6) The EFS App/Func Manager processes the balancing actions sent by the resource 

orchestrator and using the SD-WAN controller forwards them to the EFS Service Platform 

Manager in order to activate the most efficient interface of both.  

(SW.7) EFS Service Platform Manager acts as a proxy, forwarding the commands from the SD-

WAN Controller to the SD-WAN function in order to trigger a change in the flows/paths 

installed. 

(SW.8) SD-WAN sends payment information (received in second step) by the interface chosen 

by SD-WAN Orchestrator. Payment info arrives to its destination (e.g., Bank Payment 

Gateway). 

Table 3-6 reports information exchanged in the EFS function procedure. 

TABLE 3-6: INFORMATION EXCHANGED IN THE EFS FUNCTION PROCEDURE 

RP Src Dst Information Action ID 

E2~=Mp1 EFS Service 
Platform 

EFS Resource 
Orchestrator 

Metrics/Statistics 
from physical 
network interfaces 

Consume 
information from 
EFS Service 
Platform 

SW.4 

E2~=Mp1 SD-WAN 
Function 

EFS Service 
Platform 

Metrics/Statistics 
from physical 
network interfaces 

Publish 
information to 
the EFS Service 
Platform 

SW.3 

Oo1 EFS Resource 
Orchestrator 

EFS App/Func 
Manager 

Commands to 
rebalance 
flows/paths 

Requests the SD-
WAN EFS 
Manger to 
rebalance 
flows/paths 

SW.5 

Om1 EFS 
App/Func 
Manager 

EFS Service 
Platform 
Manager 

Instructions to 
activate the optimum 
interface 

Request an 
interface 
rebalancing 

SW.6 

O5 EFS 
App/Func 
Manager 

SD-WAN 
function 

Commands to 
activate the optimum 
interface 

Proxies requests 
from the EFS 
App/Func 
Manager to SD-
WAN function 

SW.7 

3.2 Common OCS features overview and container-based migration 

To enable provisioning of EFS functions and applications on top of low-power edge devices, 

OCS provides lifecycle management support for lightweight virtualization technologies including 

system-based and application-based containerization. On the one hand, the system container 

behaves like a standalone Linux system. That is, a system container such as Linux Container 

(LXC/LXD) has its own root access, file system, memory, processes, networking and can be 

rebooted independently from the host system. On the other hand, the application container 

isolates an application from other applications running on top of the same host kernel and 

operating system. An application container such as Docker encapsulates its necessary libraries, 

configurations and dependencies without affecting the host system and other applications. 

 

 



D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 40 

H2020-761586 

                                                                                                                                  

TABLE 3-7: COMMON OCS FEATURES ACROSS 5G-CORAL USE CASES 

Title Use Case Description 

Scale out, 
native 
app 

VR EFS Service platform is capable of providing the orientation 
application in the Shopping Mall by orchestrating resources running 
on the fog nodes. Based on Resource Utilization information 
provided by the EFS orientation application, new resource for the 
orientation application are allocated based on the user demand. 

Scale out, 
LXC and 
docker 

AR 
navigation 

EFS Service platform is capable of provisioning Wi-Fi Access and 
AR Navigation service in the Shopping Mall. An instantiation of a 
new AR Navigation application is based on Resource Utilization 
information provided by the EFS Service platform. 

Migration, 
docker 

High-Speed 
Train 

OCS make the migration decision and migrate EFS application on-
board to on-land based on the information from the EFS service 
platform to provide the service continuity for each user using the 
edge service on-board. We assume that the EFS platform is 
capable of collecting migration-related information on each node 
in order to support the EFS application migration operation.  

Migration, 
LXD 

Fog-assisted 
robotics 

EFS Function Manager is deployed and dedicated to the virtual 
Access Point in order to detect the movement of the robots and 
trigger the migration of the EFS Function so as to provide full 
connectivity coverage in the Shopping Mall. 

TABLE 3-8: SPECIFIC OCS FEATURES OF SOME 5G-CORAL USE CASE 

Title Use Case Description 

Scale up, 
docker 
pods 

SD-WAN It focuses on container provisioning in order to resize them to 
guarantee the best performance and 5G-CORAL KPIs fulfilment. 
Monitoring framework measures PODs/Dockers/VMs parameters 
such as computing (CPUs, RAMs), storage (HDD/SSD), and 
networking (virtual interfaces). 

After the detailed description of the OCS monitoring procedures involved in each use case 

present in 5G-CORAL project, one can distinguish some common features as reported in Table 

3-7 and Table 3-8. This is the case for migration and scale up.  

Container migration can be classified into stateful and stateless. In stateless migration (aka cold 

or offline migration), the state of the container is not preserved when the container is relocated to 

the destination node. In the case of stateful migration (aka live migration), the state of the 

container is retained when the container is restored at the destination node. There are three 

schemes of stateful migration as follows:  

• stop-and-copy - freezes the container, checkpoints its state, copies the container image 

and its state to the destination then restores the state from the checkpoint [14].  

• pre-copy - performs iterative state checkpointing while the container is running till the 

amount of in-memory change is at minimum, then concludes with a shorter stop-and-

copy [15]. Iterative checkpointing reduces the size of the final checkpoint which is 

performed while the container is frozen. This minimizes the time required for the final 

checkpoint and the time required to copy the checkpoint to destination.  

• post-copy - performs a short stop-and-copy to move essential state data, then starts the 

container at the destination and retrieves the rest of the data when required [16]. This 

type of migration has a very small downtime, but containers may suffer from 

performance degradation due to the time needed to wait for the requested memory 

pages.  

Table 3-9 shows a summary of the pros and cons of these migration schemes. 
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TABLE 3-9: PROS AND CONS OF STOP-AND-COPY, PRE-COPY AND POST COPY MIGRATION SCHEMES 

Feature/Scheme stop-and-copy pre-copy post-copy 

Downtime Longest – includes the 
time required to 
checkpoint and copy 
the entire state. 

Short – only includes 
the time required for 
the last iteration of 
checkpoint and copy. 

Shortest – only includes the 
time required to checkpoint 
and copy the essential 
state. 

Migration time Short – the total 
migration time is short 
because it is done in 
one iteration. 

Long – depends on the 
number of iterations. 
The more iterations, the 
longer the total 
migration time.  

Long – depends on the 
running application and the 
amount of time it requires 
to retrieve the entire state 
from the source. 

Application 

performance 

Affected only during 
downtime. 

Affected only during 
downtime. 

Affected during downtime 
and also due to latency 
during the retrieval of 
state from the source while 
application is running. 

Network 

utilization 

Low – only one copy 
of the state is 
transferred. 

High – the total state 
size accumulatively 
grows with the number 
of iterations. 

Low – only one copy of the 
state is transferred. 

In the case of traditional hypervisor-based virtualization, virtual machine (VM) migration is well 

investigated [17] and many successful solutions are commercially available. For instance, a pre-

copy based VM migration scheme is presented in [15]. An active VM continues to run in the 

course of in-memory data iterative pre-copying. During a consecutive iteration, only dirty pages 

are transferred. At last, a final state copy is performed while the VM instance is frozen and then 

transferred to the destination host. This way, the amount of downtime is greatly reduced when 

compared to a pure stop-and-copy scheme. Although VM migration is a mature technology, it 

relies on hypervisors and most of the existing solutions are tailored for data centre environment 

where network-attached storage (NAS) and specific virtualization technology are utilized. NAS 

enables all the host machines in a data centre to access a network-shared storage which reduces 

the time spent during the copying stage. However, in a scenario where migration takes place 

between edge nodes, the state and local-disk storage have to be copied over wide area 

network (WAN).  

Recently, container migration has caught more attention from the research community [18] [20]. 

Especially, since containerization offers many advantages over traditional hypervisor-based 

virtualization such as resource efficiency and performance. This fact enables the instantiation of 

lightweight containerized applications suitable for IoT services [20]. In [18], container migration 

mechanism is developed for power efficiency optimization in heterogeneous data centre. This 

work assumes that the source and destination hosts have access to a NAS and thus container data 

is not copied over WAN. Furthermore, a framework for migrating edge containerized 

applications is presented in [19]. The proposed framework is the first to consider MEC 

environment for system container migration. Fundamentally, the framework is a layered model 

which aims to reduce the downtime incurred by the migration process. While the presented results 

show reduction in downtime as a result of layering, the framework relies on stop-and-copy 

migration which is not an efficient method for containers with large in-memory state. 

Migration is introduced in the High-Speed Train and Fog-assisted Robotics use cases. From 

implementation point of view, in High-Speed train the migration refers to docker containers while 

in Fog-assisted Robotics it points to LXD technology. As a brief summary, in High-Speed the EFS 

service platform provides information to the OCS, which migrates on-board EFS applications to 

on-land to provide service continuity. In Fog-assisted Robotics, the EFS Function Manager is 

deployed and dedicated to the virtual access point in order to detect the movement of the 
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robots and trigger the migration of the EFS Function so as to provide full connectivity coverage in 

the Shopping Mall.  

The migration feature demands the application of some OCS functional requirements, listed 

below:  

• Support of harvesting computing capabilities from mobile resources. Migration and 

mobility are closed characteristics. Thus, in order to feed the OCS with relevant 

information, it must collect capabilities from mobile resources, e.g. train or robot.  

• Support of discovery, monitoring, allocation, etc. of relevant hardware capabilities. With 

the objective of selecting the best target resource to migrate EFS applications and 

functions, OCS must gather information about possible destination EFS resources.  

• Support of federation including at runtime OCS components. Migration could imply a 

migration out of the current domain. Hence, federation is needed to manage instantiation 

of EFS entities among different domains.  

With refer to non-functional requirements, please find listed the ones tagged as important for 

migration. 

• Availability and self-healing mechanisms in error-prone environments. The migration 

procedure should provide recovery mechanisms if errors are produced while migrating 

an EFS entity. Thus, this non-functional requirement gains importance.  

Experimental validation and performance assessment of the migration feature can be found in 

Section 5.3. 

The second common feature identified in three use cases is scale out. In VR, it is described scale 

out of native applications, in AR it refers to LXD and docker containers. Finally, IoT multi-RAT 

focus only on docker. This feature aims to create more instances of an EFS application or function 

when, for instance, resources reach a defined limit. As a brief overview, VR use case pretends to 

allocate resources based on user demands analysing resource utilization information provided by 

the EFS orientation application. The AR use case scales out the AR navigation application in the 

shopping mall based on resource utilization information provided by the EFS service platform. 

Finally, IoT multi-RAT intends to scale out the virtualize communication stack function in a new 

node when it is under heavy load. 

Regarding what functional requirements apply to this feature, it is listed below the most relevant 

ones. 

• Support of harvesting computing capabilities from low-end resources. It is a key 

characteristic which allow the OCS to know the state of the function or the application 

and trigger the scalability of it.  

• Support of harvesting computing capabilities from mobile resources. Similar to the one 

before, OCS should collect computing data from mobile resources and get an overview 

of how the system is behaving and take proper actions.  

• Support of discovery, configuration, monitoring, allocation, etc. of relevant hardware 

capabilities. To scale up the function, OCS needs to discover hardware capabilities 

where instantiate the new function, besides configuring it, set the monitoring to get the 

status, etc.  

• Support of integration including at runtime of heterogeneous resources in terms of 

software and hardware capabilities. Different type of resources can be used to start a 

new function, so this is a desired requirement to be fulfilled. 
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• Support of federation including at runtime of OCS components. Federation can be 

leveraged to user another domain with more resources that the actual and increase the 

number of entities serving.  

• Support of the interworking with resources external to the OCS. Functions could be 

scaled out in the cloud, if the scenario requires it, so this is another requirement.  

In relation to the non-functional requirements for scale out, some of them are important to this 

feature.  

• Availability and self-healing mechanisms in error-prone environments. The deployment of 

a new function is a process where error can be encountered, and therefore availability 

and self-healing have to be accomplished. 

• Support of large deployments in terms of number of resources and geographic areas. 

Scaling out the system may imply a large number of functions deployed. Thus, 

depending on the purpose and design of it, the application may grow up being formed 

by a large number of resources extended in different locations.  

• Capability to adapt to workload changes by provisioning and deprovisioning resources 

in an automated manner. This refers to scale up the underlying resources, which will be 

used to scale up functions and applications. Both can be linked, and if a system requests 

more capabilities, first is to load resources and after scale the entities.  

Finally, one additional feature is described (see Table 3-8) but only used in one particular use 

case, that is the scale up in the SD-WAN use case. The scale up of containers is similar to scale 

out, commented before. The container itself is reconfigured on demand to increase or decrease 

the capabilities and the resources allocated. The scale up procedure does not create a new 

container.   
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4 Federation and resource provisioning 
This section introduces the federation concept in 5G CORAL. Particular focus is given to the 

federation of resources between different administrative domains. Furthermore, a general system 

model is used in order to analyse and validate profit-maximized federations and advanced 

resource provisioning.  

4.1 Federation of resources 

Federation has been described in [6] and [21] as a mechanism for integrating multiple 

administrative domains at a different granularity into a unified open platform where the 

federated resources can trust each other at a certain degree.  

Each administrative domain is composed of set of computing/storage/networking devices that 

shape the underlying infrastructure of a single administrative domain. As mentioned in [6], 

multiple administrative domains may exist in a same service area. Considering the 5G-CORAL 

environment, the underlying infrastructures of multiple administrative domains are in constant 

adjacency. The nearness of various technologies opens a spectrum of possibilities for deployment 

of different EFS services/applications that rely on multiple underlying infrastructures. By 

cooperation among administrative domains and losing the strict boundaries, the inclusion of 

external resources is feasible. The process of adopting external resources provided by another 

peering/provider domain for the goal of deploying an EFS service/application is called 

federation of resources.  

How an administrative domain would benefit from a federation of resources? In 5G-CORAL 

environment, each administrative domain has its own underlying infrastructure as EFS resources. 

The quantity of the set of EFS resources varies from large to a set of few EFS resource per 

administrative domain. In both cases, large or few amount EFS resources, each underlying 

infrastructure is limited. The limitation can be in terms of capacity, lack of certain technology, user 

accessibility, etc. In order to expand the limitation without extending the CAPEX and/or OPEX, 

the administrative domains can use federation feature. The federation as concept allows the 

administrative domains to maintain the service level without service interruption and high 

expenses. Depending on the inter-domain interactions, the global welfare of the administrative 

domains may increase with adoption of federation feature. In environment close to the edge of 

the network where the infrastructure resources are volatile, through the use of resource 

federation, the stability can be increased. 

In order to enable the federation of resources through 5G-CORAL platform, the whole process of 

federation goes through several steps. First, it is mandatory to identify all the 

stakeholders/actors that are part of a certain use case scenario (see Section 4.1.1). Next, a 

proper model of interaction between all the involved parties or stakeholders has to be 

established (see Section 4.1.2). Finally, the process of resource federation implemented by 

setting up how EFS resources interact and establish multi-domain connections between each other 

using the 5G-CORAL system (see Section 4.1.3, Section 4.1.3.1, Section 4.1.3.2, Section 4.1.3.3 

and Section 4.1.4).   

4.1.1 Federation roles 

The federation procedure is dependent on the setup scenario or the circumstances that demand 

multiple administrative domains to enable federation among themselves. In the federation 

process a domain can play two roles: consumer and provider. Consumer role has the 

administrative domain that requests federation of resources or resources from external domain to 

be included as part of its domain/services. The provider role is when the administrative domain 

provides set of resources to an external (consumer) domain under certain conditions. In each 
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federation scenario there are at least a single consumer domain and a single or multiple 

provider domains. Administrative domains that have the underlying infrastructure in a near 

proximity (e.g. same geo-location, co-exist in mutual coverage area, etc.,) are keener to employ 

federation than administrative domains that are distant (e.g., domain in separate countries).  

Prior to any federation procedure, the administrative domains need to define the relationships 

among themselves in each case they interact as provider and/or consumer roles. The relationships 

are set on business level in terms of trust policies. These agreements can be statically set in 

advance (e.g., long time before any federation interaction) or they can be dynamically set, 

minutes range before any federation procedure.  The static agreements or pre-established 

(Section 5.2 in [21]) are useful for administrative domains that would expect frequent interaction 

among themselves, usually neighbouring administrative domains. The agreements set up all the 

terms for both consumer and provider roles, the pricing models, the trust policies, the security 

level among the administrative domains. For instance, in a cooperative neighbouring interaction, 

the terms and policies for general resource federation can be set in manner that is better for the 

provider, while for particular use-cases a different set of terms and usage polices can be 

favourable for consumer. These agreements in pre-agreed federation are usually long-term 

agreements with fixed pricing (subscription based), but any length or pricing can be applied. 

More information regarding the agreements and the pricing can be found in D3.1 [6]. 

Dynamic or open federation (Section 5.2 in [21]) relationships are set on-line, minutes prior to 

establishing any federation of resources or services. These agreements usually define roles in a 

particular use-case. They contain similar terms and policies; however, they are mostly short-term 

with dynamic pricing policies. The open federation is usually competitive following an auction 

model of reserving resources (Section 3.5 in [6]). Moreover, as in an open federation, the 

administrative domain decides dynamically whether to join or leave an existing federation. The 

administrative domain does not need to make decisions at predetermined time, so the duration of 

its federation membership is not fixed. Federation in this case is dynamically formed in a 

distributed, bottom-up manner. 

For particular use-cases, the static approach would have pre-determined roles and amount of 

resources that each provider domain provides to the consumer domain. The time to request, 

reserve and use federated resources is shorter than in the open-federation manner. Moreover, 

administrative domains form a federation based on a (long-term or short-term) agreement so 

that their membership remains unchanged for an extended period of time. Also, mutual 

agreements are required for any membership change to an existing federation. Federation in 

this case can be formed by a central entity in an offline, top-down manner. Table 4-1 compares 

dynamic federation with static federation. 

TABLE 4-1: COMPARISONS BETWEEN STATIC AND DYNAMIC FEDERATION 

Feature Dynamic Federation Static Federation 

Membership Change Frequency High Low 

Membership Change Approach Autonomous, distributed, 
bottom-up 

Central controlled, top-down 

Stability Potentially unstable Stable 

In 5G-CORAL we are focusing on the pre-determined federation model. The open-federation 

model is left for further study. The adjacent administrative domains settle general agreements 

and agreements that support their use cases. The agreements contain the interaction models and 

the way that the federation is going to be implemented. Next section dives into the details of the 

interaction model.  
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4.1.2 Federation interaction model  

Once the federation between 5G-CORAL administrative domains is defined as static or pre-

established (as explained in Section 5.2 in [21]). The next step is to define the interaction 

between the 5G-CORAL platform at each domain. The interaction between the administrative 

domains can be on hierarchical or peer-to-peer level. The approach of the 5G-CORAL is to 

apply peer-to-peer cooperative model of interaction. In D3.1, three cooperative models are 

introduced for EFS resource federation: 

• Trust model 

• Loan model 

• Concession model 

The loan model is preferable for the open federation, while the concession model for the non-

volatile resources and the trust model is well suited for long-term inter-domain relationships. For 

these reasons and since the static method is adapted in 5G-CORAL, the trust cooperative peer-

to-peer model is most suitable at this point. In this static model the pricing can be fixed or 

posted-scheme that goes through subscription-based charging scheme (monthly or yearly based) 

[6]. Additional to the defined federation model, each administrative domain may introduce sub-

models for specific use-cases that needs to be translated to well-defined SLAs. Moreover, the 

specific use-case would be seen as a case where different SLA agreements providing better 

conditions is in place instead of the agreement for a general federation. For example, for a 

certain administrative domain that provides specific set of services over Wi-Fi access, it may set 

up specific SLA agreements with neighbouring domains over their Wi-Fi radio resources.  

4.1.3 Inter-domain connection (F2 interface) 

Next, an administrative domain establishes links to all federated domains on the OCS level via 

the F2 interface. For example, if administrative domain A has established federation agreements 

with administrative domain B and administrative domain C then there will be two links on the F2 

interface, one from OCS A towards OCS B and another one from OCS A towards OCS C. The F2 

interface is an interface for inter-connection of peer-to-peer OCS platforms residing in different 

administrative domain. The document focuses on the resource federation, hence the 

communication through the F2 interface would be mainly towards the federation of resources 

related operations. Having that in mind, the communication on F2 interface is between EFS 

Resource Orchestration modules.  

The EFS Resource Orchestrator module supports accessing the edge and Fog resources in an 

abstracted manner independently of any VIMs, as well as governance of service 

platform/function/application instances sharing resources in the EFS [6]. In the federation (SLA) 

agreements the administrative domains share the endpoints (e.g., IP addresses, URL, etc.,) of their 

EFS Resource Orchestrators. The endpoints are used to enable communication through the F2 

interface. The communication on the F2 interface is composed of three phases: advertisement 

phase, instantiation phase, and termination phase (shown on Figure 4-1).  

To successfully perform the federation, EFS Resource Orchestrators belonging to different 

domains will communicate via interface F2 to execute a federation message exchange. Within 

the message exchange, the consumer domain EFS RO has to start the procedure, and the 

provider EFS RO will suggest a feasible node to be federated (advertisement/discovery phase). 

Then, the consumer EFS RO will accept or decline the offered resource (negotiation phase), 

answering to the provider EFS RO. The EFS RO should interact with the VIM and the EFS 

Application/Function Manager to complete the process (instantiation phase). Figure 4-4 describes 

further the interaction of the federation interface F2 with the rest of components in the OCS by 

using a sequence diagram. Figure 4-4 is further detailed in Section 4.1.4. 
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4.1.3.1 Advertisement/negotiation phase 

The advertisement phase or negotiation phase is when all inter-connected administrative domains 

request/offer set of EFS resources. An administrative domain as a consumer role requests 

federating resources from other provider domains, whereas an administrative domain as a 

provider role offers available resources for federation and negotiate over their usage (e.g., 

duration, pricing, etc.).  The providers of federated resources can periodically update their 

capabilities or reply the offered resources per request. The periodic update of currently 

available resources for federation would enable all peering administrative domains to have 

updated global view and rapidly decide for the optimal resources. However, the mobility and 

volatility of the 5G-CORAL resources demand frequent message exchange on the F2 interfaces, 

which due to delays or traffic congestions may produce inaccurate updates of the global view. 

To overcome this issue, the provider EFS Resource Orchestrator advertises the available resources 

for federation only upon received request from a (potential) consumer domain. The 

request/advertise approach would allow each administrative domain to apply policies and 

prioritize requests. For example, domain B may respond to a request arrived from a highly 

ranked domain A and not respond to a request from lower ranked domain C, in case that both 

requests arrived at the same time at domain B. In this way, by applying the policies, the 

signalling overhead is significantly reduced. 

 

FIGURE 4-1: OCS FEDERATION INTERACTION – ADVERTISEMENT/NEGOTIATION PHASE 

Once the consumer domain has the need of adapting federated resources, the constituent EFS 

Resource Orchestrator prepares a request for federation. The request is multi-casted towards the 

peering administrative domains according to the demands needed (e.g. geo-location of the 

resource). For example, as Figure 4-1 shows, domain A broadcasts requests to neighbouring 

domains (domain B and domain C). The potential provider domains (B and C) generate their 

offers/advertisements of available resources for federation and respond to the request. The 

consumer domain A accumulates the responses for a certain time (e.g., once a timeout for 

received offers expires) and then ranks the received advertisements. As shown on Figure 4-1, the 

consumer domain A chooses the optimal set of resources (from domain B) and the EFS Resource 

Orchestrator sends reservation requests (Accept offer) to the chosen provider domain B. The 

chosen providers confirm the reservation request and that is the last message exchange for the 

advertisement/negotiation phase.  

During the negotiation phase, parties should take into account the federation stability, which 

could be affected by at least two factors. First, mobility and volatility of EFS resource may later 

invalidate the usability of federated resources that have been offered. Second, the provider 

domain may unilaterally retract federated resources that have been offered to some consumer 

domain and provide another consumer domain with the retract resources as a means to earn 

more profit. Generally speaking, if a participant can earn more profit by leaving a federation, 

the federation will fall apart; if a group of participants can all earn more profits by leaving a 
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federation and forming another one, the federation will fall apart. This scenario may not be 

avoided if administrative domains earn their own profits individually, as in the case of peer-to-

peer federation model. However, if all participants share the total profit in the federation (a 

group federation), instability of federation can be avoided by an appropriate allocation of 

federation profits to members. 

4.1.3.2 Federation instantiation phase 

The instantiation phase begins when the provider EFS RO confirms incoming request for 

reservation of available resources. Then the EFS Resource Orchestrator sends reservation request 

to the VIM on the O4 interface. From the three planes (management, control and data plane), 

only the management plane is not federated. The provider domain keeps the EFS resource 

attached to the local management plane. The VIM reconfigures the control and data plane of the 

resources that are being reserved. Once both planes are reset to idle, the operation is confirmed 

from the VIM to the EFS Resource Orchestrator. In order to connect the reserved resources with 

the consumer domain, the EFS Resource Orchestrator issues request to the EFS 

Application/Function Manager to instantiate tunnelling function (e.g., SDN-WAN function) on top 

of the reserved resources (see Figure 4-2). The tunnelling (SDN-WAN) function is instantiated in 

order to create secure tunnel and grant orchestration privilege to the consumer (external) domain 

over the control and data plane of the reserved resources. Note that the management plane of 

the reserved resources would remain orchestrated by the constituent EFS Resource Orchestrator 

and VIM for the whole duration of the federation process. 

