

H2020 5G-CORAL Project

Grant No. 761586

D3.2 – Refined design of 5G-CORAL
orchestration and control system and

future directions

Abstract

This deliverable presents the refined design of the 5G-CORAL orchestration and control system,

namely OCS, with emphasis on orchestration and federation. A distributed resource orchestrator

is described along with an optimization algorithm for volatile and federated environments. Next,

this document analyses the monitoring and live procedures needed by the identified 5G-CORAL

use cases. Finally, it presents an experimental validation of some selected OCS features. Lessons

learnt and future directions regarding the OCS conclude the document.

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 2

H2020-761586

Document properties

Document number D3.2

Document title Redefined design of 5G-CORAL orchestration and control system
and future directions

Document responsible UC3M

Document editor Milan Groshev

Editorial team Milan Groshev, Luca Cominardi

Target dissemination level Public

Status of the document Stable

Version 1.0

List of contributors

Partner Contributors

ADLINK Gabriele Baldoni

IDCC Giovanni Rigazzi

ITRI Samer Talat, Ibrahiem Osamah, Gary Huang, Chen Hao Chiu

NCTU Li-Hsing Yen

TELCA Aitor Zabala Orive, Pedro Bermúdez

UC3M Luca Cominardi, Milan Groshev, Kiril Antevski, Jorge Martin-Pérez, Sergio
Gonzáles, Nuria Molner

Production properties

Reviewers Li-Hsing Yen, Luca Cominardi, Giovanni Rigazzi, Samer Talat, Aitor Zabala
Orive, Carlos Guimaraes, Alain Mourad

Document history

Revision Date Issued by Description

1.0 31 May 2019 UC3M Public release

Disclaimer

This document has been produced in the context of the 5G-CORAL Project. The research leading

to these results has received funding from the European Community's H2020 Programme under

grant agreement Nº H2020-761586.

All information in this document is provided “as is" and no guarantee or warranty is given that

the information is fit for any particular purpose. The user thereof uses the information at its sole

risk and liability.

For the avoidance of all doubts, the European Commission has no liability in respect of this

document, which is merely representing the authors view.

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 3

H2020-761586

Table of Contents
List of Figures .. 6

List of Tables ... 7

List of Algorithms .. 8

List of Acronyms .. 9

Executive Summary .. 11

1 Introduction ... 12

2 Refined design of the OCS ... 13

2.1 Overview of 5G-CORAL architecture and OCS components ... 13

2.2 Analysis of existing orchestrators ... 14

2.3 Design of a distributed OCS ... 16

2.3.1 Distributed key-value store... 16

2.3.2 Distributed VIM ... 17

2.3.3 Distributed EFS Stack and Resource Orchestrator ... 20

2.4 Placement algorithm for volatile environments .. 23

2.4.1 EFS Stack analytical modelling .. 23

2.4.2 EFS Virtualization Infrastructure analytical modelling ... 23

2.4.3 Placement heuristics .. 24

2.4.4 Performance evaluation .. 27

2.4.5 Conclusions ... 28

3 Live procedures and migration in the OCS .. 29

3.1 OCS live procedures in 5G-CORAL use cases ... 29

3.1.1 Augmented reality navigation ... 29

3.1.2 Virtual Reality .. 31

3.1.3 Fog-assisted robotics .. 32

3.1.4 High-Speed Train ... 36

3.1.5 Software Defined Wide Area Network (SD-WAN) .. 37

3.2 Common OCS features overview and container-based migration 39

4 Federation and resource provisioning .. 44

4.1 Federation of resources .. 44

4.1.1 Federation roles .. 44

4.1.2 Federation interaction model ... 46

4.1.3 Inter-domain connection (F2 interface) ... 46

4.1.4 Federation of resources ... 49

4.2 Profit maximization in a federated environment .. 51

4.2.1 Instability in dynamic EFS federation ... 51

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 4

H2020-761586

4.2.2 Profit allocation: fairness and stability ... 52

4.2.3 Identifying Best Federation Structure ... 53

4.2.4 Profit-Maximizing Resource Provisioning Configuration ... 55

4.2.5 Performance evaluation .. 56

4.3 Advanced resource provisioning in federated EFSs ... 58

4.3.1 System model .. 58

4.3.2 Request dispatch by OCS ... 59

4.3.3 Objectives of payment-free request dispatch .. 59

4.3.4 Procedure for payment-free request dispatch ... 60

4.3.5 Payment-Based Request Dispatch ... 61

4.3.6 Performance Evaluation ... 63

5 OCS experimental validation ... 67

5.1 Automated deployment .. 67

5.1.1 Results .. 69

5.1.2 Conclusions ... 71

5.2 Federation ... 71

5.2.1 Results .. 74

5.2.2 Conclusions ... 76

5.3 Migration of EFS function and application ... 76

5.3.1 Results .. 78

5.3.2 Conclusions ... 79

5.4 Network assisted D2D .. 79

5.4.1 Results .. 82

5.4.2 Conclusions ... 84

6 Lessons learnt ... 85

7 Conclusions and future directions ... 87

8 References .. 88

9 Appendix: Analysis of existing orchestrators .. 91

9.1 Open Source MANO (OSM) .. 91

9.2 Open Baton ... 93

9.3 ONAP ... 95

9.4 Cloudify ... 99

9.5 OPNFV .. 102

9.6 Apache ARIA TOSCA ... 105

9.7 Kubernetes (K8s) ... 108

10 Appendix: EFS Stack information model... 112

10.1 Virtualisation Deployment Unit (VDU) ... 112

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 5

H2020-761586

10.2 Image .. 113

10.3 Command ... 113

10.4 Computational Requirements .. 113

10.5 Configuration ... 114

10.6 Interface.. 114

10.7 Connection Point .. 114

10.8 IO Port ... 114

10.9 Life-Cycle Management (LCM) Hooks .. 114

10.10 Position.. 115

10.11 Virtual Link ... 115

10.12 EFS Entity/EFS Service ... 115

10.12.1 Latency .. 116

10.12.2 DNS Rule ... 116

10.12.3 Traffic Rule ... 116

10.12.4 Traffic Filter .. 116

10.12.5 Interface Type ... 117

10.12.6 Tunnel Info ... 117

10.12.7 Transport Dependency ... 117

10.12.8 Transport Descriptor ... 117

10.12.9 Security Info ... 117

10.12.10 Service Descriptor ... 118

10.12.11 Category... 118

10.12.12 Service Dependency ... 118

10.12.13 Feature Dependency .. 118

11 Appendix: Simulation settings for placement algorithm .. 119

11.1 Simulation settings for EFS Stack and pricing ... 119

11.2 Simulation settings for infrastructure generation .. 119

11.3 Simulation settings for infrastructure volatility .. 120

12 Appendix: Simulation settings for federation .. 121

12.1 Simulation settings for federation formation ... 121

12.2 Simulation setting for resource provisioning in federated environments 121

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 6

H2020-761586

List of Figures
Figure 2-1: 5G-CORAL system architecture ... 13

Figure 2-2: VIM agent .. 18

Figure 2-3: Distributed VIM global storage URI tree ... 19

Figure 2-4: EFS-RO components and internal architecture .. 21

Figure 2-5: Distributed EFS-RO global storage URI tree ... 22

Figure 2-6: Lifetime cost of a reference EFS Stack as volatility increases ... 27

Figure 3-1: OCS workflow for the AR navigation application deployment 30

Figure 3-2: OCS workflow for VR application deployment.. 31

Figure 3-3: OCS workflow for the virtual AP migration based on Wi-Fi signal level 33

Figure 3-4: OCS workflow for the D2D communication based on localization 35

Figure 3-5: OCS workflow for EFS application migration from on-board to on-land based on

mobile network connection ... 36

Figure 3-6: OCS workflow for traffic load balancing between LTE and broadband interfaces .. 38

Figure 4-1: OCS federation interaction – advertisement/negotiation phase 47

Figure 4-2: OCS federation interaction – termination phase ... 48

Figure 4-3: OCS federation interaction – termination phase ... 49

Figure 4-4: Sequence diagram for OCS resource federation .. 50

Figure 4-5: Total profit in the federation structure vs cooperation intensity 56

Figure 4-6: Amount of allocated resources in the federation vs cooperation intensity 56

Figure 4-7: Amount of allocated resource in the federation vs mean unit of resources request ... 57

Figure 4-8: Total profit in the federation vs mean unit price of resources ... 57

Figure 4-9: Amount of allocated resource in the federation structure vs. mean unit price of

resource .. 57

Figure 4-10: Total numbers of served requests in payment-free request dispatch 64

Figure 4-11: Average latency per request in payment-free request dispatch 64

Figure 4-12: Average latency per request in payment-based request dispatch 65

Figure 4-13: Total revenue in payment-based request dispatch ... 66

Figure 5-1: Workflow for on-boarding and instantiating an EFS Stack ... 67

Figure 5-2: EFS Stack Orchestrator web-based interface .. 69

Figure 5-3: Experimental deployment time of an EFS Stack with an atomic EFS App 70

Figure 5-4: Federation architectural components under validation ... 72

Figure 5-5: Phases of federation validation .. 73

Figure 5-6: Experimental setup for federation validation .. 74

Figure 5-7: Migration experimental set-up .. 77

Figure 5-8: Migration downtime comparison between stop-and-copy (SC) and pre-copy (PC)

schemes for different containers ... 78

Figure 5-9: eCDF of Ubuntu application container (C2) migration .. 79

Figure 5-10: Exemplary scenario leveraging network-assisted D2D .. 80

Figure 5-11: Fully centralized robotics control .. 81

Figure 5-12: Network-assisted D2D robotics control .. 81

Figure 5-13: Wi-Fi channel and delay characterization for fog-assisted robotics 82

Figure 5-14: Experimental CDF of distance between the two robots ... 83

Figure 9-1: OSM components .. 91

Figure 9-2: Overview of the Open Baton architecture .. 93

Figure 9-3: ONAP platform components ... 96

Figure 9-4: Functional view of the ONAP architecture ... 96

Figure 9-5: Overview of the Cloudify architecture ... 99

Figure 9-6: OPNFV architecture .. 102

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 7

H2020-761586

Figure 9-7: Tacker architecture .. 103

Figure 9-8: Overview of the ARIA architecture .. 105

Figure 9-9: Declarative model-driven orchestration .. 106

Figure 9-10: Kubernetes architecture ... 109

Figure 9-11: Kubernetes node architecture ... 110

Figure 10-1: EFS Stack information model .. 112

Figure 11-1: Reference 5G transport network architecture [43] .. 119

Figure 11-2: Randomly generated infrastructure ... 120

List of Tables

Table 1-1: Scope of D3.1 and D3.2 documents .. 12

Table 2-1: Overview of 5G-CORAL functional requirements and related support provided by

the orchestrators ... 15

Table 2-2: Overview of 5G-CORAL non-functional requirements and related support provided

by the orchestrators ... 15

Table 2-3: Placement algorithm notation .. 24

Table 3-1: information exchanged in the EFS application instantiation procedure 30

Table 3-2: Information exchanged in the EFS application instantiation procedure 32

Table 3-3: Information exchanged in the EFS function migration procedure 34

Table 3-4: Information exchanged in the EFS function migration procedure 36

Table 3-5: Information exchanged in EFS application migration procedure 37

Table 3-6: Information exchanged in the EFS function procedure ... 39

Table 3-7: Common OCS features across 5G-CORAL use cases ... 40

Table 3-8: Specific OCS features of some 5G-CORAL use case .. 40

Table 3-9: Pros and cons of stop-and-copy, pre-copy and post copy migration schemes 41

Table 4-1: Comparisons between static and dynamic federation ... 45

Table 4-2: Federation advertisement interface endpoints .. 49

Table 4-3: Federation instantiation and termination interface endpoints .. 51

Table 4-4: Profits of EFS Nodes in Different Federations ... 51

Table 4-5: Examples of VM Instance Types ... 58

Table 5-1: OCS software implementation details and components under test 68

Table 5-2: EFS App characteristics and configurations .. 68

Table 5-3: EFS Stack descriptor for instantiating the LXD-based EFS App on f0rce 68

Table 5-4: Statistical characteristics of the experimental deployment time (s)................................. 71

Table 5-5: Mapping of communication endpoints, phases and indexes ... 73

Table 5-6: Federation RTT latency results in ms .. 75

Table 5-7: Federation jitter results in ms ... 75

Table 5-8: Federation bandwidth results in Mbps .. 75

Table 5-9: Federation deployment times (s) for each of the component on the EFS 76

Table 5-10: Hardware and Software specifications used in the experimental set-up 78

Table 5-11: Robotic system ROS components .. 80

Table 5-12: Statistical characteristic of fog-assisted robotics downstream delay (s) 83

Table 5-13: Statistical characteristics of the distance (m) between the two robots 84

Table 9-1: Existing OSM capabilities suitable for 5G-CORAL OCS .. 91

Table 9-2: Missing OSM capabilities required for 5G-CORAL OCS ... 92

Table 9-3: 5G-CORAL OCS functional requirements and OSM support ... 92

Table 9-4: 5G-CORAL OCS non-functional requirements and OSM support 92

Table 9-5: Existing Open Baton capabilities suitable for 5G-CORAL OCS 94

Table 9-6: Missing Open Baton capabilities suitable for 5G-CORAL OCS 94

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 8

H2020-761586

Table 9-7: 5G-CORAL OCS functional requirements and Open Baton support 94

Table 9-8: 5G-CORAL OCS non-functional requirements and Open Baton support 95

Table 9-9: Existing ONAP capabilities suitable for 5G-CORAL OCS .. 97

Table 9-10: Missing ONAP capabilities suitable for 5G-CORAL OCS .. 98

Table 9-11: 5G-CORAL OCS functional requirements and ONAP support 98

Table 9-12: 5G-CORAL OCS non-functional requirements and ONAP support 98

Table 9-13: Summary of Cloudify features .. 100

Table 9-14: Existing Cloudify capabilities suitable for 5G-CORAL OCS 100

Table 9-15: Missing Cloudify capabilities required for 5G-CORAL OCS 100

Table 9-16: 5G-CORAL OCS functional requirements and Cloudify support 101

Table 9-17: 5G-CORAL OCS non-functional requirements and ONAP support 101

Table 9-18: Existing OPNFV capabilities suitable for 5G-CORAL OCS .. 103

Table 9-19: Missing OPNFV capabilities required for 5G-CORAL OCS 104

Table 9-20: 5G-CORAL OCS functional requirements and OPNFV support 104

Table 9-21: 5G-CORAL OCS non-functional requirements and OPNFV support 104

Table 9-22: Existing Apache ARIA capabilities suitable for 5G-CORAL OCS 107

Table 9-23: Missing Apache ARIA capabilities required for 5G-CORAL OCS 107

Table 9-24: 5G-CORAL OCS functional requirements and Apache ARIA support 107

Table 9-25: 5G-CORAL OCS non-functional requirements and Apache ARIA support 108

Table 9-26: Existing K8s capabilities suitable for 5G-CORAL OCS.. 110

Table 9-27: Missing K8s capabilities required for 5G-CORAL OCS .. 110

Table 9-28: 5G-CORAL OCS functional requirements and K8s support .. 111

Table 9-29: 5G-CORAL OCS non-functional requirements and K8s support 111

Table 11-1: EFS Stack composition and pricing ... 119

Table 12-1: Simulation parameters for federation formation .. 121

Table 12-2: Simulation parameters for server capacity .. 121

List of Algorithms
Algorithm 2-1: Greedy cost heuristic ... 26

Algorithm 2-2: Fog greedy heuristic .. 26

Algorithm 4-1: Merge-and-split federation formation mechanism .. 53

Algorithm 4-2: Function can_merge(𝑭𝒊, 𝑭𝒋) .. 54

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 9

H2020-761586

List of Acronyms
3GPP 3rd Generation Partnership Project

AAU Active Antenna Unit

AMQP Advanced Message Queuing Protocol

AP Access Point

API Application Programming Interface

App Application

AR Augmented Reality

ARIA Agile Reference Implementation of
Automation

ARM Acorn RISC Machine

ASE Autoscaling Engine

AWS EC2 Amazon Elastic Compute Cloud

BSS Business Support System

CAM Cooperative Awareness Message

CAPEX Capital expenditure

CD Computing Device

CHA Capacitated house allocation

CLAMP Platform for designing and managing
control loops.

CPU Central Processing Unit

CRIU Checkpoint and restore in user space

D2D Device to Device

DA Adapted deferred acceptance

DA-T Adopted deferred acceptance with transfer

DB Database

DC Data Centre

DENM Decentralized Environmental Notification
Message

CLI Command-line interface

DNS Domain Name System

EAP Extensible Authentication Protocol

EBS Amazon Elastic Block Store

eCDF Experimental Cumulative Density Function

EFS Edge and Fog computing System

EMS Element Management System

ENI Experiential Networked Intelligence

EPA Enhanced Platform Awareness

ETSI European Telecommunications Standards
Institute

FPGA Field-programmable gate array

FSM Finite State Machine

FS File System

GPIO General Purpose Input/Output

GRE Generic Routing Encapsulation

GTP GPRS Tunnelling Protocol

GUI Graphical User Interface

HDD Hard Disk Drive

HST High Speed Train

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

HV Hypervisor

HW HardWare

I/O Input/Output

IaaS Infrastructure-as-a-Service

ID Identifier

IEEE Institute of Electrical and Electronics
Engineers

IETF Internet Engineering Task Force

IoT Internet of Things

IP Internet Protocol

JSON JavaScript Object Notation

K8 Kubernetes

KDL Kullback-Leibler distance

KPI Key Performance Indicator

KVM Kernel-based Virtual Machine

LCM Life Cycle Management

LRF Local resource first

LSF Local service first

LSO Local service only

LTE Long Term Evolution

LXC LinuX Containers

LXD Next generation system container manager

MAC Media Access Control

MANO MANagement and Orchestration

MEC Multi-access Edge Computing

MEF Metro Ethernet Forum

MP Maximal profit

MQ Messaging queue

MQTT Message Queuing Telemetry Transport

MUSIC Multi-site State Coordination Service

NAS Network Attached Storage

NFS Network File System

NFV Network Function Virtualisation

NFVO Network Function Virtualization
Orchestrator

NGINX Open source software for web serving

NS Network Service

NSD Network Service Descriptor

OASIS Open standards. Open source.

OBU On Board Unit

OCS Orchestration and Control System

ONAP Open Network Automation Platform

ONF Open Networking Foundation

OOM ONAP Operation Manager

OPEX Operating expenditure

OPNFV Open Platform for NFV

OS Operating System

OSM Open Source MANO

OSS Operations Support System

OVS Open Virtual Switch

P2P Peer to Peer

PaaS Platform-as-a-Service

pc Pre-copy

PNF Physical Network Functions

PoS Point of Sale

QoE Quality of Experience

QoS Quality of Service

RAM Random Access Memory

RAT Radio Access Technologies

REST Representational state transfer

RO Resource Orchestrator

ROS Robot Operating System

RPC Remote Procedure Call

RTT Round-trip time

sc Stop-and-copy

SD-WAN Software Defined Wide Area Network

SDC Service Design and Creation

SDN Software Defined Network

SDK Software Development Kit

SFC Service Function Chaining

SHA Secure Hash Algorithm

SLA Service Level Agreement

SO Stack Orchestrator

SSD Solid State Disk

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 10

H2020-761586

TCP Transmission Control Protocol

TMPFS Temporary file system

TOSCA Topology and Orchestration Specification
for Cloud Applications

UDP User Datagram Protocol

UE User Equipment

URI Uniform Resource Identifiers

URL Uniform Resource Locator

USB Universal Serial Bus

UUID Universally Unique IDentifier

VDU Virtualisation Deployment Unit

VIM Virtualisation Infrastructure Managers

VL Virtual links

VLAN Virtual Local Address Network

VM Virtual Machine

VNF Virtual Network Functions

VNFC VNF Components

VNFD VNF Descriptors

VNFM VNF Manager

VPN Virtual Private Network

VR Virtual Reality

VVP VNF Validation Program

VXLAN Virtual Extensible Local Area Network

WAN Wide Area Network

WP Work Package

XML eXtensible Markup Language

YAML Human-readable data-serialization
language

ZSM Zero touch network & Service Management

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 11

H2020-761586

Executive Summary
This second and last deliverable from 5G-CORAL Work Package 3 focuses on the refined design

of the Orchestration and Control System (OCS). It first identifies the gaps of existing

orchestration systems with regards to the edge and fog environment. The resulting analysis serves

as the basis for designing next the 5G-CORAL OCS targeted at filling all the identified gaps.

Emphasis is put on state distribution and federation optimization, including optimal placement of

functions and applications in a volatile environment. An experimental validation of selected

features of the refined OCS design is also presented.

The key achievements in this deliverable are highlighted below:

• Analysis and comparison of existing VIM and Orchestrators against 5G-CORAL OCS

requirements for edge and fog environments;

• Design of a distributed VIM and Orchestrator leveraging a distributed key-value store

to cope with resource-constrained devices and error-prone environments [1];

• Proposal and validation of a descriptor, namely EFS Stack, enabling zero-touch

deployment at orchestration level;

• Proposal and evaluation of a placement algorithm addressing the volatility of the

resources comprising the virtualization and computing fabric;

• Characterization and analysis of monitoring requirements and triggered procedures at

OCS level for dynamically adapting to varying environment conditions [2][3];

• Characterization and evaluation of OCS federation including pricing insight, federation

formation dynamics, and advanced resource provisioning;

• Experimental assessment of selected OCS features, such as automated deployment,

federation establishment, container-based migration, and network-based D2D

communication establishment;

• Refactoring of fog05 to act as distributed VIM following the state distribution paradigm

proposed in this deliverable [4];

• Prototyping and publication as open source of f0rce (i.e., fog orchestration engine)

implementing the distributed orchestrator paradigm proposed in this deliverable [5].

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 12

H2020-761586

1 Introduction
The overall concept of the 5G-CORAL Orchestration and Control System (OCS), including its

benefits, challenges, requirements, and architecture was introduced and described in depth in the

first deliverable of WP3 (see D3.1 [6]). In brief, the OCS has the following tasks: (i) to build and

maintain the EFS, by enabling automatic discovery of available EFS resources, integrating and

federating them into a unified hosting environment, despite their heterogeneity, multiple owners

and volatility (e.g., on the move); (ii) to manage the lifecycle of the EFS Functions, Applications,

and Service Platform, by performing their instantiation, live migration and scaling to dynamically

adapt to changing requirements and monitoring information.

The first deliverable of WP3 [6] mainly focused on the support of heterogeneous and dynamic

resources, dynamic migration, monitoring, and third-parties interaction with the OCS. This resulted

in the initial design of some of the OCS components, namely VIM and EFS Entity Descriptor.

Moreover, D3.1 proposed a baseline solution for resource discovery and integration across

multiple access technologies, such as IEEE 802.11, 3GPP, Bluetooth/ZigBee, and Ethernet. Finally,

D3.1 introduced the concept of resource federation and three federation models.

Departing from those findings, this second deliverable elevates the focus from the VIM up to the

EFS Orchestrator and presents validation results for the OCS components. The different scope

between D3.1 and D3.2 (the present document), as well as the OCS components being

investigated, is highlighted in Table 1-1. Specifically, D3.2 addresses the design of the EFS

Resource Orchestrator and the EFS Stack Descriptor in Section 2. This includes a distributed key-

value store and a placement algorithm suited for volatile environments. Then, Section 3 analyses

the monitoring requirements and identifies the necessary OCS procedures for each of the 5G-

CORAL use cases, resulting in a novel container-based migration mechanism. Section 4 proposes

a baseline solution for resource federation and allocation, including pricing insight and in-

sourcing and out-sourcing of resources between distinct administrative domains. Section 5

presents the experimental validation of some of the OCS features, such as automated

deployment enabled by the EFS Stack, federation instantiation, live migration, and network

assisted Device-to-Device (D2D) communication. Finally, Section 6 presents the lessons learnt

while Section 7 draws the conclusions and future directions for the OCS.

TABLE 1-1: SCOPE OF D3.1 AND D3.2 DOCUMENTS

 D3.1 D3.2

Architecture Design of the overall OCS architecture,
including the OCS components and
interfaces

No refinement at architectural level,
refinement done at OCS component
level (e.g., VIM, Orchestrator, etc.)