 
FIGURE 4-2: OCS FEDERATION INTERACTION – TERMINATION PHASE 

Upon instantiation of the tunnelling (SDN-WAN) function, the EFS Application/Function Manager 

exchanges security parameters (e.g., security keys) or provides the ID and the IP address of the 

tunnelling (SDN-WAN) function to the EFS Resource Orchestrator. The EFS Resource Orchestrator 

provides this set of information (ID and IP address) on the F2 interface along with a confirmation 

that the reserved resource is ready to be federated by the consumer domain. The consumer EFS 

Resource Orchestrator receives the information and instructs already instantiated consumer SDN-

WAN function to establish the tunnel. After the tunnel is established, the resources are federated 

and ready to be used by the consumer domain. The consumer EFS Resource Orchestrator sends 

confirmation to the provider EFS Resource Orchestrator and the charging process is initiated. 

4.1.3.3 Federation termination phase 

When the consumer domain wants to terminate the federation of the resources, the consumer 

domain sends termination request to the provider EFS-RO on F2. The provider EFS RO initiates 

termination of the SDN-WAN function to the local EFS Application/Function Manager. Once this 

operation is done, the provider EFS RO sends reconfiguration request to the VIM. Both (control 

and data) planes are reconfigured to retrieve the reserved resources and make them available 

in the local domain. The VIM notifies the provider EFS RO for concluded reconfiguration and the 
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provider EFS RO stops the charging and/or accounting process. The provider EFS RO notifies the 

consumer EFS RO that the federation has terminated successfully and optionally provides the 

charging information. 

 
FIGURE 4-3: OCS FEDERATION INTERACTION – TERMINATION PHASE 

During the termination phase parties should take into account that a federated EFS resource is 

stable if it can be used for an extended time so both the provider and consumer domains can 

benefit from it. Instability of federated EFS resource incurs high signalling costs without real 

benefits. There are several reasons for a federated EFS resource to be unstable. One occurs to 

mobile EFS nodes (fog nodes). If a fog node is a part of the EFS resource of a provider domain, 

offering it to a consumer domain may risk the possibility of losing connection with it possibly due 

to its movement. 

4.1.4 Federation of resources 

This subsection describes how the federation of resources is done in 5G-CORAL jointly with the 

designed federation interface (F2) endpoints. Figure 4-4 illustrates a sequence diagram 

describing the whole workflow of the static federation, including the interaction between two 

domains. This includes the messaging exchange between each of the OCS components involved in 

the federation, for both inter and intra federated domains. Additionally, in Table 4-2 and Table 

4-3 describe the federation interface (F2), describing in detail the endpoints involved (e.g., 

action, body and description) in every of the identified federation phases (see Section 4.1.3.1, 

Section 4.1.3.2, and Section 4.1.3.3). 

TABLE 4-2: FEDERATION ADVERTISEMENT INTERFACE ENDPOINTS 

Phase End Point Verb Body Description 

A
d
v

e
rt

is
in

g
/D

is
co

v
e
ry

/N
e
g

o
ti
a

ti
o
n

 /federation
/discover 

GET None Retrieve active offers 

 POST offer_uuid Starts the federation process. Generating in the 
provider domain an offer, which it will return 
jointly with an offer_uuid. The details of the offer 
can be the main characteristics of the offered 
fog node, which should be similar to the ones 
specified in the SLA. 

DELETE offer_uuid Rejects an offer. 

PUT offer_uuid Asks for a new node to federate, automatically 
rejecting the node offered. 

/federation
/reserve 

POST offer_uuid Reservation request, from an active offer. 
Reserve the resources, in order to be ready for 
the instantiation phase. Returns the confirmation. 

GET offer_uuid Retrieve reserved resources. 



D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 50 

H2020-761586 

                                                                                                                                  

 
FIGURE 4-4: SEQUENCE DIAGRAM FOR OCS RESOURCE FEDERATION 

 

  



D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 51 

H2020-761586 

                                                                                                                                  

TABLE 4-3: FEDERATION INSTANTIATION AND TERMINATION INTERFACE ENDPOINTS 

Phase End Point Verb Body Description 

In
st

a
n
ti
a

ti
o
n
 

/federation
/instantiate 

POST offer_uuid, 
RO_sd_wan
_ip, 
preshared_
secret_dp, 
preshared_
secret_cp, 
callback_en
dpoint 

Accept an offer, including some necessary 
details to instantiate the federation, such as 
where should the tunnel be created 
(RO_public_ip) and the control and data plane 
shared secrets in order to stablish all secure 
tunnels towards the consumer domain. 
Returns immediately as the instantiation process 
can take some time. Once instantiation process 
finishes, the provider domain notifies the 
consumer domain that everything is ready at the 
callback_endpoint. 

GET offer_uuid Retrieves current status of a federation instance 
identified by its offer_uuid. 

T
e
rm

in

a
ti
o
n
 /federation

/terminate 
POST offer_uuid Terminates the federation of resources identified 

by an offer_uuid. 

4.2 Profit maximization in a federated environment 

Federation of resource among multiple administrative domains is beneficial in many ways. For 

example, it lowers the rate of EFS resource request denial due to local resource shortage. We 

can turn all types of benefits into revenue and assume that the sole reason for any EFS node to 

participate in a federation is to maximize its profit. We shall analyze how to form profit-

maximized federations among multiple administrative domains coexisting in a geographical area 

that are able to share EFS resource technically.  

This task resolves a management-plane issue: organizing a set of EFS nodes into disjoint 

administrative domains (each corresponds to an EFS federation of one or more EFS nodes). Each 

organizing result is a partition of the set of EFS nodes called federation structure. The goal is to 

seek a federation structure that has the highest total profit. This mission faces challenges due to 

autonomous behavior of EFS nodes: an EFS node may join or leave a federation at its own will 

and may not be willing to transfer its profit to or share its profit with other members in the 

federation. Without agreements among participating EFS nodes, an optimal federation structure, 

even exists theoretically, is not stable and thus cannot be achieved in reality. 

Possible agreements among participants include way of participation (see Section 4.1.2) and 

profit allocation. These agreements affect stability of the federation.  

4.2.1 Instability in dynamic EFS federation 

In dynamic federation, the federation structure keeps changing with the existence of roaming fog 

nodes. Even if all EFS nodes are stationary, the federation structure may still be unstable if EFS 

nodes individually form federations to maximize their own profits.  

TABLE 4-4: PROFITS OF EFS NODES IN DIFFERENT FEDERATIONS 

EFS node Own profit Profit in  
{A, B} 

Profit in  
{B, C} 

Profit in  
{A, C} 

Profit in  
{A, B, C} 

A 5 8 - 6 7 

B 6 8 10 - 9 

C 4 - 5 7 6 

Consider a simple scenario consisting of EFS nodes A, B, and C with their profits in different 

federations shown in Table 4-4. Suppose that initially all EFS nodes work alone. Node A requests 
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to form a federation with B to maximize its profit. B will accept A’s proposal because B’s profit 

can also be increased in federation {A, B}. After that, C cannot join the federation because that 

will decrease A’s profit from 8 to 7. On the other hand, B has the incentive to leave federation 

{A, B} and form another federation with C. C will accept B’s proposal because it will get higher 

profit than being working alone. After that, because now A works alone, C has the incentive to 

leave federation {B, C} and form another federation with A. A will accept C’s proposal due to 

higher profit. Now it is A's turn to leave the federation and form a federation with B. The same 

scenario will then repeat itself. 

4.2.2 Profit allocation: fairness and stability 

Profit allocation mechanism allocates the total profit of a federation to each member. The 

allocation should reflect each member’s contribution (i.e., fair) and ensure stability. A well-known 

mechanism is based on Shapley value [22], which accounts for marginal contribution of each 

member. A member’s marginal contribution is the change of the total profit when it joins the 

federation. Formally, letting 𝑣(𝑆) be the total profit in any federation 𝑆, federation member 𝑖’s 

Shapley value in federation 𝐹 is defined as: 

𝜙𝑖(𝐹) = ∑
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
𝑆⊆𝐹\{𝑖}

(𝑣(𝑆⋃{𝑖}) − 𝑣(𝑆)). (1) 

The use of Shapley value in profit allocation achieves individual fairness. More specifically, the 

profit allocated to a participant is not less than the payoff when it does not participate. 

However, Shapley-value-based profit allocation incurs high computation cost. 

Banzhaf value [23] based on marginal contribution can also be used for profit allocation that 

guarantees fairness. Compared with Shapley value, Banzhaf value requires less computation 

overhead to compute. The Banzhaf value for member 𝑖 in federation 𝐹 is defined as: 

𝛽𝑖(𝐹) =
1

2𝑚−1
∑ (𝑣(𝑆⋃{𝑖}) − 𝑣(𝑆))

𝑆⊆𝐹\{𝑖}

, (2) 

where 𝑚 = |𝐹|. The normalized Banzhaf value is defined as: 

𝐵𝑖(𝐹) =
𝛽𝑖(𝐹)

∑ 𝛽𝑗(𝐹)𝑗∈𝐹
. (3) 

The profit of federation 𝐹 that is allocated to member 𝑖 is proportional to 𝐵𝑖(𝐹):  

𝑥𝑖(𝐹) = 𝐵𝑖(𝐹)𝑣(𝐹).      (4) 

A federation is stable only if the profit allocation mechanism gives no member the incentive to 

leave the federation to work alone or join another federation. Let 𝐹𝑖 = {𝑠𝑝1, 𝑠𝑝2, … } be the set 

of all members in a federation 𝐹𝑖 . Let 𝑣(𝐹𝑖) be the total profit in federation 𝐹𝑖 . Let 𝑥𝑗 be the 

profit allocated to each 𝑠𝑝𝑗 ∈ 𝐹𝑖 . An allocation (𝑥𝑗)𝑠𝑝𝑗∈𝐹𝑖
 is feasible if 

𝑣(𝐹𝑖) = ∑ 𝑥𝑗𝑠𝑝𝑗∈𝐹𝑖
.  (5) 

Let vector (𝑥𝑗)𝑠𝑝𝑗∈𝐹𝑖
 be a feasible allocation for 𝐹𝑖 . If there exists another feasible allocation 

(𝑦𝑗)𝑠𝑝𝑗∈𝐻 for some sub-federation  𝐻 ⊂ 𝐹𝑖 such that  𝑦𝑗 ≥ 𝑥𝑗 for all 𝑠𝑝𝑗 ∈ 𝐹𝑖 and 𝑦𝑘 > 𝑥𝑘 for 

some 𝑠𝑝𝑘 ∈ 𝐹𝑖 , then 𝐻 has a Pareto improvement on the allocation (𝑥𝑗)𝑠𝑝𝑗∈𝐻. The existence of a 

Pareto improvement on the allocation of any subset 𝐻 ⊂ 𝐹𝑖 implies instability of the federation 



D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 53 

H2020-761586 

                                                                                                                                  

𝐹𝑖 because all members in 𝐻 could leave 𝐹𝑖 to form a new federation without profit reduction 

and at least one member can receive a higher profit. In that case, we say that 𝐻 blocks 𝐹𝑖. The 

goal of profit allocation is to find a feasible allocation for each federation 𝐹𝑖 such that no 𝐻 ⊂

𝐹𝑖 can block 𝐹𝑖. 

4.2.3 Identifying Best Federation Structure 

A straightforward approach to identifying optimal federation structure is to examine every 

possible federation structure. This approach is not computationally efficient because the number 

of federation structures is an exponential function of the number of participants [24]. In fact, 

finding the optimal federation structures is NP-complete. 

A commonly adopted approach to optimal federation structure is merge-and-split. Refer to 

Algorithm 4-1. The algorithm forms the initial structure 𝑆 that consists of singleton federations only, 

where each singleton federation is an EFS node. In the merging phase, the algorithm randomly 

picks up a pair of federations to sees whether merging them into one is beneficial. Unlike in 

tradition clouds, where any two federations could be considered for possible merging, merging 

two federations 𝐹𝑖 and 𝐹𝑗 into one is beneficial only if some EFS node in 𝐹𝑖 is able to provide its 

resource to another EFS node in 𝐹𝑗 or vice versa subject to latency constraint. We define 𝑓𝑖,𝑗 = 1 

if the request from 𝑠𝑝𝑖 can be served by 𝑠𝑝𝑗 while meeting the latency constraint 𝑡𝑖. Based on 𝑓, 

we define sharable relation  ⊥ on federations. For any two federations 𝐹𝑖  and 𝐹𝑗 , 𝐹𝑖⊥𝐹𝑗  iff 

∃𝑠𝑝𝑝 ∈ 𝐹𝑖 , ∃𝑠𝑝𝑞 ∈ 𝐹𝑗, 𝑓𝑝,𝑞 = 1. Therefore, merging 𝐹𝑖 and 𝐹𝑗 should be considered only if 𝐹𝑖⊥𝐹𝑗 

or 𝐹𝑗⊥𝐹𝑖. We use F to keep the set of all possible pairs of federations in 𝑆 for which merging 

should be considered. 

ALGORITHM 4-1: MERGE-AND-SPLIT FEDERATION FORMATION MECHANISM 
1. initial state: 𝑆 ← {{𝑠𝑝1}, {𝑠𝑝2}, … , {𝑠𝑝𝑛}} 

2. repeat 

3. F ← {{𝐹𝑖, 𝐹𝑗}|𝐹𝑖 , 𝐹𝑗 ∈ 𝑆, 𝐹𝑖⊥𝐹𝑗 or 𝐹𝑗⊥𝐹𝑖} 

4. while F ≠ ∅ do 

5. repeat 

6. randomly select (𝐹𝑖, 𝐹𝑗) ∈ F 

7. F ← F \ {{𝐹𝑖, 𝐹𝑗}} 

8. until can_merge(𝐹𝑖, 𝐹𝑗) or F = ∅ 

9. if can_merge(𝐹𝑖, 𝐹𝑗) then 

10. 𝑆 ← 𝑆 \ {𝐹𝑖 , 𝐹𝑗} 

11. 𝑆 ← 𝑆 ∪ {𝐹𝑖 ∪ 𝐹𝑗} 

12. F ← {{𝐹𝑖, 𝐹𝑗}|𝐹𝑖 , 𝐹𝑗 ∈ 𝑆, 𝐹𝑖⊥𝐹𝑗 or 𝐹𝑗⊥𝐹𝑖} 

13. Endif 

14. end while 

15. redo ← false 

16. for all 𝐻 ∈ 𝑆 such that |𝐻| > 1 do 

17. for all partitions {𝐹𝑖 , 𝐹𝑗} of 𝐻 do 

18. if can_split(𝐹𝑖, 𝐹𝑗) then 

19. 𝑆 ← 𝑆 \ {𝐻} 

20. 𝑆 ← 𝑆 ∪ {𝐹𝑖 ∪ 𝐹𝑗} 

21. redo ← true 

22. Break 

23. endif 
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24. end for 

25. end for 

26. until redo = false 

27. return 𝑆 

For a pair of federations 𝐹𝑖  and 𝐹𝑗 , function can can_merge(𝐹𝑖, 𝐹𝑗) returns whether 𝐹𝑖  and 𝐹𝑗 

should be merged together. On merging, 𝑆 is updated by removing both 𝐹𝑖 and 𝐹𝑗 from it and 

adding the union of {𝐹𝑖} and {𝐹𝑗} into it. F is also updated accordingly. 

For any two (possibly singleton) federations 𝐹𝑖  and 𝐹𝑗  such that 𝐹𝑖 ∩ 𝐹𝑗 = ∅ , a necessary 

condition for 𝐻 = 𝐹𝑖 ∪ 𝐹𝑗 to be a stable federation is 

𝑣(𝐻) ≥ 𝑣(𝐹𝑖) + 𝑣(𝐹𝑗). (6) 

If (6) does not hold, either 𝐹𝑖 or 𝐹𝑗 blocks 𝐻 for any feasible allocation for 𝐻. Even if (6) holds, 

whether 𝐻 is stable also depends on the profit allocation for 𝐻 . Let 𝑥𝑘(𝐹) denote the profit 

allocated to 𝑠𝑝𝑘 ∈ 𝐹. We define binary relation  ⪰ on federations as: 

𝐹 ⪰ 𝐹′ iff ∀𝑠𝑝𝑖 ∈ 𝐹 ∩ 𝐹′, 𝑥𝑖(𝐹) ≥ 𝑥𝑖(𝐹′) (7) 

and also, relation ≡ 

𝐹 ≡ 𝐹′ iff ∀𝑠𝑝𝑖 ∈ 𝐹 ∩ 𝐹′, 𝑥𝑖(𝐹) = 𝑥𝑖(𝐹′) (8) 

Finally, 𝐹 ≻ 𝐹′ if 𝐹 ⪰ 𝐹′ and 𝐹 ≡ 𝐹′ does not hold. 

Some approaches allow merging 𝐹𝑖  and 𝐹𝑗  into 𝐻  only if 𝐻 ≻ 𝐹𝑖  and 𝐻 ⪰ 𝐹𝑗  or 𝐻 ≻ 𝐹𝑗  and 

𝐻 ⪰ 𝐹𝑖. Algorithm 4-2 allows a merging only if the merging improves every member’s profit. 

ALGORITHM 4-2: FUNCTION CAN_MERGE(𝑭𝒊, 𝑭𝒋) 

1. H ← Fi ∪ Fj 

2. for all spk ∈ H do 

3. if spk ∈ Fi and xk(H) ≤ xk(Fi) then 

4. return false 

5. else if spk ∈ Fj and xk(H) ≤ xk(Fj) then 

6. return false 

7. end if 

8. end for 

9. return true 

When there is no more federation pair in F to check, the algorithm proceeds to the splitting 

phase. It checks all possible partitions of every non-singleton federation 𝐻 in 𝑆 to see if 𝐻 should 

be split into two subsets. Whenever a splitting occurs, the algorithm goes back to the merging 

phrase with the updated 𝑆. 

Several conditions can be used for splitting up a federation 𝐻 into two disjoint subsets 𝐹𝑖 and 𝐹𝑗. 

The condition could be when the splitting improves at least one member’s profit without 

decreasing any other’s (𝐹𝑖 ≻ 𝐻 and 𝐹𝑗 ⪰ 𝐻 or 𝐹𝑗 ≻ 𝐻 and 𝐹𝑖 ⪰ 𝐻) [25] when the splitting has a 

Pareto improvement on one subset (𝐹𝑖 ≻ 𝐻 or 𝐹𝑗 ≻ 𝐻) [26], or when all members in one of the 

subsets have the same or higher profits after the splitting (𝐹𝑖 ⪰ 𝐻 or 𝐹𝑗 ⪰ 𝐻) [27]  
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In our simulation, function can_split(𝐹𝑖, 𝐹𝑗) returns true if 𝐹𝑖 ≻ 𝐻 and 𝐹𝑗 ⪰ 𝐻 or 𝐹𝑗 ≻ 𝐻 and 𝐹𝑖 ⪰

𝐻, where 𝐻 = 𝐹𝑖 ∪ 𝐹𝑗 . 

4.2.4 Profit-Maximizing Resource Provisioning Configuration 

For a specific federation, maximizing the total profit of the federation involves configuring the 

allocation of resource among participated EFS nodes in the federation. This is usually a sub-

problem to solve in finding out the best federation structure. 

We formulate a simple profit-maximization model considering unit price and unit cost of resource 

usage, unit communication cost between EFS nodes, and the ability to communicate without 

breaking latency constraint between EFS nodes. We assume a federation of 𝑛 EFS nodes 𝐹 =

{𝑠𝑝1, 𝑠𝑝2, … , 𝑠𝑝𝑛}. Each EFS node 𝑠𝑝𝑖 has a resource capacity 𝐶𝑖 with unit cost 𝑐𝑖 . We assume 

that all home requests of 𝑠𝑝𝑖 (resource requested by EFS applications/services of 𝑠𝑝𝑖) have been 

aggregated with total amount 𝑟𝑖 and payment per unit of resource requested 𝑝𝑖 . Some portion 

of 𝑟𝑖 can be served by EFS nodes other than 𝑠𝑝𝑖. We use 𝑞𝑗,𝑘 to denote the amount of resource 

provided by 𝑠𝑝𝑗 to the home requests of 𝑠𝑝𝑘. A resource provisioning configuration is to set up 

all 𝑞𝑗,𝑘’s for every 𝑠𝑝𝑗 and 𝑠𝑝𝑘 in the same federation to maximize total profit. 

If 𝑠𝑝𝑗 serves the home requests of 𝑠𝑝𝑘, it incurs extra communication cost that is estimated by the 

amount of resource provided by 𝑠𝑝𝑗  to 𝑠𝑝𝑘  times 𝑏𝑘,𝑗 , the unit cost of the communication link 

from 𝑠𝑝𝑘 to 𝑠𝑝𝑗 . Therefore, when 𝑠𝑝𝑗 serves the home requests of 𝑠𝑝𝑘 , the unit profit is  𝑝𝑘 −

𝑐𝑗 − 𝑏𝑗,𝑘. We define an indication variable 𝑓𝑘,𝑗 to denote whether the service provided by 𝑠𝑝𝑗 

to the home requests of 𝑠𝑝𝑘 meets the associated latency constraint, where  𝑓𝑘,𝑗 = 1 indicates 

‘yes’ and 𝑓𝑘,𝑗 = 0 otherwise.  

The profit of the federation  𝐹  is the maximal profit that can be achieved by resource 

provisioning configuration: 

𝑣(𝐹) = max
𝑞𝑗,𝑘

∑ ∑ (𝑠𝑝𝑘∈𝐹𝑠𝑝𝑗∈𝐹 𝑝𝑘 − 𝑐𝑗 − 𝑏𝑗,𝑘) ∙ 𝑞𝑗,𝑘 ∙ 𝑓𝑘,𝑗.  (9) 

The resource provisioning configuration is subject to capacity constraint: 

∑ 𝑞𝑗,𝑘
𝑛
𝑘=1 ≤ 𝐶𝑗,  ∀𝑠𝑝𝑗 ∈ 𝐹 (10) 

and demand constraint: 

∑ 𝑞𝑗,𝑘
𝑛
𝑗=1 ≤ 𝑟𝑘,  ∀𝑠𝑝𝑘 ∈ 𝐹. (11) 

More constraints are possible when additional request demands and serving policies are 

imposed. We consider the following four possible cases (we define request’s home EFS to be the 

EFS where the request arises).  

• Case 1 local service only (LSO): Requests can only be served by home EFS nodes. There 

is no need to form federation because all EFS nodes work alone. That is, 𝑞𝑗,𝑘 = 0 for all 

 𝑠𝑝𝑘 ≠ 𝑠𝑝𝑗. 

• Case 2 local service first (LSF): Requests are served by non-home EFS nodes only when 

home EFS does not have enough resource. On the other hand, EFS must provide enough 

resource to home requests before offering residual capacity to guest requests. That is, 

𝑞𝑗,𝑗 = min(𝐶𝑗, 𝑟𝑗) for all 𝑠𝑝𝑗. This setting ensures that requests receive at least the same 

amount of resource as in LSO and the total profit is at least the same as in LSO. 
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• Case 3 maximal profit (MP): EFS nodes collaborate to maximize the total profit of the 

federation while requests can be served by any EFS nodes in the federation.  

• Case 4 local resource first (LRF): Requests can be served by any EFS nodes in the 

federation and the maximal amount of resource that 𝑠𝑝𝑗 can provide to guest requests is 

limited by ∑ 𝑞𝑗,𝑘𝑘≠𝑗 ≤ max (𝐶𝑗 − 𝑟𝑗, 0) . The limitation does not imply that 𝑠𝑝𝑗  should 

allocate min (𝐶𝑗 , 𝑟𝑗) units of resource to its home requests. Other EFS nodes in the same 

federation with cheaper residual resource may serve the home requests of 𝑠𝑝𝑖.  

4.2.5 Performance evaluation 

We have conducted extensive simulations to study the performance of the merge-and-split 

approach to maximal-profit federation structure. The performance metrics under investigation 

include total profits in the federation structure and the total amount of resource allocated to 

requests. The four different cases of request demand and serving policies mentioned in Section 

4.2.4 were tested. The details of the simulations are in Appendix 12.1. 

A factor that significantly affects the results is cooperation intensity 𝑝 among EFS nodes. We 

model EFS nodes as vertices in a directed graph, where there is an edge from nodes 𝑠𝑝𝑘 to 𝑠𝑝𝑗 

if 𝑠𝑝𝑘  can serve 𝑠𝑝𝑗 ’s request without violating latency constraint. Cooperation intensity 𝑝  is 

defined to be the ratio of the number of directed edges to the maximal possible number of 

directed edges in the graph. 

4.2.5.1 Impact of cooperation intensity 

Figure 4-5 and Figure 4-6 show how the total profit in the federation structure and the total 

amount of allocated resource changed with increasing 𝑝. Because LSO allows no resource sharing, 

the performance with LSO is not affected by 𝑝 . The performance with all other three cases 

improves as 𝑝 increases. Among them, the highest total profit is with MP while the largest amount 

of allocated resource is with LSF. The performance with LRF is between these two cases. 

 
FIGURE 4-5: TOTAL PROFIT IN THE FEDERATION 

STRUCTURE VS COOPERATION INTENSITY 

 
FIGURE 4-6: AMOUNT OF ALLOCATED RESOURCES 

IN THE FEDERATION VS COOPERATION INTENSITY 

4.2.5.2 Impact of demand-to-supply ratio 

We then study how the resource demand-to-supply ratio affects the performance. This was done 

by fixing the mean resource capacity to 𝜇𝑘 = 1,200 units and varying the mean requested 

resource units 𝜇𝑟 from 700 to 1,450 units. The results are shown in Figure 4-7 and Figure 4-8. 

When 𝜇𝑟 is less than 𝜇𝑘 = 1,200, the mean capacity, the demands are lower than the supplies 
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so both the total profit and the amount of allocated resource increase linearly as 𝜇𝑟 increases. 

When 𝜇𝑟 ≥ 𝜇𝑘, the amount of allocated resource is limited by 𝜇𝑘. Still, the total profit could be 

improved by appropriate resource provisioning configuration as MP demonstrates in Figure 4-8. 

 
FIGURE 4-7: AMOUNT OF ALLOCATED RESOURCE 

IN THE FEDERATION VS MEAN UNIT OF RESOURCES 

REQUEST 

 
FIGURE 4-8: TOTAL PROFIT IN THE FEDERATION 

VS MEAN UNIT PRICE OF RESOURCES 

4.2.5.3 Impact of price-to-cost ratio 

We next investigate the impact of the price-to-cost ratio on performance. This was done by 

fixing all parameters but 𝜇𝑝, the mean unit price of resource (the mean unit cost of resource was 

set to 𝜇𝑐 = 500). From the result shown in Figure 4-9, we can see that resource requests are 

generally fulfilled with LSO and LSF. On the other hand, more profits can be earned with MF and 

LRF (see Figure 4-8). The extra profits come at the cost of low request acceptance rates. The cost 

is particularly significant when the price-to-cost ratio is low. 

 

FIGURE 4-9: AMOUNT OF ALLOCATED RESOURCE IN THE FEDERATION STRUCTURE VS. MEAN UNIT 

PRICE OF RESOURCE 

4.2.5.4 Conclusions 

The results showed that federation always increases profits. Maximal profits can be earned with 

MP but sometimes at the cost of reduced amount of allocated resource (when the price-to-cost 

ratio is low, EFS nodes would rather not serve low-price requests). With LSF, the amount of 
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allocated resource is not lower than the case of no federation (i.e., LSO) yet the profits can 

potentially be improved. This serving policy is thus recommended. 

4.3 Advanced resource provisioning in federated EFSs 

In Section 4.2.4, we use a simple model for the problem of finding resource provisioning 

configuration that maximizes the total profit in an EFS federation. In this section, we further 

extend this model by considering the following settings: 

• Different resource types: EFS nodes own different types of physical resource (e.g., CPU, 

memory, storage, etc.) and provide different flavours of virtualized resource (e.g., 

different instance types of virtual machines) to EFS applications/services. 

• Multi-objective: The configuration maximizes not only the service provider’s profit but 

also the user’s payoff (i.e., considering the quality of the service offered to requests and 

also possible payment). 

• Distributed dispatch: Resource requests are directly sent to target EFS nodes. There is no 

central entity that dispatches all requests toward their target EFS nodes. 

• Different pricing models: We consider two pricing models: free-of-use and pay-per-use. 

The former does not involve monetary exchange and is considered the default model for 

resource provisioning within a federation. The latter case suitably applies to resource 

provisioning across different federations. We also consider negotiable payments 

between resource requestors and providers.  

4.3.1 System model 

We consider a federation of EFS nodes 𝐹 = {𝑠𝑝1, 𝑠𝑝2, … , 𝑠𝑝𝑛}. Each EFS node 𝑠𝑝𝑖 is a single 

computing substrate located in the same geophysical area. Let 𝑅 denote the set of all different 

types of physical resource (CPU, memory, storage, etc.). If we exclude special hardware 

resource, 𝑅 is universally defined for all nodes. Let 𝐶𝑖
𝑟 denote the amount of resource type 𝑟 ∈ 𝑅 

at node 𝑠𝑝𝑖. We denote the capacity of node 𝑠𝑝𝑖 by 𝐂𝑖 = (𝐶𝑖
1, 𝐶𝑖

2,…, 𝐶𝑖
|𝑅|

).  

Virtualized computation resource could be in the form of virtual machine (VM), container, or 

others. We assume the use of VM and a limited number of VM instance types (called flavours), 

which has been supported by cloud service providers. Table 4-5 shows the VM instances types 

offered by Amazon EC2 in US West Region8. 

TABLE 4-5: EXAMPLES OF VM INSTANCE TYPES 

Metric Medium (m=1) Large (m=2) XLarge(m=3) 2XLarge (m=4) 

CPU 1 2 4 8 

Memory (GB) 3.75 7.5 15 30 

Storage (GB) 4 32 80 160 

As a need to deploy EFS functions/applications, requests for virtualized resource will come to the 

EFS Resource Orchestrator. In general, each request includes an EFS Stack Descriptor that consists 

of the following parameters: 

• a list of VM instances requested together with corresponding images; 

• a directed graph that describes the chaining of these VMs; 

• optionally a location indicator that specifies a certain point or area to deploy each VM; 

• a latency constraint associated with the whole request.  

                                                 
8 https://aws.amazon.com/ec2/instance-types/  

https://aws.amazon.com/ec2/instance-types/
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In reality, EFS functions or applications may demand computation resource located at different 

geographical areas so that the request should be simultaneously served by more than one node 

(instead of one). In that case, the EFS Resource Orchestrator is in charge of splitting the request 

into multiple parts, one toward each node. 

In the trust cooperative model, each EFS node may receive requests for virtualized resource from 

EFS functions or applications within its administrative domain (called home requests) or from other 

EFS nodes in the same federation (called guest requests). There are several possible policies for 

EFS Resource Orchestrator to handle incoming requests. For example: 

• [P1] Treating home and guest requests equally; 

• [P2] Granting home requests first and then allocating residual capacity to guest requests. 

This is identical to local service first (LSF) in Sec. 4.2.4; 

• [P3] Granting home requests first and reserving a portion of the capacity for future 

home requests. If there is still residual capacity, then allocate it to guest requests. 

We consider a general model with which EFS Resource Orchestrator can take any one of these 

policies. 

4.3.2 Request dispatch by OCS 

Suppose that the federated EFS system 𝐹 receives a set of 𝑚 requests 𝑄 = {𝑞1, 𝑞2, … , 𝑞𝑚}. For 

each request 𝑞𝑗, all the EFS nodes that currently has sufficient resource capacity to serve it and 

meets the location and latency constraint are qualified nodes for 𝑞𝑗 . Dispatching resource 

requests to qualified nodes is straightforward if every node has enough capacity to serve all 

requests toward it. If this is not the case, only some requests can be granted. The selection of 

requests to grant is to maximize the number of targeted requests. The definition of targeted 

requests depends on the serving policy (P1~P3) taken by each EFS node.  

• If an EFS node takes P2 or P3, only home requests are targeted. 

• If an EFS node takes P1, all requests are targeted. 

The optimization problem is closely related to bin-packing problem, where objects of different 

volumes (resource requests in our case) are to be packed into a finite number of bins (EFS nodes 

in our case) each of same volume. The bin-packing problem has been known NP-hard. The 

following features differentiate the dispatch problem from the bin-packing problem.  

• Nodes in the dispatch problem are not of the same capacity;  

• Not all requests can be served even if all nodes are used, and we aim to maximize the 

number of requests served. In the bin-packing problem, all objects can be packed, and 

the goal is to minimize the number of bins used; 

• Not every qualified node offers a request the same quality of service (QoS; e.g., 

application latency). We want to dispatch requests to qualified nodes that offer them 

QoS as high as possible. 

4.3.3 Objectives of payment-free request dispatch 

We consider the objective of maximize the number of requests granted in parallel with the 

objective of offering requests QoS as high as possible. This is a multi-objective optimization 

problem, for which optimal solutions are computationally difficult to find. We decompose it into 

two sub-problems. 

Let the dispatch result of 𝑄 to 𝐹 be represented by a set of indication variables {𝑥𝑖
𝑘}𝑖

𝑘, where 

𝑥𝑖
𝑘 = 1  if request 𝑞𝑘  is dispatched to node 𝑠𝑝𝑖  and  𝑥𝑖

𝑘 = 0  otherwise. If all requests are 

targeted, the objective of OCS is to maximize the total number of granted requests: 
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max ∑ ∑ 𝑥𝑖
𝑘

𝑘
𝑖

. (12) 

The objective of each request 𝑞𝑘 ∈ 𝑄 is to maximize its own spare latency:  

max ∑ (𝑥𝑖
𝑘 × (𝑡max

𝑘 − 𝑡𝑖
𝑘))

𝑖

,  (13) 

where 𝑡max
𝑘  is the latency constraint associated with 𝑞𝑘 and 𝑡𝑖

𝑘 is the estimated latency when 𝑞𝑘 

is served by 𝑠𝑝𝑖. These two objectives are subject to capacity constraint and non-split constraint 

(requests cannot be split and can be dispatched to at most one node). Let 𝑑𝑘,𝑟 be the amount of 

physical resource type 𝑟 ∈  𝑅 needed by request 𝑞𝑘. The capacity constraint is: 

∑ (𝑑𝑘,𝑟 × 𝑥𝑖
𝑘)𝑘 ≤ 𝐶𝑖

𝑟 , ∀𝑟 ∈ 𝑅, ∀𝑠𝑝𝑖 ∈ 𝐹. (14) 

The non-split constraint is:  

     ∑ 𝑥𝑖
𝑘

𝑖 ≤ 1, ∀ 𝑞𝑘 ∈ 𝑄 (15) 

∀ 𝑥𝑖
𝑘 ∈ {0,1}  (16) 

4.3.4 Procedure for payment-free request dispatch 

We propose a distributed on-line approach where each node locally and independently selects 

requests to serve. The role of OCS is to identify for each request all qualified nodes with ranks 

determined by the QoS they offer and communicate with nodes on behalf of each request. The 

procedure of this approach is as follows: 

1. After the OCS receives a request, it forwards the request to each node; 

2. Each node checks to see if it is qualified for the request. A node is qualified if it has 

enough capacity to serve the request and the service meets the latency constraint 

associated with the request. If a node is qualified, it also estimates the resulting latency. 

The node then sends back the result to the OCS; 

3. After all nodes reply back their results, the OCS creates a preference list which ranks all 

qualified nodes for the request; 

4. When the OCS has a set of requests to dispatch, each with a preference list, the OCS 

sends all requests in parallel to their most preferred nodes; 

5. Each node may receive more than one requests and may need to select some requests to 

serve. Based on its own decision, the node responds with either a grant or a reject 

message to each request; 

6. The request procedure completes when a request receives a grant. When a request 

receives a reject instead, it removes the node from its preference list. If the list is not 

empty, go to Step 4. Otherwise, the request terminates without being served. 

This procedure is a many-to-one matching proposed for college admissions problem. The 

difference is that each college has a fixed and known quota (for students) while nodes in our 

problem do not: the number of requests that can be served by a node actually depends on the 

amount of resource requested and the node’s capacity. 

4.3.4.1 Requirements for a node being qualified 

A node checks whether the latency constraint is met by estimating the communication latency 

between chaining VMs and also access delay. The procedure to verify whether a node 𝑠𝑝𝑖 has 

enough capacity to serve request 𝑞𝑘  follows. First, the amount of VM instances of each type 
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requested by 𝑞𝑘  is summarized as vm𝑘 = (𝑣𝑚𝑘,1, 𝑣𝑚𝑘,2, … , 𝑣𝑚𝑘,|𝑉𝑀|) , where 𝑣𝑚𝑘,𝑗  is the 

requested number of VM instances of type 𝑗 and |𝑉𝑀| is the number of VM types supported. 

Since each VM instance type demands a specific amount of physical resource of various types (as 

Table 4-5 shows), OCS then converts vm𝑘 into a demand vector  d𝑘 = (𝑑𝑘,1, 𝑑𝑘,1, … , 𝑑𝑘,|𝑅|), in 

which 𝑑𝑘,𝑟 specifies the amount of physical resource type 𝑟 ∈  𝑅 needed by request 𝑞𝑘. Node 

𝑠𝑝𝑖 has enough capacity to serve 𝑞𝑘 if C𝑖 ≥ d𝑘 . 

4.3.4.2 Node’s preference on requests 

The global objective of maximizing the total number of granted targeted requests (12) is 

decomposed into individual goal of each node: maximizing the total number of locally granted 

targeted requests. A greedy approach is to serve requests with lowest resource demands first. 

This corresponds to a preference function 𝑃𝑖,𝑗(𝑞𝑘) of each node 𝑠𝑝𝑖 defined on request 𝑞𝑘:  

𝑃𝑖(𝑞𝑘) = ∑ (𝑤𝑖
𝑟 × (1 −

𝑑𝑘,𝑟

𝐶𝑖
𝑟 ))

|𝑅|

𝑟=1

 (17) 

where ∑ 𝑤𝑖
𝑟

𝑟 = 1 . Parameter 𝑤𝑖
𝑟  is a weight that indicates the relative importance (or 

scarceness) of physical resource type 𝑟 among all at node 𝑠𝑝𝑖. The summation of all the weights 

at the node equals one. The term 𝑑𝑘,𝑟/𝐶𝑖
𝑟 represents the ratio of the amount of physical resource 

type 𝑟 demanded by 𝑞𝑘 to 𝑠𝑝𝑖’s capacity. For example, if two CPU cores are requested by 𝑞𝑘 

and 𝑠𝑝𝑖’s capacity of CPU cores is four, then the ratio is 0.5. 

4.3.4.3 Request’s preference on nodes 

Based on the results sent back by all qualified nodes, OCS forms a latency vector t𝑘 =

(𝑡1
𝑘 , 𝑡2

𝑘 , … , 𝑡𝑛
𝑘) for request 𝑞𝑘 , where 𝑡𝑖

𝑘  is the estimated latency when 𝑠𝑝𝑖 serves 𝑞𝑘 . With t𝑘 , 

OCS creates a preference list for 𝑞𝑘 based on the following preference function: 

𝑃𝑘(𝑠𝑝𝑖) = 𝑡max
𝑘 − 𝑡𝑖

𝑘 , (18) 

where 𝑡max
𝑘  is the latency constraint associated with 𝑞𝑘. All requests prefer nodes with high spare 

latencies.  

4.3.5 Payment-Based Request Dispatch 

We consider the case that guest requests need pay to EFS service providers for allocated 

resource. This corresponds to inter-EFS request dispatch. We consider pay-per-use pricing model 

with dynamic pricing. EFS service providers here are resource sellers while requests are buyers. 

The selling prices are negotiated between the selling and the buying parties. This is more 

economically efficient than fixed pricing because resource price is set according to the forces of 

demand and supply. 

For this problem we have the following assumptions: 

• A set of 𝑚 requests 𝑄 = {𝑞1, 𝑞2, … , 𝑞𝑚} coming to the federated system. 

• Each request 𝑞𝑘 ∈ 𝑄 is associated with a demand vector  d𝑘 = (𝑑𝑘,1, 𝑑𝑘,2, … , 𝑑𝑘,|𝑅|), in 

which 𝑑𝑘,𝑟 specifies the amount of physical resource type 𝑟 ∈  𝑅 needed by request 𝑞𝑘. 

• Each request 𝑞𝑘 has a budget 𝑣𝑘, which is the maximal price that the requester is willing 

to pay for 𝑞𝑘. This value is private and not known by EFS service providers. 

• 𝑡max
𝑘  is the latency constraint of 𝑞𝑘. 
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• Besides resource descriptor, each request 𝑞𝑘 to a qualified EFS system 𝑠𝑝𝑖 also includes 

an offered price 𝑏𝑖
𝑘  that is specific to 𝑠𝑝𝑖 . The value of 𝑏𝑖

𝑘  is related to the QoS 

provided by 𝑠𝑝𝑖 to 𝑞𝑘, and does not exceed 𝑣𝑘.  

• 𝑡𝑖
𝑘 is the estimated latency when 𝑠𝑝𝑖 serves 𝑞𝑘. 

• If request 𝑞𝑘 with offered price 𝑏𝑖
𝑘 is rejected by node 𝑠𝑝𝑖, it can either raise its offered 

price to 𝑏𝑖
𝑘 + 𝜀 ≤ 𝑣𝑘 and resubmit the request to  𝑠𝑝𝑖 again, or sends the request with 

another offered price to another node. 

• 𝐶𝑖
𝑟 is the amount of resource type 𝑟 ∈ 𝑅 in EFS system 𝑠𝑝𝑖. We denote the capacity of 

node 𝑠𝑝𝑖 by 𝐂𝑖 = (𝐶𝑖
1, 𝐶𝑖

2,…, 𝐶𝑖
|𝑅|

). 

• Each EFS system 𝑠𝑝𝑖  also keeps the unit cost of each resource type by vector 𝐜𝑖 =

{𝑐𝑖
1, 𝑐𝑖

2, … , 𝑐𝑖
|𝑅|

}, where 𝑐𝑖
𝑟 is the unit operation cost of resource type 𝑟 in 𝑠𝑝𝑖.  

4.3.5.1 Objectives 

Let the dispatch result between 𝑄 and 𝑆𝑃 be represented by a set of indication variables {𝑥𝑖
𝑘}𝑖

𝑘, 

where 𝑥𝑖
𝑘 = 1  if request 𝑞𝑘  is dispatched to EFS system 𝑠𝑝𝑖  and  𝑥𝑖

𝑘 = 0  otherwise. Let 

𝜃𝑖(𝑞𝑘) = 𝑐𝑖
1 × 𝑑𝑘,1 + 𝑐𝑖

2 × 𝑑𝑘,2 + ⋯ + 𝑐𝑖
|𝑅|

× 𝑑𝑘,|𝑅| be the cost of EFS system 𝑠𝑝𝑖 when it serves 

request 𝑞𝑘 . If all requests are targeted, the objective of OCS 𝑖 is to maximize its own profit 

defined as: 

∑ (𝑥𝑖
𝑘 × (𝑏𝑖

𝑘 − 𝜃𝑖(𝑞𝑘)))

𝑘

. (19) 

Each request 𝑞𝑘 aims to minimize its payment and also latency. A possible objective function can 

be defined as to maximize its payoff (𝑣𝑘 − 𝑏𝑖
𝑘) per unit latency: 

max ∑ (𝑥𝑖
𝑘 ∙

𝑣𝑘−𝑏𝑖
𝑘

𝑡𝑖
𝑘 )𝑖 .  (20) 

These two objectives are subject to capacity constraint (21): 

∑ (𝑑𝑘,𝑟 × 𝑥𝑖
𝑘)𝑘 ≤ 𝐶𝑖

𝑟, ∀𝑟 ∈ 𝑅, ∀𝑠𝑝𝑖 ∈ 𝑆𝑃, (21) 

non-split constraint (22, 23): 

∑ 𝑥𝑖
𝑘

𝑖 ≤ 1, ∀ 𝑞𝑘 ∈ 𝑄, (22) 

∀ 𝑥𝑖
𝑘 ∈ {0,1}, (23) 

and budget constraint (24): 

0 < 𝑏𝑖
𝑘 ≤ 𝑣𝑘. (24) 

4.3.5.2 EFS’s preference on requests 

The objective of each OCS 𝑖 is to maximize its own profit as defined in (19). Because different 

requests come with different sizes (amounts of resource requested) with different offered prices, 

this falls into the 0/1-knapsak problem, which has been known NP-complete. A common-adopted 

greedy approach is to serve first requests with the highest ratio of profit to the amount of 
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demanded resource. This corresponds to a preference function 𝑃𝑖(𝑞𝑘) of each EFS system 𝑠𝑝𝑖 

defined on request 𝑞𝑘:  

𝑃𝑖(𝑞𝑘) =
𝑏𝑖

𝑘 − 𝜃𝑖(𝑞𝑘)

∑ (𝑤𝑖
𝑟 ∙

𝑑𝑖
𝑘,𝑟

𝐶𝑖
𝑟 )

|𝑅|
𝑟=1

, 
(25) 

where ∑ 𝑤𝑖
𝑟

𝑟 = 1. 

4.3.5.3 Request’s preference on nodes 

Request 𝑞𝑘 ’s preference on EFS system 𝑠𝑝𝑖  depends on whether the estimated latency 𝑡𝑖
𝑘 

exceeds the latency constraint 𝑡max
𝑘 . If it does not, the preference value is defined to be its 

payoff (𝑣𝑘 − 𝑏𝑖
𝑘) per unit of latency. Otherwise, the preference is negative (say, -1). Formally: 

𝑃𝑘(𝑠𝑝𝑖) = {
𝑣𝑘−𝑏𝑖

𝑘

𝑡𝑖
𝑘 if 𝑡𝑖

𝑘 ≤  𝑡max
𝑘 ,

−1 otherwise.
. (26) 

4.3.6 Performance Evaluation 

We conducted a series of simulations to investigate the performance of the proposed 

mechanisms and compare it with that of others. We considered request dispatches both with and 

without payments. The details of the simulations are in Appendix 12.2. 

4.3.6.1 State-of-the-Art Mechanisms Tested 

We tested several matching mechanisms, including Capacitated House Allocation (CHA) [28], 

adapted Boston [29], and adapted Deferred Acceptance (DA) [30] CHA is to allocate a set of 

houses to a bunch of agents. Every house has a capacity which specifies the maximal number of 

agents that it can accommodate, and agents can have preference on houses. CHA does not well 

fit our problem due to the following reasons. First, CHA considers only one-sided preference 

while both requesters and nodes have preference in our problem. Second, agents are assumed 

to have equal size and the maximal number of agents that can be accommodated in each house 

is fixed and known. In contrast, requests come with different sizes (amounts of requested resource) 

in our problem so an EFS node may fulfill the aggregated demand of three requests but not that 

of another two. 

In Step 5 of the procedure shown in Section 4.3.4, an EFS node may have already accepted 

some requests but have to reject some other requests later due to insufficient residual capacity. 

When this happens, it is an issue whether the EFS node should retract a previous grant to make 

room for a new request simply because the new one has a higher preference function value than 

the previous. If we allow retraction, it is a variant of deferred-acceptance (DA) algorithm [30], 

which possesses a property that nodes may tentatively accept requests. If acceptance is always 

firm (cannot be retracted), the approach is a variant of Boston [29]. 

We also tested random matching and no offloading (denoted by No-Share). In No-Share, 

requests were always dispatched to the EFS nodes co-located with the respective serving access 

points of the requests. 

4.3.6.2 Results of payment-free request dispatch 

Figure 4-10 shows how the number of served requests changes with increasing number of 

requests using different approaches. DA clearly outperforms all others, followed by Boston. CHA 

and Random roughly performed the same. They performed better than No-Share only with few 



D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 64 

H2020-761586 

                                                                                                                                  

requests. The reason is that nodes in CHA did not have preference on requests, so the set of 

requests that were granted when a node did not have enough capacity was not carefully 

determined. This is like Random. 

 
FIGURE 4-10: TOTAL NUMBERS OF SERVED REQUESTS IN PAYMENT-FREE REQUEST DISPATCH 

Figure 4-11 shows the average latency per granted request. Here No-Share had the lowest 

latency, which is reasonable because only local (home) requests could be granted. Random had 

the highest latency, which is also predictable. The superiority of Boston over DA comes from the 

property that once Boston grants a request, it never retracts the grant. Therefore, granted 

requests tended to be dispatched to their most preferred EFS nodes. In contrast, DA may retract 

a request grant to make room for another request that is preferable. Therefore, granted 

requests were less likely to be matched to their most preferred nodes. Together with Figure 

4-10, we can see that this strategy is to trade requester’s preference for node’s preference. 

 
FIGURE 4-11: AVERAGE LATENCY PER REQUEST IN PAYMENT-FREE REQUEST DISPATCH 
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4.3.6.3 Results of payment-based request dispatch 

For payment-based request dispatch, we primarily considered DA with transfer [31] (referred to 

as DA-T). In DA-T, different requesters may have different settings on the increments of their bids 

(the value of 𝛿) when the proposed bids are not accepted. Generally speaking, nodes prefer 

higher 𝛿 value while requesters prefer lower. We used a parameter  to set up the maximal 

number of times that each requester is allowed to raise its bid toward the same node. It 

indirectly controls the granularity of 𝛿𝑖,𝑗
𝑘  (𝛿 for each 𝑞𝑖

𝑘 toward 𝑠𝑖,𝑗) as follows: 

𝛿𝑖,𝑗
𝑘 =

𝑣𝑖
𝑘−𝑎𝑖,𝑗

𝑘


, (27) 

where 𝑎𝑖,𝑗
𝑘  is the asked price 𝑠𝑖,𝑗 provided to 𝑞𝑖

𝑘 (the minimal selling price). In the simulations, we 

assumed that 𝑎𝑖,𝑗
𝑘 = 𝜃𝑖,𝑗(𝑞𝑖

𝑘). 

Figure 4-12 shows the average latency per granted request in payment-based request dispatch. 

The performance of Random and Boston was expected. DA-T with  = 10 had a lower latency 

than DA-T with  = 4. This can be justified as a small granularity of bid increment ( = 10) gave 

requests more chances to be considered by their most preferred nodes (before switching to less 

preferred servers in their preference lists). 

Figure 4-13 shows total revenue of the system. Though Boston gave granted requests low 

latencies, the revenue of the system was nearly the same as Random. The reason is that it did not 

give EFS nodes the opportunity to replace low-profit requests with high-profit ones. DA-T 

outperformed Boston because it allows such replacements. Here large granularity of bid 

increment ( = 4) gave the system higher revenue, which is intuitive. However, the gap is not 

significant. 