VIM Design of Finite State Machine (FSM)
abstraction for EFS Entities, EFS Entity
Descriptor, support of dynamic and
heterogeneous resources and
virtualization substrates

Experimental validation of
heterogeneous virtualization substrates,
integration with the EFS Resource
Orchestrator

EFS
Manager

Defined scope, interaction and
interfaces

Monitoring procedures addressed for
each use case with focus on migration
and scaling of EFS Entities

EFS
Orchestrator

Defined scope, interaction and
interfaces

Design and validation of EFS Resource
Orchestrator with focus on state
distribution, resource federation and
federation algorithms

EFS Stack
Descriptor

Defined scope and high-level
information model

Design and experimental validation of
EFS Stack Descriptor

EFS Entity
Descriptor

Defined scope and detailed
information model

Refinement, integration in the EFS Stack
Descriptor and experimental validation

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 13

H2020-761586

2 Refined design of the OCS
In this section, we first provide an overview of the OCS architecture to help the reader to better

understand this document. Next, we evaluate the capabilities of the most popular orchestration

solutions suitable for 5G-CORAL and several conclusions are drawn in Section 2.2. The outcome

of this study is then used to support the design of the EFS Stack Orchestrator and EFS Resource

Orchestrator in Section 2.3. Finally, Section 2.4 describes and validates the placement algorithms

of the EFS Resource Orchestrator.

2.1 Overview of 5G-CORAL architecture and OCS components

The following paragraphs summarise the main concept and components of the OCS as introduced

in D3.1 [6]. While no architectural refinement is performed in this document, the internal design

of some of the OCS components is further refined in the following sections.

FIGURE 2-1: 5G-CORAL SYSTEM ARCHITECTURE

Figure 2-1 shows the 5G-CORAL system architecture with the two main components:

• Edge and Fog computing System (EFS): an EFS is a logical system subsuming Edge and

Fog resources that belong to a single administrative domain. An EFS provides service

platforms, functions, and applications on top of available resources, and may interact

with other EFS domains. See D2.1 [7] and D2.2 [8] for additional information on EFS.

• Orchestration and Control System (OCS): an OCS is a logical system in charge of

composing, controlling, managing, orchestrating, and federating one or more EFS(s). An

OCS comprises Virtualisation Infrastructure Managers (VIMs), EFS managers, and EFS

orchestrators. An OCS may interact with OCSs of other administrative domains.

The OCS components, which are shown from bottom to top in Figure 2-1, are:

• A Virtualisation Infrastructure Manager (VIM) comprises the functionalities that are

used to control and manage the interaction of the service platforms, functions, and

applications with the edge and fog resources under its authority;

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 14

H2020-761586

• An EFS Manager is responsible for the lifecycle management (e.g. instantiation, update,

scaling and termination) of the service platforms, functions, and applications in the EFS;

• An EFS Orchestrator is in charge of the orchestration and management of edge and fog

resources and composing the EFS. An EFS Orchestrator comprises an EFS Resource

Orchestrator and an EFS Stack Orchestrator. An EFS Resource Orchestrator supports

accessing the edge and fog resources in an abstracted manner independently of any

VIM. An EFS Stack Orchestrator is responsible for the EFS Stack lifecycle management

operations (e.g. instantiation, update, query, scaling and termination);

• An EFS Stack can be viewed architecturally as a forwarding graph of functions and/or

application interconnected by supporting edge and fog resources and/or service

platforms. An EFS Stack extends the ETSI NFV Network Services by also considering

interconnections with applications and service platforms;

• An EFS Stack Descriptor extends the ETSI NFV Network Service Descriptor by also

considering applications and service platforms in addition to network functions. It

describes the requirements and interconnections of one or more EFS Functions and EFS

Applications between them or with the EFS Service Platform;

• An EFS Entity Descriptor extends and combines ETSI NFV VNF and ETSI MEC App

descriptors to uniformly describe the various characteristics of EFS Functions, EFS

Applications, and EFS Service Platform. EFS Entity Descriptors are referenced and

included into an EFS Stack Descriptor.

2.2 Analysis of existing orchestrators

In this section, we explore some of the most prominent orchestration solutions emerged from

open-source communities, research projects and standardization groups, with the goal of

assessing their benefits and their limits with respect to the 5G-CORAL framework. For the sake of

completeness, in Appendix 9 we provide an exhaustive review of each orchestrator. We first

introduce their key capabilities and highlight the specific features required in 5G-CORAL that

are not yet supported. Also, we report in more details whether functional and non-functional

requirements (see D3.1 [6]) are met or not. Also, Table 2-1 and Table 2-2 help the reader to

understand how the reviewed orchestrators satisfy the 5G-CORAL requirements as well as to

quickly identify which features are fully or partially supported.

Among the existing capabilities suitable for 5G-CORAL, we note that auto-scalability and fault-

management are well supported by the most popular orchestrators, such as Open Source MANO,

ONAP and OPNFV, as well as monitoring plugins and the presence of a pub/sub-based event

engine, which are relevant features in 5G-CORAL. Moreover, some orchestrators, such as ONAP,

provide support for complex lifecycle operations, including healing, scaling and recovery policies

that can be defined at design time. It is also worth noting that Network Service Descriptor (NSD)1

onboarding and basic validation are extensively supported by most of the orchestrators

reviewed. In terms of non-functional requirements, we point out that large-scale deployment and

multi-tenant support feature in all the solutions, which are key capabilities in 5G-CORAL.

By contrast, federation is not yet supported by most of the orchestrators. When supported, like in

the Kubernetes (K8s), it relates to the federation of multiple instances of the same orchestrator.

Similarly, dynamic resource discovery and dynamic migration are not supported, which are

crucial operations within the 5G-CORAL framework to ensure automatic service deployment and

zero-touch management. As an example, ONAP does not currently provide clear guidelines on

1 Network Service Descriptor (NSD) is the terminology used in ETSI NFV [10] to describe a graph of Virtual
Network Functions and their requirements. In 5G-CORAL we use the term EFS Stack to encompass and unify
both ETSI NFV and ETSI MEC descriptors.

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 15

H2020-761586

how to discover and add physical resources at runtime, neither does Cloudify, which does not

track the resource availability in the managed infrastructure. Ultimately, the lack of such features

and capabilities raises the need for enriching 5G-CORAL and incorporating new features into

the framework, as it will be described in detail in the following sections.

TABLE 2-1: OVERVIEW OF 5G-CORAL FUNCTIONAL REQUIREMENTS AND RELATED SUPPORT

PROVIDED BY THE ORCHESTRATORS

Functional Requirement

O
S
M

O
p
e
n

B
a

to
n

O
N

A
P

C
lo

u
d
.

if
y

O
P
N

F
V

A
p
a

ch
e

A
R

IA

K
8
s

Support of harvesting computing
capabilities from low-end
resources

Yes No No Partial Yes Partial No

Support of harvesting computing
capabilities from mobile
resources

Partial No No Partial Partial Partial No

Support of discovery,
configuration, monitoring,
allocation, etc. of relevant
hardware capabilities

Yes Partial No Yes Partial Partial Yes

Support of integration including
at runtime of heterogeneous
resources in terms of software
and hardware capabilities

Yes Yes Yes Yes Yes Partial Partial

Support of federation including
at runtime of OCS components

No No Partial No No Partial Partial

Support of the interworking with
resources external to the OCS

Yes Yes Yes Yes Yes Partial Partial

TABLE 2-2: OVERVIEW OF 5G-CORAL NON-FUNCTIONAL REQUIREMENTS AND RELATED SUPPORT

PROVIDED BY THE ORCHESTRATORS

Non-Functional Requirement

O
S
M

O
p
e
n

B
a

to
n

O
N

A
P

C
lo

u
d
.

if
y

O
P
N

F
V

A
p
a

ch
e

A
R

IA

K
8
s

Support of deployment of OCS
on low end devices

No No No No No Partial No

Support of deployment of OCS
on mobile devices

No No No No No Partial No

Availability and self-healing
mechanisms in error-prone
environments

No Partial Yes Yes Partial Partial Yes

Support of large deployments in
terms of number of resources and
geographic areas

Yes Yes Yes Yes Yes Partial Yes

Support of plugins for
extensibility

Yes Yes Yes Yes No Partial Partial

Capability to adapt to workload
changes by provisioning and de-
provisioning resources in an
automated manner

No Partial Yes No Partial Partial Yes

Support of multiple tenants
participating and co-existing in
the same environment

Yes Yes Yes Yes Yes Partial Yes

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 16

H2020-761586

2.3 Design of a distributed OCS

As it can be seen from Table 2-2, the 5G-CORAL non-functional requirements for the OCS are

far from being met by current orchestrators. Particularly, today’s implementations are tailored to

datacentre environments where resources are fixed, and high bandwidth is available. However,

this assumption is not true for fog and edge environments where heterogeneous resources are

geographically distributed. This makes it difficult to support OCS deployment on low-end devices

which may also be mobile and distributed across multiple locations. In D3.1 [6], we introduced

the development of an OCS prototype (i.e., VIM) which had started under the name of fog05

and the initial code was released as open source on GitHub [4]. D3.1 focused on defining a

plugin-based architecture and a Finite State Machine (FSM) abstraction for the EFS Entities. In this

deliverable, we tackle the problem of how to distribute the various OCS components, including

the VIM (e.g., fog05) and the newly designed EFS Resource and Stack Orchestrators. The

prototype of the orchestrators, dubbed as f0rce (i.e., fog orchestration engine), is published as

open source on GitHub [5].

The key idea for enabling the OCS deployment on low-end and mobile device is to move away

from the monolithic and datacentre-focused implementation. That is, the VIM and the

Orchestration should be decomposed in atomic functionalities and their internal state distributed

across the network. In this way, each resource can contribute to the overall OCS functionalities

and the same functionalities can be replicated within the network to provide increased fault-

tolerance and availability. State distribution can be thought as a distributed database where the

information meaningful for the OCS is stored. However, in contrast to classical database design

where data is meant to be persistently stored, state distribution in our case relates more to the

capability to store the runtime information useful for any OCS procedures. In practical terms, this

can be reduced to storing the internal variables of OCS in such a way that they can be read and

written anywhere. Therefore, we consider a distributed key-value store as the most suitable

choice for distributing the OCS state information.

2.3.1 Distributed key-value store

Key-value stores work in a very different fashion from the better-known relational databases

(e.g., MariaDB, MySQL, etc.). Relational databases pre-define the data structure in the database

as a series of tables containing fields with well-defined data types. In contrast, key-value stores

treat the data as a single opaque collection (e.g., associative arrays or hash tables), which may

have different fields for every record. This offers considerable flexibility and more closely

follows modern concepts like object-oriented programming. Inherently, a distributed key-value

store is a key-value store whose data is not stored in a single location but rather at different

locations across the network. Several approaches exist for distributing the store: full replica,

partial replicas, on-demand, etc., differing on the amount of data being replicated and on the

timeliness of replication. However, the traditional approaches and existing implementations are

not well suited for constrained, mobile and very distributed resources as in the edge and fog

environment. This is because they have been designed with a data-centre infrastructure in mind.

The approach adopted in 5G-CORAL is a distributed key-value store characterised by eventual

consistency, scalability and location transparency. This allows to share data across distinct

devices along the cloud-to-thing continuum and across different technologies and networks. As a

result, the OCS is provided with a unified access to those data so that each portion of the OCS

only needs to retain, store and manage the status information that are local to the specific node.

That is, data is globally accessible without requiring local replication as in traditional key-value

stores. In this way, the OCS as a whole can access data that are locally managed by each

portion of the OCS without the need to know where the data resides, providing location

transparency. In order to fully support such characteristic, the distributed key-value store needs

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 17

H2020-761586

to leverage a transport protocol tailored for such scenario. In 5G-CORAL we consider Zenoh [9]

as reference transport protocol for the distributed key-value store. Additional information, as

well as performance evaluation, can be found in D2.2 [8]. Finally, eventual consistency informally

guarantees that, if no new updates are made to a given data item, eventually all accesses to

that item return the last updated value. This allows the OCS to keep operating (to some extent)

upon failure of some of its components.

The distributed key-value store organizes the data in a tree structure following the Uniform

Resource Identifier (URI) definition [11]. Hence, the key of each value has the following format:

/s1/s2/…/sn

As an example, let’s consider the key “/ocs/vim/id1/entity/id2/info” as to contain the

information regarding the entity with id2 under the control of vim id1. By using the URI format, it

is possible to use wildcard and queries when accessing the data, thus enabling a fine control on

the data. For example, the key “/ocs/vim/id1/entity/*/info” can be used to access the data of

all the entities under the control of vim id1. Each value is defined as a tuple:

𝑣 = < 𝑒, 𝑐, 𝑡 >

Where e is the encoding, c represents the content and t is a logical timestamp for ordering. In

addition, a pub/sub mechanism is considered for notification to promptly react to changes in the

internal state of OCS. For instance, the EFS Resource Orchestrator can subscribe to the monitoring

information of a given resource and being notified whenever the RAM consumption is updated.

Finally, a Remote Procedure Call (RPC) is considered in order to allow different OCS components

and portions to interact with each other without the need to store the data in the network.

Finally, the following primitives are defined:

• Put, update, remove, get: data are published via put/update. OCS components can

then query the data with get. Finally, remove deletes the data from the data store;

• Subscribe/unsubscribe: an OCS component can subscribe to specific keys (including

wildcards) and being notified whenever the value associated to that key changes.

Unsubscribe removes the subscription;

• Register_eval, unregister_eval, eval: OCS components can expose functionalities to

other components by registering specific functions for RPC. OCS components can

remotely execute functionalities via the eval primitive.

In the following section, we report few examples on how to use the distributed key-value store

concept and primitives to implement the VIM and Orchestrator, namely fog05 and f0rce.

2.3.2 Distributed VIM

Each EFS resource participating in the distributed VIM is requested to run an agent for the

management of the node. Specifically, such agent takes care of advertising the node to the other

nodes composing the distributed VIM, instantiating and terminating the EFS Entities on the node,

etc. Moreover, the agent needs to keep and share the state of the EFS resources in such a way

that all the nodes composing the distributed VIM can cooperate and operate as a single logical

entity. Figure 2-2 illustrates the EFS resource (i.e., node)2, the agent and the various distributed

storages envisaged for enabling a distributed VIM along the cloud-to-thing continuum. Three

types of storage are considered for the VIM:

2 The agent running on each node may simultaneously support multiple virtualization technologies. The
necessary support at VIM level is provided by configurable plugins which expose a Finite State Machine
(FSM) abstraction for EFS Entities. More information is available in D3.1 [6].

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 18

H2020-761586

• Local storage: this storage is used to store the status of the compute node locally on the

node itself. This storage is used for communication between the agent and various

plugins running on the node3. This storage also stores the configuration of the node and

the real time status of the node. This storage is not shared on the network.

• Constrained storage: this storage is a special case of the local storage and it is needed

by those resource-constrained devices uncapable of running the VIM agent (e.g.,

microcontrollers). In this case, a powerful node can host the local storage of a third node

which in turn it is updated it over the network (e.g., using TCP, Zenoh, etc.). In practical

term, the powerful node acts as a proxy for the constrained device in similar fashion as

happens today with an IoT gateway.

• Global storage: this storage is shared across the network and stores the global state of

the whole VIM. It is worth mentioning that this storage as a whole includes the complete

state of the VIM. However, each node is not required to store locally all the state.

Indeed, each node contains a portion of the overall state which can be combined with

other portions from the other nodes to form the global state.

FIGURE 2-2: VIM AGENT

Summarising, each compute node that is powerful enough to run an agent will have its own

instance of the distributed key-value store. Such instance takes care of the node-local information

and portion of the global information. In the case of constrained devices, the agent and the store

are remotely hosted on a third node acting as a proxy. Finally, one of the main duties of the

agent is to bridge information across the different storages in the VIM in such a way that

information can be read from the global storage and written on the local storage and vice versa.

To tackle the volatility and the errors that could occur in a distributed environment, each of the

three types of storage is decomposed in two sub-storages:

• Actual storage: it stores the actual stable state;

• Desired storage: it stores the next desired stable state.

This separation allows to implement atomic transactions in the VIM. An atomic transaction is an

indivisible and irreducible series of operations such that either all occur, or nothing occurs. By

doing so, the consistency on the VIM global state is guaranteed in case of errors. Indeed, in the

unfortunate case of some operation failing, all the VIM components and nodes can roll back to

the state stored in the actual storage. Only when all the operations succeed, the actual storage is

then updated. Using an analogy coming from control theory, the desired storage can be seen as

3 Details about the plugin-based architecture of the VIM to support multiple virtualization technologies can
be found in D3.1 [6].

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 19

H2020-761586

the set point (i.e., the state to achieve) and the actual storage as the expected exit of the system.

Combining the three main storages with the two sub-types, it turns out that the distributed VIM

consists of a total of six storages:

• Desired global storage: it stores the desired state of the whole VIM. It can be used to

send requests to the VIM;

• Actual global storage: it stores the actual state of the whole VIM. It can be used to

retrieve information from the VIM;

• Desired node-local storage: it stores the desired state of a single node. This store is

hidden inside the VIM and is used for VIM operations. It can be written only by the VIM.

• Actual node-local storage: it stores the actual state of a single node. It is internal to the

VIM and it can be written only by the VIM agent running on the node hosting it;

• Desired node-local constrained storage: like the desired node-local but for constrained

compute nodes;

• Actual node-local Constrained Storage: like the actual node-local but for constrained

computing nodes.

After having described how the state is distributed in the VIM, the following describes how data

is organised in the distributed key-value store. Specifically, it describes the URI structure used by

the VIM to archive data separation between the different storages, minimizing data replication,

and support multi-tenancy. Namely, in order to minimize differences between the six storages,

the VIM adopts a three tree structures:

• Global Tree: for both actual/desired global storages;

• Local Tree: for both actual/desired node-local storages;

• Constrained Local Tree: for both actual/desired node-local constrained storages.

This allows to easily switch between the actual and desired storages facilitating the development

and making the information in the different storages semantically coherent.

FIGURE 2-3: DISTRIBUTED VIM GLOBAL STORAGE URI TREE

Figure 2-3 depicts part of the URI structure for the global storage4. It is possible to see an

organization in systems, that can be mapped to administrative domains and tenants in order to

facilitate the multi-tenancy support. It is worth highlighting that portions of this tree are meant to

be stored in persistent storages and replicated through the whole VIM, like information about the

tenants, users and configurations. The other two tree structures can be considered as portions of

4 For sake of space and readability it is not possible to report the full tree structure in this document. The
full structure is available on GitHub: https://github.com/eclipse/fog05

https://github.com/eclipse/fog05

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 20

H2020-761586

the global tree. In particular, they can be seen as sub-trees starting from the node-id, thus limiting

the global view of the VIM and pointing to the information relevant to a specific node.

To better understand how to use the trees, let’s consider the example of an EFS Entity already

onboarded on a given node that needs to be executed. The information about the EFS Entity is

stored in the actual global tree in the following key:

/agfos/id1/tenants/id2/nodes/id3/fdu/id4/instances/id5/info

The tenant owning the EFS Entity is identified by id2. The node is identified by id3 and the EFS

Entity is identified by id4. Finally, the specific EFS Entity instance5 is identified by id5. Let’s call

this key as key1. In this example, the information contained in key1 returns that EFS Entity is in the

CONFIGURED state6. The goal is to execute the EFS Entity that implies changing its state to RUN.

In order to achieve the state transition, it is necessary to write the target state in the desired

global store at the following URI (let’s call it key2):

/dgfos/id1/tenants/id2/nodes/id3/fdu/id4/instances/id5/info

The value written in key2 is the same value that is contained in key1 with status field updated to

RUN. The write in the desired global storage causes the triggering of the agent in the node id3,

that (i) verifies if the instance is actually in the node, (ii) finds the plugin in charge of the instance,

and (iii) writes the target state required in the desired local store using a different key (let’s call it

key3):

/dgfos/id3/runtimes/id6/fdu/id4/instances/id5/info

This write triggers the plugin id6 (e.g., LXD runtime) to start the EFS Entity. Upon successful

operation, the agent updates the instance state in the actual local store. This update results in the

agent updating the new instance state on key1 on the actual global store. At this point, the

execution request is considered finalized. The information in the desired global store is finally

removed and the transaction is complete.

2.3.3 Distributed EFS Stack and Resource Orchestrator

Like the distributed VIM presented in Section 2.3.2, we leverage a distributed key-value store

also for the design of the 5G-CORAL distributed EFS Stack and Resource Orchestrator. Figure

2-4 shows the components and the internal architecture of the EFS Stack and Resource

Orchestrator. For what concerns the EFS Stack Orchestrator (EFS-SO) (shown in orange in Figure

2-4), multiple instances can be available, where each instance may be responsible of a subset of

the overall EFS Stacks managed by the OCS. The information model of the EFS Stack as treated

by the EFS-SO can be found in Appendix 10. The main features of the EFS-SO are, therefore,

the following:

• Expose a REST API to the users/OSS/BSS to manage the lifecycle of the EFS Stacks,

including onboarding, instantiation, and termination. EFS-SO REST API could be

presented as a Graphical User Interface (GUI) to ease the interaction with the human

user. An example of such GUI is presented later in Section 5.1;

• Validate the EFS Stack according to the information model of Appendix 10;

• Contact the EFS-RO to enforce lifecycle management decisions;

• Keep a catalogue of existing EFS Stacks in the system.

For what concerns the EFS-RO (shown in green in Figure 2-4), three main components can be

identified:

5 An EFS Entity may have multiple instances, e.g., for load balancing and/or high availability.
6 Additional information on the Finite State Machine (FSM) abstraction can be found in D3.1 [6].

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 21

H2020-761586

• EFS Resource Orchestrator Engine: it oversees keeping track of the resources under its

control and allocating/arbitrating the usage of those resources. It works on an abstract

network graph representation of the underlying infrastructure. It is also in charge of

mapping the EFS Stack (which is represented in form of a graph) received by the EFS-

SO onto the underlying infrastructure. Section 2.4 proposes a placement algorithm for

volatile environments;

• VIM connector: it oversees the connection to the VIMs and translates the abstractions

used in the EFS-RO Engine to the different VIM implementations. This includes

authentication with the VIMs, implementations of VIM-specific APIs and information

models. For example, the information model reported in D3.1 [6] can be used with

fog05 as a VIM. Moreover, the VIM connector retrieves the infrastructure graph (i.e.,

nodes and links) from the VIM and exposes it to the EFS-RO Engine;

• Cloud connector: it oversees the connection to various Clouds. It fulfils the same tasks as

the VIM connector, without retrieving the infrastructure graph. By definition, public Clouds

(e.g., Amazon Web Services, Microsoft Azure, etc.) do not expose their internal

infrastructure topology.

FIGURE 2-4: EFS-RO COMPONENTS AND INTERNAL ARCHITECTURE

Multiple instances of each EFS-RO component (i.e., EFS-RO Engine, VIM connector, and Cloud

connector) can be available for high-availability and redundancy, by leveraging a distributed

key-value store. In this way the internal state of the EFS-SO and EFS-RO is distributed across the

network in different instances which can be retrieved at any time. Four storages are considered:

• Stack storage: it contains the information shared between the EFS-SO and the EFS-RO

regarding the existing EFS Stacks. There is no information stored about the underlying

infrastructure available in this storage;

• Global storage: it contains the information about the overall underlying infrastructure,

including the status, and the mapping of the EFS Stack onto the underlying infrastructure;

• VIM storages: they contain the information about the infrastructure managed by the

different VIMs and the status of the entities running on each VIM. Additionally, each VIM

reads and writes information from a separate storage in order to avoid direct leaks

between VIMs;

EFS-RO Engine
Component #1

EFS-RO Engine
Component #2

EFS-RO Engine
Component #3

EFS-RO Engine
Component #4

EFS-RO Engine
Component #N

...

...

Global storage
Stack storage

EFS-SO

R
ES

T
A

PI

Cloud storage

Cloud
connector #1

C
LO

U
D

 A
PI

VIM connector #1
Component #1

VIM API

VIM connector #2
Component #1

VIM API

VIM connector #N
Component #1

VIM API

FED
ER

A
TIO

N

A
P

I

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 22

H2020-761586

• Cloud storages: they contain the information about the status of the entities running on

each Cloud. Additionally, each Cloud connector reads and writes information from a

separate storage in order to avoid direct leaks between Cloud;

Similar to the distributed VIM proposed in Section 2.3.2, in order to tackle the volatility and the

errors that could occur in a distributed environment, each of the four storage types is further

decomposed in two additional sub-storages:

• Actual storage: it stores the actual stable state;

• Desired storage: it stores the next desired stable state.

For additional information about the actual and desired storages see Section 2.3.2. Figure 2-5

shows the URI tree for the EFS-RO global storage. In order to minimize the differences between

the global stack (referenced as tenant), vim, and cloud storages, the global storage is structured

in such a way the vim, stack, and cloud storages are sub-trees of the global storage. Specifically,

the vim tree has the vim-id as a root while the stack storage has the tenant-id in as root.