 
FIGURE 4-12: AVERAGE LATENCY PER REQUEST IN PAYMENT-BASED REQUEST DISPATCH 
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FIGURE 4-13: TOTAL REVENUE IN PAYMENT-BASED REQUEST DISPATCH 

4.3.6.4 Conclusions 

The results showed that in payment-free request dispatch, good dispatch approaches can serve 

more requests while still meeting latency constraints. Among them, DA serves more requests than 

the counterparts. For payment-based request dispatch, good dispatch mechanism like DA-T can 

have high revenue while still meeting latency constraints.  
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5 OCS experimental validation 
This section presents the experimental validation of the OCS designed in WP3 with focus on the 

automated deployment of EFS Entities, OCS federation, migration of EFS Entities and network 

assisted D2D communication. 

5.1 Automated deployment 

In this section, we present and discuss the approach adopted to validate the automated 

deployment of services and applications within the 5G-CORAL platform. Such capability enables 

the so-called zero-touch deployment, which creates and manages the end-to-end service by 

reducing the need for human operator intervention. In 5G-CORAL, this operation translates into 

deploying an EFS Stack which implies the onboarding and the instantiation of each EFS Entity and 

Service included in the descriptor. Figure 5-1 illustrates all the steps involved.  

 

FIGURE 5-1: WORKFLOW FOR ON-BOARDING AND INSTANTIATING AN EFS STACK 

During the first phase, the EFS Stack Orchestrator (SO) processes north-bound App onboarding 

requests sent by the OSS (1). Next, the EFS SO verifies that the EFS platform contains sufficient 

resources to onboard the App by querying the EFS Resource Orchestrator (RO) (2). Once the EFS 

SO has received a positive acknowledgment from the EFS RO (3), a JSON network descriptor is 

generated and sent to the EFS RO (4). Finally, the EFS RO forwards the App instantiation request 

to the VIM (5), which creates the EFS App instance.  

In order to validate and assess the automated deployment procedure, we evaluate multiple 

software implementations and virtualization technologies as well as different OCS components. 

Particularly, Table 5-1 shows the Hypervisors, VIMs and Orchestrators under test. Regarding the 

hypervisors, we consider two container-based hypervisors (i.e., Docker and LXD) and one virtual 

machine-based hypervisor (i.e., KVM). Regarding the VIMs, we consider fog05 and OpenStack 

while for the Orchestrator we consider f0rce and Kubernetes (k8s). It is worth highlighting that 

fog05 and f0rce refer to the VIM and Orchestrator implementations following the 5G-CORAL 

OCS design guidelines and developed as part of WP3 work. The code of fog05 and f0rce have 

been made available as open source on GitHub [4][5]. 
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TABLE 5-1: OCS SOFTWARE IMPLEMENTATION DETAILS AND COMPONENTS UNDER TEST 

Component Software Implementation Version 

Hypervisor Docker 18.06.1 

KVM 2.5.0 

LXD 3.12 

VIM 
 

fog05 0.2 

OpenStack Ocata 

Orchestrator 
 

f0rce 0.1 

k8s 1.13 

To properly compare the above implementations, we consider the deployment of an EFS Stack 

composed of a single atomic EFS App. The reason of choosing such scenario is driven by the fact 

that such scenario is the minimal set of functionalities supported by all the software 

implementations under test. By doing so, the contribution of each OCS component to the overall 

deployment time can be clearly isolated as explained later in Section 5.1.1. The baseline image 

for the EFS App is Alpine Linux, a minimal Linux distribution suitable for virtualization and cloud 

alike environments which is available for Docker, LXD and KVM runtimes. In our tests, we have 

installed a webserver (i.e., NGINX) in every image as exemplary software that can interact over 

the network. Table 5-2 reports the image size for the three different virtualization technologies. 

TABLE 5-2: EFS APP CHARACTERISTICS AND CONFIGURATIONS 

Virtualization technology Image version Image size 

Docker Alpine Linux 23.5 MB 

LXD Alpine Linux 4.7 MB 

KVM Alpine Linux 242.1 MB 

In case of using f0rce as orchestrator, we have created the EFS Stack descriptor as shown in 

Table 5-3. The EFS Stack descriptor follows the information model detailed in Appendix 10 and 

it is provided to the EFS Stack Orchestrator for onboarding and instantiation. Figure 5-2 shows 

the web-based interface of the EFS Stack Orchestrator which can be used by a human operator 

to onboard and trigger the instantiation of the EFS Stack. In case of the other hypervisors, VIMs 

and Orchestrators, we used instead the exposed APIs to achieve the automated deployment. 

TABLE 5-3: EFS STACK DESCRIPTOR FOR INSTANTIATING THE LXD-BASED EFS APP ON F0RCE 
{ 

    "efs-app-descriptor": { 

        "uuid": "fc958662-ccec-4791-a082-0330c02b08b7", 

        "name": "test_app", 

        "vendor": "UC3M", 

        "version": "1.0", 

        "soft-version": "", 

        "ocs-version": "1", 

        "vdus": [ 

            { 

                "vdu_uuid": "d94d309d-8414-4717-879b-8f5a98efc130", 

                "vdu_name": "example_vdu_alpine", 

                "vdu_image": { 

                    "uri": "file:///home/user/bench.tar.gz", 

                    "checksum": 

"769d3b2c476c46b9dd57e280821bdd6a1694a8f643247b4d70096643f6d5d472", 

                    "format": "tar.gz" 

                }, 

                "vdu_computational_requirements": { 

                    "cpu_arch": "x86_64", 

                    "cpu_min_count": 1, 

                    "ram_size_mb": 128.0, 

                    "storage_size_gb": 1.0 

                }, 

                "vdu_interfaces": [ 

                    { 

                        "name": "eth0", 
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                        "is_mgmt": false, 

                        "mac_address": "be:ef:be:ef:00:01", 

                        "virtual_type": "PARAVIRT", 

                        "internal_cp": "" 

                    } 

               ], 

"vdu_hv_type": "LXD", 

"vdu_internal_connection_points": [], 

"vdu_depends_on": [], 

  "vdu_lcm_hooks": { 

   "migration_type": "COLD" 

  } 

            } 

        ], 

        "virtual_links": [], 

        "service-produced": [], 

        "description": "Simple deployment" 

    } 

} 

The infrastructure is composed by one EFS Resource acting as compute node and by a second 

EFS Resource acting as controller. In order to compare the different orchestrator and VIM 

implementations (see Table 5-1) on the same hardware, both EFS Resources are equipped with 

an Intel Xeon E5-2620 (i.e., 32 logical cores) running at 2.1GHz, 128 GB of RAM, 512 GB of 

storage, and 2 Ethernet interfaces at 10 Gbps. It is worth mentioning that the usage of more 

constrained resources would have made impossible a direct comparison between different 

software with high computing requirements. Finally, both EFS Resources run Ubuntu 18.04 Server.  

 

FIGURE 5-2: EFS STACK ORCHESTRATOR WEB-BASED INTERFACE 

5.1.1 Results 

For each Hypervisor, VIM and Orchestrator reported in Table 5-1, we have performed 250 

automated deployments of the baseline Alpine Linux image. For each deployment we have then 

measured the overall deployment time, which is the time elapsed from the initial instantiation 

request sent to the Hypervisor/VIM/Orchestrator till the moment the webserver running inside the 

EFS App becomes reachable.  

Moreover, to normalize the deployment time we already make available a copy of the image 

on the compute node. By doing so, the OCS does not need to copy the EFS App image over the 
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network. Additionally, by employing a single compute node, the results better highlight the 

impact of the virtualization technology independently of the overhead that might be introduce by 

the placement algorithm when a larger number of nodes is used. As a result, the measured 

deployment time can be considered as a lower bound. 

Figure 5-3 reports the experimental Cumulative Density Function (eCDF) for each of the 

configurations and tests. From top to bottom, first the results regarding the Docker virtualization 

technology are presented. In this scenario there are two parallel settings: fog05 + Docker and 

k8s + Docker. Specifically, the software implementations under test are Docker as hypervisor, 

fog05 as VIM, and Kubernetes (k8s) as Orchestrator. It is worth highlighting that k8s here is 

considered as Orchestrator, however k8s provides the full stack (VIM + Orchestrator). The figure 

in the middle reports the results for the LXD virtualization technology. In this case, the software 

implementations under test are LXD as hypervisor, fog05 as VIM, and f0rce as Orchestrator. The 

last figure at the bottom reports the results for the KVM virtualization technology. In this case we 

the software implementations under test are KVM as hypervisor, fog05 as VIM, and OpenStack 

as second VIM. 

 
FIGURE 5-3: EXPERIMENTAL DEPLOYMENT TIME OF AN EFS STACK WITH AN ATOMIC EFS APP 

The breakdown of the deployment time, along with the most significant statistical properties, is 

reported in Table 5-4. Starting by analysing the hypervisors, results show that Docker provide 

the fastest deployment time. If we compare the image sizes reported in Table 5-2, we can see 

that the Docker-based image weights 92.6 MB while the LXD-based image weights 4.7 MB.  

Nevertheless, Docker achieves a faster deployment time (3.421s vs 5.276s). It is worth reminding 

that in these tests the images are pre-provisioned on the compute node, therefore the images are 

not copied over then network. Nonetheless, Docker and LXD manage the instantiation in different 

ways: while Docker adopts a differential approach (i.e., it copies on disk only the differences 

between a baseline image and the target image/instance), LXD copies the whole image for each 

instance to be created. Moreover, LXD adopt a Virtual Machine-like management of the 

instances compared to the App-centric management adopted by Docker. This means that the LXD 

instance needs to execute additionally operating system-like procedures (e.g., services start-up, 

filesystem check, etc.) which are not instead executed in Docker. These aspect result in a longer 
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deployment time for LXD compared to Docker. The longest deployment time is provided by KVM 

(i.e., 27.449s). This is natural since a Virtual Machine instance requires to go through the whole 

boot process in the same way as a physical machine. This means that a separate kernel runs in 

the Virtual Machine to implement the whole hardware-control logic, which is not required in a 

container-based environment.  

TABLE 5-4: STATISTICAL CHARACTERISTICS OF THE EXPERIMENTAL DEPLOYMENT TIME (S) 

Virt. Tech. Component Min Max Mean Median Std Dev. 

Docker Docker 3.223 3.756 3.421 3.413 0.086 

fog05 4.027 4.733 4.444 4.601 0.245 

k8s 5.498 6.920 5.752 5.730 0.168 

LXD LXD 5.128 5.975 5.276 5.265 0.076 

fog05 5.292 7.047 5.479 5.432 0.316 

f0rce 5.355 10.125 5.950 5.931 0.444 

KVM KVM 27.085 27.906 27.449 27.435 0.163 

fog05 30.055 31.351 30.591 30.645 0.280 

OpenStack 32.785 34.197 33.444 33.411 0.323 

Regarding the VIM performance we can see how these are strictly bounded to the hypervisor 

performance. Specifically, we can see how the deployment time measured with fog05 for all the 

three virtualization technologies is ~15% higher than the hypervisor. This is due to the additional 

operations that the VIM needs to perform on the infrastructure to properly configure and 

interconnect the EFS App being instantiated. In case of using KVM as hypervisor, it can be seen 

that VIM provided by OpenStack is slower than the VIM provided by fog05. However, 

OpenStack performs additional operations regarding the authentication and authorization of the 

EFS App which are not implemented in the version of fog05 under test. In case of Docker, k8s 

adopts a monolithic approach by closely coupling the VIM and the Orchestrator in such a way it 

is hard to separate their functionalities. By having a broader look, we can observe how the 

deployment time measured at Orchestrator level follows the same trend observed at VIM level. 

In the two reported measurements (i.e., Docker with k8s and LXD with f0rce), we observe that the 

biggest component of the deployment time is the hypervisor following a little overhead 

introduced by the Orchestrator. It is worth remarking that these results do not consider the 

scalability of placement algorithms available in the different implementations since we are 

considering only one compute node. 

5.1.2 Conclusions 

The EFS Stack descriptor has been experimentally validated via the fog05 and f0rce 

implementations. The EFS Stack descriptor has hence been used by the EFS Stack Orchestrator 

and the EFS Resource Orchestrator provided by f0rce to instruct fog05 the deployment of a 

reference EFS App. Results show that the main factor contributing to the overall deployment time 

is the hypervisor. Container-based virtualization technologies (i.e., Docker and LXD) are ~6 times 

faster in deploying and executing the EFS App compared to KVM. Moreover, the image 

footprint of LXD is ~5 times smaller than Docker. Finally, in these tests we have considered the 

image to be pre-provisioned on the compute node. However, in a realistic scenario the image 

should be provisioned on-demand on the compute nodes. In case of limited network connectivity 

and storage space, LXD would be a better choice compared to Docker.  

5.2 Federation 

This section evaluates the static federation mechanisms described in Section 4.1. In this scenario, 

two administrative domains exchange SLAs and federation parameters statically previous to the 

federation discovery phase. This means that SLAs are assigned statically without the possibility to 
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update them dynamically once the federation is established. The objective of this validation 

scenario is to test how a use case such as the SD-WAN can be adapted and consequently 

enhanced with mobility capabilities by leveraging the federation interface (F2). The federation 

mechanisms envisioned in 5G-CORAL, enable the sharing of EFS resources, allowing use case 

owners to deploy their applications/functions/ services across the whole cloud-to-thing continuum. 

The SD-WAN use case considers a Point-of-Sale (PoS) leveraging the federation mechanisms 

developed in WP3 in order to offload user traffic in different locations so that web applications 

at the edge/fog can be precisely located. As a result, the owner of the PoS does not need to 

own EFS resources in all locations where he desires to instantiate resources. He leverages the 

federation to use other domain EFS resources for offloading non-critical/sensitive applications. 

This concept is conceived from WAN optimization use cases, where content is precisely cached at 

the border of the network to avoid sending unnecessary data across the network. 

The scenario to validate comprises two domains playing the following roles: one domain is a 

consumer domain in the federation while the second one is a provider in the federation. The main 

feature being validated is the ability of steering dynamically the control plane of EFS resources. 

Allowing different OCSs to share the control of an EFS resource. 

The OCS components deployed in this scenario are the VIM (i.e., fog05) using LXD containers, the 

EFS Resource Orchestrator, the SD-WAN EFS Function manager and the PoS EFS Application 

manager. The EFS Functions, applications and services deployed in this scenario are the SD-WAN 

function, the PoS web application, the PoS customer & inventory database application, and the 

host mobility detection AP function. The experimental setup including the EFS and OCS 

components is depicted in Figure 5-4. 

 

FIGURE 5-4: FEDERATION ARCHITECTURAL COMPONENTS UNDER VALIDATION 

Based in the scenario described in Figure 5-4, the federation results are validated in three 

separate phases as illustrated in Figure 5-5 (not that a green arrow represents upstream traffic, 

while a red arrow represents downstream traffic): 
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• Phase 0: it represents a user directly connected to its home domain. The PoS application 

and the PoS customer and inventory database are located in the home domain. 

• Phase 1: it represents a user roaming to a provider domain, which only provides him 

connectivity to its home or consumer domain. The PoS application and the PoS customer 

and inventory database are still located in the home domain. 

• Phase 2: it represents the offloading phase, were the consumer domain instantiates in 

the provider domain the PoS web application, offloading traffic from the PoS terminal 

to its nearest PoS web application. 

 

FIGURE 5-5: PHASES OF FEDERATION VALIDATION 

TABLE 5-5: MAPPING OF COMMUNICATION ENDPOINTS, PHASES AND INDEXES 

Communication endpoints Phase Index 

PoS terminal and PoS Webapp 0 (1) 

1 (1), (2), (3) 

2 (1) 

PoS Webapp and PoS Cust./Inv. DB 0 (2), (3) 

1 (3), (4) 

2 (2), (3), (4) 

Table 5-5 maps the communication of the different applications involved in the PoS use case with 

the indexes in Figure 5-5, which represent each hop that traffic needs to take when 

communication between EFS elements involved in this use case. If the communication path is 

composed by a less indexes this means that the communication has less hops to transverse, which 

can be related to a lower latency, higher bandwidth and better jitter metrics measured in 

Section 5.2.1. 
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FIGURE 5-6: EXPERIMENTAL SETUP FOR FEDERATION VALIDATION 

The hardware employed in the experimental scenario is composed of two Dell Latitude E5550 

laptops with 8GB of RAM, Intel i5-5300U CPU and 500 GB of HDD. Each of the laptops will be 

used to simulate a pair of EFS OCS, composing a domain. Each EFS has a single compute node. 

Both laptops are interconnected using a single ethernet interface, which serves as the 

interconnection network for the two domains. Additionally, the laptop integrated network card 

serves as the domain Wi-Fi AP’s, representing the EFS access network. To emulate the domain 

OCS and EFS, we opted for virtual machines virtualized using KVM, this approach allows us to 

isolate the OCS and EFS completely. Both EFS and OCS guest OS are based on Ubuntu 16.04 

LTS 64bits allowing fog05 to deploy functions/applications/services using LXD container 

technology. Moreover, to deploy the OCS components developed for this use case, native Linux 

applications and LXD containers where used. Finally, as a PoS terminal we are using an extra 

Dell Latitude E5550 laptop, which includes google chrome browser and the necessary tools to 

test network performance (i.e., ping and iperf3). 

5.2.1 Results 

This presents the measurements gathered for validating the federation mechanism, i.e., latency, 

jitter, bandwidth and the deployment time in each of the federation phases. Metrics measured 

for phase 0, represent an ideal scenario where there is no mobility; the end user is directly 

connected to its home domain, where all the functions/applications/services that the use case 

needs are provided in a single EFS. The metrics measured from phase 1, represent a scenario 

where the user has moved to another domain, while the necessary core 

functions/applications/services are still deployed at its home domain. The provider domain is 

only providing a L3 secure tunnel connectivity to its home domain. Finally, the metrics measured 

from phase 2 use the scenario of phase 1 and on top it adds the offloading of web application 

traffic to a local cached web application in the provider domain. 

Table 5-6 reports the results from RTT latency tests carried out for the three phases. For each test 

the packet size, packet rate and the number of samples taken are set statically to 1400 Bytes, 
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0.2 packets per second (pps) and 100 samples. When we move between phase 0 and phase 2, 

results show that the latency on average has increased between the PoS Webapp and the PoS 

Cust./Inv. DB in ~1.5ms. This result highlights the impact of the SD-WAN function in the 

federation. Latency between the PoS Terminal and the PoS Webapp is on average between 4.5 

ms and 5 ms with a high standard deviation, justified by the radio interface used to access the 

applications in the EFS. Notice that from phase 1 to phase 2 the average latency has increased 

~1ms, which can translate to better radio conditions while executing experiment 1. 

TABLE 5-6: FEDERATION RTT LATENCY RESULTS IN MS 

Phase From To Tool Max Min Avg. Std. Dev. 

0 PoS Terminal PoS Webapp ping 57.74 1.537 4.491 6.567 

PoS Webapp PoS Cust./Inv. DB ping 0.242 0.069 0.095 0.032 

1 PoS Terminal PoS Webapp ping 17.77 1.815 4.56 3.783 

PoS Webapp PoS Cust./Inv. DB ping 0.391 0.071 0.089 0.033 

2 PoS Terminal PoS Webapp ping 34.595 2.013 5.792 5.334 

PoS Webapp PoS Cust./Inv. DB ping 2.912 0.894 1.595 0.297 

TABLE 5-7: FEDERATION JITTER RESULTS IN MS 

Phase From To Tool 1 Mbps 10 Mbps 28 Mbps 

0 PoS Terminal PoS Webapp iperf3 - 2.327 1.602 

PoS Webapp PoS Cust./Inv. DB iperf3 0.074 0.011 0.005 

1 PoS Terminal PoS Webapp iperf3 - 2.203 2.937 

PoS Webapp PoS Cust./Inv. DB iperf3 0.074 0.011 0.005 

2 PoS Terminal PoS Webapp iperf3 1.83 2.42 1.123 

PoS Webapp PoS Cust./Inv. DB iperf3 - 0.258 0.112 

Table 5-7 describes the results from jitter tests carried out for the three phases. Jitter is measured 

using iperf3 tool in UDP mode, using three different bandwidths (1 Mbps, 10 Mbps and 28 

Mbps) which allows us to understand the jitter under different load conditions.  Results show that 

the jitter increased by nearly a factor of two between phase 0 and 1 under the heavy load 

scenario (28 Mbps). The increase in jitter in phase 1 is later rectified in phase 2, resulting in 

similar jitter conditions as the ideal case of phase 0. These results tell us that federation and the 

use of offloading can under a heavy loaded network decrease the jitter of the end user. 

TABLE 5-8: FEDERATION BANDWIDTH RESULTS IN MBPS 

Phase From To Tool Avg. TCP Avg. UDP 

0 PoS Terminal PoS Webapp iperf3 17.88 Mbps 24.6 Mbps 

PoS Webapp PoS Cust./Inv. DB iperf3 34.78 Gbps 29.7 Mbps 

1 PoS Terminal PoS Webapp iperf3 15.2 Mbps 21.9 Mbps 

PoS Webapp PoS Cust./Inv. DB iperf3 34.78 Gbps 29.7 Mbps 

2 PoS Terminal PoS Webapp iperf3 18.8 Mbps 27 Mbps 

PoS Webapp PoS Cust./Inv. DB iperf3 188.6 Mbps 24.8 Mbps 

Table 5-8 describes the results from bandwidth tests carried out for the three phases. Bandwidth 

is measured using the iperf3 tool in both modes, TCP and UDP. For the UDP mode, bandwidth is 

manually increased until packet loss is experienced. Results show that the bandwidth available 

when accessing the PoS Webapp from the PoS terminal decreased from phase 0 to phase 1, 

which explains the end user movement from the consumer to the provider domain. Now, between 

phase 1 and 2 the bandwidth available using TCP and UDP has increased, justified by the 

offloading of the PoS Webapp to the provider domain, which tells that the available bandwidth 

at phase 2 to the PoS Webapp is similar to phase 0 under ideal conditions. 

Table 5-9 reports the deployment times for each of the EFS components involved. The results 

show that the SD-WAN function has the lightest impact in the federation deployment time, as 
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opposed to the PoS Webapp which has the heaviest impact. Additionally, the results show that 

the connection of the consumer and provider federation domains take roughly 0.7 s. 

TABLE 5-9: FEDERATION DEPLOYMENT TIMES (S) FOR EACH OF THE COMPONENT ON THE EFS 

SD-WAN IPsec tunnel PoS Webapp PoS Cust./Inv. DB 

16.67 s 0.669 s 51.154 s 31.29 s 

5.2.2 Conclusions 

From the results we can conclude that the federation of EFS resources allows domains to extend 

their capabilities dynamically across multiple domains, connecting securely users between 

different domains or even offloading certain functions/applications/services to other domains, 

maximizing the utilization of resources at the edge and fog. Federation instantiation has some 

overhead, such as the instantiation of the SD-WAN function and the deployment of secure 

channels connecting both data and control planes. For use cases which require a fast federation 

instantiation, the SD-WAN function can be already pre-provisioned in the fog node, which is 

going to be federated, reducing in ~17 seconds the total time to instantiate the federation. Once 

the SD-WAN is instantiated the only overhead left is the control and data plane switching from 

the fog node which requires the EFS VIM to rewire internally the fog node and the SD-WAN to 

connect the control and data plane of the fog node to the consumer domain securely. The 

optimized federation instantiation mechanism can be deployed in less than 5 second, allowing 

the fog node rewiring a sufficient margin of ~4.3 seconds.  

Regarding the deployment of some use cases, the federation mechanism has proved efficient 

and flexible enough to dynamically instantiate an application at the provider domain, which 

allows certain traffic to be offloaded. As stated in Section 5.2.1, results show that the offloading 

by leveraging federation is capable of improving the end user QoE by improving latency, jitter, 

and bandwidth overall, providing a seamless handover to end users who roam across different 

domains. Finally, we can conclude that the presented results represent a sort of lower bound 

given by the static federation. In case of a dynamic federation (see Section 4.1), parties could 

involve a negotiation phase prior to the resource federation which may result in a longer 

resource federation establishment. 

5.3 Migration of EFS function and application 

In this section, we present and discuss the approach that is adopted in 5G-CORAL platform to 

enable the migration of EFS functions and applications. This approach allows the OCS to migrate 

system and application containers between EFS nodes. Specifically, we develop a pre-copy 

migration scheme (as described in Section 3.2) while considering the sources of prolonged 

migration downtime. The enabling technologies for our proposed scheme include LXC9, checkpoint 

and restore in user space (CRIU)10, and remote file synchronization (rsync11). The experimental 

setup is shown in Figure 5-7. CRIU is utilized to dump the state of the migrating containers. The 

local-disk and the state of the containers are copied by using rsync for its remarkable speed and 

efficiency. To migrate a function or an application between EFS nodes with minimal downtime, 

the following steps are taken:  

1. Local disk-copy: the container base-image is assumed to be available in all edge nodes 

to reduce traffic overhead and to keep the total migration time to minimal. Local-disk 

synchronization is performed to copy application related files.  

                                                 
9 https://linuxcontainers.org/  
10 https://criu.org/Main_Page  
11 https://rsync.samba.org/  

https://linuxcontainers.org/
https://criu.org/Main_Page
https://rsync.samba.org/
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2. Iterative pre-copy: all the pages of the container including the running applications are 

checkpointed then copied to the destination EFS node while the container continues to run. 

Next, pre-copy iterations are performed to checkpoint and copy only the memory pages 

that have changed (dirtied) since the last checkpoint.  

3. Stop-and-copy: the container gets frozen in this step then a final checkpoint and copy 

are performed. The downtime observed by the user occurs during this step.  

4. Restore-and-terminate: the container is restored in the destination EFS node and the 

frozen container in the source node gets terminated.  

 
FIGURE 5-7: MIGRATION EXPERIMENTAL SET-UP 

It is important to note that checkpoint and restore functions of CRIU are computational expensive. 

Checkpoint function collects the process tree and resources, freeze the process, then write them to 

files. The restore function reads the files, resolves shared resources, fork the process tree then 

restore the process resources. Both functions perform I/O operations which are generally slow 

especially on rotational block devices such as hard disk drive (HDD). To improve the migration 

scheme, we include the following enhancements on the EFS nodes: 

• Low-latency computing capabilities: Linux general-purpose kernels fail to provide time 

guarantees for time-critical applications [32]. Hence, we incorporated low-latency 

computing into the EFS nodes. In addition, we scaled the CPU performance to avoid 

latency caused by waking up from idle state. 

• Fast storage: HDD uses mechanical mechanism to persistently store data in blocks of 512 

byte. As such, I/O operations experience seeking time delays (i.e., the time it takes the 

disk head to find the target track). Here, we utilize temporary file system (TMPFS) to 

enhance the performance as it allows short-term files to be written and read without 

generating disk I/O. 

To benchmark container migration, we implemented stop-and-copy (sc) migration scheme 

reproducing the results presented in [33] and evaluated its downtime against our proposed pre-

copy (pc) migration scheme. The migration experiments were carried out between two EFS nodes. 

In this experiment, we evaluate the downtime during the migration of blank LXC system 

containers and application container running both Ubuntu and Alpine Linux releases. Figure 5-7 

shows the experimental setup and Table 5-10 provides the hardware and software details used 

in this experiment. The interconnection between the source and destination EFS nodes is 1 Gbps. 
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TABLE 5-10: HARDWARE AND SOFTWARE SPECIFICATIONS USED IN THE EXPERIMENTAL SET-UP 
 Characteristic Description 
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Model ProLiant DL160 

CPU Intel Xeon 2.10GHz 

RAM 124GiB DIMM 2400 

Network 2 x I350 Gigabit 

S
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w

a
re

 &
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ta
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 General-purpose kernel 4.4.0-145-generic 

Low-latency kernel 4.4.0-145-lowlatency 

LXC1 3.0.3 

CRIU 3.11 

Container (C1) System container (Ubuntu 16.04) 

Container (C2) Application container (Ubuntu 16.04) 

Container (C3) System container (Alpine 3.7) 

Container (C4) Application container (Alpine 3.7) 

5.3.1 Results 

The obtained results are based on average values of 30 trails for each presented case. Figure 

5-8 shows the downtime of stop-and copy (sc) and pre-copy (pc) migration schemes. The left y-

axis represents the observed downtime while the right y-axis shows the size of the accumulative 

checkpoint files in megabytes for the respective container type and migration scheme. Since the 

rate of dirty pages for the blank containers are minimal, most of the downtime is attributed to 

the common steps (i.e., final checkpoint → state copy → restore) of both migration schemes 

rather than being dominated by the time taken to copy large in-memory state.  

 

FIGURE 5-8:  MIGRATION DOWNTIME COMPARISON BETWEEN STOP-AND-COPY (SC) AND PRE-COPY 

(PC) SCHEMES FOR DIFFERENT CONTAINERS  

The container state size of every iteration in pre-copy procedure depends on the rate of dirty 

pages. For instance, in the case of Ubuntu system container (C1), the downtime due to the 

checkpointing process are 1.53 s and 1.17 s for the sc and pc, respectively. The overall average 

migration downtime for the two schemes are 2.58 s and 2.05 s, respectively. To highlight the 

features of the obtained datasets from the trails, we plot the empirical cumulative distribution 

function (eCDF). Figure 5-9 shows the eCDF for migrating a blank Ubuntu 16.04 application 
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container (C2) using sc and pc migration schemes. The x-axis represents the downtime in 

milliseconds of each of the experiments (total of 30 experiments for each migration scheme) 

while the y-axis represents the cumulative percent. For example, the downtime values at the 80th 

percentile are 1948 ms and 1565 ms for sc and pc, respectively. Also, the range of the 

downtime values for pc is smaller compared to sc which indicates less variation in the case of pc 

scheme. 

 

FIGURE 5-9: ECDF OF UBUNTU APPLICATION CONTAINER (C2) MIGRATION 

The results clearly show that the sc exhibits higher downtime and variation compared to the 

developed pc scheme. As such, the proposed pc migration scheme reduces the downtime by 

approximately 21% when compared to the current state-of-the-art. 

5.3.2 Conclusions 

Provisioning functions and applications at the network edge through lightweight virtualization 

technologies proves to be a prominent feature especially for ultra-low latency and reliable 

vertical services. Besides the benefit of low latency and resource efficiency, supporting user 

mobility from computing prospective is equally important to maintain a continuous service 

delivery. To this end, container migration is a key solution to sustaining user quality of 

experience. In this section, we showed that functions and applications running in one EFS node can 

be relocated by the OCS to another EFS node with minimal downtime. For that, we developed a 

pre-copy migration scheme which includes enhancements to EFS nodes namely low-latency 

computing and fast storage. The experimental results show 21% downtime reduction compared 

to the current state-of-the-art. 

5.4 Network assisted D2D 

Network assisted D2D requires from the OCS to perform instantiation, termination and/or 

healing) of the D2D communication channel. In this section we will describe the experimental 

validation of the EFS Manager that is responsible for lifecycle management of the EFS functions 

and applications. In order to perform the experimental validation of the EFS Manager as a 

reference scenario we will use the fog-assisted robotics use case. Please note that in D2.2 [8], a 

similar scenario is evaluated and the results are showing how an EFS Service (Wi-Fi mon in 

Section 3.1.3.1) can be used for creating an adaptive driving algorithm to improve the driving 

precision robot. For what concerns this document instead, Section 3.1.3.2 gives a detailed 
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explanation of the OCS procedures needed to establish the D2D communication in the referent 

use case. Based on this description, we implemented our exemplary scenario on an experimental 

testbed in the 5TONIC [34] laboratory. This testbed is used for a step-by-step experimentation 

aimed at evaluating the latency reduction of the D2D communication channel. 

The set-up in the 5TONIC laboratory is shown in Figure 5-10 and it is composed of two major 

components: (i) Orchestration and Control System and (ii) Edge and Fog System. Regarding EFS, 

we used a set of EFS resources. One Fog CD for providing Wi-Fi connectivity for communication 

between the robots and the EFS Entities. An EFS Function implements the Wi-Fi Access Point 

capabilities and it is deployed as an LXD container. In the same Fog CD, we have deployed 

another container which serves for the EFS Service Platform and its presented as MQTT broker. 

The Robotic application is implemented as various Robot Operating System (ROS) 12  [35] 

components distributed across the robots (i.e., Fog CDs) and the edge devices. Table 5-11 lists 

the main ROS components used in our experimentation. Second Fog CD holds the robot 

intelligence and the localization monitoring service of the robots. They are deployed in a single 

virtual machine, while on the robot the ROS components run as native applications. 

 

FIGURE 5-10: EXEMPLARY SCENARIO LEVERAGING NETWORK-ASSISTED D2D 

TABLE 5-11: ROBOTIC SYSTEM ROS COMPONENTS 

ROS component Description 

Robots localization Probabilistic localization for robots moving in 2D [36]. Provides 
the indoor localization for both robots (Robot1 and Robot2) 
against a known map. 

Experiment App  ROS application that executes the experiment drive sends 
commands to Robot1. 

Kobuki follower ROS application that follows a robot on a known map while 
trying to keep constant distance between the robots.  

Map server ROS node that provides map data as ROS service [37]. 

                                                 
12 The Robot Operating System (ROS) is a widely spread framework for writing robot software. It is a 
collection of tools, libraries, and conventions for creating complex and robust robotics applications. 
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LiDAR streaming ROS package that provides support for 2D Laser Scanner [38]. 

Odometry sensors ROS node that provides robot specific Odometry data [40]. 

Kobuki driver ROS wrapper for the Kobuki driver [39].  

The Orchestration and Control System implemented for the experimentation comprises of custom 

EFS Manager and VIM. The EFS Manager is implemented as a container in the first Fog CD and 

follows the work-flow described in Section 3.1.3.2 in the same time for the VIM component we 

have employed fog05 [4], which embodies all the required OCS principles. 

In order to validate the benefits and performance of the network assisted D2D, we have 

designed and compared two experimental scenarios illustrated in Figure 5-11 and Figure 5-12. 

In the first experimental scenario (see Figure 5-11), all the robot ROS components are in charge 

of (i) reading sensors data (e.g., odometry, laser), (ii) send the data to the Robot Intelligence and 

(iii) execute driving instructions received from the Robot Intelligence. On the other hand, the 

received data in the Robot intelligence is used to perform indoor localization on a known map 

and to execute the experiment process. The ROS component – Experiment app – navigates the 

first robot throughout the known map and the ROS component – Kobuki follower – navigates the 

second robot by following the driving path of the first one while maintaining a constant distance. 

 
FIGURE 5-11: FULLY CENTRALIZED ROBOTICS 

CONTROL 

 
FIGURE 5-12: NETWORK-ASSISTED D2D 

ROBOTICS CONTROL 

In the second scenario (see Figure 5-12) we have a D2D communication between the two robots 

that is established with the help of the EFS Manager. The distribution of the ROS components in 

the Robotic system is slightly different. The Robot Intelligence now hosts only the Experiment app. 

The robots, in addition to the existing ROS components they also host their own probabilistic 

localization system. This means that each robot is aware of his own position against a known 

map. Furthermore, the Kobuki follower ROS node is now placed in the second robot. 

Consequently, the coordinates of the first robot are now consumed via the D2D communication 

channel. This data is used by the Kobuki follower node in order to navigate the second robot.             

Both scenarios consist of the robots driving in a closed and square hallway. The starting positions 

of the robots is in the beginning of the hallway. Both robots are placed one behind the other with 

approximate distance between the robots of 0.3 meters. Then, the first robot starts the 
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experiment drive with a constant speed of 0.2 m/s. The second robot follows the first robot 

trying to keep a constant distance of 0.65 meters. 

5.4.1 Results 

The publish-consume mechanism for exchanging data between the different ROS components is 

based on TCP. This means that any interference on the Wi-Fi channel between the robots and the 

Robot intelligence will produce a retransmission at TCP level, thus introducing an undesired delay 

and/or packet loss in the close-loop mechanism. Additional delays and/or packet loss in the 

delivering of the odometry and laser sensor data can result in a significant mismatch of the 

robots estimated 2D position in the Robot Intelligence. Similarly, additional delays in the 

delivering of the movement instructions can degrade the smoothness and precision of the driving. 

For this reason, we carry out 10 experiment runs using the fully centralized robotic control. Each 

run consists of the Robot Intelligence driving the robots on a straight line for 15 meters. The 

starting position of the robots is approximately 7 meters away from Wi-Fi access point. Next, 

the robots accelerate from the starting position to the target velocity (0.2 m/s) and drives for 15 

meters. At the end of the driving, the robot stops close to 22 m from the Wi-Fi access point. The 

Wi-Fi information obtained via the Wi-Fi mon application (see Section 3.1.3.1), was recorded in 

the Robot Intelligence, while on the robot itself we measured the received navigation commands 

delay. 

 
FIGURE 5-13: WI-FI CHANNEL AND DELAY CHARACTERIZATION FOR FOG-ASSISTED ROBOTICS 

Figure 5-13 characterizes the quality of the Wi-Fi channel covering our experimental area. With 

respect to the measurements available via the Wi-Fi mon service, the Tx Retries presents the 

probability density function of the downlink frames retransmissions. The Tx Errors shows the PDF 

of the failed transmissions, Tx Success line shows the PDF of all the downlink frames successfully 

transmitted (from the virtual AP to the robots) and TCP delay presents the ROS driving 

commands downstream delay. From Figure 5-13 it can be seen that for lower Wi-Fi signal level 

(below -71 dBm), the probability of having a failed transmission increase. This probability 

becomes higher than the probability of successful transmission at signal level lower than -77 dBm. 
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TCP delay measurements confirm this with values as high as hundreds of milliseconds. As a result, 

we were able to notice certain imprecision in the distance between the two robots. This 

imprecision was increasing as the robots were moving away from the virtual AP. For signal level 

below -80dBm (the last 2 meters of the drive) it is very hard to have a successful transmission. 

This resulted in non-smooth and bouncy movements on both robots.  

TABLE 5-12: STATISTICAL CHARACTERISTIC OF FOG-ASSISTED ROBOTICS DOWNSTREAM DELAY (S) 

Scenario Min Max Mean Median Std Dev. 

Centralized 0.001 0.226 0.006 0.002 0.011 

D2D 0.001 0.124 0.007 0.003 0.010 

Table 5-12 presents the statistical analysis of the downstream delay measured in the robots. The 

results show that there is no significant difference some of the statistical parameters, such as the 

average. This is reasonable since we are using Wi-Fi as radio access technology for both 

experimental scenarios. However, environmental changes (e.g., physical obstacles, like walls and 

floors) other external interferences can cause peaks in the delay, slow network speed and poor 

signal level in the centralized scenario. Therefore, the network assisted D2D communications helps 

at mitigating such scenarios. Based on this observation, we decided to simulate an interfered Wi-

Fi channel by introducing artificial delay. With the centralized robotic control (see Figure 5-11) 

we performed 3 sets of measurements, each containing 10 runs. For the first set of measurements 

we (i) didn’t introduce any artificial delay (0 ms), then we introduced (ii) 100 ms and (iii) 300 ms 

of delay. With the network assisted D2D robotics control (see Figure 5-12) we performed 1 set 

of measurements containing 10 experiment runs. All the robotics system components are 

synchronized and share the same time reference for accurate measurements. Throughout the 

duration of the experiments, we recorded Euclidean distance between the robots in the Robot 

Intelligence and in the robots. 

 
FIGURE 5-14: EXPERIMENTAL CDF OF DISTANCE BETWEEN THE TWO ROBOTS 

The obtained data from all the experiments is analysed and aggregated to generate the results 

presented in Figure 5-14. In overall, Figure 5-14 presents the Cumulative Density Functions (CDF) 
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for each set of measurements. From left to right, first the results regarding the network-assisted 

robotics control are presented. In this plot we measure the Euclidean distance in the second robot. 

The second, third and fourth plot reports the results for the centralized robotics control. In order 

to obtain these three plots, we measure the Euclidean distance in the Robot Intelligence.  

TABLE 5-13: STATISTICAL CHARACTERISTICS OF THE DISTANCE (M) BETWEEN THE TWO ROBOTS  

Scenario Artificial Delay Min Max Mean Median Std Dev. 

Centralized 0 ms 0.473 4.522 0.687 0.699 0.081 

100 ms 0.470 4.517 0.695 0.703 0.065 

300 ms 0.443 4.504 0.718 0.721 0.079 

D2D 0 ms 0.474 4.517 0.677 0.683 0.130 

The most significant statistical properties of the measured Euclidean distance between the robots 

is reported in Table 5-13. It is worth mentioning that in our tests we have robots making turns. 

Since we are measuring the straight-line distance, this leads to shorter distances in our 

measurement set. In addition to that, artificial delay is added on top of the already existing Wi-

Fi delay between the robots and the robot intelligence (i.e., 6-7 ms). Statistical values of the Wi-

Fi delay between the robots and the robot intelligence with good network strength, little noise 

and no congestion are presented in Table 5-12. Starting by analysing the first experimental 

scenario, we can see that the centralized robotics control measurements provide the most precise 

maintaining of distance with respect to artificially delayed (with 100 ms and 300 ms artificial 

delay). This is natural since as we are increasing the delay, the mismatch of the estimated 2D 

positions of the robots increases. Therefore, we have slower reaction time and increased 

imprecision in the Robot intelligence. Regarding the network assisted D2D robotics control, we 

can see how significant improvement regarding the distance is achieved. In the reported 

measurements (i.e., D2D with Centralized robotics control, D2D with 100 ms artificially delayed 

Centralized robotics control, and D2D with 300 ms artificially delayed Centralized robotics 

control) we can observe that by using the D2D communication channel we can arrive closest to 

our target distance of 0.65 m during the experimental drive. It is worth highlighting that these 

results do not consider variable artificial delay nor packet loss.   

5.4.2 Conclusions 

In this section the EFS Manager has been experimentally validated by implementation of the 

Network assisted D2D feature. Moreover, we showed how to exploit the context information that 

is available in the edge by making it accessible to the EFS Manager through EFS Services. The 

experiments demonstrated how the EFS Services can be also beneficial for the OCS itself. The 

context information consumed by the OCS can be used to perform instantiation, termination 

and/or healing of EFS applications and function. Results show that D2D connection can be used 

for maintaining better coordination (e.g., moving in formation) between robots. Furthermore, in 

cases when there is increased delay on the Wi-Fi channel due to interferences, the low-latency 

robot-to-robot communication can help to optimize the robotics systems operations and achieve 

better precision. 
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6 Lessons learnt 
Here, we present the lessons learnt throughout the design, refinement and experimental 

validation of the 5G-CORAL OCS. Specifically, we focus on the benefits of using the distributed 

key-value store, on the impact of volatile and resource-constrained devices, on the choice of 

container-based virtualization and federation, and on the ability of the OCS to operate and 

reconfigure multi-RAT setups.  

Lesson 1: Distributed key-value store enables distributed OCS state information and 
facilitates OCS deployment in low-end and mobile devices 

The 5G-CORAL OCS adopts a novel key-value store concept, which delivers data sharing across 

different technologies and networks, along the cloud-to-thing continuum. Differently from 

traditional key-value stores, in 5G-CORAL data are globally accessible and local replication is 

not required. Furthermore, we assessed the advantages of adopting a distributed VIM, capable 

of managing resources hosted by heterogeneous nodes, particularly by resource-constrained and 

mobile nodes. Differently from a centralized VIM, the distributed VIM ensures more flexibility 

and agility in monitoring, tracking and provisioning resources sitting on different logical layers, 

namely, cloud, edge, fog and terminals. Moreover, to overcome issues generated by the resource 

volatility, we introduced the storage decomposition in actual and desired storage, such that 

service instantiation/termination, polling and any other lifecycle operations can be successfully 

carried out even when devices are out of coverage or connectivity is disrupted. In turn, this allows 

the OCS to instantiate and terminate EFS applications, having an accurate visibility of the 

resources available and taking into account their volatility.  

Lesson 2: The introduction of the EFS stack information model allows capturing key 
information of the edge and fog environment to perform an accurate placement 

In 5G-CORAL, the EFS Stack allows to harmonize and extend the ETSI MEC and ETSI NFV 

information model by collecting information describing the edge and fog environment, such as 

I/O devices, network interfaces and location constraints. Such information model also includes the 

orchestration level and facilitates the application development, since the developer is no longer 

compelled to specify the target infrastructure immediately after the onboarding. The EFS 

Resource Orchestrator is ultimately the entity responsible for determining the resources fitting the 

requirements, based on placement algorithms capable of even capturing the volatility of fog 

entities.  

Lesson 3: Deploying services over volatile low-cost resources comes at the cost of increased 
lifetime expenses 

In Section 2.4.3, we discussed placement algorithms for the EFS Stack in scenarios consisting of 

volatile resources. Our conclusion was that introducing volatile resources in the EFS infrastructure 

significantly increases the total cost of ownership of the EFS Stack. In other words, the adoption 

of volatile resources in the 5G-CORAL platform makes a negative impact on the OPEX. 

Nevertheless, as demonstrated throughout the project, the pooling of such resources brings in a 

wealth of benefits, including a significant reduction in CAPEX due to their re-utilization and 

sharing. Moreover, flexible and agile service deployment/maintenance and faster federation 

may only rely on resources provisioned by fog nodes in the proximity (e.g., due to hardware or 

location requirements) for certain applications and services. Therefore, we point out that the 

usage of edge resources is preferable in specific circumstances, e.g., when high resource volatility 

makes the service lifecycle too hard to manage, thus severely impacting on OPEX KPIs set by 

service providers and network operators. For instance, operational costs may significantly rise in 

situations where services are produced by entities running on mobile resources, such as connected 
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cars with resources on board. The continuous mobility may lead to connection drops and 

disruptions among the consumers of those services. As a result, we advocate that the service 

producer is better to be located on the edge resources from an OPEX perspective. On the 

contrary, in a shopping mall setting, fog resources are more persistent due to the limited space, 

thus ensuring good availability in a certain time frame and location. 

Lesson 4: Container-based virtualization solutions ensure faster EFS deployment and 
migration 

As pointed out in Section 5.1, the total deployment time for a single EFS App is heavily 

influenced by the VIM choice. Container-based virtualization approaches result in faster 

deployment with respect to traditional VM hypervisor solutions, such as KVM, due to the 

overhead generated by the separate kernel and the time spent during the boot process. In 

particular, we note that Docker can ensure the fastest deployment performance as long as an 

image is already available on the compute nodes, whereas LXD may be more suitable in 

scenarios where connectivity and storage resources are limited. Furthermore, containers are also 

employed to enable fast migration of an EFS resource between two nodes, thus ensuring minimal 

downtime and high QoS.  

Lesson 5: Federation can help operators significantly reduce deployment and operational 
costs  

In Section 5.2, we assessed how federation can significantly reduce the time spent to load a web 

application thanks to the ability of placing the web application container closer to the end user. 

In turn, federation can be considered a key feature of the OCS for optimizing function and 

application deployment and efficiently placing containers into convenient locations, such as in 

proximity of the users requesting the EFS service. By contrast, a single EFS infrastructure may 

introduce deployment limitations due to the lack of resources and reduced user accessibility, with 

consequent negative impact on CAPEX and OPEX. Moreover, in Section 4 we pointed out that 

administrative domains close to each other are more incline to take part in the federation 

process, assuming the adoption of a trusted cooperative peer-to-peer model. Finally, we proved 

that federation always increases the profits of the members involved and instability can be 

prevented by encouraging all the participants to share the total profit.  

Lesson 6: Agile deployment and reconfiguration of RATs and multiple communication 
channels can be delivered by the OCS 

In 5G-CORAL, RATs are handled as EFS functions and can be rapidly instantiated, terminated 

and migrated. As an example, robots can benefit from Wi-Fi coverage through virtual APs 

deployed by the OCS, or low-latency D2D connectivity can be reliably provided for robots that 

needs to be coordinated. This is possible thanks to the context information available at the edge, 

which is delivered to the EFS manager by means of EFS services. As we demonstrated in Section 

5.4, the ability of deploying multi-RAT solutions is mission-critical in robotics use cases, as robots 

need to be able to exploit short-range D2D connectivity to navigate and maintain coordination 

with high accuracy, particularly in high-interference conditions. In such scenario, the 5G-CORAL 

OCS can quickly react and reconfigure the network connections by relying on the information 

stored in the EFS.  
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7 Conclusions and future directions 
This second WP3 deliverable concludes the 5G-CORAL work on the design and validation of an 

Orchestration and Control System (OCS) for edge and fog environments. Summarising the 

technical work of WP3, the first deliverable D3.1 [6] identified the opportunities and 

requirements for a joint edge and fog orchestration system. These led to the early design of the 

OCS architecture, components and interfaces. The focus of D3.1 [6] was on the bottom part of 

the OCS components, namely VIM and EFS Entity Descriptor, so as to enable the support of 

heterogeneous and dynamic resources, dynamic migration, monitoring, and third-parties 

interaction on the OCS. Moreover, it proposed a solution for resource discovery and integration 

across multiple access technologies, such as IEEE 802.11, 3GPP, Bluetooth/ZigBee, and Ethernet. 

Finally, D3.1 [6] introduced the concept of resource federation and three federation models.  

Departing from those findings, this second deliverable elevated the focus from the VIM up to the 

Orchestrator. Based on the gaps identified in the state-of-the-art (see Section 2.2) for distributed 

edge and fog environments, this deliverable first proposed in Section 2.3 an approach based on 

a distributed key-value store for implementing a distributed VIM and EFS Stack and Resource 

Orchestrator. By doing so, the distributed nature of edge and fog environments is also taken into 

consideration for the OCS and not only for the EFS. An open-source implementation of the 

distributed VIM and EFS-SO/ EFS-RO has been made available on GitHub under the name of 

fog05 [4] and f0rce [5], respectively. Next, a placement algorithm suitable for volatile 

environment has been presented in Section 2.4 showing the impact of pricing at edge and fog 

tiers on the lifetime of EFS Stacks. An analysis of the 5G-CORAL use cases has been then 

performed in Section 3.1 on the expected OCS procedures to tackle volatile and mobile 

environments, resulting in a novel container-based migration mechanism (see Section 3.2) with a 

reduced downtime compared to existing state-of-the-art. A resource federation mechanism has 

been proposed in Section 4.1 and evaluated analytically showing the impact of pricing and 

agreements between different domains in Section 4.2 and 4.3. An experimental validation and 

evaluation of the OCS has been finally reported in Section 5 highlighting the impact of the 

virtualization technologies and the benefits of using EFS Services on the overall management 

system. Section 6 summarised the lessons learnt. 