FIGURE 2-5: DISTRIBUTED EFS-RO GLOBAL STORAGE URI TREE

In the following we provide an example of how to use the proposed storages. Let’s consider the

case of instantiating an EFS Stack starting from the EFS-SO. A user (e.g., tenant id1) uploads the

EFS Stack descriptor on the EFS-SO. After validating the descriptor, the EFS-SO writes on the

desired stack storage (i.e., dsf0rce) the descriptor to notify the EFS-RO. The URI is the following:

/dsf0rce/tenant/id1/entity/id2

At this point the EFS-RO starts the onboarding of the entity (i.e., adding the entity to the

catalogue). Once the onboarding is completed, the EFS-RO writes the descriptor from the desired

to the actual storage. Next, the EFS-SO may request the instantiation of the entity by writing the

desired state to:

/dsf0rce/tenant/id1/entity/id2/instance/id3

At this point, the EFS-RO execute the placement algorithm to identify the target VIM with the

necessary resources to host the entity. Next, the EFS-RO writes the desired state to the VIM:

/dvf0rce/domain/id1/ entity/id2/instance/id3

As a next step, the VIM connector proceeds to instantiate the entity on the VIM. Upon successful

instantiation, the VIM connector writes the state of the entity on the actual storage. In turn, the

EFS-RO writes the actual state on the global storage and on the stack storage to finally notify

the EFS-SO.

The resulting implementation of the EFS-SO and EFS-SO has been published as open source

under the name of f0rce (i.e., fog orchestration engine) [5]. This implementation and exemplary

procedure are then experimentally validated and evaluated in Section 2.3.3.

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 23

H2020-761586

2.4 Placement algorithm for volatile environments

As introduced in D3.1 [6], the EFS Stack harmonizes and extends the ETSI MEC and ETSI NFV

information model to encompass information that is relevant in the edge and fog environment,

such as I/O devices, network interfaces, hardware accelerators, and location constraints. In D3.1

[6] we reported the information model relevant at VIM level. In this deliverable, we extended

that information model up to the orchestrator level. By doing so, there is no need for the

developer to specify the target infrastructure for the deployment upon on-boarding7. Instead,

the EFS Resource Orchestrator identifies the most suitable resource for running the EFS Stack

based on the requirements. The full EFS Stack information model can be found in the Appendix

10. The process of mapping the EFS Stack onto the underlying infrastructure is called placement.

In the following, we design a placement algorithm suitable for the edge and fog environment

where the following constraints are considered:

• EFS Atomic Entities requirements (e.g., CPU, memory, disk);

• Virtual Links (VL) requirements (e.g., bandwidth, delay);

• EFS Stack location;

• Radio Access Technologies (RAT);

• Infrastructure volatility;

• Infrastructure devices’ lifetime (e.g., remaining battery of a fog node).

2.4.1 EFS Stack analytical modelling

The EFS Stack is encoded as a directed labelled graph 𝐺𝐸𝐹𝑆, with its EFS Atomic Entities 𝑣 ∈

𝑉(𝐺𝐸𝐹𝑆) and virtual links 𝐸(𝐺𝐸𝐹𝑆). Every EFS Atomic Entity 𝑣 ∈ 𝑉(𝐺𝐸𝐹𝑆) imposes an amount of

cpu 𝑐(𝑣), memory 𝑚(𝑣), and disk 𝑘(𝑣); and it needs to be deployed on hardware equipment

capable of providing such resources. Similarly, an EFS Atomic Entity may require to be executed

within a specific geographical region (e.g., area, location), which we describe as a circle

𝐵(𝑝(𝑣), 𝑠(𝑣)) of center p(v) and radius s(v). Additionally, it may require a set of Radio Access

Technologies (RATs) that must be available on the edge/fog node in order to be executed.

In the EFS Stack, the VLs are directed edges (𝑣1, 𝑣2) ∈ 𝐸(𝐺𝐸𝐹𝑆) interconnecting two EFS Atomic

Entities. They represent the traffic flowing in a specific direction (from 𝑣1 to 𝑣2) with a specific

bandwidth requirement 𝑏(𝑣1, 𝑣2) in Mbps. In the EFS Stack, the end-to-end propagation delay is

controlled throughout the delay constraints of the VLs, and the physical links used to transport

their traffic have to satisfy the imposed delays 𝑑(𝑣1, 𝑣2),  ∀(𝑣1, 𝑣2) ∈ 𝐸(𝐺𝐸𝐹𝑆).

2.4.2 EFS Virtualization Infrastructure analytical modelling

Similar to the EFS Stack, the compound of infrastructure resources is a directed graph 𝐺𝑖𝑛𝑓𝑟𝑎 that

includes the edge and fog resources (e.g., nodes, servers, switches, antennas, etc.). Every EFS

resource is a node ℎ ∈ 𝑉(𝐺𝑖𝑛𝑓𝑟𝑎) with a CPU 𝑐(ℎ), memory 𝑚(ℎ), disk 𝑘(ℎ), and a set of RAT

features 𝑟(ℎ) . The connection between the infrastructure nodes is done with directed edges

(ℎ1, ℎ2) that belong to the edges of the infrastructure graph 𝐸(𝐺𝑖𝑛𝑓𝑟𝑎), and each of them

provides a traffic capacity 𝑏(ℎ1, ℎ2) ensuring an end-to-end delay 𝑑(ℎ1, ℎ2).

Given the volatility of the edge and fog environment, each EFS resource is characterized by a

reliability parameter ν(ℎ) ∈ [0,1] to rank their capability of providing an uninterrupted service.

In our work, this parameter is multiplied by a time interval (𝑡0, 𝑡1) to determine for how long the

7 The EFS Resource Orchestrator takes the decision of where deploying each EFS Atomic Entity. Therefore,
such information needs to be provided to the VIM and properly described in the descriptor at VIM level.

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 24

H2020-761586

resource is continuously available. In our model the reliability of a link between two infrastructure

nodes is given by the minimum of the two nodes that it connects (i.e., ν(ℎ1, ℎ2) =

min{ν(ℎ1), ν(ℎ2)}). Regarding the cost of using the infrastructure (i.e., pricing), we associate the

costs ρ𝑐(ℎ), ρ𝑚(ℎ), ρ𝑘(ℎ), for the usage of the CPU, memory and disk, respectively. Finally,

ρ𝑏(ℎ1ℎ2) represents the cost of allocating a Mbps on a link (ℎ1, ℎ2) ∈ 𝐸(𝐺𝑖𝑛𝑓𝑟𝑎). Table 2-3

reports the notation used in the placement algorithm for a quick reference.

TABLE 2-3: PLACEMENT ALGORITHM NOTATION

Notation Type Description

𝑮𝑬𝑭𝑺 Graph EFS Stack directed labelled graph

𝑽(𝑮𝑬𝑭𝑺) Set EFS Atomic Entities composing the EFS Stack

𝑬(𝑮𝑬𝑭𝑺) Set EFS Stack VLs

𝑮𝒊𝒏𝒇𝒓𝒂 Graph Infrastructure directed graph

𝑽(𝑮𝒊𝒏𝒇𝒓𝒂) Set Infrastructure nodes (e.g., fog, edge, cloud, switches)

𝑬(𝑮𝒊𝒏𝒇𝒓𝒂) Set Infrastructure links

𝒄(𝒗) Parameter CPU required by EFS Atomic Entity 𝑣

𝒎(𝒗) Parameter Memory required by EFS Atomic Entity 𝑣

𝒌(𝒗) Parameter Disk required by EFS Atomic Entity 𝑣

𝒃(𝒗𝟏, 𝒗𝟐) Parameter Bandwidth required by VL (𝑣1, 𝑣2)

𝒅(𝒗𝟏, 𝒗𝟐) Parameter Maximum delay required by VL (𝑣1, 𝑣2)

𝒓(𝒗) Set Radio technologies required by EFS Atomic Entity 𝑣

𝒑(𝒗) Parameter Centre of region 𝐵(𝑝(𝑣), 𝑠(𝑣)) where EFS Atomic Entity 𝑣

must be deployed

𝒔(𝒗) Parameter Radius of region 𝐵(𝑝(𝑣), 𝑠(𝑣)) where EFS Atomic Entity 𝑣

must be deployed

𝒓(𝒉) Set Radio technologies offered by infrastructure node ℎ

𝒑(𝒉) Parameter Coordinates of infrastructure node ℎ

𝛒𝒄(𝒉) Parameter CPU unit cost at infrastructure node ℎ

𝛒𝒎(𝒉) Parameter Memory unit cost at infrastructure node ℎ

𝛒𝒌(𝒉) Parameter Disk unit cost at infrastructure node ℎ

𝛒𝒃(𝒉𝟏, 𝒉𝟐) Parameter Bandwidth unit cost at link (ℎ1, ℎ2)

𝛎(𝒉) Parameter Reliability of infrastructure node ℎ

𝛎(𝒉𝟏, 𝒉𝟐) Parameter Reliability of link (ℎ1, ℎ2)

𝛅𝒉(𝒗) Variable Binary variable to tell if EFS Atomic Entity 𝑣 is deployed at

infrastructure node ℎ

𝛅𝒉𝟏,𝒉𝟐
(𝒗𝟏, 𝒗𝟐) Variable Binary variable to tell if VL (𝑣1, 𝑣2) is deployed at link

(ℎ1, ℎ2)

2.4.3 Placement heuristics

Upon the arrival of an EFS Stack instantiation request, the placement algorithm needs to decide

if an infrastructure node ℎ is capable of hosting the EFS Atomic Entity 𝑣, i.e., δℎ(𝑣) = 1, and if

the traffic between (𝑣1, 𝑣2) can be steered over an infrastructure link (ℎ1, ℎ2), i.e., δℎ1,ℎ2
(𝑣) =

1. Such decision affects the consumption of resources across the infrastructure, and how much

delay is induced by the propagation delay of the selected physical links.

We denote κℎ(𝑣) as the cost of deploying an EFS Atomic Entity 𝑣 ∈ 𝑉(𝐺𝐸𝐹𝑆) , and

κℎ1,ℎ2
(𝑣1, 𝑣2) as the cost of mapping VL (𝑣1, 𝑣2) ∈ 𝐸(𝐺𝐸𝐹𝑆) on top of link (ℎ1, ℎ2) ∈

𝐸(𝐺𝑖𝑛𝑓𝑟𝑎). Formally they can be defined as:

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 25

H2020-761586

κℎ(𝑣) = ρ𝑐(ℎ) ⋅ 𝑐(𝑣) + ρ𝑚(ℎ) ⋅ 𝑚(𝑣) + ρ𝑘(ℎ) ⋅ 𝑘(𝑣), ℎ ∈ 𝑉(𝐺𝑖𝑛𝑓𝑟𝑎),  𝑣 ∈ 𝑉(𝐺𝐸𝐹𝑆) (1)

κℎ1,ℎ2
(𝑣1, 𝑣2) = ρ𝑏(ℎ1, ℎ2) ⋅ 𝑏(𝑣1, 𝑣2), (ℎ1, ℎ2) ∈ 𝑉(𝐺𝑖𝑛𝑓𝑟𝑎),  (𝑣1, 𝑣2) ∈ 𝐸(𝐺𝐸𝐹𝑆) (2)

The proposed placement algorithms solve the following optimization problem in a greedy

fashion:

min ∑ ∑ δℎ1
(𝑣1)κℎ1

(𝑣1)

(𝑣1,𝑣2)∈𝐸(𝐺𝐸𝐹𝑆)(ℎ1,ℎ2)∈𝐸(𝐺𝑖𝑛𝑓𝑟𝑎)

+ δℎ2
(𝑣2)κℎ2

(𝑣2)

+ δℎ1,ℎ2
(𝑣1, 𝑣2)κℎ1,ℎ2

(𝑣1, 𝑣2)

(3)

s. t. : ∑ c(v)δh(v)

v∈\V(GEFS)

≤ c(h), ∀h ∈ V(Ginfra) (4)

∑ m(v)δh(v)

v∈\V(GEFS)

≤ m(h), ∀h ∈ V(Ginfra) (5)

∑ k(v)δh(v)

v∈\V(GEFS)

≤ k(h), ∀h ∈ V(Ginfra) (6)

∑ b(v1, v2)δh1,h2
(v1, v2)

(v1,v2)∈E(GEFS)

≤ b(h1, h2), ∀(h1, h2) ∈ E(Ginfra) (7)

∑ d(h1, h2)δh1,h2
(v1, v2)

(h1,h2)∈E(Ginfra)

≤ d(v1, v2), ∀(v1, v2) ∈ E(GEFS) (8)

∑ ∑ 1r(h)(γ)

γ∈r(v)h∈V(Ginfra)

⋅ δh(v) > 0, ∀v ∈ V(GEFS):  |r(v)| > 0 (9)

δh(v)D(p(v), p(h)) ≤ s(v), ∀h ∈ V(Ginfra),  v ∈ V(GEFS):  s(v) ≠ ∞ (10)

Where 𝐷: ℝ2 × ℝ2 → ℝ denotes the Haversine distance [12] between two coordinates.

Equations (3)-(10) represent the optimization problem that minimizes the deployment cost of

those solutions that keep below the available resources and meet location constraints and radio

requirements of the EFS Atomic Entities. In the following sections, two heuristic algorithms are

proposed: the first focuses on cost optimization and the second on lifetime maximization.

2.4.3.1 Cost greedy heuristic

Our first heuristic aims to minimize the deployment cost stated in (1) and (2), while meeting all the

other constraints. It iterates through each VL present in the EFS Stack, and then finds the cheapest

infrastructure nodes capable of hosting the EFS Atomic Entities and the VLs. Then it looks for the

shortest path to steer the virtual link traffic, using as weight for the shortest path graph algorithm

the bandwidth cost of each link. Algorithm 2-1 illustrates the pseudo-code of the algorithm.

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 26

H2020-761586

ALGORITHM 2-1: GREEDY COST HEURISTIC
 Data: 𝐺𝐸𝐹𝑆, 𝐺𝑖𝑛𝑓𝑟𝑎

 Result: {δℎ(𝑣)}ℎ∈𝐺𝑖𝑛𝑓𝑟𝑎,𝑣∈𝐺𝐸𝐹𝑆
, {δℎ1,ℎ2

(𝑣1, 𝑣2)}
ℎ1,ℎ2∈𝐺𝑖𝑛𝑓𝑟𝑎,𝑣1,𝑣2∈𝐺𝐸𝐹𝑆

1. for (𝑣1, 𝑣2) ∈ 𝐸(𝐺𝐸𝐹𝑆):
2. ℎ1 ← 𝑐ℎ𝑒𝑎𝑝𝑒𝑠𝑡_ℎ𝑜𝑠𝑡(𝑣1) if δℎ(𝑣1) < 1,  ∀ℎ ∈ 𝐺𝑖𝑛𝑓𝑟𝑎

3. ℎ2  ← 𝑐ℎ𝑒𝑎𝑝𝑒𝑠𝑡_ℎ𝑜𝑠𝑡(𝑣2) if δℎ(𝑣2) < 1,  ∀ℎ ∈ 𝐺𝑖𝑛𝑓𝑟𝑎

4. 𝐺’_{𝑖𝑛𝑓𝑟𝑎} ← ⟨𝑉(𝐺_{𝑖𝑛𝑓𝑟𝑎}), 𝐸(𝐺_{𝑖𝑛𝑓𝑟𝑎}) ∖ { (ℎ_1, ℎ_2):  𝑏(ℎ_1, ℎ_2)
< 𝑏(𝑣_1, 𝑣_2) ∨ 𝑑(ℎ_1, ℎ_2) > 𝑑(𝑣_1, 𝑣_2) } ⟩

5. 𝑝𝑎𝑡ℎ ← 𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎(𝐺’𝑖𝑛𝑓𝑟𝑎 , 𝑤𝑒𝑖𝑔ℎ𝑡 = ρ𝑏)
6. 𝑐𝑜𝑛𝑠𝑢𝑚𝑒_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠(ℎ1, 𝑣1)
7. 𝑐𝑜𝑛𝑠𝑢𝑚𝑒_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠(ℎ2, 𝑣2)
8. 𝑐𝑜𝑛𝑠𝑢𝑚𝑒_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠(𝑝𝑎𝑡ℎ, (𝑣1, 𝑣2))
9. δℎ1

(𝑣1) = 1
10. δℎ2

(𝑣2) = 1
11. δℎ1,ℎ2

(𝑣1, 𝑣2) = 1, ∀(ℎ1, ℎ2) ∈ 𝑝𝑎𝑡ℎ
12. end for

Where 𝑐ℎ𝑒𝑎𝑝𝑒𝑠𝑡_𝑐𝑜𝑠𝑡(𝑣1) is a function that finds the minimum cost host to deploy EFS Atomic

Entity 𝑣1, and 𝑐𝑜𝑛𝑠𝑢𝑚𝑒_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠(ℎ1, 𝑣1) allocates the CPU, memory and disk for 𝑣1 on host

ℎ1 , and 𝑐𝑜𝑛𝑠𝑢𝑚𝑒_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠(𝑝𝑎𝑡ℎ, (𝑣1, 𝑣2)) allocates bandwidth for VL (𝑣1, 𝑣2) along a

physical path.

2.4.3.2 Fog greedy heuristic

In this second heuristic, rather than minimizing the deployment cost, the algorithm tries to

maximize the lifetime of the deployed EFS Stack. That is, objective function (3) becomes:

max ∑ ∑ 𝛿ℎ(𝑣)𝑙(ℎ)

𝑣∈𝑉(𝐺𝐸𝐹𝑆)ℎ∈𝑉(𝐺𝑖𝑛𝑓𝑟𝑎)

(11)

which implies that the selection of hosts for each EFS Atomic Entity 𝑣 now depends on the

reliability provided by the infrastructure node. For example, imagine that an EFS Atomic Entity 𝑣

periodically sends sensor-related information. Such EFS Atomic Entity is expected to run in the

time interval (𝑡0=12:00, 𝑡1 =15:00). Then, let’s consider a fog compute node with reliability

ν(ℎ1) = 0.8 and a second one with reliability ν(ℎ2) = 0.5. This means that ℎ1 guarantees 𝑣 to

be available for 0.8 ⋅ 3 hours, while it would only be available only for 0.5 ⋅ 3 hours at ℎ2. Then,

no matter the deployment cost, the fog greedy heuristic will choose ℎ1. The same procedure is

done when looking for the physical links that steer each VL traffic, so the weight in the Dijkstra

heuristic will be the link reliability. Algorithm 2-2 illustrates the pseudo-code of the algorithm.

ALGORITHM 2-2: FOG GREEDY HEURISTIC
 Data: 𝐺𝐸𝐹𝑆, 𝐺𝑖𝑛𝑓𝑟𝑎

 Result: {δℎ(𝑣)}ℎ∈𝐺𝑖𝑛𝑓𝑟𝑎,𝑣∈𝐺𝐸𝐹𝑆
, {δℎ1,ℎ2

(𝑣1, 𝑣2)}
ℎ1,ℎ2∈𝐺𝑖𝑛𝑓𝑟𝑎,𝑣1,𝑣2∈𝐺𝐸𝐹𝑆

1. for (𝑣1, 𝑣2) ∈ 𝐸(𝐺𝐸𝐹𝑆):
2. ℎ1 ← 𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒_ℎ𝑜𝑠𝑡(𝑣1) if δℎ(𝑣1) < 1,  ∀ℎ ∈ 𝐺𝑖𝑛𝑓𝑟𝑎

3. ℎ2 ← 𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒_ℎ𝑜𝑠𝑡(𝑣2) if δℎ(𝑣2) < 1,  ∀ℎ ∈ 𝐺𝑖𝑛𝑓𝑟𝑎

4. 𝐺’_{𝑖𝑛𝑓𝑟𝑎} ← ⟨𝑉(𝐺_{𝑖𝑛𝑓𝑟𝑎}), 𝐸(𝐺_{𝑖𝑛𝑓𝑟𝑎}) ∖ { (ℎ_1, ℎ_2):  (ℎ_1, ℎ_2)
< 𝑏(𝑣_1, 𝑣_2) ∨ 𝑑(ℎ_1, ℎ_2) > 𝑑(𝑣_1, 𝑣_2) } ⟩

5. 𝑝𝑎𝑡ℎ ← 𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎(𝐺’𝑖𝑛𝑓𝑟𝑎 , 𝑤𝑒𝑖𝑔ℎ𝑡 = ν)
6. 𝑐𝑜𝑛𝑠𝑢𝑚𝑒_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠(ℎ1, 𝑣1)

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 27

H2020-761586

7. 𝑐𝑜𝑛𝑠𝑢𝑚𝑒_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠(ℎ2, 𝑣2)
8. 𝑐𝑜𝑛𝑠𝑢𝑚𝑒_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠(𝑝𝑎𝑡ℎ, (𝑣1, 𝑣2))
9. δℎ1

(𝑣1) = 1
10. δℎ2

(𝑣2) = 1
11. δℎ1,ℎ2

(𝑣1, 𝑣2) = 1, ∀(ℎ1, ℎ2) ∈ 𝑝𝑎𝑡ℎ
12. end for

Where 𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒_ℎ𝑜𝑠𝑡(𝑣1) finds the most reliable host to deploy 𝑣1.

2.4.4 Performance evaluation

For the sake of testing the performance of the two heuristics, we consider the reference

infrastructure architecture and EFS Stack composition described in Appendix 11. In the following

we report the performance evaluation based on simulations.

Figure 2-6 shows the ratio of cost per hour of deploying the reference EFS Stack comprising 5

EFS Entities. Results show that although the cost greedy algorithm is supposed to minimize costs, it

stays always above the fog greedy deployments in terms of cost/hour. Since the fog greedy

algorithm looks for more reliable nodes to deploy the EFS Entities, this causes mappings with

higher lifetime, i.e., the EFS stack runs for longer time before stopping due to errors (such as

running out of battery). This leads to a larger denominator in the cost/hour resulting in a better

lifetime cost as shown in Figure 2-6.

In this performance evaluation, we consider the deployment of the reference EFS Stack for 𝑡1 −

𝑡0=24 hours, and we increase the average volatility of fog and edge nodes from μ𝑓 = 0.1 to

μ𝑓 = 0.5, and μ𝑒 = 0.01 to μ𝑒 = 0.1, respectively.

FIGURE 2-6: LIFETIME COST OF A REFERENCE EFS STACK AS VOLATILITY INCREASES

The experiment varies the values of fog and edge resources prices, 𝛿𝑓 and 𝛿𝑒 , respectively.

Figure 2-6 shows that higher values of 𝛿𝑓 and 𝛿𝑒 lead to higher lifetime cost, as both fog and

edge resources become more expensive. And among 𝛿𝑓 and 𝛿𝑒 , the most important parameter is

𝛿𝑒 , since those EFS Entities deployed at the edge are the ones contributing more for the

deployment cost. In fact, the two scenarios (𝛿𝑒 = 1.25, 𝛿𝑓 = 1.75) and (𝛿𝑒 = 1.25, 𝛿𝑓 = 2)

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 28

H2020-761586

yield same results for both heuristics, since the increase of resource cost in the fog with respect to

the edge is negligible.

As final remark, Figure 2-6 shows that as the infrastructure nodes increase their volatility (as

μ𝑓 , μ𝑒 increase), the cost of mapping the EFS Stack increases as well because the lifetime of

mapped EFS Stacks decreases.

2.4.5 Conclusions

After running the fog and cost greedy algorithms for the scenario described in Appendix 11,

Section 2.4.4 showed that the fog greedy algorithm leads to better mappings than the cost

greedy algorithm in terms of lifetime cost ratio.

Finally, results showed that volatile nodes within the infrastructure harm the lifetime cost of the

EFS Stack. This means that the pricing of the edge resources has higher influence in the EFS Stack

lifetime cost, than the pricing of fog resources. Therefore, ensuring a good level of connectivity

and availability between the users and the edge resources may result in a lower overall cost

since the edge resources appear less volatile from the user’s perspective.

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 29

H2020-761586

3 Live procedures and migration in the OCS
The edge and fog environments are highly dynamic due to the heterogeneity of the resources.

Monitoring allows to collect metrics that capture such dynamicity and provides the OCS with

inputs to make appropriate decisions. Hence, the OCS can perform and optimize the system

lifecycle based on the data collected and provided by the EFS. Monitoring data can be either

exposed by the resources or by the EFS Entities. Additional information on how to perform the

monitoring in the EFS is available in D2.2 [8]. After having analysed each 5G-CORAL use case, a

novel migration approach is proposed for EFS Entities targeted at downtime minimization.

3.1 OCS live procedures in 5G-CORAL use cases

This section first analyses how the OCS can leverage monitoring data in the context of each of

the 5G-CORAL use cases, such as augmented reality navigation, virtual reality, fog-assisted

robotics, high-speed train, and software defined wide area network. Next, it analyses the

procedures required in each of those use cases.

3.1.1 Augmented reality navigation

The augmented reality (AR) navigation use case comprises one scenario envisioned in a shopping

mall. The scenario envisions the end user being navigated in the shopping mall with help of AR

navigation and map navigation. To that end, the end users require a stable navigation service

access provided by AR navigation applications. A virtual AR navigation application is in the form

of an EFS Application. This application allows visual indicators to show on screens to navigate

end users. In addition, the application further connects to the Localization module in the form of

an EFS Function to navigate the users with the current user location shown on the corner map in

screen. These EFS Function and EFS Application are bundled together in a single EFS Stack for the

complete deployment and lifecycle management of the AR Navigation services. Furthermore,

OCS is aware of that an AR navigation application re-distributes navigation requests to other

nearby applications if the AR navigation service load at the application is heavy. Therefore, the

OCS, by taking such behaviour into consideration, is able to responsively instantiates a new

application nearby once the burst situation happens, instead of scaling up the capability of the

busy application.

3.1.1.1 Orchestrated Offload Mechanism of AR Navigation Service

In this OCS procedure, the EFS Service platform is capable of provisioning Wi-Fi Access and AR

Navigation service in the Shopping Mall. Figure 3-1 shows the procedure: based on Resource

Utilization information provided by the EFS Service platform, the instantiation of a new AR

Navigation application is triggered. Such procedure is described as follows:

(A.0) An EFS App/Func Manager continuously performs the CPU utilization and network

bandwidth utilization check to identify whether or not an AR Navigation Application is in

a busy state (i.e., each of the utilizations is over a pre-defined threshold). In addition, the

EFS App/Func Manager receives localization statistics from a Localization function in

order to monitor user trajectory, which synthesizes both Bluetooth beacon-based

Localization data service and image recognition Localization data service. The involved

reference point is O5.

(A.1) Based on the information received from AR navigation applications and the Localization

function, the EFS App. Manager decides whether a new instantiation of an AR

Navigation application near the busy AR navigation application at the EFS Service

Platform is required. If so, the EFS App. Manager requests the EFS Stack Orchestrator for

a new AR navigation application deployment with the suggested deployment sites

(Target EFS URI(s)). The involved reference point is O3.

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 30

H2020-761586

FIGURE 3-1: OCS WORKFLOW FOR THE AR NAVIGATION APPLICATION DEPLOYMENT

(A.2) The EFS Stack Orchestrator then contacts the EFS Resource Orchestrator for allocating the

required resources (e.g., CPU, RAM) on the EFS. Optionally, the EFS Stack Orchestrator

may request a reconfiguration of the busy AR navigation applications and the other low-

loaded AR navigation applications so as to enable offloading from busy applications to

low-loaded applications. For example, once OCS found an over-loaded AR navigation

application, the OCS associates the application with another application which is usually

low-loaded by reconfiguring their behaviour with an offloading mechanism so that the

over-loaded is able to re-distribute some AR navigation user requests to the low-loaded

one. The involved reference point is Oo1.

(A.3) If the deployment request can be satisfied, the EFS Resource Orchestrator instructs the

VIM to initiate a new AR navigation application at a nearby EFS Service platform and

optionally to reconfigure the busy application. The involved reference point is O4.

(A.4) Feedback is provided to all the OCS components on the result of the procedure (e.g.,

successful or not). The involved reference points are O4, Oo1, and O3.

Table 3-1 reports the information exchanged during the EFS instantiation procedure.

TABLE 3-1: INFORMATION EXCHANGED IN THE EFS APPLICATION INSTANTIATION PROCEDURE

RP Src Dst Information Action ID

O5 EFS Application EFS
App/Func
Manager

Resource ID,
Function Instance ID,
Resource Utilization
Status

Consume EFS Services
related to the Resource
Utilization information.

A.0

O3 EFS App/Func
Manager

EFS Stack
Orchestrator

Target Function
Instance ID, Target
Resource ID

Request the instantiation
of the Function Instance
ID to the target
Resource ID

A.1

EFS Stack
Orchestrator

EFS
App/Func
Manager

Instantiation status Feedback on the
requested Instantiation

A.3

Oo1 EFS Stack
Orchestrator

EFS Resource
Orchestrator

EFS Stack Descriptor
(Function Instance ID,

Request the instantiation
of the EFS Application

A.2

Wi-Fi

Access point

EFS App/Fun
Manager

Stationary

AR Navigation Application(s)

(A.0) Report of Resource Utilization of
AR Navigation Application(s)

EFS Stack
Orchestrator

EFS Resource
Orchestrator

VIM

(A.1) Request AR Navigation
Application Deployment

(A.2) Request resource allocation for AR Navigation

(A.3) Instantiate AR Navigation
Application and Reconfigure the
requesting AR Navigation Application

(A.4) FeedbackO3

Oo1

O4

O5

Bluetooth
beacon

Bluetooth

EFS Service Platform

(A.0) Report of User Locations

E2

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 31

H2020-761586

Links), Target Resource
ID

described by EFS Stack
Descriptor

EFS Resource
Orchestrator

EFS Stack
Orchestrator

Instantiation status Feedback on the
requested Instantiation

A.3

O4 EFS Resource
Orchestrator

VIM EFS Stack Descriptor
(Function Instance ID,
Links), Target Resource
ID

Request the instantiation
of the EFS Application
described by EFS Stack
Descriptor

A.2

VIM EFS Resource
Orchestrator

Instantiation status Feedback on the
requested Instantiations

A.3

3.1.2 Virtual Reality

The VR use case consists of a 360-degree live video streaming delivered to multiple end users

equipped with a mobile phone or VR goggles capable of processing such multimedia content.

Video input is generated by multiple 360 cameras connected to a DASH server located in a

remote server, while a local edge server and multiple fog nodes are deployed to reduce end-to-

end latency and enhance system scalability.

Key component of this use case is the EFS orientation application. This application is provided by

the EFS platform and physically runs inside the fog nodes. Its main goal is to forward information

on the visual orientation of each end user to the local edge server that exploits these data in

order to optimize the video streaming delivery. The lifecycle of the EFS orientation application is

managed by the OCS, which can scale the service in and out depending on the number of end

users requesting the video streaming. In the following, we show how the OCS can adopt an

offloading mechanism to accommodate more users whenever the fog node resources, i.e., CPU

processing power, are not enough.

3.1.2.1 Orchestrated Offload Mechanism of VR Navigation Service

FIGURE 3-2: OCS WORKFLOW FOR VR APPLICATION DEPLOYMENT

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 32

H2020-761586

In this OCS procedure, the EFS Service Platform is capable of providing the orientation

application in the Shopping Mall by orchestrating resources running on the fog nodes A, B and C.

Figure 3-2 shows the procedure: based on Resource Utilization information provided by the EFS

orientation application, new resources for the orientation application are allocated based on the

user demand. The detailed procedure is as follows:

(A.0) The EFS App manager continuously monitors the CPU utilization and network bandwidth

utilization provided by the EFS orientation app to identify whether new service instances

must be created. The involved reference point is O5.

(A.1) If a new instance is necessary, EFS App. Manager requests the EFS Stack Orchestrator

for a new orientation app deployment. The involved reference point is O3.

(A.2) Next, the EFS Stack Orchestrator contacts the EFS Resource Orchestrator for allocating

the required resources (e.g., CPU, RAM, storage) on the EFS Service platform nearby.

The involved reference point is Oo1.

(A.3) If the deployment request can be accommodated, the EFS Resource Orchestrator instructs

the VIM to allocate new resources. The involved reference point is O4.

(A.4) Feedback is provided to all the OCS components on the result of the procedure (e.g.,

successful or not). The involved reference points are O4, Oo1, and O3.

Table 3-2 reports the information exchanged in the EFS application instantiation procedure.

TABLE 3-2: INFORMATION EXCHANGED IN THE EFS APPLICATION INSTANTIATION PROCEDURE

RP Src Dst Information Action ID

O5 EFS Orientation
App

EFS App.
Manager

Resource ID,
Function Instance
ID, Resource
Utilization Status

Consume EFS app info
related to the Resource
Utilization information.

A.0

O3 EFS Func
Manager

EFS Stack
Orchestrator

Target Function
Instance ID, Target
Resource ID

Request the instantiation
of the Function Instance
ID to the target
Resource ID

A.1

EFS Stack
Orchestrator

EFS Func
Manager

Instantiation status Feedback on the
requested Instantiation

A.4

Oo1 EFS Stack
Orchestrator

EFS Resource
Orchestrator

EFS Stack
Descriptor (Function
Instance ID, Links),
Target Resource ID

Request the instantiation
of the EFS Application
described by EFS Stack
Descriptor

A.2

EFS Resource
Orchestrator

EFS Stack
Orchestrator

Instantiation status Feedback on the
requested Instantiation

A.4

O4 EFS Resource
Orchestrator

VIM EFS Stack
Descriptor (Function
Instance ID, Links),
Target Resource ID

Request allocation of
new resources for EFS
orientation app

A.3

VIM EFS Resource
Orchestrator

Instantiation status Feedback on the
requested Instantiations

A.4

3.1.3 Fog-assisted robotics

The Fog-assisted Robotics use case comprises two different scenarios, both envisioned in a

Shopping Mall scenario. The first scenario envisions the robots cleaning the common areas of the

shopping mall. The second scenario, instead, envisions the delivery of goods by a group of

robots working synchronously. In both scenarios, robots are connected via Wi-Fi and move in the

Shopping Mall to accomplish the different tasks. To that end, the robots require constant Wi-Fi

coverage wherever they go. The Wi-Fi connectivity is provided by a virtual Access Point in the

form of an EFS Function. This function allows the robots to communicate with their control engine,

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 33

H2020-761586

which is deployed in the form of EFS Application. In the second scenario (delivery of goods) we

also establish a low-latency Device-to-Device communication in order to maintain better

coordination between the robots (e.g., moving in formation). The D2D connectivity is delivered as

Wi-Fi P2P in the form of an EFS Function. These EFS Functions and EFS Application are bundled

together in a single EFS Stack for the complete deployment and lifecycle management of the

Fog-assisted Robotics services.

3.1.3.1 Migration of virtual AP based on Wi-Fi signal level

FIGURE 3-3: OCS WORKFLOW FOR THE VIRTUAL AP MIGRATION BASED ON WI-FI SIGNAL LEVEL

In this OCS procedure, an EFS Function Manager is deployed and dedicated to the virtual Access

Point in order to detect the movement of the robots and trigger the migration of the EFS Function

so as to provide full connectivity coverage in the Shopping Mall. Figure 3-3 shows the procedure

which relies on an EFS Service providing measurements and information regarding the signal

level as seen by all the Wi-Fi-capable EFS resources. Such EFS service can provide the signal

level of individual Wi-Fi stations as received at the virtual Access Point. The procedure of the

measurement is the following:

(A.1) A dedicated EFS Application (i.e., Wi-Fi mon in Figure 3-3) runs on every Wi-Fi-capable

EFS Resource and performs the corresponding measurements on the signal level.

(A.2) The Wi-Fi mon application publishes the signal level measurements via an EFS Service

through the EFS Service platform. The involved reference point is E2.

The OCS procedure for the migration of the virtual AP based on Wi-Fi signal level is the

following:

Wi-Fi

Bluetooth

Access point
Migration

Slow mobility
Mobile

EFS App Manager
(Access point)

Mobile

Stationary

Wi-Fi mon

Access point

Stationary

Wi-Fi mon

EFS Service Platform

(A.2) Publication of
Wi-Fi measurements

(A.1) Measurement
of Wi-Fi signal level

(CR.0) Consumption of
Wi-Fi measurements

(CR.1) Coarse localization of the robot

EFS Stack
Orchestrator

EFS Resource
Orchestrator

VIM

(CR.3) Request Access Point migration

(CR.2) Decision on Access Point migration

(CR.4) Request resource allocation for the Access Point

(CR.5)
Instantiate

Access Point

(CR.6) FeedbackO3

Oo1

O4

E2

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 34

H2020-761586

(CR.0) The EFS Func Manager associated to the virtual Access Point periodically consumes the

EFS Service providing the Wi-Fi signal level as seen from the EFS Resources. The involved

reference point is E2.

(CR.1) Based on this information, the EFS Func Manager monitors the coarse location of the

robots. This is a step internal to the EFS Func Manager.

(CR.2) Based on the coarse localization of the robot, the EFS Func Manager decides when a

migration of the virtual Access Point is needed (e.g., the robots are closer to a given EFS

Resource than the one they are currently connected to). This is a step internal to the EFS

Func Manager.

(CR.3) The EFS Func Manager contacts the EFS Stack Orchestrator to request the migration of

the EFS function. The involved reference point is O3.

(CR.4) The EFS Stack Orchestrator then it contacts the EFS Resource Orchestrator for allocating

the required resources (e.g., CPU, RAM, storage) on the target EFS Resource. The

involved reference point is Oo1.

(CR.5) If the migration request can be satisfied, the EFS Resource Orchestrator instructs the VIM

to migrate the virtual Access Point to the target EFS Resource. The involved reference

point is O4.

(CR.6) Feedback is provided to all the OCS components on the result of the procedure (e.g.,

successful or not). The involved reference points are O4, Oo1, and O3.

TABLE 3-3: INFORMATION EXCHANGED IN THE EFS FUNCTION MIGRATION PROCEDURE

RP Src Dst Information Action ID

E2 EFS Service
Platform

EFS Func
Manager

Resource ID,
Wi-Fi station IDs,
Wi-Fi signal level

Consume EFS Services
related to the Wi-Fi
information of
surrounding Wi-Fi
stations.

CR.0

O3 EFS Func
Manager

EFS Stack
Orchestrator

Function Instance
ID, Dst Resource ID

Request the migration
of the Function ID to the
target Resource ID

CR.3

EFS Stack
Orchestrator

EFS Func
Manager

Migration status Feedback on the
requested migration

CR.6

Oo1 EFS Stack
Orchestrator

EFS Resource
Orchestrator

Function Instance
ID, Src Resource
ID, Dst Resource ID

Request the migration
of the Function ID from
Src Resource ID to Dst
Resource ID

CR.4

EFS Resource
Orchestrator

EFS Stack
Orchestrator

Migration status Feedback on the
requested migration

CR.6

O4 EFS Resource
Orchestrator

VIM Function Instance
ID, Src Resource
ID, Dst Resource ID

Request the migration
of the Function ID from
Src Resource ID to Dst
Resource ID

CR.5

VIM EFS Resource
Orchestrator

Function Instance
ID, Src Resource
ID, Dst Resource ID

Feedback on the
requested migration

CR.6

3.1.3.2 Low-latency D2D communication based on Localization

In this OCS procedure, an EFS Function Manager is deployed and dedicated to the D2D

communication in order to monitor the location of the robots and establish or terminate the Wi-Fi

P2P channel. Figure 3-4 shows the procedure which relies on an EFS Service providing

localization information regarding the current coordinates of the robots. The procedure of the

measurement is the following:

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 35

H2020-761586

(A.1) A dedicated EFS Application (i.e., Localization mon in Figure 3-4) runs in the Robot

intelligence and performs probabilistic localization of the robots. The probabilistic

localization is based on adaptive (or KDL-sampling) Monte Carlo localization approach.

By employing the data from the LiDAR, the robot pose is traced on a known map.

(A.2) The Localization mon application publishes the coordinates of the robots via an EFS

Service through the EFS Service platform. The involved reference point is E2.

FIGURE 3-4: OCS WORKFLOW FOR THE D2D COMMUNICATION BASED ON LOCALIZATION

The OCS procedure for the lifecycle management of Low-latency D2D communication based on

localization is the following:

(CR.0) The EFS Func Manager associated with the D2D connection periodically consumes the EFS

Service providing the 2D localization coordinates on the map for the robots. The involved

reference point is E2.

(CR.1) Based on this information, the EFS Func Manager computes the Euclidean distance. This is

a step internal to the EFS Func Manager.

(CR.2) Based on the Euclidean distance between the robots, the EFS Func Manager decides

when the D2D connection can be established (e.g., the robots are closer to a given EFS

Resource than the one they are currently connected to). This is a step internal to the EFS

Func Manager.

(CR.3) The EFS Func Manager contacts the VIM in order to instantiate the D2D connection

according to the Wi-Fi Direct procedure [13]. The involved reference point is O2.

(CR.4) Feedback is provided by the VIM on the result of the instantiation procedure (e.g.,

successful or not). The involved reference point is O2.

Table 3-4 reports the information exchanged in the EFS function migration procedure.

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 36

H2020-761586

TABLE 3-4: INFORMATION EXCHANGED IN THE EFS FUNCTION MIGRATION PROCEDURE

RP Src Dst Information Action ID

E2 EFS Service
Platform

EFS Func
Manager

Robot ID,
Robot x point on
the map, Robot y
point on the map

Consume EFS Services
related to the
localization information
of the robots

CR.0

O2 EFS Func
Manager

VIM Function Instance
ID, Dst Resource ID

Request the migration
of the Function ID to the
target Resource ID

CR.3

VIM EFS Func
Manager

D2D status Feedback on the
requested instantiation

CR.4

3.1.4 High-Speed Train

In the high-speed train use case, the EFS platform plays the key role of monitoring and managing

the EFS applications on-board. In the example below, we describe a potential benefit of

employing the monitoring feature, consisting of a procedure to allow the EFS application on-

board to migrate to another EFS node residing in shopping mall. The ability of monitoring and

migrating EFS application at run-time is mission-critical in order to retain the edge service

availability for the large number of users.

3.1.4.1 EFS application migration from on-board to on-land based on mobile connection

FIGURE 3-5: OCS WORKFLOW FOR EFS APPLICATION MIGRATION FROM ON-BOARD TO ON-LAND

BASED ON MOBILE NETWORK CONNECTION

In this OCS procedure, the OCS makes the migration decision and moves EFS application on-

board to on-land based on the information from the EFS service platform, to provide the service

continuity for each user using the edge service on-board. Figure 3-5 illustrates the OCS workflow

for the EFS application migration. We assume that the EFS platform is capable of collecting

migration-related information on each node in order to support the EFS application migration

operation.

The OCS procedure for EFS application migration from on-board to on-land based on mobile

network connection is as the following:

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 37

H2020-761586

(HST.1) The EFS Func Manager associated with the edge DC periodically consumes the EFS

services as mobility info, QoS, UE IP, EFS app ID and source EFS node ID. The involved

reference point is E2.

(HST.2) Based on the mobility info, the EFS Func Manager decides when a migration of the EFS

application is needed to retain the service continuity for each user using the edge service

on-board. If it decides to do the migration, the EFS Func manager selects the EFS

application to be migrated based on UE IP, EFS app ID and source EFS node ID and

selects the destination EFS node based on mobility info. This output as source EFS node

ID, destination EFS node ID, EFS app ID is then forwarded to the EFS stack orchestrator

via the O3 interface.

(HST.3) The EFS stack orchestrator enforces the request received from the EFS Func manager.

(HST.4) The EFS stack orchestrator requests the EFS resource orchestrator for resource allocation

for the destination EFS node by communicating over the Oo1 interface.

(HST.5) If the migration request can be satisfied, the EFS Resource Orchestrator instructs the VIM

to instantiate the resources in the destination EFS node for edge service migration. The

involved reference point is O4.

(HST.6) Feedback is provided to all the OCS components on the result of the procedure (e.g.,

successful or not). The involved reference points are O4, Oo1, and O3.

Table 3-5 reports the information exchanged in the EFS application migration procedure.

TABLE 3-5: INFORMATION EXCHANGED IN EFS APPLICATION MIGRATION PROCEDURE

RP Src Dst Information Action ID

E2 EFS Service
Platform

EFS Func
Manager

Mobility info, QoS,
UE IP, EFS app ID,
src EFS node ID and
other info

Consumes info from
EFS service platform

HST.1

O3 EFS Func
Manager

EFS Stack
Orchestrator

Src EFS node ID, dst
EFS node ID, EFS
app ID and other
info

Request the migration
of the EFS application

HST.2

EFS Stack
Orchestrator

EFS Func
Manager

Migration status Feedback on the
requested migration

HST.2

Oo1 EFS Stack
Orchestrator

EFS Resource
Orchestrator

Dst EFS node ID,
EFS app ID and
other info

Request resource
allocation for the dst
EFS node

HST.4

EFS Resource
Orchestrator

EFS Stack
Orchestrator

Migration status Feedback on the
requested migration

HST.4

O4 EFS Resource
Orchestrator

VIM Dst EFS node ID,
EFS app ID and
other info

Instantiate the
resources in the dst
EFS node

HST.5

VIM EFS Resource
Orchestrator

Migration status Feedback on the
requested migration

HST.5

3.1.5 Software Defined Wide Area Network (SD-WAN)

Software Defined Wide Area Network (SD-WAN) technology is the new generation of Wide

Area Networks (WANs) which leverages Software Defined Network (SDN) in the scope of

WANs. This use case integrates Edge and Fog infrastructure to virtualize network functions in

order to provide a low latency and distributed network service that permits the deployment of

an organization’s WAN interconnecting the headquarters, branches and Cloud. The envisaged

scenario is the shopping mall, where branch shops can use this service to establish a local network

and to connect it to the company WAN. Also, a Point of Sale (PoS) application is defined, where

banks can establish a secure connection with the shopping mall using SD-WAN. Those shops that

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 38

H2020-761586

use the payment service will connect to the WAN access point with their POSs and process

payments. Isolation features make this scenario feasible to become a multi-tenancy environment,

while resilience, fault-tolerance and flexibility are features that also enhance the use case.

3.1.5.1 Traffic balancing switching between LTE and broadband interface

This use case presents a Fog CD where a Kubernetes cluster has been installed. A couple of LXD

containers are instantiated which execute different functions in order to get a reliable procedure.

This procedure focuses on how to provide PoS terminals with a connection to the bank avoiding a

direct VPN connection. For the case of PoS terminals, nowadays it can be expected that all the

shops in the shopping mall accept credit card payments. Usually the procedure is to establish a

secure connection between the terminal and the bank, which then processes the payment.

Leveraging SD-WAN, many PoS can connect to the SD-WAN access point, which will establish a

single secure connection with the bank, instead of multiple connections for each device. Also, the

coverage can be enhanced inside the shopping mall leveraging the IEEE 802.11 access points.

FIGURE 3-6: OCS WORKFLOW FOR TRAFFIC LOAD BALANCING BETWEEN LTE AND BROADBAND

INTERFACES

The steps involved in the above procedure are described in the list below:

(SW.0) Point of Sale sends payment information to the AP function (e.g., Dockerized Access

Point) by AP interface (i.e., dongle USB)

(SW.1) Information is forwarded to the SD-WAN function.

(SW.2) SD-WAN function collects statistic information about physical interfaces (i.e., LTE and

Broadband), and current use of the network such as RTT latency or bandwidth currently

being used.

(SW.3) The statistics measured at the physical interface are sent to the EFS Service Platform

(Publisher/Subscriber node) by the SD-WAN function which publishes interfaces-related

information to the service.

(SW.4) The EFS Resource orchestrator is subscribed to the EFS Service Platform where the SD-

WAN monitoring data will be aggregated.

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 39

H2020-761586

(SW.5) EFS Resource Orchestrator processes the aggregated data in the SD-WAN orchestrator

and when necessary commands the EFS App/Func Manager to take action and

rebalance the flows going through SW.3.

(SW.6) The EFS App/Func Manager processes the balancing actions sent by the resource

orchestrator and using the SD-WAN controller forwards them to the EFS Service Platform

Manager in order to activate the most efficient interface of both.

(SW.7) EFS Service Platform Manager acts as a proxy, forwarding the commands from the SD-

WAN Controller to the SD-WAN function in order to trigger a change in the flows/paths

installed.

(SW.8) SD-WAN sends payment information (received in second step) by the interface chosen

by SD-WAN Orchestrator. Payment info arrives to its destination (e.g., Bank Payment

Gateway).

Table 3-6 reports information exchanged in the EFS function procedure.