For what concerns future directions, we can conclude that the 5G-CORAL OCS mainly positioned 

itself as an end-to-end Infrastructure-as-a-Service (IaaS) spanning across fog, edge, and cloud 

tiers. This means that the OCS user is able to use the EFS-SO to dereference various low-level 

details of underlying network infrastructure like physical computing resources, location, scaling, 

migration, etc. This concept is very much aligned with the infrastructure-centric and API-centric 

concepts of ETSI MEC and ETSI NFV. In the last couple of years, few initiatives were started 

building on top of ETSI MEV and ETSI NFV in order to allow to customers to develop, run, and 

manage applications and services without the complexity of building and maintaining the 

infrastructure typically associated with the delivery of the functions, applications, and services. 

Specifically, ETSI Experiential Networked Intelligence (ENI) [41] and the ETSI Zero touch network 

& Service Management (ZSM) [42] aim at closely integrating automation and intelligence 

mechanisms with the OSS/BSS of the customers (i.e., not only with the OSS/BSS of the 

infrastructure provider), thus natively supporting the customers’ requirements, both operational 

and business-wise. By integrating such concept in the OCS, a paradigm shift is then envisioned: 

evolving from a distributed IaaS paradigm towards a distributed Platform-as-a-Service (PaaS) 

allows to provide the necessary support and data exposure to the clients, which can ultimately 

take advantage of the edge and fog benefits without dealing with its underlying complexity. 
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9 Appendix: Analysis of existing orchestrators  
This appendix provides an overview of existing orchestrators of reference and, for each of them, 

it provides a summary and a gap analysis against the OCS requirements as defined in D3.1 [6]. 

9.1 Open Source MANO (OSM) 

ETSI OSM is an operator-led ETSI [45] community that aims at delivering a production-quality 

open source Management and Orchestration (MANO) stack aligned with ETSI NFV Information 

Models capable of meeting the requirements of production NFV networks. Figure 9-1 illustrates 

the OSM architecture and highlights the OSM interaction with VIM and Virtual Network Function 

(VNF) components. Specifically, OSM interacts with the VIM for deploying the VNFs and 

configuring the Virtual Links (VLs) interconnecting them. In order for OSM to work, it is required 

that (i) each VIM has an API endpoint reachable from OSM and (ii) each VIM provides a 

management network for configuring the IP addresses of the VNFs. The VIM-provided 

management network should be reachable from OSM. 

 
FIGURE 9-1: OSM COMPONENTS13 

OSM runs in a single server or VM and it requires a minimum of 2 CPUs, 8 GB RAM, 20GB disk 

and a single interface with Internet access. However, OSM recommends 2 CPUs, 16 GB RAM, 

40GB disk and a single interface with Internet access. Moreover, OSM requires Ubuntu 16.0414 

(64-bit variant required) as base image. In the following, Table 9-1 and Table 9-2 report the 

existing and missing OSM capabilities suitable for the 5G-CORAL OCS. 

TABLE 9-1: EXISTING OSM CAPABILITIES SUITABLE FOR 5G-CORAL OCS 

Capability Description 

Extensible VIM support OSM interact with the VIMs via plugins. Additional plugins can be 
provided to support new VIMs. 

NSD and VNFD validation OSM provide validation of descriptors during the on-boarding. 

Day0 and Day1 
configurations 

OSM leverages on cloud-init for day0 configuration and Juju for 
day1 configurations. 

Monitoring OSM provides a Prometheus server for VNF monitoring. 

Complex lifecycle 
operation support 

By using Juju is possible to have advanced lifecycle operations 
(e.g., reconfiguration). 

                                                 
13 Source: https://osm.etsi.org/wikipub/index.php/OSM_Release_FIVE   
14 http://releases.ubuntu.com/16.04/      

https://osm.etsi.org/wikipub/index.php/OSM_Release_FIVE
http://releases.ubuntu.com/16.04/
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TABLE 9-2: MISSING OSM CAPABILITIES REQUIRED FOR 5G-CORAL OCS 

Capability Description 

Federation Federation between different OSM deployments is 
not possible. However, OSM can federate resources 
from different datacenters. 

Dynamic Resources Discovery OSM is able to manage resources provided by 
multiple VIMs which in turn need to support resource 
discovery. 

Dynamic Migration Support Migration of VNFs is not currently supported in OSM. 

Finally, Table 9-3 and Table 9-4 present the gap analysis of OSM against the functional and 

non-functional OCS requirements. 

TABLE 9-3: 5G-CORAL OCS FUNCTIONAL REQUIREMENTS AND OSM SUPPORT 

Functional Requirement Consideration 

Support of harvesting computing capabilities 
from low-end resources 

This is a VIM requirement. OSM supports 
different VIMs15 via plugins. 

Support of harvesting computing capabilities 
from mobile resources 

This is a VIM requirement. See above. 

Support of discovery, configuration, 
monitoring, allocation, etc. of relevant 
hardware capabilities (e.g., wireless 
interfaces, GPIO, GPU, SR-IOV, etc.) 

Relevant hardware capabilities need to be 
exposed by the VIMs. Then, the allocation 
based on this requirement is available via 
Enhanced Platform Awareness (EPA).  

Support of integration including at runtime of 
heterogeneous resources in terms of 
software and hardware capabilities (e.g., 
different CPU arch, hypervisors, etc.) 

OSM is able to manage heterogenous 
resources as long as they are managed by 
different VIMs. 

Support of federation including at runtime of 
OCS components 

OSM is able to federate only resources coming 
from different datacentres under his control. 
No federation is possible between different 
OSM instances. 

Support of the interworking with resources 
external to the OCS (e.g., cloud-to-thing 
continuum) 

OSM is able to manage Physical Network 
Functions (PNF) which can be not under the 
OCS control. 

TABLE 9-4: 5G-CORAL OCS NON-FUNCTIONAL REQUIREMENTS AND OSM SUPPORT 

Non-Functional Requirement Consideration 

Support of deployment of OCS on low end 
devices (e.g., battery-limited, form-factor, 
resource constrained, etc.) 

OSM is deployed as a set of Docker 
containers. It has high computing and 
networking requirements making impossible to 
deploy OSM on low end devices. 

Support of deployment of OCS on mobile 
devices (e.g., car, robot, train, etc.) 

As above, OSM needs persistent connection 
with VIMs and VNFs. 

Availability and self-healing mechanisms in 
error-prone environments 

If Juju is used as VNFM then self-healing is 
possible. 

Support of large deployments in terms of 
number of resources and geographic areas 

OSM is designed to manage resources across 
datacentres. 

Support of plugins for extensibility OSM supports only plugins for the VIM. 
Particularly, it is possible to implement 
connectors to VIMs. 

Capability to adapt to workload changes by 
provisioning and de-provisioning resources 
in an automated manner 

OSM currently does not support elasticity.  

                                                 
15 https://osm.etsi.org/wikipub/index.php/VIMs 
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Support of multiple tenants participating and 
co-existing in the same environment 

OSM supports multiple tenants. 

9.2 Open Baton 

Open Baton [46] is an Open Source Network Function Virtualization Orchestrator (NFVO) 

released in 2015 in partnership between Fraunhofer FOKUS Institute and the Technical University 

of Berlin, allowing the user to create a Network Function Virtualization (NFV) environment based 

on ETSI NFV MANO specifications [48]. The ultimate goal of the project is to facilitate the 

integration between cloud infrastructure providers and virtual network function providers in an 

NFV framework. To this end, Open Baton adopts the ETSI NFV data model to build network 

services and virtual network descriptors, enabling interoperability and supporting extensibility, 

thanks to its message bus architecture.  

 
FIGURE 9-2: OVERVIEW OF THE OPEN BATON ARCHITECTURE16 

Figure 9-2 illustrates the key components of the Open Baton architecture [47], which are 

summarised in the following:  

• NFVO (Network Function Virtualisation Orchestrator), designed and implemented 

following the ETSI MANO specifications; 

• Generic VNFM (Virtual Network Function Manager) and EMS (Element Management 

System), managing VNFs lifecycle based on the descriptors.  

• The Generic VNFM provides a Juju VNFM adapter to deploy Juju charms or Open Baton 

VNFM packages in addition to an autoscaling engine, used for automatic runtime 

management of scaling operations of the VNFs; 

• A monitoring plugin integrating Zabbix as monitoring system; 

• An event engine based on pub/sub mechanism to dispatch lifecycle events execution; 

• A set of libraries (in Java, Go and Python), used to build a bespoke VNFM; 

• A driver-based mechanism for compatibility with various VIMs; 

                                                 
16 Source: https://openbaton.github.io/documentation/  

https://openbaton.github.io/documentation/
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• A fault management system, used for automatic runtime management of faults which may 

occur at any level; 

• A network slicing engine, used to ensure a specific QoS level for a network slice; 

It is also worth pointing out that Open Baton integrates with OpenStack, representing the main 

VIM implementation. To sum up, Open Baton is primarily designed to extend basic orchestration 

towards network function management, including a generic VNFM and EMS, and interoperable 

with other VNFMs. Finally, three main mechanisms are available to extend the environment: 

1. Via plugins based on Remote Procedure Calls (RPCs); 

2. Via VNFM plugins, through Advanced Message Queuing Protocol (AMQP) messages and 

REST interfaces between NFVO and VNFM; 

3. Via events, generated by the NFVO for each lifecycle event. 

Finally, Open Baton requires a minimum of 2 CPUs, 2 GB of RAM and 10 GB of storage. 

However, it recommends 8 CPUs, 8 GB of RAM and 10 GB of storage. In the following, Table 

9-5 and Table 9-6 report the existing and missing OSM capabilities suitable for the 5G-CORAL 

OCS. 

TABLE 9-5: EXISTING OPEN BATON CAPABILITIES SUITABLE FOR 5G-CORAL OCS 

Capability Description 

Docker VNFM and VIM 
driver 

Open Baton can deploy containers on top of a running Docker 
engine. The VNFM and VIM are both needed to deploy network 
services (NSs) over Docker 

Autoscaling engine This module provides an NFV-compliant AutoScaling Engine (ASE). 
In addition, the Autoscaling engine uses the plugin mechanism to 
allow any convenient Monitoring System. 

Fault management 
system 

This component handles alarms generated by the VIM and executes 
actions through the NFVO, thus providing switch-to-standby and 
heal functionalities.  

Monitoring plugin The plugin mechanism allows Open Baton to conveniently use 
multiple monitoring systems. An example of monitoring plugin is 
Zabbix.  

Pub/sub-based event 
engine 

The Pub/sub mechanism can be employed to enable interoperation 
with multiple external VNFMs.  

TABLE 9-6: MISSING OPEN BATON CAPABILITIES SUITABLE FOR 5G-CORAL OCS 

Capability Description 

Service Federation Not yet supported, yet Open Baton is expected to become a key 
enabler to integrate a local testbed with a large federation of 5G 
oriented infrastructures. As an example, 5G Berlin will federate 
several testbeds, each with a dedicated scope and purpose [1].  

Dynamic Resources 
Discovery 

Open Baton main goal is to extend basic orchestration and no 
resource discovery capabilities are provided. This may be 
integrated through a specific plugin.   

Finally, Table 9-7 and Table 9-8 present the gap analysis of OSM against the functional and 

non-functional OCS requirements. 

TABLE 9-7: 5G-CORAL OCS FUNCTIONAL REQUIREMENTS AND OPEN BATON SUPPORT 

Functional Requirement Consideration 

Support of harvesting computing capabilities 
from low-end resources 

Low-end resources cannot be used to provide 
additional computing capabilities. 

Support of harvesting computing capabilities 
from mobile resources 

Mobile resources cannot be used to provide 
additional computing capabilities. 

Support of discovery, configuration, Support of discovery, configuration, monitoring 
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monitoring, allocation, etc. of relevant 
hardware capabilities (e.g., wireless 
interfaces, GPIO, GPU, SR-IOV, etc.) 

and resource allocation is currently not 
available. However, mechanisms to provide 
resource discovery are under development.  

Support of integration including at runtime of 
heterogeneous resources in terms of 
software and hardware capabilities (e.g., 
different CPU arch, hypervisors, etc.) 

This feature is available in Open Baton. The 
framework is fairly extensible through plugin 
support and dedicated SDK library.  

Support of federation including at runtime of 
OCS components 

Not available at the moment. Federation 
support is under development. 

Support of the interworking with resources 
external to the OCS (e.g., cloud-to-thing 
continuum) 

Open Baton enables orchestration of external 
resources, as long as the correct plugin is 
available.  

TABLE 9-8: 5G-CORAL OCS NON-FUNCTIONAL REQUIREMENTS AND OPEN BATON SUPPORT 

Non-Functional Requirement Consideration 

Support of deployment of OCS on low end 
devices (e.g., battery-limited, form-factor, 
resource constrained, etc.) 

There is no support for deploying OCS on low-
end devices.  

Support of deployment of OCS on mobile 
devices (e.g., car, robot, train, etc.) 

There is no support for deploying OCS on 
mobile devices. 

Availability and self-healing mechanisms in 
error-prone environments 

Self-healing capabilities are provided by 
Open Baton, through alarms originated from 
the VIM and convenient actions carried out by 
the NFVO.  

Support of large deployments in terms of 
number of resources and geographic areas 

Open Baton is highly scalable and features an 
AutoScaling Engine.  

Support of plugins for extensibility Plugins can be used or developed to extend 
Open Baton.  

Capability to adapt to workload changes by 
provisioning and de-provisioning resources 
in an automated manner 

The AutoScaling Engine supports workload 
adaptation through the monitoring system.  

Support of multiple tenants participating and 
co-existing in the same environment 

Multi-tenancy is supported via network slicing.  

9.3 ONAP 

ONAP [49] provides a platform for real-time and policy driven orchestration and automation of 

both physical and virtual network functions, enabling network and cloud provides to rapidly 

automate new services in a massive scale (multi-site and multi-VIM support). ONAP provides: 

• A design framework that allows service specification with respect to all aspects, 

modelling the resources as well as relationship that make up the service, specify the 

policies that guide the service behaviour, and specify the analytics and closed-loop 

events needed for the elastic management of the service. 

• An orchestration and control framework (Service Orchestrator and Controllers) that is 

recipe and policy driven, to provide automate instantiation of the service as well as 

managing the service in an elastic manner. 

• An analytic framework that monitors the service behaviour during the lifecycle of the 

service and uses the policies as required to deal with situations that require healing or 

scaling of the service in an elastic manner. 

The ONAP platform (as show in Figure 9-3) provides a unified framework for policy-driven 

service design, implementation, analytics and LCM for large scale workloads and services: it 
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allows to orchestrate both physical and virtual network function enabling operators to leverage 

existing network infrastructure. 

 

FIGURE 9-3: ONAP PLATFORM COMPONENTS17 

Specifically, ONAP is functionally composed by a Portal, a Design Time Framework, a Runtime 

Framework, a Closed-Loop Automation, and Microservices Support. Particularly, the ONAP 

platform provides common functions that are necessary to construct specific behaviours. In ONAP 

a service is created and defined using the ONAP Design Framework Portal which is a design time 

component of the whole platform.  

 

FIGURE 9-4: FUNCTIONAL VIEW OF THE ONAP ARCHITECTURE18 

Figure 9-4 provides a simplified functional view of the architecture, in which we have:  

• Design Time environment for onboarding service and resource into ONAP and designing 

the required services; 

                                                 
17 Source: https://docs.onap.org/en/casablanca/guides/onap-developer/architecture/onap-
architecture.html 
18 Source: https://docs.onap.org/en/casablanca/guides/onap-developer/architecture/onap-
architecture.html 

https://docs.onap.org/en/casablanca/guides/onap-developer/architecture/onap-architecture.html
https://docs.onap.org/en/casablanca/guides/onap-developer/architecture/onap-architecture.html
https://docs.onap.org/en/casablanca/guides/onap-developer/architecture/onap-architecture.html
https://docs.onap.org/en/casablanca/guides/onap-developer/architecture/onap-architecture.html
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• External API both northbound and southbound that provides interoperability with multi-

VIM and Cloud providers; 

• OOM, that provides the ability to manage cloud-native installation and deployments to 

Kubernetes-managed cloud environments; 

• Common Services that manage complex and optimized topologies: 

o MUSIC allows ONAP to scale to multi-site environment; 

o ONAP Optimization Framework provides a declarative, policy-driven approach 

for creating and running optimization applications, like Homing/Placement. 

• Information Model and framework utilities to harmonize the topology, workflow and 

policy models coming from different standards such as ETSI NFV MANO, TM Forum SID, 

ONF Core, OASIS TOSCA, IETF and MEF. 

The Portal provides access to design, analytics and operational control/administration functions, 

via a shared role-based dashboard. 

The Design-Time Framework is the development environment that allows the definition and 

creation of resources, services and products: it is composed by (i) the SDC that provides tools to 

define, simulate and certify system assets as well as the associated policies, (ii) the VNF SDK with 

the VVP, which provides the tool to design and validate VNF that can be deployed in the ONAP 

platform, (iii) the POLICY component, that deals with the definition of policies, and (iv) the 

CLAMP component, used to manage closed control loops, configure it, deploy it and 

decommission it, as well as to update the loop with new parameters at runtime. 

The Runtime framework executes all the rules and policies distributed by the design and creation 

environment. In particular, it is composed by the SO that automates the sequences of activities, 

tasks, rules and policies needed for on-demand creation, modification or removal of network, 

application or infrastructure services and resources. It provides a high-level orchestration with an 

end-to-end view of the infrastructure, network and application. The Controllers (SDNC, APPC, 

VF-C) are applications which are coupled with cloud and network services and execute the 

configuration, real-time policies and control of the state of distributed components and services.  

The VF-C provides an ETSI-compliant NFVO function that is responsible for the lifecycle 

management of virtual services and the associated physical server infrastructure. In ONAP, the 

modelling supports different standards: 

• VNFD based on ETSI NFV IFA011 v2.4.1 with modification to align with the ONAP 

requirements; 

• VNFD based on TOSCA that is based on ETSI NFV SOL001 v0.6.0; 

• VNF Package ETSI SOL004.  

ONAP is installed though the ONAP Operation Manager that uses Kubernetes, Docker containers 

and Helm installer. In the current version, ONAP requires Kubernetes 1.11.2, Helm 2.9, Kubectl 

1.11.2, and Docker 17.03.x. This results in the deployment of 14 Virtual Machines/Containers 

and a minimum hardware requirement of 8 CPUs, 16 GB RAM, and 160 GB of storage. Table 

9-9 and Table 9-10 report the existing and missing ONAP capabilities suitable for the OCS. 

TABLE 9-9: EXISTING ONAP CAPABILITIES SUITABLE FOR 5G-CORAL OCS 

Capability Description 

NSD onboarding and basic 
validation 

NSD are verified in design time by the tool in the SDK and 
deployed by the runtime framework. 

Extensible and highly 
customizable NSD format 

Based on TOSCA. Open for customization. 

Mature workflow execution 
engine with cross-

Workflow definition fully programmable at design time. 
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dependencies support 

Complex lifecycle operation 
support 

Heal, scaling and recovery policies can be defined at design 
time 

Monitoring support Monitoring in embedded in the analytics 

Arbitrary VIM support Multi-VIM/Cloud adaptation layer is provided as well as 
southbound API, unclear how to implement connection to a new 
VIM 

Dynamic migration support Managed at runtime by the closed-loop controller  

Service Federation  Designed to multi-site management, federation may be 
possible if we consider multi-site ONAP deployment 

TABLE 9-10: MISSING ONAP CAPABILITIES SUITABLE FOR 5G-CORAL OCS 

Capability Description 

Resources discovery, their 
utilisation tracking 

Unclear how physical resources can be discovered or 
added at runtime. Resources can be defined at design 
time and the runtime have to manage them.  

Finally, Table 9-11 and Table 9-12 present the gap analysis of ONAP against the functional 

and non-functional OCS requirements. 

TABLE 9-11: 5G-CORAL OCS FUNCTIONAL REQUIREMENTS AND ONAP SUPPORT 

Functional Requirement Consideration 

Support of harvesting computing capabilities 
from low-end resources 

Low-end resources cannot be used to provide 
additional computing capabilities. 

Support of harvesting computing capabilities 
from mobile resources 

Mobile resources cannot be used to provide 
additional computing capabilities. 

Support of discovery, configuration, 
monitoring, allocation, etc. of relevant 
hardware capabilities (e.g., wireless 
interfaces, GPIO, GPU, SR-IOV, etc.) 

Support of discovery, configuration, monitoring 
and resource allocation is currently not 
available. To investigate how to integrate 
resource discovery. 

Support of integration including at runtime of 
heterogeneous resources in terms of 
software and hardware capabilities (e.g., 
different CPU arch, hypervisors, etc.) 

Support of heterogeneous resource is 
available in ONAP. 

Support of federation including at runtime of 
OCS components 

MUSIC component uses multi-site deployment 
as a federation mechanism from an ONAP 
point of view. 

Support of the interworking with resources 
external to the OCS (e.g., cloud-to-thing 
continuum) 

ONAP can be integrated with 3rd parties VIMs 
and Clouds.  

TABLE 9-12: 5G-CORAL OCS NON-FUNCTIONAL REQUIREMENTS AND ONAP SUPPORT 

Non-Functional Requirement Consideration 

Support of deployment of OCS on low end 
devices (e.g., battery-limited, form-factor, 
resource constrained, etc.) 

The high computing requirements make 
impossible the deployment of ONAP on low-
end devices.  

Support of deployment of OCS on mobile 
devices (e.g., car, robot, train, etc.) 

The high computing requirements make 
impossible the deployment of ONAP on mobile 
devices. 

Availability and self-healing mechanisms in 
error-prone environments 

Self-healing capabilities are provided by 
ONAP through alarms originated from Closed 
Loop monitoring (CLAMP). 

Support of large deployments in terms of 
number of resources and geographic areas 

ONAP is highly scalable and scaling of VNF is 
defined at design time in the POLICY 
component.  
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Support of plugins for extensibility ONAP supports plugins for different VIMs. 

Capability to adapt to workload changes by 
provisioning and de-provisioning resources 
in an automated manner 

The scaling defined in POLICY can support on-
demand adaptation of the service.  

Support of multiple tenants participating and 
co-existing in the same environment 

Multi-tenancy is supported. 

9.4 Cloudify 

Cloudify [50] is an open-source TOSCA-based cloud orchestration framework, featuring both 

commercial and community platform releases, widely used in production.  Cloudify enables the 

user to model applications and services and automate their entire lifecycle, including deployment 

on any cloud or datacentre environment, monitoring all aspects of a deployed application, 

detecting issues and failure, manually or automatically remediating such issues, and performing 

ongoing maintenance tasks. 

 
FIGURE 9-5: OVERVIEW OF THE CLOUDIFY ARCHITECTURE19 

Figure 9-5 illustrates the Cloudify architecture which comprises of the following main components: 

• Cloudify Manager: consisting of the Cloudify code and a set of open-source 

applications. The Cloudify Manager architecture is designed to support all potential 

operational workflows you might require when managing your applications. 

• Cloudify Agents: representing entities for executing tasks on application hosts. They 

reside inside the application (e.g., VM), listen to task queues and execute tasks when 

required. The agents are designed to execute tasks using Cloudify-specific plugins. Note 

that Cloudify can run in “agentless” mode, which means that agents can use specific 

plugins to manage hosts without the agents being installed on those hosts. It is possible to 

specify which server nodes will have agents installed on them in the blueprint. 

• Cloudify Console: includes a Cloudify Console that provides the same features as the 

CLI, as well as others. 

Table 9-13 lists the Cloudify main features while Table 9-14 and Table 9-15 report the existing 

and missing Cloudify capabilities suitable for the 5G-CORAL OCS. 

 

                                                 
19 Source: https://cloudify.co/guide/3.0/overview-architecture.html  

https://docs.cloudify.co/4.4.0/working_with/official_plugins/
https://cloudify.co/guide/3.0/overview-architecture.html
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TABLE 9-13: SUMMARY OF CLOUDIFY FEATURES 

Capability Description 

Language written Python, JavaScript (for UI). 

Network Service Descriptors format  TOSCA language. 

Workflow engine TOSCA orchestration engine, based on Apache ARIA. 

NSDs catalogue Local FS with per-tenant isolation  

Available integrations with external 
infrastructure providers 

OpenStack, Kubernetes, public clouds. 

Proxy for the Cloudify REST service 
and file server  

Nginx. 

Cloudify REST service Gunicorn and Flask. 

Application model, indexing, logs 
and events storage 

PostgreSQL. 
 

Log and event messages handler Logstash. 

Internal messaging  Async via RabbitMQ. 

Build-in Monitoring platform Riemann. 

Cloudify management worker Celery. 

Monitoring sample storage InfluxDB. 

Other Southbound Interfaces Any, via custom plugins. 

TABLE 9-14: EXISTING CLOUDIFY CAPABILITIES SUITABLE FOR 5G-CORAL OCS 

Capability Description 

NSD onboarding and basic 
validation 

During NSD onboarding semantic checks are performed which 
ensures that TOSCA blueprint syntactically is correct. However, 
low-level dependencies and workflow implementation error 
might be checked during execution phase only.  

Extensible and highly 
customizable NSD format 

TOSCA allows to identify custom node types and associate with 
these nodes arbitrary metadata. 

Mature workflow execution 
engine with cross-
dependencies support 

TOSCA-based workflow allows to specify several dependency 
types among blueprint Nodes, thus forming order of operations 
during the workflow execution. 

Complex lifecycle operation 
support 

Additionally, to common operations like create and delete, 
Cloudify considers possibility of healing and scaling operations 
out of the box. 