TABLE 3-6: INFORMATION EXCHANGED IN THE EFS FUNCTION PROCEDURE

RP Src Dst Information Action ID

E2~=Mp1 EFS Service
Platform

EFS Resource
Orchestrator

Metrics/Statistics
from physical
network interfaces

Consume
information from
EFS Service
Platform

SW.4

E2~=Mp1 SD-WAN
Function

EFS Service
Platform

Metrics/Statistics
from physical
network interfaces

Publish
information to
the EFS Service
Platform

SW.3

Oo1 EFS Resource
Orchestrator

EFS App/Func
Manager

Commands to
rebalance
flows/paths

Requests the SD-
WAN EFS
Manger to
rebalance
flows/paths

SW.5

Om1 EFS
App/Func
Manager

EFS Service
Platform
Manager

Instructions to
activate the optimum
interface

Request an
interface
rebalancing

SW.6

O5 EFS
App/Func
Manager

SD-WAN
function

Commands to
activate the optimum
interface

Proxies requests
from the EFS
App/Func
Manager to SD-
WAN function

SW.7

3.2 Common OCS features overview and container-based migration

To enable provisioning of EFS functions and applications on top of low-power edge devices,

OCS provides lifecycle management support for lightweight virtualization technologies including

system-based and application-based containerization. On the one hand, the system container

behaves like a standalone Linux system. That is, a system container such as Linux Container

(LXC/LXD) has its own root access, file system, memory, processes, networking and can be

rebooted independently from the host system. On the other hand, the application container

isolates an application from other applications running on top of the same host kernel and

operating system. An application container such as Docker encapsulates its necessary libraries,

configurations and dependencies without affecting the host system and other applications.

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 40

H2020-761586

TABLE 3-7: COMMON OCS FEATURES ACROSS 5G-CORAL USE CASES

Title Use Case Description

Scale out,
native
app

VR EFS Service platform is capable of providing the orientation
application in the Shopping Mall by orchestrating resources running
on the fog nodes. Based on Resource Utilization information
provided by the EFS orientation application, new resource for the
orientation application are allocated based on the user demand.

Scale out,
LXC and
docker

AR
navigation

EFS Service platform is capable of provisioning Wi-Fi Access and
AR Navigation service in the Shopping Mall. An instantiation of a
new AR Navigation application is based on Resource Utilization
information provided by the EFS Service platform.

Migration,
docker

High-Speed
Train

OCS make the migration decision and migrate EFS application on-
board to on-land based on the information from the EFS service
platform to provide the service continuity for each user using the
edge service on-board. We assume that the EFS platform is
capable of collecting migration-related information on each node
in order to support the EFS application migration operation.

Migration,
LXD

Fog-assisted
robotics

EFS Function Manager is deployed and dedicated to the virtual
Access Point in order to detect the movement of the robots and
trigger the migration of the EFS Function so as to provide full
connectivity coverage in the Shopping Mall.

TABLE 3-8: SPECIFIC OCS FEATURES OF SOME 5G-CORAL USE CASE

Title Use Case Description

Scale up,
docker
pods

SD-WAN It focuses on container provisioning in order to resize them to
guarantee the best performance and 5G-CORAL KPIs fulfilment.
Monitoring framework measures PODs/Dockers/VMs parameters
such as computing (CPUs, RAMs), storage (HDD/SSD), and
networking (virtual interfaces).

After the detailed description of the OCS monitoring procedures involved in each use case

present in 5G-CORAL project, one can distinguish some common features as reported in Table

3-7 and Table 3-8. This is the case for migration and scale up.

Container migration can be classified into stateful and stateless. In stateless migration (aka cold

or offline migration), the state of the container is not preserved when the container is relocated to

the destination node. In the case of stateful migration (aka live migration), the state of the

container is retained when the container is restored at the destination node. There are three

schemes of stateful migration as follows:

• stop-and-copy - freezes the container, checkpoints its state, copies the container image

and its state to the destination then restores the state from the checkpoint [14].

• pre-copy - performs iterative state checkpointing while the container is running till the

amount of in-memory change is at minimum, then concludes with a shorter stop-and-

copy [15]. Iterative checkpointing reduces the size of the final checkpoint which is

performed while the container is frozen. This minimizes the time required for the final

checkpoint and the time required to copy the checkpoint to destination.

• post-copy - performs a short stop-and-copy to move essential state data, then starts the

container at the destination and retrieves the rest of the data when required [16]. This

type of migration has a very small downtime, but containers may suffer from

performance degradation due to the time needed to wait for the requested memory

pages.

Table 3-9 shows a summary of the pros and cons of these migration schemes.

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 41

H2020-761586

TABLE 3-9: PROS AND CONS OF STOP-AND-COPY, PRE-COPY AND POST COPY MIGRATION SCHEMES

Feature/Scheme stop-and-copy pre-copy post-copy

Downtime Longest – includes the
time required to
checkpoint and copy
the entire state.

Short – only includes
the time required for
the last iteration of
checkpoint and copy.

Shortest – only includes the
time required to checkpoint
and copy the essential
state.

Migration time Short – the total
migration time is short
because it is done in
one iteration.

Long – depends on the
number of iterations.
The more iterations, the
longer the total
migration time.

Long – depends on the
running application and the
amount of time it requires
to retrieve the entire state
from the source.

Application

performance

Affected only during
downtime.

Affected only during
downtime.

Affected during downtime
and also due to latency
during the retrieval of
state from the source while
application is running.

Network

utilization

Low – only one copy
of the state is
transferred.

High – the total state
size accumulatively
grows with the number
of iterations.

Low – only one copy of the
state is transferred.

In the case of traditional hypervisor-based virtualization, virtual machine (VM) migration is well

investigated [17] and many successful solutions are commercially available. For instance, a pre-

copy based VM migration scheme is presented in [15]. An active VM continues to run in the

course of in-memory data iterative pre-copying. During a consecutive iteration, only dirty pages

are transferred. At last, a final state copy is performed while the VM instance is frozen and then

transferred to the destination host. This way, the amount of downtime is greatly reduced when

compared to a pure stop-and-copy scheme. Although VM migration is a mature technology, it

relies on hypervisors and most of the existing solutions are tailored for data centre environment

where network-attached storage (NAS) and specific virtualization technology are utilized. NAS

enables all the host machines in a data centre to access a network-shared storage which reduces

the time spent during the copying stage. However, in a scenario where migration takes place

between edge nodes, the state and local-disk storage have to be copied over wide area

network (WAN).

Recently, container migration has caught more attention from the research community [18] [20].

Especially, since containerization offers many advantages over traditional hypervisor-based

virtualization such as resource efficiency and performance. This fact enables the instantiation of

lightweight containerized applications suitable for IoT services [20]. In [18], container migration

mechanism is developed for power efficiency optimization in heterogeneous data centre. This

work assumes that the source and destination hosts have access to a NAS and thus container data

is not copied over WAN. Furthermore, a framework for migrating edge containerized

applications is presented in [19]. The proposed framework is the first to consider MEC

environment for system container migration. Fundamentally, the framework is a layered model

which aims to reduce the downtime incurred by the migration process. While the presented results

show reduction in downtime as a result of layering, the framework relies on stop-and-copy

migration which is not an efficient method for containers with large in-memory state.

Migration is introduced in the High-Speed Train and Fog-assisted Robotics use cases. From

implementation point of view, in High-Speed train the migration refers to docker containers while

in Fog-assisted Robotics it points to LXD technology. As a brief summary, in High-Speed the EFS

service platform provides information to the OCS, which migrates on-board EFS applications to

on-land to provide service continuity. In Fog-assisted Robotics, the EFS Function Manager is

deployed and dedicated to the virtual access point in order to detect the movement of the

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 42

H2020-761586

robots and trigger the migration of the EFS Function so as to provide full connectivity coverage in

the Shopping Mall.

The migration feature demands the application of some OCS functional requirements, listed

below:

• Support of harvesting computing capabilities from mobile resources. Migration and

mobility are closed characteristics. Thus, in order to feed the OCS with relevant

information, it must collect capabilities from mobile resources, e.g. train or robot.

• Support of discovery, monitoring, allocation, etc. of relevant hardware capabilities. With

the objective of selecting the best target resource to migrate EFS applications and

functions, OCS must gather information about possible destination EFS resources.

• Support of federation including at runtime OCS components. Migration could imply a

migration out of the current domain. Hence, federation is needed to manage instantiation

of EFS entities among different domains.

With refer to non-functional requirements, please find listed the ones tagged as important for

migration.

• Availability and self-healing mechanisms in error-prone environments. The migration

procedure should provide recovery mechanisms if errors are produced while migrating

an EFS entity. Thus, this non-functional requirement gains importance.

Experimental validation and performance assessment of the migration feature can be found in

Section 5.3.

The second common feature identified in three use cases is scale out. In VR, it is described scale

out of native applications, in AR it refers to LXD and docker containers. Finally, IoT multi-RAT

focus only on docker. This feature aims to create more instances of an EFS application or function

when, for instance, resources reach a defined limit. As a brief overview, VR use case pretends to

allocate resources based on user demands analysing resource utilization information provided by

the EFS orientation application. The AR use case scales out the AR navigation application in the

shopping mall based on resource utilization information provided by the EFS service platform.

Finally, IoT multi-RAT intends to scale out the virtualize communication stack function in a new

node when it is under heavy load.

Regarding what functional requirements apply to this feature, it is listed below the most relevant

ones.

• Support of harvesting computing capabilities from low-end resources. It is a key

characteristic which allow the OCS to know the state of the function or the application

and trigger the scalability of it.

• Support of harvesting computing capabilities from mobile resources. Similar to the one

before, OCS should collect computing data from mobile resources and get an overview

of how the system is behaving and take proper actions.

• Support of discovery, configuration, monitoring, allocation, etc. of relevant hardware

capabilities. To scale up the function, OCS needs to discover hardware capabilities

where instantiate the new function, besides configuring it, set the monitoring to get the

status, etc.

• Support of integration including at runtime of heterogeneous resources in terms of

software and hardware capabilities. Different type of resources can be used to start a

new function, so this is a desired requirement to be fulfilled.

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 43

H2020-761586

• Support of federation including at runtime of OCS components. Federation can be

leveraged to user another domain with more resources that the actual and increase the

number of entities serving.

• Support of the interworking with resources external to the OCS. Functions could be

scaled out in the cloud, if the scenario requires it, so this is another requirement.

In relation to the non-functional requirements for scale out, some of them are important to this

feature.

• Availability and self-healing mechanisms in error-prone environments. The deployment of

a new function is a process where error can be encountered, and therefore availability

and self-healing have to be accomplished.

• Support of large deployments in terms of number of resources and geographic areas.

Scaling out the system may imply a large number of functions deployed. Thus,

depending on the purpose and design of it, the application may grow up being formed

by a large number of resources extended in different locations.

• Capability to adapt to workload changes by provisioning and deprovisioning resources

in an automated manner. This refers to scale up the underlying resources, which will be

used to scale up functions and applications. Both can be linked, and if a system requests

more capabilities, first is to load resources and after scale the entities.

Finally, one additional feature is described (see Table 3-8) but only used in one particular use

case, that is the scale up in the SD-WAN use case. The scale up of containers is similar to scale

out, commented before. The container itself is reconfigured on demand to increase or decrease

the capabilities and the resources allocated. The scale up procedure does not create a new

container.

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 44

H2020-761586

4 Federation and resource provisioning
This section introduces the federation concept in 5G CORAL. Particular focus is given to the

federation of resources between different administrative domains. Furthermore, a general system

model is used in order to analyse and validate profit-maximized federations and advanced

resource provisioning.

4.1 Federation of resources

Federation has been described in [6] and [21] as a mechanism for integrating multiple

administrative domains at a different granularity into a unified open platform where the

federated resources can trust each other at a certain degree.

Each administrative domain is composed of set of computing/storage/networking devices that

shape the underlying infrastructure of a single administrative domain. As mentioned in [6],

multiple administrative domains may exist in a same service area. Considering the 5G-CORAL

environment, the underlying infrastructures of multiple administrative domains are in constant

adjacency. The nearness of various technologies opens a spectrum of possibilities for deployment

of different EFS services/applications that rely on multiple underlying infrastructures. By

cooperation among administrative domains and losing the strict boundaries, the inclusion of

external resources is feasible. The process of adopting external resources provided by another

peering/provider domain for the goal of deploying an EFS service/application is called

federation of resources.

How an administrative domain would benefit from a federation of resources? In 5G-CORAL

environment, each administrative domain has its own underlying infrastructure as EFS resources.

The quantity of the set of EFS resources varies from large to a set of few EFS resource per

administrative domain. In both cases, large or few amount EFS resources, each underlying

infrastructure is limited. The limitation can be in terms of capacity, lack of certain technology, user

accessibility, etc. In order to expand the limitation without extending the CAPEX and/or OPEX,

the administrative domains can use federation feature. The federation as concept allows the

administrative domains to maintain the service level without service interruption and high

expenses. Depending on the inter-domain interactions, the global welfare of the administrative

domains may increase with adoption of federation feature. In environment close to the edge of

the network where the infrastructure resources are volatile, through the use of resource

federation, the stability can be increased.

In order to enable the federation of resources through 5G-CORAL platform, the whole process of

federation goes through several steps. First, it is mandatory to identify all the

stakeholders/actors that are part of a certain use case scenario (see Section 4.1.1). Next, a

proper model of interaction between all the involved parties or stakeholders has to be

established (see Section 4.1.2). Finally, the process of resource federation implemented by

setting up how EFS resources interact and establish multi-domain connections between each other

using the 5G-CORAL system (see Section 4.1.3, Section 4.1.3.1, Section 4.1.3.2, Section 4.1.3.3

and Section 4.1.4).

4.1.1 Federation roles

The federation procedure is dependent on the setup scenario or the circumstances that demand

multiple administrative domains to enable federation among themselves. In the federation

process a domain can play two roles: consumer and provider. Consumer role has the

administrative domain that requests federation of resources or resources from external domain to

be included as part of its domain/services. The provider role is when the administrative domain

provides set of resources to an external (consumer) domain under certain conditions. In each

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 45

H2020-761586

federation scenario there are at least a single consumer domain and a single or multiple

provider domains. Administrative domains that have the underlying infrastructure in a near

proximity (e.g. same geo-location, co-exist in mutual coverage area, etc.,) are keener to employ

federation than administrative domains that are distant (e.g., domain in separate countries).

Prior to any federation procedure, the administrative domains need to define the relationships

among themselves in each case they interact as provider and/or consumer roles. The relationships

are set on business level in terms of trust policies. These agreements can be statically set in

advance (e.g., long time before any federation interaction) or they can be dynamically set,

minutes range before any federation procedure. The static agreements or pre-established

(Section 5.2 in [21]) are useful for administrative domains that would expect frequent interaction

among themselves, usually neighbouring administrative domains. The agreements set up all the

terms for both consumer and provider roles, the pricing models, the trust policies, the security

level among the administrative domains. For instance, in a cooperative neighbouring interaction,

the terms and policies for general resource federation can be set in manner that is better for the

provider, while for particular use-cases a different set of terms and usage polices can be

favourable for consumer. These agreements in pre-agreed federation are usually long-term

agreements with fixed pricing (subscription based), but any length or pricing can be applied.

More information regarding the agreements and the pricing can be found in D3.1 [6].

Dynamic or open federation (Section 5.2 in [21]) relationships are set on-line, minutes prior to

establishing any federation of resources or services. These agreements usually define roles in a

particular use-case. They contain similar terms and policies; however, they are mostly short-term

with dynamic pricing policies. The open federation is usually competitive following an auction

model of reserving resources (Section 3.5 in [6]). Moreover, as in an open federation, the

administrative domain decides dynamically whether to join or leave an existing federation. The

administrative domain does not need to make decisions at predetermined time, so the duration of

its federation membership is not fixed. Federation in this case is dynamically formed in a

distributed, bottom-up manner.

For particular use-cases, the static approach would have pre-determined roles and amount of

resources that each provider domain provides to the consumer domain. The time to request,

reserve and use federated resources is shorter than in the open-federation manner. Moreover,

administrative domains form a federation based on a (long-term or short-term) agreement so

that their membership remains unchanged for an extended period of time. Also, mutual

agreements are required for any membership change to an existing federation. Federation in

this case can be formed by a central entity in an offline, top-down manner. Table 4-1 compares

dynamic federation with static federation.

TABLE 4-1: COMPARISONS BETWEEN STATIC AND DYNAMIC FEDERATION

Feature Dynamic Federation Static Federation

Membership Change Frequency High Low

Membership Change Approach Autonomous, distributed,
bottom-up

Central controlled, top-down

Stability Potentially unstable Stable

In 5G-CORAL we are focusing on the pre-determined federation model. The open-federation

model is left for further study. The adjacent administrative domains settle general agreements

and agreements that support their use cases. The agreements contain the interaction models and

the way that the federation is going to be implemented. Next section dives into the details of the

interaction model.

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 46

H2020-761586

4.1.2 Federation interaction model

Once the federation between 5G-CORAL administrative domains is defined as static or pre-

established (as explained in Section 5.2 in [21]). The next step is to define the interaction

between the 5G-CORAL platform at each domain. The interaction between the administrative

domains can be on hierarchical or peer-to-peer level. The approach of the 5G-CORAL is to

apply peer-to-peer cooperative model of interaction. In D3.1, three cooperative models are

introduced for EFS resource federation:

• Trust model

• Loan model

• Concession model

The loan model is preferable for the open federation, while the concession model for the non-

volatile resources and the trust model is well suited for long-term inter-domain relationships. For

these reasons and since the static method is adapted in 5G-CORAL, the trust cooperative peer-

to-peer model is most suitable at this point. In this static model the pricing can be fixed or

posted-scheme that goes through subscription-based charging scheme (monthly or yearly based)

[6]. Additional to the defined federation model, each administrative domain may introduce sub-

models for specific use-cases that needs to be translated to well-defined SLAs. Moreover, the

specific use-case would be seen as a case where different SLA agreements providing better

conditions is in place instead of the agreement for a general federation. For example, for a

certain administrative domain that provides specific set of services over Wi-Fi access, it may set

up specific SLA agreements with neighbouring domains over their Wi-Fi radio resources.

4.1.3 Inter-domain connection (F2 interface)

Next, an administrative domain establishes links to all federated domains on the OCS level via

the F2 interface. For example, if administrative domain A has established federation agreements

with administrative domain B and administrative domain C then there will be two links on the F2

interface, one from OCS A towards OCS B and another one from OCS A towards OCS C. The F2

interface is an interface for inter-connection of peer-to-peer OCS platforms residing in different

administrative domain. The document focuses on the resource federation, hence the

communication through the F2 interface would be mainly towards the federation of resources

related operations. Having that in mind, the communication on F2 interface is between EFS

Resource Orchestration modules.

The EFS Resource Orchestrator module supports accessing the edge and Fog resources in an

abstracted manner independently of any VIMs, as well as governance of service

platform/function/application instances sharing resources in the EFS [6]. In the federation (SLA)

agreements the administrative domains share the endpoints (e.g., IP addresses, URL, etc.,) of their

EFS Resource Orchestrators. The endpoints are used to enable communication through the F2

interface. The communication on the F2 interface is composed of three phases: advertisement

phase, instantiation phase, and termination phase (shown on Figure 4-1).

To successfully perform the federation, EFS Resource Orchestrators belonging to different

domains will communicate via interface F2 to execute a federation message exchange. Within

the message exchange, the consumer domain EFS RO has to start the procedure, and the

provider EFS RO will suggest a feasible node to be federated (advertisement/discovery phase).

Then, the consumer EFS RO will accept or decline the offered resource (negotiation phase),

answering to the provider EFS RO. The EFS RO should interact with the VIM and the EFS

Application/Function Manager to complete the process (instantiation phase). Figure 4-4 describes

further the interaction of the federation interface F2 with the rest of components in the OCS by

using a sequence diagram. Figure 4-4 is further detailed in Section 4.1.4.

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 47

H2020-761586

4.1.3.1 Advertisement/negotiation phase

The advertisement phase or negotiation phase is when all inter-connected administrative domains

request/offer set of EFS resources. An administrative domain as a consumer role requests

federating resources from other provider domains, whereas an administrative domain as a

provider role offers available resources for federation and negotiate over their usage (e.g.,

duration, pricing, etc.). The providers of federated resources can periodically update their

capabilities or reply the offered resources per request. The periodic update of currently

available resources for federation would enable all peering administrative domains to have

updated global view and rapidly decide for the optimal resources. However, the mobility and

volatility of the 5G-CORAL resources demand frequent message exchange on the F2 interfaces,

which due to delays or traffic congestions may produce inaccurate updates of the global view.

To overcome this issue, the provider EFS Resource Orchestrator advertises the available resources

for federation only upon received request from a (potential) consumer domain. The

request/advertise approach would allow each administrative domain to apply policies and

prioritize requests. For example, domain B may respond to a request arrived from a highly

ranked domain A and not respond to a request from lower ranked domain C, in case that both

requests arrived at the same time at domain B. In this way, by applying the policies, the

signalling overhead is significantly reduced.

FIGURE 4-1: OCS FEDERATION INTERACTION – ADVERTISEMENT/NEGOTIATION PHASE

Once the consumer domain has the need of adapting federated resources, the constituent EFS

Resource Orchestrator prepares a request for federation. The request is multi-casted towards the

peering administrative domains according to the demands needed (e.g. geo-location of the

resource). For example, as Figure 4-1 shows, domain A broadcasts requests to neighbouring

domains (domain B and domain C). The potential provider domains (B and C) generate their

offers/advertisements of available resources for federation and respond to the request. The

consumer domain A accumulates the responses for a certain time (e.g., once a timeout for

received offers expires) and then ranks the received advertisements. As shown on Figure 4-1, the

consumer domain A chooses the optimal set of resources (from domain B) and the EFS Resource

Orchestrator sends reservation requests (Accept offer) to the chosen provider domain B. The

chosen providers confirm the reservation request and that is the last message exchange for the

advertisement/negotiation phase.

During the negotiation phase, parties should take into account the federation stability, which

could be affected by at least two factors. First, mobility and volatility of EFS resource may later

invalidate the usability of federated resources that have been offered. Second, the provider

domain may unilaterally retract federated resources that have been offered to some consumer

domain and provide another consumer domain with the retract resources as a means to earn

more profit. Generally speaking, if a participant can earn more profit by leaving a federation,

the federation will fall apart; if a group of participants can all earn more profits by leaving a

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 48

H2020-761586

federation and forming another one, the federation will fall apart. This scenario may not be

avoided if administrative domains earn their own profits individually, as in the case of peer-to-

peer federation model. However, if all participants share the total profit in the federation (a

group federation), instability of federation can be avoided by an appropriate allocation of

federation profits to members.

4.1.3.2 Federation instantiation phase

The instantiation phase begins when the provider EFS RO confirms incoming request for

reservation of available resources. Then the EFS Resource Orchestrator sends reservation request

to the VIM on the O4 interface. From the three planes (management, control and data plane),

only the management plane is not federated. The provider domain keeps the EFS resource

attached to the local management plane. The VIM reconfigures the control and data plane of the

resources that are being reserved. Once both planes are reset to idle, the operation is confirmed

from the VIM to the EFS Resource Orchestrator. In order to connect the reserved resources with

the consumer domain, the EFS Resource Orchestrator issues request to the EFS

Application/Function Manager to instantiate tunnelling function (e.g., SDN-WAN function) on top

of the reserved resources (see Figure 4-2). The tunnelling (SDN-WAN) function is instantiated in

order to create secure tunnel and grant orchestration privilege to the consumer (external) domain

over the control and data plane of the reserved resources. Note that the management plane of

the reserved resources would remain orchestrated by the constituent EFS Resource Orchestrator

and VIM for the whole duration of the federation process.

FIGURE 4-2: OCS FEDERATION INTERACTION – TERMINATION PHASE

Upon instantiation of the tunnelling (SDN-WAN) function, the EFS Application/Function Manager

exchanges security parameters (e.g., security keys) or provides the ID and the IP address of the

tunnelling (SDN-WAN) function to the EFS Resource Orchestrator. The EFS Resource Orchestrator

provides this set of information (ID and IP address) on the F2 interface along with a confirmation

that the reserved resource is ready to be federated by the consumer domain. The consumer EFS

Resource Orchestrator receives the information and instructs already instantiated consumer SDN-

WAN function to establish the tunnel. After the tunnel is established, the resources are federated

and ready to be used by the consumer domain. The consumer EFS Resource Orchestrator sends

confirmation to the provider EFS Resource Orchestrator and the charging process is initiated.

4.1.3.3 Federation termination phase

When the consumer domain wants to terminate the federation of the resources, the consumer

domain sends termination request to the provider EFS-RO on F2. The provider EFS RO initiates

termination of the SDN-WAN function to the local EFS Application/Function Manager. Once this

operation is done, the provider EFS RO sends reconfiguration request to the VIM. Both (control

and data) planes are reconfigured to retrieve the reserved resources and make them available

in the local domain. The VIM notifies the provider EFS RO for concluded reconfiguration and the

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 49

H2020-761586

provider EFS RO stops the charging and/or accounting process. The provider EFS RO notifies the

consumer EFS RO that the federation has terminated successfully and optionally provides the

charging information.

FIGURE 4-3: OCS FEDERATION INTERACTION – TERMINATION PHASE

During the termination phase parties should take into account that a federated EFS resource is

stable if it can be used for an extended time so both the provider and consumer domains can

benefit from it. Instability of federated EFS resource incurs high signalling costs without real

benefits. There are several reasons for a federated EFS resource to be unstable. One occurs to

mobile EFS nodes (fog nodes). If a fog node is a part of the EFS resource of a provider domain,

offering it to a consumer domain may risk the possibility of losing connection with it possibly due

to its movement.

4.1.4 Federation of resources

This subsection describes how the federation of resources is done in 5G-CORAL jointly with the

designed federation interface (F2) endpoints. Figure 4-4 illustrates a sequence diagram

describing the whole workflow of the static federation, including the interaction between two

domains. This includes the messaging exchange between each of the OCS components involved in

the federation, for both inter and intra federated domains. Additionally, in Table 4-2 and Table

4-3 describe the federation interface (F2), describing in detail the endpoints involved (e.g.,

action, body and description) in every of the identified federation phases (see Section 4.1.3.1,

Section 4.1.3.2, and Section 4.1.3.3).

TABLE 4-2: FEDERATION ADVERTISEMENT INTERFACE ENDPOINTS

Phase End Point Verb Body Description

A
d
v

e
rt

is
in

g
/D

is
co

v
e
ry

/N
e
g

o
ti
a

ti
o
n

 /federation
/discover

GET None Retrieve active offers

 POST offer_uuid Starts the federation process. Generating in the
provider domain an offer, which it will return
jointly with an offer_uuid. The details of the offer
can be the main characteristics of the offered
fog node, which should be similar to the ones
specified in the SLA.

DELETE offer_uuid Rejects an offer.

PUT offer_uuid Asks for a new node to federate, automatically
rejecting the node offered.

/federation
/reserve

POST offer_uuid Reservation request, from an active offer.
Reserve the resources, in order to be ready for
the instantiation phase. Returns the confirmation.

GET offer_uuid Retrieve reserved resources.

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 50

H2020-761586

FIGURE 4-4: SEQUENCE DIAGRAM FOR OCS RESOURCE FEDERATION

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 51

H2020-761586

TABLE 4-3: FEDERATION INSTANTIATION AND TERMINATION INTERFACE ENDPOINTS

Phase End Point Verb Body Description

In
st

a
n
ti
a

ti
o
n

/federation
/instantiate

POST offer_uuid,
RO_sd_wan
_ip,
preshared_
secret_dp,
preshared_
secret_cp,
callback_en
dpoint

Accept an offer, including some necessary
details to instantiate the federation, such as
where should the tunnel be created
(RO_public_ip) and the control and data plane
shared secrets in order to stablish all secure
tunnels towards the consumer domain.
Returns immediately as the instantiation process
can take some time. Once instantiation process
finishes, the provider domain notifies the
consumer domain that everything is ready at the
callback_endpoint.

GET offer_uuid Retrieves current status of a federation instance
identified by its offer_uuid.

T
e
rm

in

a
ti
o
n
 /federation

/terminate
POST offer_uuid Terminates the federation of resources identified

by an offer_uuid.

4.2 Profit maximization in a federated environment

Federation of resource among multiple administrative domains is beneficial in many ways. For

example, it lowers the rate of EFS resource request denial due to local resource shortage. We

can turn all types of benefits into revenue and assume that the sole reason for any EFS node to

participate in a federation is to maximize its profit. We shall analyze how to form profit-

maximized federations among multiple administrative domains coexisting in a geographical area

that are able to share EFS resource technically.

This task resolves a management-plane issue: organizing a set of EFS nodes into disjoint

administrative domains (each corresponds to an EFS federation of one or more EFS nodes). Each

organizing result is a partition of the set of EFS nodes called federation structure. The goal is to

seek a federation structure that has the highest total profit. This mission faces challenges due to

autonomous behavior of EFS nodes: an EFS node may join or leave a federation at its own will

and may not be willing to transfer its profit to or share its profit with other members in the

federation. Without agreements among participating EFS nodes, an optimal federation structure,

even exists theoretically, is not stable and thus cannot be achieved in reality.

Possible agreements among participants include way of participation (see Section 4.1.2) and

profit allocation. These agreements affect stability of the federation.

4.2.1 Instability in dynamic EFS federation

In dynamic federation, the federation structure keeps changing with the existence of roaming fog

nodes. Even if all EFS nodes are stationary, the federation structure may still be unstable if EFS

nodes individually form federations to maximize their own profits.

TABLE 4-4: PROFITS OF EFS NODES IN DIFFERENT FEDERATIONS

EFS node Own profit Profit in
{A, B}

Profit in
{B, C}

Profit in
{A, C}

Profit in
{A, B, C}

A 5 8 - 6 7

B 6 8 10 - 9

C 4 - 5 7 6

Consider a simple scenario consisting of EFS nodes A, B, and C with their profits in different

federations shown in Table 4-4. Suppose that initially all EFS nodes work alone. Node A requests

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 52

H2020-761586

to form a federation with B to maximize its profit. B will accept A’s proposal because B’s profit

can also be increased in federation {A, B}. After that, C cannot join the federation because that

will decrease A’s profit from 8 to 7. On the other hand, B has the incentive to leave federation

{A, B} and form another federation with C. C will accept B’s proposal because it will get higher

profit than being working alone. After that, because now A works alone, C has the incentive to

leave federation {B, C} and form another federation with A. A will accept C’s proposal due to

higher profit. Now it is A's turn to leave the federation and form a federation with B. The same

scenario will then repeat itself.

4.2.2 Profit allocation: fairness and stability

Profit allocation mechanism allocates the total profit of a federation to each member. The

allocation should reflect each member’s contribution (i.e., fair) and ensure stability. A well-known

mechanism is based on Shapley value [22], which accounts for marginal contribution of each

member. A member’s marginal contribution is the change of the total profit when it joins the

federation. Formally, letting 𝑣(𝑆) be the total profit in any federation 𝑆, federation member 𝑖’s

Shapley value in federation 𝐹 is defined as:

𝜙𝑖(𝐹) = ∑
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
𝑆⊆𝐹\{𝑖}

(𝑣(𝑆⋃{𝑖}) − 𝑣(𝑆)). (1)

The use of Shapley value in profit allocation achieves individual fairness. More specifically, the

profit allocated to a participant is not less than the payoff when it does not participate.

However, Shapley-value-based profit allocation incurs high computation cost.

Banzhaf value [23] based on marginal contribution can also be used for profit allocation that

guarantees fairness. Compared with Shapley value, Banzhaf value requires less computation

overhead to compute. The Banzhaf value for member 𝑖 in federation 𝐹 is defined as:

𝛽𝑖(𝐹) =
1

2𝑚−1
∑ (𝑣(𝑆⋃{𝑖}) − 𝑣(𝑆))

𝑆⊆𝐹\{𝑖}

, (2)

where 𝑚 = |𝐹|. The normalized Banzhaf value is defined as:

𝐵𝑖(𝐹) =
𝛽𝑖(𝐹)

∑ 𝛽𝑗(𝐹)𝑗∈𝐹
. (3)

The profit of federation 𝐹 that is allocated to member 𝑖 is proportional to 𝐵𝑖(𝐹):

𝑥𝑖(𝐹) = 𝐵𝑖(𝐹)𝑣(𝐹). (4)

A federation is stable only if the profit allocation mechanism gives no member the incentive to

leave the federation to work alone or join another federation. Let 𝐹𝑖 = {𝑠𝑝1, 𝑠𝑝2, … } be the set

of all members in a federation 𝐹𝑖 . Let 𝑣(𝐹𝑖) be the total profit in federation 𝐹𝑖 . Let 𝑥𝑗 be the

profit allocated to each 𝑠𝑝𝑗 ∈ 𝐹𝑖 . An allocation (𝑥𝑗)𝑠𝑝𝑗∈𝐹𝑖
 is feasible if

𝑣(𝐹𝑖) = ∑ 𝑥𝑗𝑠𝑝𝑗∈𝐹𝑖
. (5)

Let vector (𝑥𝑗)𝑠𝑝𝑗∈𝐹𝑖
 be a feasible allocation for 𝐹𝑖 . If there exists another feasible allocation

(𝑦𝑗)𝑠𝑝𝑗∈𝐻 for some sub-federation 𝐻 ⊂ 𝐹𝑖 such that 𝑦𝑗 ≥ 𝑥𝑗 for all 𝑠𝑝𝑗 ∈ 𝐹𝑖 and 𝑦𝑘 > 𝑥𝑘 for

some 𝑠𝑝𝑘 ∈ 𝐹𝑖 , then 𝐻 has a Pareto improvement on the allocation (𝑥𝑗)𝑠𝑝𝑗∈𝐻. The existence of a

Pareto improvement on the allocation of any subset 𝐻 ⊂ 𝐹𝑖 implies instability of the federation

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 53

H2020-761586

𝐹𝑖 because all members in 𝐻 could leave 𝐹𝑖 to form a new federation without profit reduction

and at least one member can receive a higher profit. In that case, we say that 𝐻 blocks 𝐹𝑖. The

goal of profit allocation is to find a feasible allocation for each federation 𝐹𝑖 such that no 𝐻 ⊂

𝐹𝑖 can block 𝐹𝑖.

4.2.3 Identifying Best Federation Structure

A straightforward approach to identifying optimal federation structure is to examine every

possible federation structure. This approach is not computationally efficient because the number

of federation structures is an exponential function of the number of participants [24]. In fact,

finding the optimal federation structures is NP-complete.

A commonly adopted approach to optimal federation structure is merge-and-split. Refer to

Algorithm 4-1. The algorithm forms the initial structure 𝑆 that consists of singleton federations only,

where each singleton federation is an EFS node. In the merging phase, the algorithm randomly

picks up a pair of federations to sees whether merging them into one is beneficial. Unlike in

tradition clouds, where any two federations could be considered for possible merging, merging

two federations 𝐹𝑖 and 𝐹𝑗 into one is beneficial only if some EFS node in 𝐹𝑖 is able to provide its

resource to another EFS node in 𝐹𝑗 or vice versa subject to latency constraint. We define 𝑓𝑖,𝑗 = 1

if the request from 𝑠𝑝𝑖 can be served by 𝑠𝑝𝑗 while meeting the latency constraint 𝑡𝑖. Based on 𝑓,

we define sharable relation ⊥ on federations. For any two federations 𝐹𝑖 and 𝐹𝑗 , 𝐹𝑖⊥𝐹𝑗 iff

∃𝑠𝑝𝑝 ∈ 𝐹𝑖 , ∃𝑠𝑝𝑞 ∈ 𝐹𝑗, 𝑓𝑝,𝑞 = 1. Therefore, merging 𝐹𝑖 and 𝐹𝑗 should be considered only if 𝐹𝑖⊥𝐹𝑗

or 𝐹𝑗⊥𝐹𝑖. We use F to keep the set of all possible pairs of federations in 𝑆 for which merging

should be considered.

ALGORITHM 4-1: MERGE-AND-SPLIT FEDERATION FORMATION MECHANISM
1. initial state: 𝑆 ← {{𝑠𝑝1}, {𝑠𝑝2}, … , {𝑠𝑝𝑛}}

2. repeat

3. F ← {{𝐹𝑖, 𝐹𝑗}|𝐹𝑖 , 𝐹𝑗 ∈ 𝑆, 𝐹𝑖⊥𝐹𝑗 or 𝐹𝑗⊥𝐹𝑖}

4. while F ≠ ∅ do

5. repeat

6. randomly select (𝐹𝑖, 𝐹𝑗) ∈ F

7. F ← F \ {{𝐹𝑖, 𝐹𝑗}}

8. until can_merge(𝐹𝑖, 𝐹𝑗) or F = ∅

9. if can_merge(𝐹𝑖, 𝐹𝑗) then

10. 𝑆 ← 𝑆 \ {𝐹𝑖 , 𝐹𝑗}

11. 𝑆 ← 𝑆 ∪ {𝐹𝑖 ∪ 𝐹𝑗}

12. F ← {{𝐹𝑖, 𝐹𝑗}|𝐹𝑖 , 𝐹𝑗 ∈ 𝑆, 𝐹𝑖⊥𝐹𝑗 or 𝐹𝑗⊥𝐹𝑖}

13. Endif

14. end while

15. redo ← false

16. for all 𝐻 ∈ 𝑆 such that |𝐻| > 1 do

17. for all partitions {𝐹𝑖 , 𝐹𝑗} of 𝐻 do

18. if can_split(𝐹𝑖, 𝐹𝑗) then

19. 𝑆 ← 𝑆 \ {𝐻}

20. 𝑆 ← 𝑆 ∪ {𝐹𝑖 ∪ 𝐹𝑗}

21. redo ← true

22. Break

23. endif

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 54

H2020-761586

24. end for

25. end for

26. until redo = false

27. return 𝑆

For a pair of federations 𝐹𝑖 and 𝐹𝑗 , function can can_merge(𝐹𝑖, 𝐹𝑗) returns whether 𝐹𝑖 and 𝐹𝑗

should be merged together. On merging, 𝑆 is updated by removing both 𝐹𝑖 and 𝐹𝑗 from it and

adding the union of {𝐹𝑖} and {𝐹𝑗} into it. F is also updated accordingly.

For any two (possibly singleton) federations 𝐹𝑖 and 𝐹𝑗 such that 𝐹𝑖 ∩ 𝐹𝑗 = ∅ , a necessary

condition for 𝐻 = 𝐹𝑖 ∪ 𝐹𝑗 to be a stable federation is

𝑣(𝐻) ≥ 𝑣(𝐹𝑖) + 𝑣(𝐹𝑗). (6)

If (6) does not hold, either 𝐹𝑖 or 𝐹𝑗 blocks 𝐻 for any feasible allocation for 𝐻. Even if (6) holds,

whether 𝐻 is stable also depends on the profit allocation for 𝐻 . Let 𝑥𝑘(𝐹) denote the profit

allocated to 𝑠𝑝𝑘 ∈ 𝐹. We define binary relation ⪰ on federations as:

𝐹 ⪰ 𝐹′ iff ∀𝑠𝑝𝑖 ∈ 𝐹 ∩ 𝐹′, 𝑥𝑖(𝐹) ≥ 𝑥𝑖(𝐹′) (7)

and also, relation ≡

𝐹 ≡ 𝐹′ iff ∀𝑠𝑝𝑖 ∈ 𝐹 ∩ 𝐹′, 𝑥𝑖(𝐹) = 𝑥𝑖(𝐹′) (8)

Finally, 𝐹 ≻ 𝐹′ if 𝐹 ⪰ 𝐹′ and 𝐹 ≡ 𝐹′ does not hold.

Some approaches allow merging 𝐹𝑖 and 𝐹𝑗 into 𝐻 only if 𝐻 ≻ 𝐹𝑖 and 𝐻 ⪰ 𝐹𝑗 or 𝐻 ≻ 𝐹𝑗 and

𝐻 ⪰ 𝐹𝑖. Algorithm 4-2 allows a merging only if the merging improves every member’s profit.

ALGORITHM 4-2: FUNCTION CAN_MERGE(𝑭𝒊, 𝑭𝒋)

1. H ← Fi ∪ Fj

2. for all spk ∈ H do

3. if spk ∈ Fi and xk(H) ≤ xk(Fi) then

4. return false

5. else if spk ∈ Fj and xk(H) ≤ xk(Fj) then

6. return false

7. end if

8. end for

9. return true

When there is no more federation pair in F to check, the algorithm proceeds to the splitting

phase. It checks all possible partitions of every non-singleton federation 𝐻 in 𝑆 to see if 𝐻 should

be split into two subsets. Whenever a splitting occurs, the algorithm goes back to the merging

phrase with the updated 𝑆.

Several conditions can be used for splitting up a federation 𝐻 into two disjoint subsets 𝐹𝑖 and 𝐹𝑗.

The condition could be when the splitting improves at least one member’s profit without

decreasing any other’s (𝐹𝑖 ≻ 𝐻 and 𝐹𝑗 ⪰ 𝐻 or 𝐹𝑗 ≻ 𝐻 and 𝐹𝑖 ⪰ 𝐻) [25] when the splitting has a

Pareto improvement on one subset (𝐹𝑖 ≻ 𝐻 or 𝐹𝑗 ≻ 𝐻) [26], or when all members in one of the

subsets have the same or higher profits after the splitting (𝐹𝑖 ⪰ 𝐻 or 𝐹𝑗 ⪰ 𝐻) [27]

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 55

H2020-761586

In our simulation, function can_split(𝐹𝑖, 𝐹𝑗) returns true if 𝐹𝑖 ≻ 𝐻 and 𝐹𝑗 ⪰ 𝐻 or 𝐹𝑗 ≻ 𝐻 and 𝐹𝑖 ⪰

𝐻, where 𝐻 = 𝐹𝑖 ∪ 𝐹𝑗 .

4.2.4 Profit-Maximizing Resource Provisioning Configuration

For a specific federation, maximizing the total profit of the federation involves configuring the

allocation of resource among participated EFS nodes in the federation. This is usually a sub-

problem to solve in finding out the best federation structure.

We formulate a simple profit-maximization model considering unit price and unit cost of resource

usage, unit communication cost between EFS nodes, and the ability to communicate without

breaking latency constraint between EFS nodes. We assume a federation of 𝑛 EFS nodes 𝐹 =

{𝑠𝑝1, 𝑠𝑝2, … , 𝑠𝑝𝑛}. Each EFS node 𝑠𝑝𝑖 has a resource capacity 𝐶𝑖 with unit cost 𝑐𝑖 . We assume

that all home requests of 𝑠𝑝𝑖 (resource requested by EFS applications/services of 𝑠𝑝𝑖) have been

aggregated with total amount 𝑟𝑖 and payment per unit of resource requested 𝑝𝑖 . Some portion

of 𝑟𝑖 can be served by EFS nodes other than 𝑠𝑝𝑖. We use 𝑞𝑗,𝑘 to denote the amount of resource

provided by 𝑠𝑝𝑗 to the home requests of 𝑠𝑝𝑘. A resource provisioning configuration is to set up

all 𝑞𝑗,𝑘’s for every 𝑠𝑝𝑗 and 𝑠𝑝𝑘 in the same federation to maximize total profit.

If 𝑠𝑝𝑗 serves the home requests of 𝑠𝑝𝑘, it incurs extra communication cost that is estimated by the

amount of resource provided by 𝑠𝑝𝑗 to 𝑠𝑝𝑘 times 𝑏𝑘,𝑗 , the unit cost of the communication link

from 𝑠𝑝𝑘 to 𝑠𝑝𝑗 . Therefore, when 𝑠𝑝𝑗 serves the home requests of 𝑠𝑝𝑘 , the unit profit is 𝑝𝑘 −

𝑐𝑗 − 𝑏𝑗,𝑘. We define an indication variable 𝑓𝑘,𝑗 to denote whether the service provided by 𝑠𝑝𝑗

to the home requests of 𝑠𝑝𝑘 meets the associated latency constraint, where 𝑓𝑘,𝑗 = 1 indicates

‘yes’ and 𝑓𝑘,𝑗 = 0 otherwise.

The profit of the federation 𝐹 is the maximal profit that can be achieved by resource

provisioning configuration:

𝑣(𝐹) = max
𝑞𝑗,𝑘

∑ ∑ (𝑠𝑝𝑘∈𝐹𝑠𝑝𝑗∈𝐹 𝑝𝑘 − 𝑐𝑗 − 𝑏𝑗,𝑘) ∙ 𝑞𝑗,𝑘 ∙ 𝑓𝑘,𝑗. (9)

The resource provisioning configuration is subject to capacity constraint:

∑ 𝑞𝑗,𝑘
𝑛
𝑘=1 ≤ 𝐶𝑗, ∀𝑠𝑝𝑗 ∈ 𝐹 (10)

and demand constraint:

∑ 𝑞𝑗,𝑘
𝑛
𝑗=1 ≤ 𝑟𝑘, ∀𝑠𝑝𝑘 ∈ 𝐹. (11)

More constraints are possible when additional request demands and serving policies are

imposed. We consider the following four possible cases (we define request’s home EFS to be the

EFS where the request arises).

• Case 1 local service only (LSO): Requests can only be served by home EFS nodes. There

is no need to form federation because all EFS nodes work alone. That is, 𝑞𝑗,𝑘 = 0 for all

 𝑠𝑝𝑘 ≠ 𝑠𝑝𝑗.

• Case 2 local service first (LSF): Requests are served by non-home EFS nodes only when

home EFS does not have enough resource. On the other hand, EFS must provide enough

resource to home requests before offering residual capacity to guest requests. That is,

𝑞𝑗,𝑗 = min(𝐶𝑗, 𝑟𝑗) for all 𝑠𝑝𝑗. This setting ensures that requests receive at least the same

amount of resource as in LSO and the total profit is at least the same as in LSO.

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 56

H2020-761586

• Case 3 maximal profit (MP): EFS nodes collaborate to maximize the total profit of the

federation while requests can be served by any EFS nodes in the federation.

• Case 4 local resource first (LRF): Requests can be served by any EFS nodes in the

federation and the maximal amount of resource that 𝑠𝑝𝑗 can provide to guest requests is

limited by ∑ 𝑞𝑗,𝑘𝑘≠𝑗 ≤ max (𝐶𝑗 − 𝑟𝑗, 0) . The limitation does not imply that 𝑠𝑝𝑗 should

allocate min (𝐶𝑗 , 𝑟𝑗) units of resource to its home requests. Other EFS nodes in the same

federation with cheaper residual resource may serve the home requests of 𝑠𝑝𝑖.

4.2.5 Performance evaluation

We have conducted extensive simulations to study the performance of the merge-and-split

approach to maximal-profit federation structure. The performance metrics under investigation

include total profits in the federation structure and the total amount of resource allocated to

requests. The four different cases of request demand and serving policies mentioned in Section

4.2.4 were tested. The details of the simulations are in Appendix 12.1.

A factor that significantly affects the results is cooperation intensity 𝑝 among EFS nodes. We

model EFS nodes as vertices in a directed graph, where there is an edge from nodes 𝑠𝑝𝑘 to 𝑠𝑝𝑗

if 𝑠𝑝𝑘 can serve 𝑠𝑝𝑗 ’s request without violating latency constraint. Cooperation intensity 𝑝 is

defined to be the ratio of the number of directed edges to the maximal possible number of

directed edges in the graph.

4.2.5.1 Impact of cooperation intensity

Figure 4-5 and Figure 4-6 show how the total profit in the federation structure and the total

amount of allocated resource changed with increasing 𝑝. Because LSO allows no resource sharing,

the performance with LSO is not affected by 𝑝 . The performance with all other three cases

improves as 𝑝 increases. Among them, the highest total profit is with MP while the largest amount

of allocated resource is with LSF. The performance with LRF is between these two cases.

FIGURE 4-5: TOTAL PROFIT IN THE FEDERATION

STRUCTURE VS COOPERATION INTENSITY

FIGURE 4-6: AMOUNT OF ALLOCATED RESOURCES

IN THE FEDERATION VS COOPERATION INTENSITY

4.2.5.2 Impact of demand-to-supply ratio

We then study how the resource demand-to-supply ratio affects the performance. This was done

by fixing the mean resource capacity to 𝜇𝑘 = 1,200 units and varying the mean requested

resource units 𝜇𝑟 from 700 to 1,450 units. The results are shown in Figure 4-7 and Figure 4-8.

When 𝜇𝑟 is less than 𝜇𝑘 = 1,200, the mean capacity, the demands are lower than the supplies

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
4.9

4.95

5

5.05

5.1

5.15

5.2
x 10

6

Cooperation intensity

T
o
ta

l
p
ro

fi
t

in
 t

h
e
 f

e
d
e
ra

ti
o
n
 s

tr
u
c
tu

re

LSO

LSF

MP

LRF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
9910

9920

9930

9940

9950

9960

9970

9980

Cooperation intensity

A
m

o
u
n
t

o
f

a
llo

c
a
te

d
 r

e
s
o
u
rc

e
 (

u
n
it
s
)

LSO

LSF

MP

LRF

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 57

H2020-761586

so both the total profit and the amount of allocated resource increase linearly as 𝜇𝑟 increases.