Monitoring support The Cloudify agents through the Rabbit-MQ messaging platform 
are reporting their monitor metrics, events and logs. In the 
blueprint you can configure what metrics (CPU Utilization, 
Physical Memory, Disk IO, Network IO etc.) you want to be 
reported. Cloudify monitoring implementation uses Grafana for 
tracking system metrics. 

Arbitrary VIM support Custom plugin can be developed for any service deployment. 

Dynamic migration support Cloudify can be configured to move VMs from one cloud to 
another. Also, with correct modelling of the blueprints you can 
migrate your container-based environment.  

TABLE 9-15: MISSING CLOUDIFY CAPABILITIES REQUIRED FOR 5G-CORAL OCS 

Capability Description 

Service Federation Depending on a federation approach selected for 5G-CORAL platform 
and appropriate logic, custom developments and extensions will be 
required 

Resources 
discovery, 
utilisation tracking 

Custom development and extension will be required for dynamic resource 
discovery. Cloudify doesn’t track resources availability in the managed 
infrastructure and just tries to complete appropriate workflow. However, 
constraints and SLA policy checking might be introduced on a plugin layer. 
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Cloudify [50] requires a minimum of 2 CPUs, 4 GB RAM, 5 GB disk and two network interfaces. 

However, Cloudify recommends 8 CPUs, 16 GB RAM, 64 GB of storage. Moreover, it requires 

Red Hat/CentOS 7.4 to run. In the following, Table 9-16 and Table 9-17 present the gap 

analysis of Cloudify against the functional and non-functional OCS requirements. 

TABLE 9-16: 5G-CORAL OCS FUNCTIONAL REQUIREMENTS AND CLOUDIFY SUPPORT 

Functional Requirement Consideration 

Support of harvesting computing capabilities 
from low-end resources 

The Cloudify agent enables support of 
computing capabilities from low-end resources. 
Note: There is also the option of “agentless” 
mode. 

Support of harvesting computing capabilities 
from mobile resources 

The Cloudify agent enables support of 
computing capabilities from mobile resources. 
Note: There is also the option of “agentless” 
mode. 

Support of discovery, configuration, 
monitoring, allocation, etc. of relevant 
hardware capabilities (e.g., wireless 
interfaces, GPIO, GPU, SR-IOV, etc.) 

Support of discovery, configuration, monitoring 
and resource allocation is currently available. 
However, Cloudify doesn’t track resources 
availability in the managed infrastructure and 
just tries to complete appropriate workflow.  

Support of integration including at runtime of 
heterogeneous resources in terms of 
software and hardware capabilities (e.g., 
different CPU arch, hypervisors, etc.) 

Cloudify has highly extensible architecture 
through plugin support.  This enables runtime 
integration of heterogeneous resources in terms 
of software and hardware. 

Support of federation including at runtime of 
OCS components 

Not available at the moment. Custom 
development and extensions will be required. 

Support of the interworking with resources 
external to the OCS (e.g., cloud-to-thing 
continuum) 

Cloudify enables orchestration of external 
resources, if the correct plugin is available.  

TABLE 9-17: 5G-CORAL OCS NON-FUNCTIONAL REQUIREMENTS AND ONAP SUPPORT 

Non-Functional Requirement Consideration 

Support of deployment of OCS on low end 
devices (e.g., battery-limited, form-factor, 
resource constrained, etc.) 

Given the high computing requirements it is 
impossible to deploy Cloudify on low-end 
devices. 

Support of deployment of OCS on mobile 
devices (e.g., car, robot, train, etc.) 

Given the high computing requirements it is 
impossible to deploy Cloudify on mobile 
devices. 

Availability and self-healing mechanisms in 
error-prone environments 

Self-healing capabilities are provided by 
Cloudify. The heal and scale operations are 
coming out of the box with Cloudify.  

Support of large deployments in terms of 
number of resources and geographic areas 

Cloudify is highly scalable when TOSCA Auto-
Scaling is enabled.  

Support of plugins for extensibility Cloudify natively has a plugin-based 
architecture.  

Capability to adapt to workload changes by 
provisioning and de-provisioning resources 
in an automated manner 

Since Cloudify does not track resources 
availability in the managed infrastructure and 
just tries to complete appropriate workflow this 
feature is not available currently in Cloudify. 

Support of multiple tenants participating and 
co-existing in the same environment 

Multi-tenancy is supported in the current 
version of Cloudify.  
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9.5 OPNFV 

OPNFV [51] is a collaborative project supported by the Linux Foundation that brings together 

service providers, cloud computing and infrastructure providers, as well as developers and users 

who define new platforms, integrate existing open source frameworks and components, and test, 

develop and deploy NFV open source projects. The common goal of the service provider 

promoting this project is to push the evolution of NFV by building a carrier-grade platform that 

focuses on ensuring interoperability, consistency and high performance across multiple open 

source components. In this regard, OPNFV continues to integrate with multiple projects and test to 

drive technology development. OPNFV not only aims at developing and establishing standards, 

but also works closely with various standards organizations such as ETSI's NFV Internet Standards 

Organization, IEEE, ONF, etc. to implement the standard NFV reference platform. By integrating 

components from upstream projects, the community is able to conduct performance and use case-

based testing on a variety of solutions to ensure the platform’s suitability for NFV use cases.  

 
FIGURE 9-6: OPNFV ARCHITECTURE20 

OPNFV also works upstream with other open source communities to bring contributions and 

learnings from its work directly to those communities in the form of blueprints, patches, bugs, and 

new code. Particularly, OPNFV focuses on building NFV Infrastructure (NFVI) and Virtualized 

Infrastructure Management (VIM) by integrating components from upstream projects such as 

OpenDaylight, OVN, OpenStack, Kubernetes, Ceph Storage, KVM, Open vSwitch, Linux, DPDK, 

FD.io and ODP. OPNFV is able to run on both Intel and ARM commercial and white-box 

hardware, support VM, container and bare metal workloads. These capabilities, along with 

application programmable interfaces (APIs) to other NFV elements, form the basic infrastructure 

required for Virtualized Network Functions (VNF) and MANO components. 

OPNFV platform architecture (show in Figure 9-6) can be decomposed into the following basic 

building blocks: hardware, software platform, tooling and testing, applications, and MANO. 

When OPNFV projects seek orchestration functionalities for their testing scenarios, they usually 

                                                 
20 Source: https://www.opnfv.org/software  

https://www.opnfv.org/software
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emulate or simulate those functionalities executing different procedures and/or requests in 

parallel to different components. The Orchestra project [52] aims to integrate Open Baton with 

existing OPNFV projects for specific scenarios and use cases. The OPNFV-SFC (Service Function 

Chaining) test cases use Tacker as MANO component. Tacker is an official OpenStack project 

building a Generic VNF Manager (VNFM) and an NFV Orchestrator (NFVO) to deploy and 

operate Network Services and VNFs on an NFVI platform.  

 
FIGURE 9-7: TACKER ARCHITECTURE21 

The Tacker architecture is shown in Figure 9-7 and consists of three major components: 

1. NFV Catalog: it includes VNF Descriptors, Network Services Descriptors, and VNF 

Forwarding Graph Descriptors; 

2. VNFM: it performs basic life-cycle of VNF (create/update/delete), enhanced platform-

aware (EPA) placement of high-performance NFV workloads, health monitoring of 

deployed VNFs, auto-healing/auto-scaling VNFs based on policies, and easy initial 

configuration of VNFs; 

3. NFVO: it performs templatized end-to-end Network Service deployment using 

decomposed VNFs, VNF placement policy ensuring efficient placement of VNFs, VNFs 

connected using an SFC (described in a VNF Forwarding Graph Descriptor), VIM 

resource checks and resource allocation, ability to orchestrate VNFs across multiple VIMs 

and multiple sites (POPs). 

Tacker uses TOSCA for VNF meta-data definition. More specifically, Tacker uses TOSCA NFV 

profile schema. For Tacker to work, the system consists of two parts: the tacker system and the 

VIM systems. In the following, Table 9-18 and Table 9-19 report the existing and missing 

Cloudify capabilities suitable for the 5G-CORAL OCS. 

TABLE 9-18: EXISTING OPNFV CAPABILITIES SUITABLE FOR 5G-CORAL OCS 

Capability Description 

Implementing the standard 
NFV reference platform 

It can match with various ETSI’s NFV Internet Standards. 

                                                 
21 Source: https://wiki.openstack.org/wiki/Tacker  

https://wiki.openstack.org/wiki/Tacker
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Deploying NFVI and VIM 
 

It is possible to establish through integrating components from 
upstream projects such as OpenDaylight, OVN, OpenStack, 
Kubernetes, Ceph Storage, KVM, Open vSwitch, Linux, DPDK, 
FD.io and ODP. 

VIM installation Since the VIM is either OpenStack or Kubernetes, the target 
VIM installation involves the setup of either system. 

Consistency with hardware 
production 

OPNFV is can be run on both Intel and ARM production. 

VM and container deployment White-box hardware can be used to support VM and 
container. 

TABLE 9-19: MISSING OPNFV CAPABILITIES REQUIRED FOR 5G-CORAL OCS 

Capability Description 

Federation It is not supported. 

OPNFV requires a minimum of 2 CPUs, 16 GB RAM, 256 GB of storage. However, OPNFV 

recommends 8 CPUs, 64 GB RAM, 512 GB of storage. Moreover, it requires Red Hat/CentOS/ 

Ubuntu to run. Table 9-20 and Table 9-21 present the gap analysis of OPNFV against the 

functional and non-functional OCS requirements. 

TABLE 9-20: 5G-CORAL OCS FUNCTIONAL REQUIREMENTS AND OPNFV SUPPORT 

Functional Requirement Consideration 

Support of harvesting computing 

capabilities from low-end resources 

Resource support depends on the VIM. 

Support of harvesting computing 

capabilities from mobile resources 

Resource support depends on the VIM. 

Support of discovery, configuration, 

monitoring, allocation, etc. of relevant 

hardware capabilities (e.g., wireless 

interfaces, GPIO, GPU, SR-IOV, etc.) 

Resource support depends on the VIM. 

Support of integration including at runtime 

of heterogeneous resources in terms of 

software and hardware capabilities (e.g., 

different CPU arch, hypervisors, etc.) 

Resource support depends on the VIM. 

Support of federation including at runtime 

of OCS components 

Not supported. 

Support of the interworking with resources 

external to the OCS (e.g., cloud-to-thing 

continuum) 

Not supported. 

TABLE 9-21: 5G-CORAL OCS NON-FUNCTIONAL REQUIREMENTS AND OPNFV SUPPORT 

Non-Functional Requirement Consideration 

Support of deployment of OCS on low end 

devices (e.g., battery-limited, form-factor, 

resource constrained, etc.) 

Given the high computing requirements it is 

impossible to deploy OPNFV on low-end 

devices. 

Support of deployment of OCS on mobile 

devices (e.g., car, robot, train, etc.) 

Given the high computing requirements it is 

impossible to deploy OPNFV on mobile devices. 

Availability and self-healing mechanisms 

in error-prone environments 

OPNFV may support self-healing and auto-

scaling via Tacker, especially auto-restart on 

failures. 

Support of large deployments in terms of 

number of resources and geographic areas 

Clustering multiple OPNFV and OpenStack 

instances may lead to large deployments. 
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Support of plugins for extensibility OPNFV can be extended via plugins. 

Capability to adapt to workload changes 

by provisioning and de-provisioning 

resources in an automated manner 

OpenStack provides basic support for load 

balancing. 

Support of multiple tenants participating 

and co-existing in the same environment 

Tacker is a multi-tenant aware VNF Manager. 

9.6 Apache ARIA TOSCA 

ARIA, which stands for Agile Reference Implementation of Automation, is an open source, TOSCA-

based orchestration library, which supports multi-cloud and multi-VIM environments, that can be 

used by any organization wanting to integrate TOSCA orchestration capabilities into their 

current and future solutions [53]. Its goal is to accelerate adoption of the TOSCA standard for 

orchestration with an open governance model by bringing together a large community of 

contributors to develop solutions more quickly. ARIA TOSCA is an open, light, CLI-driven library 

of orchestration tools that other open projects can consume to easily build TOSCA-based 

orchestration solutions. ARIA is now an incubation project at the Apache Software Foundation. 

OASIS TOSCA offers a vendor neutral standard for modeling cloud-based applications, while 

ARIA is an open implementation of the TOSCA specification, allowing complete visibility and free 

use of all its source code22. ARIA offers a library with a programmable interface that allows 

embedding ARIA into collaborative projects, to enable organizations looking to incorporate 

TOSCA orchestration capabilities into their solutions. Figure 9-8 illustrates the ARIA architecture. 

 
FIGURE 9-8: OVERVIEW OF THE ARIA ARCHITECTURE23 

Through ARIA, application vendors will be able to test and run their applications easily, from 

blueprint to deployment, without the former hassle of developing the orchestration engine 

themselves, simplifying TOSCA certification and validation exponentially. ARIA includes a TOSCA 

DSL parser, whose role is to interpret the TOSCA template, create an in-memory graph of the 

application and validate template correctness. TOSCA provides a typing system with normative 

node types to describe the possible building blocks for constructing a service template, as well as 

                                                 
22 https://github.com/apache/incubator-ariatosca  
23 Source: http://ariatosca.incubator.apache.org/about/  

https://github.com/apache/incubator-ariatosca
http://ariatosca.incubator.apache.org/about/
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relationship types to describe possible kinds of relations. Both node and relationship types may 

define life-cycle operations to implement the behavior an orchestration engine can invoke when 

instantiating a service template. The template files are written in declarative YAML language 

using TOSCA normative types. Technology specific types can be introduced via ARIA Plugins 

without any modifications of the parser code. ARIA natively supports TOSCA Simple Profile 1.0, 

and TOSCA Simple Profile for Network Function Virtualization. TOSCA Templates include a 

YAML Topology Template, plugins, workflows, and resources such as scripts and others. 

 
FIGURE 9-9: DECLARATIVE MODEL-DRIVEN ORCHESTRATION24 

ARIA Workflows (see Figure 9-9) are automated process algorithms that allow dynamic 

interaction with the graph described by the application topology template. ARIA Workflows 

describe the flow of the automation by determining when which tasks will be executed. A task 

may be an operation, optionally implemented by a plugin, or other actions, including arbitrary 

code or scripts. ARIA Workflows can be embedded within the TOSCA Template to be able to 

access the graph dynamically. Workflows are implemented as Python code using dedicated APIs 

and a framework to access the graph and the runtime context of the application, the context 

provides access to the object graph described in the TOSCA template. ARIA comes with a 

number of built-in workflows - these are the workflows for install, uninstall, scale and heal. Built-in 

workflows are not special in any way: ARIA supports creating custom workflows that use the 

same APIs built-in workflows are using. 

ARIA Plugins allow extending the TOSCA normative types dynamically by adding new 

technology-specific node types and relationship types, without changing the code of the ARIA 

TOSCA Parser. The plugins introduce new node types and the implementation that realizes the 

logic behind every new node type. The plugin-based types are isolated, allowing to use 

different versions of the same plugin in a single blueprint - for example support OpenStack Kilo 

and OpenStack Juno in the same template. It also allows combining types of different 

technologies - for example OpenStack nodes with VMware, Amazon, or other types such as 

Router, Firewall, Kubernetes and others. The work of interacting with IaaS APIs, running scripts, 

Configuration Management tools, Monitoring tools and any other tools used when managing 

applications is done by the ARIA Plugins. Plugins can be included as part of the application 

template package and loaded dynamically. ARIA includes set of plugins that can be used as it is 

or as reference for implementing for new plugins. In the following, Table 9-22 and Table 9-23 

report the existing and missing ARIA capabilities suitable for the 5G-CORAL OCS. 
                                                 
24 Source: http://ariatosca.incubator.apache.org/about/ 

http://ariatosca.incubator.apache.org/about/
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TABLE 9-22: EXISTING APACHE ARIA CAPABILITIES SUITABLE FOR 5G-CORAL OCS 

Capability Description 

NSD onboarding and 
basic validation 

During NSD onboarding ARIA performs semantic checks which 
ensures that TOSCA blueprint syntactically is correct. However, 
low-level dependencies and workflow implementation error might 
be checked during execution phase only.  

Extensible and highly 
customizable NSD format 

ARIA provides TOSCA based NSD format which identify custom 
node types and associate with these nodes arbitrary metadata. 

Mature workflow 
execution engine with 
cross-dependencies 
support 

ARIA itself natively supports TOSCA-based workflow which allows 
to specify several dependency types among blueprint Nodes, thus 
forming order of operations during the workflow execution. 

TABLE 9-23: MISSING APACHE ARIA CAPABILITIES REQUIRED FOR 5G-CORAL OCS 

Capability Description 

Complex lifecycle 
operation support 

ARIA itself does not support complex lifecycle operation; it 
depends on whether or not an OCS implements and supports it. 

Monitoring support ARIA itself does not support complex lifecycle operation; it 
depends on whether or not an OCS implements and supports it. 

Arbitrary VIM support ARIA itself does not support complex lifecycle operation; it 
depends on whether or not an OCS implements and supports it. 

Dynamic migration 
support 

ARIA itself does not support complex lifecycle operation; it 
depends on whether or not an OCS implements and supports it.  

Service Federation ARIA itself does not support complex lifecycle operation; it 
depends on whether or not an OCS implements and supports it. 

Resources discovery, their 
utilisation tracking 

ARIA itself does not support complex lifecycle operation; it 
depends on whether or not an OCS implements and supports it. 

Apache ARIA does not have any recommended requirements per se. However, it requires Python 

2.6/2.7 (Python 3 is currently not supported) and it has been tested under Ubuntu 14.04, Ubuntu 

16.04, Centos 6.6, Centos 7, Arch Linux, and Windows 10. Finally, Table 9-24 and Table 9-25 

present the gap analysis of ONAP against the functional and non-functional OCS requirements. 

TABLE 9-24: 5G-CORAL OCS FUNCTIONAL REQUIREMENTS AND APACHE ARIA SUPPORT 

Functional Requirement Consideration 

Support of harvesting 
computing capabilities from 
low-end resources 

It relies on the tosca specification to specify resource node 
for low-end resources and relies on orchestrator being 
developed to implement the harvesting function for such 
resources.  ARIA, playing as an orchestration engine, 
provides a way to extend the specification for low-end 
resources and provides an API set between operators and 
orchestrators to be developed to enable such support. 

Support of harvesting 
computing capabilities from 
mobile resources 

It relies on the tosca specification to specify resource node 
for mobile resources and relies on orchestrator being 
developed to implement the harvesting function for such 
resources.  ARIA, playing as an orchestration engine, 
provides a way to extend the specification for mobile 
resources and provides an API set between operators and 
orchestrators to be developed to enable such support. 

Support of discovery, 
configuration, monitoring, 
allocation, etc. of relevant 
hardware capabilities (e.g., 
wireless interfaces, GPIO, GPU, 
SR-IOV, etc.) 

To discover, configure, monitor, allocate resource with 
various hardware capabilities, it relies on the tosca 
specification to specify resource node of such and relies on 
orchestrator being developed to implement the functions for 
such resources.  ARIA, playing as an orchestration engine, 
provides a way to extend the specification for resources 
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with various hardware capabilities and provides an API set 
between operators and orchestrators to be developed to 
enable such support. 

Support of integration including 
at runtime of heterogeneous 
resources in terms of software 
and hardware capabilities (e.g., 
different CPU arch, hypervisors, 
etc.) 

It relies on the tosca specification to specify such 
heterogeneous resource node which describes both software 
and hardware capabilities and relies on orchestrator being 
developed to implement runtime functions for such resources.  
ARIA, playing as an orchestration engine, provides a way to 
extend the specification for such heterogeneous resources 
and provides an API set between operators and 
orchestrators to be developed to enable such support. 

Support of federation including 
at runtime of OCS components 

It relies on the orchestrator being developed to support 
federation function. 

Support of the interworking with 
resources external to the OCS 
(e.g., cloud-to-thing continuum) 

It relies on the orchestrator being developed to support such 
interworking function. 

TABLE 9-25: 5G-CORAL OCS NON-FUNCTIONAL REQUIREMENTS AND APACHE ARIA SUPPORT 

Non-Functional Requirement Consideration 

Support of deployment of OCS 

on low end devices (e.g., 

battery-limited, form-factor, 

resource constrained, etc.) 

It relies on the tosca specification to specify resource node 

for low end devices and relies on orchestrator being 

developed to enable such support. 

Support of deployment of OCS 

on mobile devices (e.g., car, 

robot, train, etc.) 

It relies on the tosca specification to specify resource node 

for mobile devices and relies on orchestrator being 

developed to enable such support. 

Availability and self-healing 

mechanisms in error-prone 

environments 

It relies on both the tosca specification and implementation 

of orchestrator to enable an OCS operating in error-prone 

environments and to provide support of self-healing 

mechanisms. 

Support of large deployments in 

terms of number of resources 

and geographic areas 

It relies on both the tosca specification and implementation 

of orchestrator to support such large deployments 

Support of plugins for 

extensibility 

ARIA, playing as an orchestration engine, allows tosca-

based plugins to extend the specification for newly 

designed resources. It still relies implementation of 

orchestrator to support plugins for extensibility 

Capability to adapt to workload 

changes by provisioning and 

de-provisioning resources in an 

automated manner 

It relies on both the tosca specification and implementation 

of orchestrator to enable an OCS operating in error-prone 

environments and to provide support of self-healing 

mechanisms. 

Support of multiple tenants 

participating and co-existing in 

the same environment 

It relies on the tosca specification and the orchestrator being 

developed to support multiple tenants and co-existence. 

9.7 Kubernetes (K8s) 

Kubernetes is a portable, extensible open-source platform for managing containerized 

workloads and services, that facilitates both declarative configuration and automation [54]. 

Kubernetes has a number of features. It can be thought of as: 

• a container platform; 



D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 109 

H2020-761586 

                                                                                                                                  

• a microservices platform; 

• a portable cloud platform. 

Kubernetes provides a container-centric management environment. It orchestrates computing, 

networking, and storage infrastructure on behalf of user workloads. This provides much of the 

simplicity of Platform as a Service (PaaS) with the flexibility of Infrastructure as a Service (IaaS) 

and enables portability across infrastructure providers. With Kubernetes application-specific 

workflows can be streamlined to accelerate developer velocity. However, Kubernetes is not a 

traditional, all-inclusive PaaS (Platform as a Service) system. Since Kubernetes operates at the 

container level rather than at the hardware level, it provides some generally applicable features 

common to PaaS offerings, such as deployment, scaling, load balancing, logging, and monitoring. 

However, Kubernetes is not monolithic, and these default solutions are optional and pluggable. 

Kubernetes provides the building blocks for building developer platforms but preserves user 

choice and flexibility where it is important. Additionally, Kubernetes is not a mere orchestration 

system. The technical definition of orchestration is execution of a defined workflow: first do A, 

then B, then C. In contrast, Kubernetes is comprised of a set of independent, composable control 

processes that continuously drive the current state towards the provided desired state.  

 
FIGURE 9-10: KUBERNETES ARCHITECTURE25 

Figure 9-10 illustrates the architecture of Kubernetes which consists of at least one master and 

multiple compute nodes. The master (see is responsible for exposing the application program 

interface (API), scheduling the deployments and managing the overall cluster. Each node runs a 

container runtime, such as Docker, along with an agent that communicates with the master. The 

node also runs additional components for logging, monitoring, service discovery and optional 

add-ons. Nodes are the workhorses of a Kubernetes cluster. They expose computing, networking 

and storage resources to applications. Nodes can be virtual machines (VMs) running in a cloud or 

bare metal servers running within the data centre. Applications deployed in Kubernetes are 

packaged as microservices. These microservices are composed of multiple containers grouped as 

pods (see Figure 9-11). Each container is designed to perform only one task. Pods can be 

composed of stateless containers or stateful containers. Stateless pods can easily be scaled on-

demand or through dynamic auto-scaling.  

Contemporary workloads demand availability at both the infrastructure and application levels. 

In clusters at scale, everything is prone to failure, which makes high availability for production 

workloads strictly necessary. While most container orchestration engines and PaaS offerings 

deliver application availability, Kubernetes is designed to tackle the availability of both 

                                                 
25 Source: https://thenewstack.io/kubernetes-an-overview/  

https://thenewstack.io/kubernetes-an-overview/
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infrastructure and applications. On the application front, Kubernetes ensures high availability by 

means of replica sets, replication controllers and pet sets. Operators can declare the minimum 

number of pods that need to run at any given point of time. If a container or pod crashes due to 

an error, the declarative policy can bring back the deployment to the desired configuration. 

Stateful workloads can be configured for high availability through pet sets. 

For infrastructure availability, Kubernetes has support for a wide range of storage backends, 

coming from distributed file systems such as Network File System (NFS) and GlusterFS26, block 

storage devices such as Amazon Elastic Block Store (EBS) and Google Compute Engine persistent 

disk, and specialized container storage plugins such as Flocker27. Adding a reliable, available 

storage layer to Kubernetes ensures high availability of stateful workloads.  

 
FIGURE 9-11: KUBERNETES NODE ARCHITECTURE28 

Through federation, it’s also possible to mix and match clusters running across multiple cloud 

providers and on-premises. This brings the hybrid-cloud capabilities to containerized workloads. 

Customers can seamlessly move workloads from one deployment target to the other. In the 

following, Table 9-26 and Table 9-27 report the existing and missing Kubernetes capabilities 

suitable for the 5G-CORAL OCS. 