When 𝜇𝑟 ≥ 𝜇𝑘, the amount of allocated resource is limited by 𝜇𝑘. Still, the total profit could be

improved by appropriate resource provisioning configuration as MP demonstrates in Figure 4-8.

FIGURE 4-7: AMOUNT OF ALLOCATED RESOURCE

IN THE FEDERATION VS MEAN UNIT OF RESOURCES

REQUEST

FIGURE 4-8: TOTAL PROFIT IN THE FEDERATION

VS MEAN UNIT PRICE OF RESOURCES

4.2.5.3 Impact of price-to-cost ratio

We next investigate the impact of the price-to-cost ratio on performance. This was done by

fixing all parameters but 𝜇𝑝, the mean unit price of resource (the mean unit cost of resource was

set to 𝜇𝑐 = 500). From the result shown in Figure 4-9, we can see that resource requests are

generally fulfilled with LSO and LSF. On the other hand, more profits can be earned with MF and

LRF (see Figure 4-8). The extra profits come at the cost of low request acceptance rates. The cost

is particularly significant when the price-to-cost ratio is low.

FIGURE 4-9: AMOUNT OF ALLOCATED RESOURCE IN THE FEDERATION STRUCTURE VS. MEAN UNIT

PRICE OF RESOURCE

4.2.5.4 Conclusions

The results showed that federation always increases profits. Maximal profits can be earned with

MP but sometimes at the cost of reduced amount of allocated resource (when the price-to-cost

ratio is low, EFS nodes would rather not serve low-price requests). With LSF, the amount of

700 800 900 1000 1100 1200 1300 1400 1500
0.7

0.8

0.9

1

1.1

1.2

1.3
x 10

4

Mean of the amount of resource requested (
r
)

A
m

o
u
n
t

o
f

a
llo

c
a
te

d
 r

e
s
o
u
rc

e
 (

u
n
it
s
)

LSO

LSF

MP

LRF

300 350 400 450 500 550 600 650 700
0

0.5

1

1.5

2

2.5
x 10

6

Mean unit price of resource (
p
)

T
o
ta

l
p
ro

fi
t

in
 t

h
e
 f

e
d
e
ra

ti
o
n
 s

tr
u
c
tu

re

LSO

LSF

MP

LRF

300 350 400 450 500 550 600 650 700
1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Mean unit price of resource (
p
)

A
m

o
u
n
t

o
f

a
llo

c
a
te

d
 r

e
s
o
u
rc

e
 (

u
n
it
s
)

LSO

LSF

MP

LRF

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 58

H2020-761586

allocated resource is not lower than the case of no federation (i.e., LSO) yet the profits can

potentially be improved. This serving policy is thus recommended.

4.3 Advanced resource provisioning in federated EFSs

In Section 4.2.4, we use a simple model for the problem of finding resource provisioning

configuration that maximizes the total profit in an EFS federation. In this section, we further

extend this model by considering the following settings:

• Different resource types: EFS nodes own different types of physical resource (e.g., CPU,

memory, storage, etc.) and provide different flavours of virtualized resource (e.g.,

different instance types of virtual machines) to EFS applications/services.

• Multi-objective: The configuration maximizes not only the service provider’s profit but

also the user’s payoff (i.e., considering the quality of the service offered to requests and

also possible payment).

• Distributed dispatch: Resource requests are directly sent to target EFS nodes. There is no

central entity that dispatches all requests toward their target EFS nodes.

• Different pricing models: We consider two pricing models: free-of-use and pay-per-use.

The former does not involve monetary exchange and is considered the default model for

resource provisioning within a federation. The latter case suitably applies to resource

provisioning across different federations. We also consider negotiable payments

between resource requestors and providers.

4.3.1 System model

We consider a federation of EFS nodes 𝐹 = {𝑠𝑝1, 𝑠𝑝2, … , 𝑠𝑝𝑛}. Each EFS node 𝑠𝑝𝑖 is a single

computing substrate located in the same geophysical area. Let 𝑅 denote the set of all different

types of physical resource (CPU, memory, storage, etc.). If we exclude special hardware

resource, 𝑅 is universally defined for all nodes. Let 𝐶𝑖
𝑟 denote the amount of resource type 𝑟 ∈ 𝑅

at node 𝑠𝑝𝑖. We denote the capacity of node 𝑠𝑝𝑖 by 𝐂𝑖 = (𝐶𝑖
1, 𝐶𝑖

2,…, 𝐶𝑖
|𝑅|

).

Virtualized computation resource could be in the form of virtual machine (VM), container, or

others. We assume the use of VM and a limited number of VM instance types (called flavours),

which has been supported by cloud service providers. Table 4-5 shows the VM instances types

offered by Amazon EC2 in US West Region8.

TABLE 4-5: EXAMPLES OF VM INSTANCE TYPES

Metric Medium (m=1) Large (m=2) XLarge(m=3) 2XLarge (m=4)

CPU 1 2 4 8

Memory (GB) 3.75 7.5 15 30

Storage (GB) 4 32 80 160

As a need to deploy EFS functions/applications, requests for virtualized resource will come to the

EFS Resource Orchestrator. In general, each request includes an EFS Stack Descriptor that consists

of the following parameters:

• a list of VM instances requested together with corresponding images;

• a directed graph that describes the chaining of these VMs;

• optionally a location indicator that specifies a certain point or area to deploy each VM;

• a latency constraint associated with the whole request.

8 https://aws.amazon.com/ec2/instance-types/

https://aws.amazon.com/ec2/instance-types/

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 59

H2020-761586

In reality, EFS functions or applications may demand computation resource located at different

geographical areas so that the request should be simultaneously served by more than one node

(instead of one). In that case, the EFS Resource Orchestrator is in charge of splitting the request

into multiple parts, one toward each node.

In the trust cooperative model, each EFS node may receive requests for virtualized resource from

EFS functions or applications within its administrative domain (called home requests) or from other

EFS nodes in the same federation (called guest requests). There are several possible policies for

EFS Resource Orchestrator to handle incoming requests. For example:

• [P1] Treating home and guest requests equally;

• [P2] Granting home requests first and then allocating residual capacity to guest requests.

This is identical to local service first (LSF) in Sec. 4.2.4;

• [P3] Granting home requests first and reserving a portion of the capacity for future

home requests. If there is still residual capacity, then allocate it to guest requests.

We consider a general model with which EFS Resource Orchestrator can take any one of these

policies.

4.3.2 Request dispatch by OCS

Suppose that the federated EFS system 𝐹 receives a set of 𝑚 requests 𝑄 = {𝑞1, 𝑞2, … , 𝑞𝑚}. For

each request 𝑞𝑗, all the EFS nodes that currently has sufficient resource capacity to serve it and

meets the location and latency constraint are qualified nodes for 𝑞𝑗 . Dispatching resource

requests to qualified nodes is straightforward if every node has enough capacity to serve all

requests toward it. If this is not the case, only some requests can be granted. The selection of

requests to grant is to maximize the number of targeted requests. The definition of targeted

requests depends on the serving policy (P1~P3) taken by each EFS node.

• If an EFS node takes P2 or P3, only home requests are targeted.

• If an EFS node takes P1, all requests are targeted.

The optimization problem is closely related to bin-packing problem, where objects of different

volumes (resource requests in our case) are to be packed into a finite number of bins (EFS nodes

in our case) each of same volume. The bin-packing problem has been known NP-hard. The

following features differentiate the dispatch problem from the bin-packing problem.

• Nodes in the dispatch problem are not of the same capacity;

• Not all requests can be served even if all nodes are used, and we aim to maximize the

number of requests served. In the bin-packing problem, all objects can be packed, and

the goal is to minimize the number of bins used;

• Not every qualified node offers a request the same quality of service (QoS; e.g.,

application latency). We want to dispatch requests to qualified nodes that offer them

QoS as high as possible.

4.3.3 Objectives of payment-free request dispatch

We consider the objective of maximize the number of requests granted in parallel with the

objective of offering requests QoS as high as possible. This is a multi-objective optimization

problem, for which optimal solutions are computationally difficult to find. We decompose it into

two sub-problems.

Let the dispatch result of 𝑄 to 𝐹 be represented by a set of indication variables {𝑥𝑖
𝑘}𝑖

𝑘, where

𝑥𝑖
𝑘 = 1 if request 𝑞𝑘 is dispatched to node 𝑠𝑝𝑖 and 𝑥𝑖

𝑘 = 0 otherwise. If all requests are

targeted, the objective of OCS is to maximize the total number of granted requests:

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 60

H2020-761586

max ∑ ∑ 𝑥𝑖
𝑘

𝑘
𝑖

. (12)

The objective of each request 𝑞𝑘 ∈ 𝑄 is to maximize its own spare latency:

max ∑ (𝑥𝑖
𝑘 × (𝑡max

𝑘 − 𝑡𝑖
𝑘))

𝑖

, (13)

where 𝑡max
𝑘 is the latency constraint associated with 𝑞𝑘 and 𝑡𝑖

𝑘 is the estimated latency when 𝑞𝑘

is served by 𝑠𝑝𝑖. These two objectives are subject to capacity constraint and non-split constraint

(requests cannot be split and can be dispatched to at most one node). Let 𝑑𝑘,𝑟 be the amount of

physical resource type 𝑟 ∈ 𝑅 needed by request 𝑞𝑘. The capacity constraint is:

∑ (𝑑𝑘,𝑟 × 𝑥𝑖
𝑘)𝑘 ≤ 𝐶𝑖

𝑟 , ∀𝑟 ∈ 𝑅, ∀𝑠𝑝𝑖 ∈ 𝐹. (14)

The non-split constraint is:

 ∑ 𝑥𝑖
𝑘

𝑖 ≤ 1, ∀ 𝑞𝑘 ∈ 𝑄 (15)

∀ 𝑥𝑖
𝑘 ∈ {0,1} (16)

4.3.4 Procedure for payment-free request dispatch

We propose a distributed on-line approach where each node locally and independently selects

requests to serve. The role of OCS is to identify for each request all qualified nodes with ranks

determined by the QoS they offer and communicate with nodes on behalf of each request. The

procedure of this approach is as follows:

1. After the OCS receives a request, it forwards the request to each node;

2. Each node checks to see if it is qualified for the request. A node is qualified if it has

enough capacity to serve the request and the service meets the latency constraint

associated with the request. If a node is qualified, it also estimates the resulting latency.

The node then sends back the result to the OCS;

3. After all nodes reply back their results, the OCS creates a preference list which ranks all

qualified nodes for the request;

4. When the OCS has a set of requests to dispatch, each with a preference list, the OCS

sends all requests in parallel to their most preferred nodes;

5. Each node may receive more than one requests and may need to select some requests to

serve. Based on its own decision, the node responds with either a grant or a reject

message to each request;

6. The request procedure completes when a request receives a grant. When a request

receives a reject instead, it removes the node from its preference list. If the list is not

empty, go to Step 4. Otherwise, the request terminates without being served.

This procedure is a many-to-one matching proposed for college admissions problem. The

difference is that each college has a fixed and known quota (for students) while nodes in our

problem do not: the number of requests that can be served by a node actually depends on the

amount of resource requested and the node’s capacity.

4.3.4.1 Requirements for a node being qualified

A node checks whether the latency constraint is met by estimating the communication latency

between chaining VMs and also access delay. The procedure to verify whether a node 𝑠𝑝𝑖 has

enough capacity to serve request 𝑞𝑘 follows. First, the amount of VM instances of each type

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 61

H2020-761586

requested by 𝑞𝑘 is summarized as vm𝑘 = (𝑣𝑚𝑘,1, 𝑣𝑚𝑘,2, … , 𝑣𝑚𝑘,|𝑉𝑀|) , where 𝑣𝑚𝑘,𝑗 is the

requested number of VM instances of type 𝑗 and |𝑉𝑀| is the number of VM types supported.

Since each VM instance type demands a specific amount of physical resource of various types (as

Table 4-5 shows), OCS then converts vm𝑘 into a demand vector d𝑘 = (𝑑𝑘,1, 𝑑𝑘,1, … , 𝑑𝑘,|𝑅|), in

which 𝑑𝑘,𝑟 specifies the amount of physical resource type 𝑟 ∈ 𝑅 needed by request 𝑞𝑘. Node

𝑠𝑝𝑖 has enough capacity to serve 𝑞𝑘 if C𝑖 ≥ d𝑘 .

4.3.4.2 Node’s preference on requests

The global objective of maximizing the total number of granted targeted requests (12) is

decomposed into individual goal of each node: maximizing the total number of locally granted

targeted requests. A greedy approach is to serve requests with lowest resource demands first.

This corresponds to a preference function 𝑃𝑖,𝑗(𝑞𝑘) of each node 𝑠𝑝𝑖 defined on request 𝑞𝑘:

𝑃𝑖(𝑞𝑘) = ∑ (𝑤𝑖
𝑟 × (1 −

𝑑𝑘,𝑟

𝐶𝑖
𝑟))

|𝑅|

𝑟=1

 (17)

where ∑ 𝑤𝑖
𝑟

𝑟 = 1 . Parameter 𝑤𝑖
𝑟 is a weight that indicates the relative importance (or

scarceness) of physical resource type 𝑟 among all at node 𝑠𝑝𝑖. The summation of all the weights

at the node equals one. The term 𝑑𝑘,𝑟/𝐶𝑖
𝑟 represents the ratio of the amount of physical resource

type 𝑟 demanded by 𝑞𝑘 to 𝑠𝑝𝑖’s capacity. For example, if two CPU cores are requested by 𝑞𝑘

and 𝑠𝑝𝑖’s capacity of CPU cores is four, then the ratio is 0.5.

4.3.4.3 Request’s preference on nodes

Based on the results sent back by all qualified nodes, OCS forms a latency vector t𝑘 =

(𝑡1
𝑘 , 𝑡2

𝑘 , … , 𝑡𝑛
𝑘) for request 𝑞𝑘 , where 𝑡𝑖

𝑘 is the estimated latency when 𝑠𝑝𝑖 serves 𝑞𝑘 . With t𝑘 ,

OCS creates a preference list for 𝑞𝑘 based on the following preference function:

𝑃𝑘(𝑠𝑝𝑖) = 𝑡max
𝑘 − 𝑡𝑖

𝑘 , (18)

where 𝑡max
𝑘 is the latency constraint associated with 𝑞𝑘. All requests prefer nodes with high spare

latencies.

4.3.5 Payment-Based Request Dispatch

We consider the case that guest requests need pay to EFS service providers for allocated

resource. This corresponds to inter-EFS request dispatch. We consider pay-per-use pricing model

with dynamic pricing. EFS service providers here are resource sellers while requests are buyers.

The selling prices are negotiated between the selling and the buying parties. This is more

economically efficient than fixed pricing because resource price is set according to the forces of

demand and supply.

For this problem we have the following assumptions:

• A set of 𝑚 requests 𝑄 = {𝑞1, 𝑞2, … , 𝑞𝑚} coming to the federated system.

• Each request 𝑞𝑘 ∈ 𝑄 is associated with a demand vector d𝑘 = (𝑑𝑘,1, 𝑑𝑘,2, … , 𝑑𝑘,|𝑅|), in

which 𝑑𝑘,𝑟 specifies the amount of physical resource type 𝑟 ∈ 𝑅 needed by request 𝑞𝑘.

• Each request 𝑞𝑘 has a budget 𝑣𝑘, which is the maximal price that the requester is willing

to pay for 𝑞𝑘. This value is private and not known by EFS service providers.

• 𝑡max
𝑘 is the latency constraint of 𝑞𝑘.

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 62

H2020-761586

• Besides resource descriptor, each request 𝑞𝑘 to a qualified EFS system 𝑠𝑝𝑖 also includes

an offered price 𝑏𝑖
𝑘 that is specific to 𝑠𝑝𝑖 . The value of 𝑏𝑖

𝑘 is related to the QoS

provided by 𝑠𝑝𝑖 to 𝑞𝑘, and does not exceed 𝑣𝑘.

• 𝑡𝑖
𝑘 is the estimated latency when 𝑠𝑝𝑖 serves 𝑞𝑘.

• If request 𝑞𝑘 with offered price 𝑏𝑖
𝑘 is rejected by node 𝑠𝑝𝑖, it can either raise its offered

price to 𝑏𝑖
𝑘 + 𝜀 ≤ 𝑣𝑘 and resubmit the request to 𝑠𝑝𝑖 again, or sends the request with

another offered price to another node.

• 𝐶𝑖
𝑟 is the amount of resource type 𝑟 ∈ 𝑅 in EFS system 𝑠𝑝𝑖. We denote the capacity of

node 𝑠𝑝𝑖 by 𝐂𝑖 = (𝐶𝑖
1, 𝐶𝑖

2,…, 𝐶𝑖
|𝑅|

).

• Each EFS system 𝑠𝑝𝑖 also keeps the unit cost of each resource type by vector 𝐜𝑖 =

{𝑐𝑖
1, 𝑐𝑖

2, … , 𝑐𝑖
|𝑅|

}, where 𝑐𝑖
𝑟 is the unit operation cost of resource type 𝑟 in 𝑠𝑝𝑖.

4.3.5.1 Objectives

Let the dispatch result between 𝑄 and 𝑆𝑃 be represented by a set of indication variables {𝑥𝑖
𝑘}𝑖

𝑘,

where 𝑥𝑖
𝑘 = 1 if request 𝑞𝑘 is dispatched to EFS system 𝑠𝑝𝑖 and 𝑥𝑖

𝑘 = 0 otherwise. Let

𝜃𝑖(𝑞𝑘) = 𝑐𝑖
1 × 𝑑𝑘,1 + 𝑐𝑖

2 × 𝑑𝑘,2 + ⋯ + 𝑐𝑖
|𝑅|

× 𝑑𝑘,|𝑅| be the cost of EFS system 𝑠𝑝𝑖 when it serves

request 𝑞𝑘 . If all requests are targeted, the objective of OCS 𝑖 is to maximize its own profit

defined as:

∑ (𝑥𝑖
𝑘 × (𝑏𝑖

𝑘 − 𝜃𝑖(𝑞𝑘)))

𝑘

. (19)

Each request 𝑞𝑘 aims to minimize its payment and also latency. A possible objective function can

be defined as to maximize its payoff (𝑣𝑘 − 𝑏𝑖
𝑘) per unit latency:

max ∑ (𝑥𝑖
𝑘 ∙

𝑣𝑘−𝑏𝑖
𝑘

𝑡𝑖
𝑘)𝑖 . (20)

These two objectives are subject to capacity constraint (21):

∑ (𝑑𝑘,𝑟 × 𝑥𝑖
𝑘)𝑘 ≤ 𝐶𝑖

𝑟, ∀𝑟 ∈ 𝑅, ∀𝑠𝑝𝑖 ∈ 𝑆𝑃, (21)

non-split constraint (22, 23):

∑ 𝑥𝑖
𝑘

𝑖 ≤ 1, ∀ 𝑞𝑘 ∈ 𝑄, (22)

∀ 𝑥𝑖
𝑘 ∈ {0,1}, (23)

and budget constraint (24):

0 < 𝑏𝑖
𝑘 ≤ 𝑣𝑘. (24)

4.3.5.2 EFS’s preference on requests

The objective of each OCS 𝑖 is to maximize its own profit as defined in (19). Because different

requests come with different sizes (amounts of resource requested) with different offered prices,

this falls into the 0/1-knapsak problem, which has been known NP-complete. A common-adopted

greedy approach is to serve first requests with the highest ratio of profit to the amount of

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 63

H2020-761586

demanded resource. This corresponds to a preference function 𝑃𝑖(𝑞𝑘) of each EFS system 𝑠𝑝𝑖

defined on request 𝑞𝑘:

𝑃𝑖(𝑞𝑘) =
𝑏𝑖

𝑘 − 𝜃𝑖(𝑞𝑘)

∑ (𝑤𝑖
𝑟 ∙

𝑑𝑖
𝑘,𝑟

𝐶𝑖
𝑟)

|𝑅|
𝑟=1

,
(25)

where ∑ 𝑤𝑖
𝑟

𝑟 = 1.

4.3.5.3 Request’s preference on nodes

Request 𝑞𝑘 ’s preference on EFS system 𝑠𝑝𝑖 depends on whether the estimated latency 𝑡𝑖
𝑘

exceeds the latency constraint 𝑡max
𝑘 . If it does not, the preference value is defined to be its

payoff (𝑣𝑘 − 𝑏𝑖
𝑘) per unit of latency. Otherwise, the preference is negative (say, -1). Formally:

𝑃𝑘(𝑠𝑝𝑖) = {
𝑣𝑘−𝑏𝑖

𝑘

𝑡𝑖
𝑘 if 𝑡𝑖

𝑘 ≤ 𝑡max
𝑘 ,

−1 otherwise.
. (26)

4.3.6 Performance Evaluation

We conducted a series of simulations to investigate the performance of the proposed

mechanisms and compare it with that of others. We considered request dispatches both with and

without payments. The details of the simulations are in Appendix 12.2.

4.3.6.1 State-of-the-Art Mechanisms Tested

We tested several matching mechanisms, including Capacitated House Allocation (CHA) [28],

adapted Boston [29], and adapted Deferred Acceptance (DA) [30] CHA is to allocate a set of

houses to a bunch of agents. Every house has a capacity which specifies the maximal number of

agents that it can accommodate, and agents can have preference on houses. CHA does not well

fit our problem due to the following reasons. First, CHA considers only one-sided preference

while both requesters and nodes have preference in our problem. Second, agents are assumed

to have equal size and the maximal number of agents that can be accommodated in each house

is fixed and known. In contrast, requests come with different sizes (amounts of requested resource)

in our problem so an EFS node may fulfill the aggregated demand of three requests but not that

of another two.

In Step 5 of the procedure shown in Section 4.3.4, an EFS node may have already accepted

some requests but have to reject some other requests later due to insufficient residual capacity.

When this happens, it is an issue whether the EFS node should retract a previous grant to make

room for a new request simply because the new one has a higher preference function value than

the previous. If we allow retraction, it is a variant of deferred-acceptance (DA) algorithm [30],

which possesses a property that nodes may tentatively accept requests. If acceptance is always

firm (cannot be retracted), the approach is a variant of Boston [29].

We also tested random matching and no offloading (denoted by No-Share). In No-Share,

requests were always dispatched to the EFS nodes co-located with the respective serving access

points of the requests.

4.3.6.2 Results of payment-free request dispatch

Figure 4-10 shows how the number of served requests changes with increasing number of

requests using different approaches. DA clearly outperforms all others, followed by Boston. CHA

and Random roughly performed the same. They performed better than No-Share only with few

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 64

H2020-761586

requests. The reason is that nodes in CHA did not have preference on requests, so the set of

requests that were granted when a node did not have enough capacity was not carefully

determined. This is like Random.

FIGURE 4-10: TOTAL NUMBERS OF SERVED REQUESTS IN PAYMENT-FREE REQUEST DISPATCH

Figure 4-11 shows the average latency per granted request. Here No-Share had the lowest

latency, which is reasonable because only local (home) requests could be granted. Random had

the highest latency, which is also predictable. The superiority of Boston over DA comes from the

property that once Boston grants a request, it never retracts the grant. Therefore, granted

requests tended to be dispatched to their most preferred EFS nodes. In contrast, DA may retract

a request grant to make room for another request that is preferable. Therefore, granted

requests were less likely to be matched to their most preferred nodes. Together with Figure

4-10, we can see that this strategy is to trade requester’s preference for node’s preference.

FIGURE 4-11: AVERAGE LATENCY PER REQUEST IN PAYMENT-FREE REQUEST DISPATCH

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 65

H2020-761586

4.3.6.3 Results of payment-based request dispatch

For payment-based request dispatch, we primarily considered DA with transfer [31] (referred to

as DA-T). In DA-T, different requesters may have different settings on the increments of their bids

(the value of 𝛿) when the proposed bids are not accepted. Generally speaking, nodes prefer

higher 𝛿 value while requesters prefer lower. We used a parameter  to set up the maximal

number of times that each requester is allowed to raise its bid toward the same node. It

indirectly controls the granularity of 𝛿𝑖,𝑗
𝑘 (𝛿 for each 𝑞𝑖

𝑘 toward 𝑠𝑖,𝑗) as follows:

𝛿𝑖,𝑗
𝑘 =

𝑣𝑖
𝑘−𝑎𝑖,𝑗

𝑘


, (27)

where 𝑎𝑖,𝑗
𝑘 is the asked price 𝑠𝑖,𝑗 provided to 𝑞𝑖

𝑘 (the minimal selling price). In the simulations, we

assumed that 𝑎𝑖,𝑗
𝑘 = 𝜃𝑖,𝑗(𝑞𝑖

𝑘).