TABLE 9-26: EXISTING K8S CAPABILITIES SUITABLE FOR 5G-CORAL OCS 

Capability Description 

Auto-scaling K8s support horizontal pod auto-scaling, which automatically 
scales the number of pods based on CPU utilization. 

Self-healing K8s supports pod health checks to ensure availability. 

Federation K8s supports federation for containerized workloads. 

TABLE 9-27: MISSING K8S CAPABILITIES REQUIRED FOR 5G-CORAL OCS 

Capability Description 

Virtual Machine support K8s only supports containers. 

VIM support K8s does not interact with any VIM. It’s a “monolithic” architecture. 

Networking support K8s focuses on applications and not on network functions. The 
networking support is tailored to applications while advanced 
networking operations (e.g., mobile network) are not possible. 

                                                 
26 https://docs.gluster.org/en/latest/  
27 https://github.com/ClusterHQ/flocker  
28 Source: https://thenewstack.io/kubernetes-an-overview/ 

https://docs.gluster.org/en/latest/
https://github.com/ClusterHQ/flocker
https://thenewstack.io/kubernetes-an-overview/
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Kubernetes requires a minimum of 2 CPUs and 2 GB of RAM on each K8s node. However, it 

recommends one master node with 4 GB of RAM and 2 CPUs and compute node with total of 10 

GB and 4 CPUs. Finally, Table 9-28 and Table 9-29 present the gap analysis of Kubernetes 

against the functional and non-functional OCS requirements. 

TABLE 9-28: 5G-CORAL OCS FUNCTIONAL REQUIREMENTS AND K8S SUPPORT 

Functional Requirement Consideration 

Support of harvesting computing capabilities 
from low-end resources 

This is a VIM requirement. K8s adopts a 
“monolithic” architecture and cannot integrate 
additional VIMs. 

Support of harvesting computing capabilities 
from mobile resources 

This is a VIM requirement. See above. 

Support of discovery, configuration, 
monitoring, allocation, etc. of relevant 
hardware capabilities (e.g., wireless 
interfaces, GPIO, GPU, SR-IOV, etc.) 

K8s supports Enhanced Platform Awareness 
(EPA) for relevant hardware capabilities.  

Support of integration including at runtime of 
heterogeneous resources in terms of 
software and hardware capabilities (e.g., 
different CPU arch, hypervisors, etc.) 

K8s only supports Kubernetes compute nodes 
as resources. 

Support of federation including at runtime of 
OCS components 

K8s supports the federation of multiple K8s 
instances in different locations. 

Support of the interworking with resources 
external to the OCS (e.g., cloud-to-thing 
continuum) 

K8s only supports the interworking between 
K8s compute nodes. 

TABLE 9-29: 5G-CORAL OCS NON-FUNCTIONAL REQUIREMENTS AND K8S SUPPORT 

Non-Functional Requirement Consideration 

Support of deployment of OCS on low end 
devices (e.g., battery-limited, form-factor, 
resource constrained, etc.) 

Given the medium computing requirements, it is 
not possible to deploy K8s on low end devices. 

Support of deployment of OCS on mobile 
devices (e.g., car, robot, train, etc.) 

K8s networking has been designed with 
datacentres in mind. Therefore, it does not 
support mobile devices. 

Availability and self-healing mechanisms in 
error-prone environments 

K8s supports self-healing mechanisms for pods 
and applications. 

Support of large deployments in terms of 
number of resources and geographic areas 

K8s supports large deployments via 
federations. 

Support of plugins for extensibility K8s supports multiple backends at 
infrastructure level. However, it only supports 
container-based execution environments. 

Capability to adapt to workload changes by 
provisioning and de-provisioning resources 
in an automated manner 

K8s supports the auto-scaling of pods based 
on CPU utilization. 

Support of multiple tenants participating and 
co-existing in the same environment 

K8s natively supports multi-tenancy at 
application level and at infrastructure level via 
federation. 
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10 Appendix: EFS Stack information model 
An initial EFS Stack information model was presented in D3.1[6]. One of the differences of the 

information model presented in this document compared to what presented in D3.1 [6] is in the 

different scope. Particularly, D3.1 [6] focused on the information model between the EFS 

Resource Orchestrator (EFS-RO) and the VIM, while this Appendix focuses on the information 

model between the users and the EFS-SO. Specifically, Figure 10-1 illustrates the EFS Stack 

information model as designed by 5G-CORAL. The figure highlights the relations and concepts 

adopted from the reference standards (i.e., ETSI MEC and ETSI NFV) and the additional 

information required by 5G-CORAL in order to merge and extend these two frameworks from 

the Edge down to the Fog. 

 

FIGURE 10-1: EFS STACK INFORMATION MODEL 

The tables reported in the following describe each field and parameter of the EFS Stack 

information model. For the sake of similarity, the tables use the same format as used by ETSI NFV 

and ETSI MEC for their information models. 

10.1 Virtualisation Deployment Unit (VDU) 

The VDU information element describes the deployment and operational behaviour of a single 

EFS Atomic Entity. 

Name Type Cardinality Description 

vdu_uuid String 1 Unique identifier for the VDU 

vdu_name  String 1 Unique name of the VDU 

vdu_image Element 1 Image to be used when instantiating this VDU (see 
11.1.1) 

vdu_command Element 1 Command used to start the VDU, present only if 
vdu_hv_type is BARE (see 11.1.2) 
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vdu_computation_ 
requirements 

Element 1 Computation Requirements for this VDU (see 
11.1.3) 

vdu_configuration Element 1 Configuration script used at start of this VDU 
(see 11.1.4) 

vdu_interfaces Element 0…N List of virtual interfaces used by this VDU 
(see 11.1.5) 

vdu_hv_type Enum 1 This of hypervisor needed by this VDU, can be one 
of {BARE, LXD, KVM, XEN, Docker} 

vdu_internal_ 
connection_points 

Element 0…N Internal Connection points defined by this VDU (see 
11.1.6) 

vdu_io_ports Element 0…N Specific I/O ports needed by this VDU (see 
11.1.7) 

vdu_lcm_hooks Element 0–1 Hooks/Script called before each LCM action inside 
the VDU (see 11.1.8) 

vdu_depends_on List 0…N List of VDUs this VDU depends on (startup 
dependency) 

10.2 Image 

The image information element includes the information related to the EFS Atomic Entity package 

(e.g., location, checksum, format) in case of non-native (e.g., containers) packaging. 

Name Type Cardinality Description 

uri String 1 URI for the Image  
 

checksum String 1 SHA1 checksum to verify the image file 

format String 1 Format of the image (e.g., qcow2, RAW, tar.gz) 

10.3 Command 

The command information element contains the information for executing a native EFS Atomic 

Entity.  

Name Type Cardinality Description 

binary String 1 Path to the binary file (e.g., file:// /bin/myapp) 

args List 0…N List of arguments to be passed to the binary 

10.4 Computational Requirements 

The computation requirements information element includes all the computational and storage 

requirements for the EFS Atomic Entity. 

Name Type Cardinality Description 

cpu_arch String 1 CPU architecture needed by the VDU 

cpu_min_freq Float 1 Minimum CPU frequency required 

cpu_min_count Int 1 Minimum number of vCPU required 

ram_size_mb Int 1 RAM required 

storage_size_gb Int 1 Disk size required 

gpu_min_count Int 1 Minimum number of GPU required 

fpga_min_count Int 1 Minimum number of FPGA required 

min_running_ 
time_minutes 

Int 1 Minimum running time in minutes in an hour 

max_running_ 
time_minutes 

Int 1 Minimum running time in minutes in an hour 

position Element 1 Position requirement for this VDU (see 11.1.9) 
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10.5 Configuration 

The configuration information element contains the information related to any eventual 

configuration script to be executed by the EFS Atomic Entity during the start-up. 

Name Type Cardinality Description 

conf_type Enum 1 Configuration script type (CLOUD_INIT, SCRIPT) 

script String 1 Configuration Script 

10.6 Interface 

The interface information element includes the details required for creating the virtual/physical 

interfaces required by the EFS Atomic Entity. 

Name Type Cardinality Description 

name String 1 Name of the virtual interface 

is_mgmt Bool 1 True if the interface is a management one 

mac_address String 1 MAC address of the interface  

internal_cp Reference 0–1    Reference to an internal connection point 
connected to this interface 

virtual_type Enum 1 Kind of virtualized interface used (VIRTIO, 
PARAVIRT, SR_IOV, …)  

10.7 Connection Point 

The connection point information element allows to interconnect the EFS Atomic Entity with virtual 

links (see 11.2). 

Name Type Cardinality Description 

cp_uuid String 1 Unique UUID for the connection point 

vl_id Reference 0–1 Reference to the virtual link the CP is connected 

10.8 IO Port 

The IO Port information element includes the details required by the EFS Atomic Entity in terms of 

hardware IO Ports. 

Name Type Cardinality Description 

Name String 1 Name of the IO Port 

min_io_ports Int 1 Minimum number of IO ports needed 

io_type Enum 1 Type of IO ports (I2C, GPIO, BUS, …) 

10.9 Life-Cycle Management (LCM) Hooks 

The LCM Hooks information element contains the pointers to executables to be run upon LCM 

operations (e.g., run, stop, migration, etc.). 

Name Type Cardinality Description 

on_run String 1 Script called after the VDU is started. This script 
is executed after the configuration script (see 
11.1.4) 

on_stop String 1 Script called before the VDU to be stopped 

on_migration _start String 1 Script called before starting a migration 

on_migration _ended String 1 Script called upon migration completion 

migration_type Enum 1 Specify the kind of migration supported by the 
VDU: {LIVE, COLD} 
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10.10 Position 

The Position information element expresses location constraints of the EFS Atomic Entity. 

Name Type Cardinality Description 

lat String 1 Latitude 

lon String 1 Longitude 

radius Float 1 Radius in meter  

10.11 Virtual Link 

The Virtual Link information model describes the connectivity type and characteristics. 

Name Type Cardinality Description 

vl_uuid String 1 Unique UUID for the Virtual Link 

name String 1 Name of the virtual link 

is_mgmt Bool 1 True if this virtual link is used for management 

vl_type Enum 1 Type of the virtual Link: {ELINE, ELAN} 

10.12 EFS Entity/EFS Service 

This information model describes the EFS Entity as a whole and includes the EFS Services 

provided/required by the EFS Entity. 

Name Type Cardinality Description 

uuid String 1 Unique UUID of the Ent/Svc 

name String 1 Unique Name of the Ety/Svc 

vendor String 1 Ety/Svc Vendor 

soft_version String 1 Version of the software of the Ety/Svc 

ocs_version float 1…N List of supported OCS versions by the Ety/Svc 

description String 1 Description of the Ety/Svc 

vdus Element 1…N VDUs that compose the Ety/Svc (see 11.1) 

virtual_links Element 0…N Virtual Links that compose the Ety/Svc (see 11.2) 

service_required Element 0…N Service required by the Ety/Svc to run (see 
11.3.12) 

service_optional Element 0…N Services that are optional for the Ety/Svc (see 
11.3.12) 

service_produces Element 0…N Services produces by the Ety/Svc (see 11.3.10) 

feature_required Element 0…N EFS Features required by the Ety/Svc to run (see 
11.3.13) 

feature_optional Element 0…N  EFS Features optional by the Ety/Svc to run (see 
11.3.13) 

transport_ 
dependencies 

Element 0…N Transport dependencies for the Ety/Svc (see 
11.3.7) 

traffic_rules Element 0…N  Traffic rules to be created for the Ety/Svc (see 
11.3.3) 

dns_rules Element 0…N DNS rules to be created for the Ety/Svc (see 
11.3.2) 

latency Element 1 Latency supported by the Ety/Svc (see 11.3.1) 
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10.12.1 Latency 

The Latency information element expresses the latency requirements of the EFS Entity. 

Name Type Cardinality Description 

type_unit Enum 1 Time unit for the latency 

latency Float 1 Max latency supported 

10.12.2 DNS Rule 

The DNS Rule information element expresses the DNS rules to be configured on the EFS Service 

Platform for publishing any eventual EFS Service(s). 

Name Type Cardinality Description 

dns_rule_id String 1 Unique UUID for the DNS Rule 

domain_name String 1 Domain name for this DNS rule 

ip_address_type Enum 1 IP Address type for this DNS rule: {IP_V4, IP_V6} 

ip_addresses String 1…N IP addresses for this DNS rule 

ttl Int 1 TTL in seconds for this DNS rule 

10.12.3 Traffic Rule 

The Traffic Rule information element describes what kind of traffic should be redirected from the 

underlying network infrastructure to the EFS Entity. 

Name Type Cardinality Description 

traffic_rule_id String 1 Unique UUID for this traffic rule 

filter_type Enum 1 Kind of filter: {FLOW, PACKET} 

priority Int 1 Priority of this rule 

traffic_filter Element 0…N Traffic filter to be applied (see 11.3.4) 

action Enum 0…N Action to be taken If traffic matches the filter: 
{DROP, FORWARD_DECAPSULATED, 
FORWARD_AS_IS, PASSTHOUGH, 
DUPLICATE_DECAPSULATED, DUPLICATE_AS_IS} 

dst_interface Element 0…1 Destination interfaces for matching traffic (see 
11.3.5) 

10.12.4 Traffic Filter 

The Traffic Rule information element describes the matching rules for redirecting traffic from the 

underlying network infrastructure to the EFS Entity. 

Name Type Cardinality Description 

src_addresses String 0…N Source addresses 

dst_addresses String 0…N Destination addresses 

src_port Int 0…1 Source port 

dst_port Int 0…1 Destination port 

protocol String 0…1 Protocol 

src_tunnel_address String 0…1 Source address of the tunnel 

dst_tunnel_address  String 0…1 Destination address of the tunnel 

qci Int  0…1 QCI field 

dscp Int 0…1 DSPC field 

tc Int 0…1 TC field 
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10.12.5 Interface Type 

The Interface Type information element describes the type of interface that should be used for 

redirecting traffic from the underlying network infrastructure to the EFS Entity. 

Name Type Cardinality Description 

interface_type Enum 1 Kind of the interface: {MAC, TUNNEL, IP} 

tunnel_info Element 1 Type of tunnel (see 11.3.6) 

src_mac_address String 1 Source MAC address 

dst_mac_address String 1 Destination MAC address 

dst_ip_address String 1 Destination IP address 

10.12.6 Tunnel Info 

The Tunnel Info information element describes the tunnel configuration that should be used for 

redirecting traffic from the underlying network infrastructure to the EFS Entity. 

Name Type Cardinality Description 

tunnel_type Enum 1 Type of tunnel: {GRE, VXLAN, Zenoh, GTP} 

tunnel_src_ 
address 

String 1 Tunnel source address 

tunnel_dst_ 
address 

String 1 Tunnel destination address 

10.12.7 Transport Dependency 

The Transport Dependency information element describes the configuration and requirements for 

the EFS Service to be consumed/produced by the EFS Entity. 

Name Type Cardinality Description 

labels String 0…1 Labels needed for this transport 

serializers_list Enum 0…1 Serialized to be used for this transport: {JSON, XML, 
PROTOBUF3} 

transport Element 1 Transport information (see 11.3.8) 

10.12.8 Transport Descriptor 

The Transport Descriptor information element describes the transport information of the EFS 

Service to be consumed/produced by the EFS Entity. 

Name Type Cardinality Description 

transport_type Enum 1 Kind of the transport: {REST_HTTP, 
MB_TOPIC_BASED, MB_ROUTING, MB_PUBSUB, 
RPC, RPC_STREAMING, WEBSOCKET} 

protocol String 1 Protocol used by this transport 

version Float 1 Version of the protocol used by this transport 

security Element 1 Security information (see 11.3.9) 

10.12.9 Security Info 

The Security Info information element includes the authentication tokens to produce/consume the 

EFS Service by the EFS Entity. 

Name Type Cardinality Description 

oauth2_info String 1 OAuth2 Info 

grants Enum 0…1 OAuth2 Grant info: {OAUTH2_AUTORIZATION_CODE, 
OAUTH2_IMPLICIT_GRANT, 
OAUTH2_RESOURCE_OWNER, 
OAUTH2_CLIENT_CREDENTIALS} 

token_endpoint String 1 OAuth2 Token Issue endpoint 
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10.12.10 Service Descriptor 

The Service Descriptor information element includes the details of the EFS Service to be 

produced/consumed by the EFS Entity. 

Name Type Cardinality Description 

ser_name String 1 Name of the service 

ser_category Element 1 Category of this service (see 11.3.11) 

version float 1 Version of this service 

transport_supported Element 1…N Transport supported by this service (see 11.3.7) 

10.12.11 Category 

The Category information element defines the category of an EFS Service for better grouping in 

the EFS Service catalog. 

Name Type Cardinality Description 

href String 1 Reference to category in the catalog 

uuid String 1 Unique UUID for this category 

name String 1 Name for this category 

version float 1 Version for this category 

10.12.12 Service Dependency 

The Service Dependency information element identifies the requirements for consuming an EFS 

Service from an EFS Entity perspective. 

Name Type Cardinality Description 

ser_name String 1 Name of the service needed 

ser_category Element 1 Category of the service needed (see 11.3.11) 

ser_transport_ 
dependencies 

Element 1…N Transport needed for this dependency (see 11.3.7) 

10.12.13 Feature Dependency 

The Feature Dependency information element identifies the requirements for an EFS Entity in 

terms of features that need to be supported by the EFS Service Platform. 

Name Type Cardinality Description 

feature_name String 1 Name of the needed feature 

version Float 1 Version of the needed feature 
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11 Appendix: Simulation settings for placement algorithm 
This appendix reports the simulations settings used for evaluating the placement algorithms in 

Section 2.4. 

11.1 Simulation settings for EFS Stack and pricing 

For the sake of testing the performance of the two placement algorithms based on heuristics (see 

Section 2.4.3), we consider an EFS Stack composed of 5 EFS Atomic Entities with different sizes 

and requirements as highlighted in Table 11-1. The reference values, including the pricing, are 

for an eventual deployment on AWS EC2 in the Paris region29.  

TABLE 11-1: EFS STACK COMPOSITION AND PRICING 

Qty Reference CPU RAM Pricing (AWS Paris) Tier 

1 AWS t3.medium 2 4 GB $0.0472 per Hour 1x cloud 

2 AWS t3.micro 2 1 GB $0.0118 per Hour 1x cloud, 1x cloud/edge 

2 AWS t3.nano 2 0.5 GB $0.0059 per Hour 1x edge/fog, 1x fog 

In our scenario we impose one EFS Entity (i.e., t3.medium) to be always deployed on the cloud. A 
second EFS Entity (i.e., t3.micro) can be deployed either on the cloud or at the edge. A third EFS 
Entity (i.e., t3.micro) is deployed at the edge. A fourth EFS Entity (i.e., t3.nano) can be deployed 
either at the edge or in the fog. Finally, a fifth EFS Entity (i.e., t3.nano) needs to be always 
deployed in the fog. To encompass the different scales and resource pooling benefits of cloud, 
edge and fog we introduce a scaling factor for the pricing. In particular, we assume the price for 
a deployment in the fog to be 1.5 times higher compared to the same deployment in the cloud. 
Similarly, we assume the price for a deployment in the edge to be 1.2 times higher than the 
same deployment in the cloud. 

11.2 Simulation settings for infrastructure generation 

 

FIGURE 11-1: REFERENCE 5G TRANSPORT NETWORK ARCHITECTURE [43] 

In order to simulate a realistic infrastructure, we consider a reference 5G transport infrastructure 

as proposed in [43] and shown in Figure 11-1. The transport architecture comprises three 

segments: (i) access, (ii) aggregation, and (iii) core. The access comprises 6 Active Antenna Units 

(AAUs) for each node M1 connected via a point-to-point link, and 6 nodes M1 connected in a 

ring topology. Thus, each access ring hence connects a total of 36 AAUs. Next, each aggregation 

ring comprises 6 M2 nodes, each of which serves as gateway to 4 access rings. Finally, each 

aggregation ring is served by two M3 nodes for redundancy reasons, while each M3 node 

provides gateway capabilities to 2 aggregation rings. It is worth noticing that the M1 and M2 

nodes are configured in a ring topology (access and aggregation rings, respectively) only at 

electrical level while at logical level are considered to be connected point-to-point to their 
                                                 
29 https://aws.amazon.com/ec2/instance-types/  
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CoreAccess Aggregation

Internet
Core ring

https://aws.amazon.com/ec2/instance-types/
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corresponding gateways (M2 and M3, respectively). This means that packets are enqueued only 

at gateway level and not every time they traverse a node in the ring. 

 
FIGURE 11-2: RANDOMLY GENERATED INFRASTRUCTURE 

Starting from the reference transport architecture we randomly generate multiple instances of 

the infrastructure following the same method proposed in [44] and based on inhomogeneous 

Poisson point processes with hard-core repulsion. Figure 11-2 shows a random realization of the 

transport infrastructure. The edge is considered to be a server collocated with a M1 nodes. As an 

example of edge server, we consider an Azure Data Box30. Finally, we consider 128 fog nodes 

to be collocated with each AAU to encompass for the fog dimension. As an example of fog node, 

we consider a Raspberry Pi 3 B+31. 

11.3 Simulation settings for infrastructure volatility 

To generate the reliability values of the fog nodes and the edge servers, we generate their 

volatility (1 − ν(ℎ) ) using exponentially distributed random variables. More specifically, the 

volatility of an infrastructure node is generated as (1 − ν(ℎ)) ∼ 𝑓({𝐸𝑥𝑝}, λ). Where 𝑓  is a 

function that takes the decimal part of a randomly distributed exponential variable and 

normalizes it in the interval (μ ⋅ (1 ± 0.1)). In our simulation we vary the volatility of fog nodes 

from ((μ𝑓 = 0.1) ⋅ (1 ± 0.1)) up to ((μ𝑓 = 0.5) ⋅ (1 ± 0.1)). Similarly, the volatilities of the 

edge nodes vary from ((μ𝑒 = 0.01) ⋅ (1 ± 0.1)) up to ((μ𝑒 = 0.1) ⋅ (1 ± 0.1)). Moreover, we 

vary incrementally vary the volatility values in ten steps: from μ𝑓 = 0.1 up to μ𝑓 = 0.5 for the 

fog nodes volatility, and from μ𝑒 = 0.01 to μ𝑒 = 0.1 for the edge nodes volatility. Therefore, in 

Figure 2-6 (see Section 2.4.4) 100% volatility implies μ𝑓 = 0.5 and μ𝑒 = 0.1.  

                                                 
30 https://azure.microsoft.com/en-us/services/databox/  
31 https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/  

https://azure.microsoft.com/en-us/services/databox/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
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12 Appendix: Simulation settings for federation  
This appendix reports the simulations settings used for evaluating the federation performance in 

Section 4.2 and Section 4.3. 

12.1 Simulation settings for federation formation 

The following reports the simulation settings leveraged in Section 4.2.4. The performance metrics 

include the social welfare and the amount of allocated resource in constructed federation 

structures. We used Gaussian distribution to generate the values of 𝐶𝑖, 𝑟𝑖, 𝑐𝑖, and 𝑝𝑖 for each EFS 

system 𝑠𝑝𝑖 . Table 12-1 lists the notations for the means and the standard deviations of these 

variables with their default values. We used Python library PuLP32 as an integer programming 

solver for remote provisioning configuration in each federation. The result of each configuration is 

averaged over 50 trials. 

TABLE 12-1: SIMULATION PARAMETERS FOR FEDERATION FORMATION 

Parameter Description Default value 

𝒏 Number of EFS nodes. 10 

𝝁𝒌 Mean resource capacity of EFS nodes. 1200 

𝝁𝒓 Mean resource demand 1000 

𝝈𝒌 Standard deviation of resource capacity of EFS nodes 110 

𝝈𝒓 Standard deviation of resource demand 110 

𝝁𝒄 Mean unit cost of resource 500 

𝝁𝒑 Mean unit price of resource. 1000 

𝝈𝒄 Standard deviation of unit cost of resource 110 

𝝈𝒑 Standard deviation of unit price of resource 110 

𝒑 Cooperation intensity 0.6 

12.2 Simulation setting for resource provisioning in federated environments  

The following reports the simulation settings leveraged in Section 4.3.6. We randomly placed ten 

EFS nodes (numbered from 0 to 9) in a 100 × 100 km2 area. The capacity of each EFS node 

was randomly determined with the setting shown in Table 12-2. We varied the number of 

requests from 50 to 1000. To generate non-uniform distributions of user requests on EFS nodes, 

the identifier of the serving EFS node of each request was set by applying a floor function to a 

Gaussian distributed random variable (with mean 5 and standard deviation 2:5) truncated at 0 

and 9. We assumed four types of VMs as those offered by Amazon EC2 in US West Region. 

Each request was a combination of these flavours with most requests demanded Medium and 

Large VMs. Only a few demanded XLarge and 2XLarge ones. About 60% requests had latency 

constraints uniformly set in the range from 1 to 100 ms. 

TABLE 12-2: SIMULATION PARAMETERS FOR SERVER CAPACITY 

Parameter Distribution Mean Standard Deviation 

Number of CPU cores Gaussian 50 10 

Amount of memory (GB) Gaussian 500 50 

Amount of storage (GB) Gaussian 500 100 

Other requests did not have latency constraints. When a request was served by the server co-

located with the serving EAP, the latency was assumed 1 ms. The latency for serving a guest 

request was 1 ms plus the propagation delay which is proportional to the physical distance 

between the request and the serving EFS node. 

                                                 
32 https://pythonhosted.org/PuLP/  

https://pythonhosted.org/PuLP/
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