Figure 4-12 shows the average latency per granted request in payment-based request dispatch.

The performance of Random and Boston was expected. DA-T with  = 10 had a lower latency

than DA-T with  = 4. This can be justified as a small granularity of bid increment ( = 10) gave

requests more chances to be considered by their most preferred nodes (before switching to less

preferred servers in their preference lists).

Figure 4-13 shows total revenue of the system. Though Boston gave granted requests low

latencies, the revenue of the system was nearly the same as Random. The reason is that it did not

give EFS nodes the opportunity to replace low-profit requests with high-profit ones. DA-T

outperformed Boston because it allows such replacements. Here large granularity of bid

increment ( = 4) gave the system higher revenue, which is intuitive. However, the gap is not

significant.

FIGURE 4-12: AVERAGE LATENCY PER REQUEST IN PAYMENT-BASED REQUEST DISPATCH

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 66

H2020-761586

FIGURE 4-13: TOTAL REVENUE IN PAYMENT-BASED REQUEST DISPATCH

4.3.6.4 Conclusions

The results showed that in payment-free request dispatch, good dispatch approaches can serve

more requests while still meeting latency constraints. Among them, DA serves more requests than

the counterparts. For payment-based request dispatch, good dispatch mechanism like DA-T can

have high revenue while still meeting latency constraints.

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 67

H2020-761586

5 OCS experimental validation
This section presents the experimental validation of the OCS designed in WP3 with focus on the

automated deployment of EFS Entities, OCS federation, migration of EFS Entities and network

assisted D2D communication.

5.1 Automated deployment

In this section, we present and discuss the approach adopted to validate the automated

deployment of services and applications within the 5G-CORAL platform. Such capability enables

the so-called zero-touch deployment, which creates and manages the end-to-end service by

reducing the need for human operator intervention. In 5G-CORAL, this operation translates into

deploying an EFS Stack which implies the onboarding and the instantiation of each EFS Entity and

Service included in the descriptor. Figure 5-1 illustrates all the steps involved.

FIGURE 5-1: WORKFLOW FOR ON-BOARDING AND INSTANTIATING AN EFS STACK

During the first phase, the EFS Stack Orchestrator (SO) processes north-bound App onboarding

requests sent by the OSS (1). Next, the EFS SO verifies that the EFS platform contains sufficient

resources to onboard the App by querying the EFS Resource Orchestrator (RO) (2). Once the EFS

SO has received a positive acknowledgment from the EFS RO (3), a JSON network descriptor is

generated and sent to the EFS RO (4). Finally, the EFS RO forwards the App instantiation request

to the VIM (5), which creates the EFS App instance.

In order to validate and assess the automated deployment procedure, we evaluate multiple

software implementations and virtualization technologies as well as different OCS components.

Particularly, Table 5-1 shows the Hypervisors, VIMs and Orchestrators under test. Regarding the

hypervisors, we consider two container-based hypervisors (i.e., Docker and LXD) and one virtual

machine-based hypervisor (i.e., KVM). Regarding the VIMs, we consider fog05 and OpenStack

while for the Orchestrator we consider f0rce and Kubernetes (k8s). It is worth highlighting that

fog05 and f0rce refer to the VIM and Orchestrator implementations following the 5G-CORAL

OCS design guidelines and developed as part of WP3 work. The code of fog05 and f0rce have

been made available as open source on GitHub [4][5].

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 68

H2020-761586

TABLE 5-1: OCS SOFTWARE IMPLEMENTATION DETAILS AND COMPONENTS UNDER TEST

Component Software Implementation Version

Hypervisor Docker 18.06.1

KVM 2.5.0

LXD 3.12

VIM

fog05 0.2

OpenStack Ocata

Orchestrator

f0rce 0.1

k8s 1.13

To properly compare the above implementations, we consider the deployment of an EFS Stack

composed of a single atomic EFS App. The reason of choosing such scenario is driven by the fact

that such scenario is the minimal set of functionalities supported by all the software

implementations under test. By doing so, the contribution of each OCS component to the overall

deployment time can be clearly isolated as explained later in Section 5.1.1. The baseline image

for the EFS App is Alpine Linux, a minimal Linux distribution suitable for virtualization and cloud

alike environments which is available for Docker, LXD and KVM runtimes. In our tests, we have

installed a webserver (i.e., NGINX) in every image as exemplary software that can interact over

the network. Table 5-2 reports the image size for the three different virtualization technologies.

TABLE 5-2: EFS APP CHARACTERISTICS AND CONFIGURATIONS

Virtualization technology Image version Image size

Docker Alpine Linux 23.5 MB

LXD Alpine Linux 4.7 MB

KVM Alpine Linux 242.1 MB

In case of using f0rce as orchestrator, we have created the EFS Stack descriptor as shown in

Table 5-3. The EFS Stack descriptor follows the information model detailed in Appendix 10 and

it is provided to the EFS Stack Orchestrator for onboarding and instantiation. Figure 5-2 shows

the web-based interface of the EFS Stack Orchestrator which can be used by a human operator

to onboard and trigger the instantiation of the EFS Stack. In case of the other hypervisors, VIMs

and Orchestrators, we used instead the exposed APIs to achieve the automated deployment.

TABLE 5-3: EFS STACK DESCRIPTOR FOR INSTANTIATING THE LXD-BASED EFS APP ON F0RCE
{

 "efs-app-descriptor": {

 "uuid": "fc958662-ccec-4791-a082-0330c02b08b7",

 "name": "test_app",

 "vendor": "UC3M",

 "version": "1.0",

 "soft-version": "",

 "ocs-version": "1",

 "vdus": [

 {

 "vdu_uuid": "d94d309d-8414-4717-879b-8f5a98efc130",

 "vdu_name": "example_vdu_alpine",

 "vdu_image": {

 "uri": "file:///home/user/bench.tar.gz",

 "checksum":

"769d3b2c476c46b9dd57e280821bdd6a1694a8f643247b4d70096643f6d5d472",

 "format": "tar.gz"

 },

 "vdu_computational_requirements": {

 "cpu_arch": "x86_64",

 "cpu_min_count": 1,

 "ram_size_mb": 128.0,

 "storage_size_gb": 1.0

 },

 "vdu_interfaces": [

 {

 "name": "eth0",

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 69

H2020-761586

 "is_mgmt": false,

 "mac_address": "be:ef:be:ef:00:01",

 "virtual_type": "PARAVIRT",

 "internal_cp": ""

 }

],

"vdu_hv_type": "LXD",

"vdu_internal_connection_points": [],

"vdu_depends_on": [],

 "vdu_lcm_hooks": {

 "migration_type": "COLD"

 }

 }

],

 "virtual_links": [],

 "service-produced": [],

 "description": "Simple deployment"

 }

}

The infrastructure is composed by one EFS Resource acting as compute node and by a second

EFS Resource acting as controller. In order to compare the different orchestrator and VIM

implementations (see Table 5-1) on the same hardware, both EFS Resources are equipped with

an Intel Xeon E5-2620 (i.e., 32 logical cores) running at 2.1GHz, 128 GB of RAM, 512 GB of

storage, and 2 Ethernet interfaces at 10 Gbps. It is worth mentioning that the usage of more

constrained resources would have made impossible a direct comparison between different

software with high computing requirements. Finally, both EFS Resources run Ubuntu 18.04 Server.

FIGURE 5-2: EFS STACK ORCHESTRATOR WEB-BASED INTERFACE

5.1.1 Results

For each Hypervisor, VIM and Orchestrator reported in Table 5-1, we have performed 250

automated deployments of the baseline Alpine Linux image. For each deployment we have then

measured the overall deployment time, which is the time elapsed from the initial instantiation

request sent to the Hypervisor/VIM/Orchestrator till the moment the webserver running inside the

EFS App becomes reachable.

Moreover, to normalize the deployment time we already make available a copy of the image

on the compute node. By doing so, the OCS does not need to copy the EFS App image over the

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 70

H2020-761586

network. Additionally, by employing a single compute node, the results better highlight the

impact of the virtualization technology independently of the overhead that might be introduce by

the placement algorithm when a larger number of nodes is used. As a result, the measured

deployment time can be considered as a lower bound.

Figure 5-3 reports the experimental Cumulative Density Function (eCDF) for each of the

configurations and tests. From top to bottom, first the results regarding the Docker virtualization

technology are presented. In this scenario there are two parallel settings: fog05 + Docker and

k8s + Docker. Specifically, the software implementations under test are Docker as hypervisor,

fog05 as VIM, and Kubernetes (k8s) as Orchestrator. It is worth highlighting that k8s here is

considered as Orchestrator, however k8s provides the full stack (VIM + Orchestrator). The figure

in the middle reports the results for the LXD virtualization technology. In this case, the software

implementations under test are LXD as hypervisor, fog05 as VIM, and f0rce as Orchestrator. The

last figure at the bottom reports the results for the KVM virtualization technology. In this case we

the software implementations under test are KVM as hypervisor, fog05 as VIM, and OpenStack

as second VIM.

FIGURE 5-3: EXPERIMENTAL DEPLOYMENT TIME OF AN EFS STACK WITH AN ATOMIC EFS APP

The breakdown of the deployment time, along with the most significant statistical properties, is

reported in Table 5-4. Starting by analysing the hypervisors, results show that Docker provide

the fastest deployment time. If we compare the image sizes reported in Table 5-2, we can see

that the Docker-based image weights 92.6 MB while the LXD-based image weights 4.7 MB.

Nevertheless, Docker achieves a faster deployment time (3.421s vs 5.276s). It is worth reminding

that in these tests the images are pre-provisioned on the compute node, therefore the images are

not copied over then network. Nonetheless, Docker and LXD manage the instantiation in different

ways: while Docker adopts a differential approach (i.e., it copies on disk only the differences

between a baseline image and the target image/instance), LXD copies the whole image for each

instance to be created. Moreover, LXD adopt a Virtual Machine-like management of the

instances compared to the App-centric management adopted by Docker. This means that the LXD

instance needs to execute additionally operating system-like procedures (e.g., services start-up,

filesystem check, etc.) which are not instead executed in Docker. These aspect result in a longer

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 71

H2020-761586

deployment time for LXD compared to Docker. The longest deployment time is provided by KVM

(i.e., 27.449s). This is natural since a Virtual Machine instance requires to go through the whole

boot process in the same way as a physical machine. This means that a separate kernel runs in

the Virtual Machine to implement the whole hardware-control logic, which is not required in a

container-based environment.

TABLE 5-4: STATISTICAL CHARACTERISTICS OF THE EXPERIMENTAL DEPLOYMENT TIME (S)

Virt. Tech. Component Min Max Mean Median Std Dev.

Docker Docker 3.223 3.756 3.421 3.413 0.086

fog05 4.027 4.733 4.444 4.601 0.245

k8s 5.498 6.920 5.752 5.730 0.168

LXD LXD 5.128 5.975 5.276 5.265 0.076

fog05 5.292 7.047 5.479 5.432 0.316

f0rce 5.355 10.125 5.950 5.931 0.444

KVM KVM 27.085 27.906 27.449 27.435 0.163

fog05 30.055 31.351 30.591 30.645 0.280

OpenStack 32.785 34.197 33.444 33.411 0.323

Regarding the VIM performance we can see how these are strictly bounded to the hypervisor

performance. Specifically, we can see how the deployment time measured with fog05 for all the

three virtualization technologies is ~15% higher than the hypervisor. This is due to the additional

operations that the VIM needs to perform on the infrastructure to properly configure and

interconnect the EFS App being instantiated. In case of using KVM as hypervisor, it can be seen

that VIM provided by OpenStack is slower than the VIM provided by fog05. However,

OpenStack performs additional operations regarding the authentication and authorization of the

EFS App which are not implemented in the version of fog05 under test. In case of Docker, k8s

adopts a monolithic approach by closely coupling the VIM and the Orchestrator in such a way it

is hard to separate their functionalities. By having a broader look, we can observe how the

deployment time measured at Orchestrator level follows the same trend observed at VIM level.

In the two reported measurements (i.e., Docker with k8s and LXD with f0rce), we observe that the

biggest component of the deployment time is the hypervisor following a little overhead

introduced by the Orchestrator. It is worth remarking that these results do not consider the

scalability of placement algorithms available in the different implementations since we are

considering only one compute node.

5.1.2 Conclusions

The EFS Stack descriptor has been experimentally validated via the fog05 and f0rce

implementations. The EFS Stack descriptor has hence been used by the EFS Stack Orchestrator

and the EFS Resource Orchestrator provided by f0rce to instruct fog05 the deployment of a

reference EFS App. Results show that the main factor contributing to the overall deployment time

is the hypervisor. Container-based virtualization technologies (i.e., Docker and LXD) are ~6 times

faster in deploying and executing the EFS App compared to KVM. Moreover, the image

footprint of LXD is ~5 times smaller than Docker. Finally, in these tests we have considered the

image to be pre-provisioned on the compute node. However, in a realistic scenario the image

should be provisioned on-demand on the compute nodes. In case of limited network connectivity

and storage space, LXD would be a better choice compared to Docker.

5.2 Federation

This section evaluates the static federation mechanisms described in Section 4.1. In this scenario,

two administrative domains exchange SLAs and federation parameters statically previous to the

federation discovery phase. This means that SLAs are assigned statically without the possibility to

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 72

H2020-761586

update them dynamically once the federation is established. The objective of this validation

scenario is to test how a use case such as the SD-WAN can be adapted and consequently

enhanced with mobility capabilities by leveraging the federation interface (F2). The federation

mechanisms envisioned in 5G-CORAL, enable the sharing of EFS resources, allowing use case

owners to deploy their applications/functions/ services across the whole cloud-to-thing continuum.

The SD-WAN use case considers a Point-of-Sale (PoS) leveraging the federation mechanisms

developed in WP3 in order to offload user traffic in different locations so that web applications

at the edge/fog can be precisely located. As a result, the owner of the PoS does not need to

own EFS resources in all locations where he desires to instantiate resources. He leverages the

federation to use other domain EFS resources for offloading non-critical/sensitive applications.

This concept is conceived from WAN optimization use cases, where content is precisely cached at

the border of the network to avoid sending unnecessary data across the network.

The scenario to validate comprises two domains playing the following roles: one domain is a

consumer domain in the federation while the second one is a provider in the federation. The main

feature being validated is the ability of steering dynamically the control plane of EFS resources.

Allowing different OCSs to share the control of an EFS resource.

The OCS components deployed in this scenario are the VIM (i.e., fog05) using LXD containers, the

EFS Resource Orchestrator, the SD-WAN EFS Function manager and the PoS EFS Application

manager. The EFS Functions, applications and services deployed in this scenario are the SD-WAN

function, the PoS web application, the PoS customer & inventory database application, and the

host mobility detection AP function. The experimental setup including the EFS and OCS

components is depicted in Figure 5-4.

FIGURE 5-4: FEDERATION ARCHITECTURAL COMPONENTS UNDER VALIDATION

Based in the scenario described in Figure 5-4, the federation results are validated in three

separate phases as illustrated in Figure 5-5 (not that a green arrow represents upstream traffic,

while a red arrow represents downstream traffic):

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 73

H2020-761586

• Phase 0: it represents a user directly connected to its home domain. The PoS application

and the PoS customer and inventory database are located in the home domain.

• Phase 1: it represents a user roaming to a provider domain, which only provides him

connectivity to its home or consumer domain. The PoS application and the PoS customer

and inventory database are still located in the home domain.

• Phase 2: it represents the offloading phase, were the consumer domain instantiates in

the provider domain the PoS web application, offloading traffic from the PoS terminal

to its nearest PoS web application.

FIGURE 5-5: PHASES OF FEDERATION VALIDATION

TABLE 5-5: MAPPING OF COMMUNICATION ENDPOINTS, PHASES AND INDEXES

Communication endpoints Phase Index

PoS terminal and PoS Webapp 0 (1)

1 (1), (2), (3)

2 (1)

PoS Webapp and PoS Cust./Inv. DB 0 (2), (3)

1 (3), (4)

2 (2), (3), (4)

Table 5-5 maps the communication of the different applications involved in the PoS use case with

the indexes in Figure 5-5, which represent each hop that traffic needs to take when

communication between EFS elements involved in this use case. If the communication path is

composed by a less indexes this means that the communication has less hops to transverse, which

can be related to a lower latency, higher bandwidth and better jitter metrics measured in

Section 5.2.1.

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 74

H2020-761586

FIGURE 5-6: EXPERIMENTAL SETUP FOR FEDERATION VALIDATION

The hardware employed in the experimental scenario is composed of two Dell Latitude E5550

laptops with 8GB of RAM, Intel i5-5300U CPU and 500 GB of HDD. Each of the laptops will be

used to simulate a pair of EFS OCS, composing a domain. Each EFS has a single compute node.

Both laptops are interconnected using a single ethernet interface, which serves as the

interconnection network for the two domains. Additionally, the laptop integrated network card

serves as the domain Wi-Fi AP’s, representing the EFS access network. To emulate the domain

OCS and EFS, we opted for virtual machines virtualized using KVM, this approach allows us to

isolate the OCS and EFS completely. Both EFS and OCS guest OS are based on Ubuntu 16.04

LTS 64bits allowing fog05 to deploy functions/applications/services using LXD container

technology. Moreover, to deploy the OCS components developed for this use case, native Linux

applications and LXD containers where used. Finally, as a PoS terminal we are using an extra

Dell Latitude E5550 laptop, which includes google chrome browser and the necessary tools to

test network performance (i.e., ping and iperf3).

5.2.1 Results

This presents the measurements gathered for validating the federation mechanism, i.e., latency,

jitter, bandwidth and the deployment time in each of the federation phases. Metrics measured

for phase 0, represent an ideal scenario where there is no mobility; the end user is directly

connected to its home domain, where all the functions/applications/services that the use case

needs are provided in a single EFS. The metrics measured from phase 1, represent a scenario

where the user has moved to another domain, while the necessary core

functions/applications/services are still deployed at its home domain. The provider domain is

only providing a L3 secure tunnel connectivity to its home domain. Finally, the metrics measured

from phase 2 use the scenario of phase 1 and on top it adds the offloading of web application

traffic to a local cached web application in the provider domain.

Table 5-6 reports the results from RTT latency tests carried out for the three phases. For each test

the packet size, packet rate and the number of samples taken are set statically to 1400 Bytes,

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 75

H2020-761586

0.2 packets per second (pps) and 100 samples. When we move between phase 0 and phase 2,

results show that the latency on average has increased between the PoS Webapp and the PoS

Cust./Inv. DB in ~1.5ms. This result highlights the impact of the SD-WAN function in the

federation. Latency between the PoS Terminal and the PoS Webapp is on average between 4.5

ms and 5 ms with a high standard deviation, justified by the radio interface used to access the

applications in the EFS. Notice that from phase 1 to phase 2 the average latency has increased

~1ms, which can translate to better radio conditions while executing experiment 1.

TABLE 5-6: FEDERATION RTT LATENCY RESULTS IN MS

Phase From To Tool Max Min Avg. Std. Dev.

0 PoS Terminal PoS Webapp ping 57.74 1.537 4.491 6.567

PoS Webapp PoS Cust./Inv. DB ping 0.242 0.069 0.095 0.032

1 PoS Terminal PoS Webapp ping 17.77 1.815 4.56 3.783

PoS Webapp PoS Cust./Inv. DB ping 0.391 0.071 0.089 0.033

2 PoS Terminal PoS Webapp ping 34.595 2.013 5.792 5.334

PoS Webapp PoS Cust./Inv. DB ping 2.912 0.894 1.595 0.297

TABLE 5-7: FEDERATION JITTER RESULTS IN MS

Phase From To Tool 1 Mbps 10 Mbps 28 Mbps

0 PoS Terminal PoS Webapp iperf3 - 2.327 1.602

PoS Webapp PoS Cust./Inv. DB iperf3 0.074 0.011 0.005

1 PoS Terminal PoS Webapp iperf3 - 2.203 2.937

PoS Webapp PoS Cust./Inv. DB iperf3 0.074 0.011 0.005

2 PoS Terminal PoS Webapp iperf3 1.83 2.42 1.123

PoS Webapp PoS Cust./Inv. DB iperf3 - 0.258 0.112

Table 5-7 describes the results from jitter tests carried out for the three phases. Jitter is measured

using iperf3 tool in UDP mode, using three different bandwidths (1 Mbps, 10 Mbps and 28

Mbps) which allows us to understand the jitter under different load conditions. Results show that

the jitter increased by nearly a factor of two between phase 0 and 1 under the heavy load

scenario (28 Mbps). The increase in jitter in phase 1 is later rectified in phase 2, resulting in

similar jitter conditions as the ideal case of phase 0. These results tell us that federation and the

use of offloading can under a heavy loaded network decrease the jitter of the end user.

TABLE 5-8: FEDERATION BANDWIDTH RESULTS IN MBPS

Phase From To Tool Avg. TCP Avg. UDP

0 PoS Terminal PoS Webapp iperf3 17.88 Mbps 24.6 Mbps

PoS Webapp PoS Cust./Inv. DB iperf3 34.78 Gbps 29.7 Mbps

1 PoS Terminal PoS Webapp iperf3 15.2 Mbps 21.9 Mbps

PoS Webapp PoS Cust./Inv. DB iperf3 34.78 Gbps 29.7 Mbps

2 PoS Terminal PoS Webapp iperf3 18.8 Mbps 27 Mbps

PoS Webapp PoS Cust./Inv. DB iperf3 188.6 Mbps 24.8 Mbps

Table 5-8 describes the results from bandwidth tests carried out for the three phases. Bandwidth

is measured using the iperf3 tool in both modes, TCP and UDP. For the UDP mode, bandwidth is

manually increased until packet loss is experienced. Results show that the bandwidth available

when accessing the PoS Webapp from the PoS terminal decreased from phase 0 to phase 1,

which explains the end user movement from the consumer to the provider domain. Now, between

phase 1 and 2 the bandwidth available using TCP and UDP has increased, justified by the

offloading of the PoS Webapp to the provider domain, which tells that the available bandwidth

at phase 2 to the PoS Webapp is similar to phase 0 under ideal conditions.

Table 5-9 reports the deployment times for each of the EFS components involved. The results

show that the SD-WAN function has the lightest impact in the federation deployment time, as

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 76

H2020-761586

opposed to the PoS Webapp which has the heaviest impact. Additionally, the results show that

the connection of the consumer and provider federation domains take roughly 0.7 s.

TABLE 5-9: FEDERATION DEPLOYMENT TIMES (S) FOR EACH OF THE COMPONENT ON THE EFS

SD-WAN IPsec tunnel PoS Webapp PoS Cust./Inv. DB

16.67 s 0.669 s 51.154 s 31.29 s

5.2.2 Conclusions

From the results we can conclude that the federation of EFS resources allows domains to extend

their capabilities dynamically across multiple domains, connecting securely users between

different domains or even offloading certain functions/applications/services to other domains,

maximizing the utilization of resources at the edge and fog. Federation instantiation has some

overhead, such as the instantiation of the SD-WAN function and the deployment of secure

channels connecting both data and control planes. For use cases which require a fast federation

instantiation, the SD-WAN function can be already pre-provisioned in the fog node, which is

going to be federated, reducing in ~17 seconds the total time to instantiate the federation. Once

the SD-WAN is instantiated the only overhead left is the control and data plane switching from

the fog node which requires the EFS VIM to rewire internally the fog node and the SD-WAN to

connect the control and data plane of the fog node to the consumer domain securely. The

optimized federation instantiation mechanism can be deployed in less than 5 second, allowing

the fog node rewiring a sufficient margin of ~4.3 seconds.

Regarding the deployment of some use cases, the federation mechanism has proved efficient

and flexible enough to dynamically instantiate an application at the provider domain, which

allows certain traffic to be offloaded. As stated in Section 5.2.1, results show that the offloading

by leveraging federation is capable of improving the end user QoE by improving latency, jitter,

and bandwidth overall, providing a seamless handover to end users who roam across different

domains. Finally, we can conclude that the presented results represent a sort of lower bound

given by the static federation. In case of a dynamic federation (see Section 4.1), parties could

involve a negotiation phase prior to the resource federation which may result in a longer

resource federation establishment.

5.3 Migration of EFS function and application

In this section, we present and discuss the approach that is adopted in 5G-CORAL platform to

enable the migration of EFS functions and applications. This approach allows the OCS to migrate

system and application containers between EFS nodes. Specifically, we develop a pre-copy

migration scheme (as described in Section 3.2) while considering the sources of prolonged

migration downtime. The enabling technologies for our proposed scheme include LXC9, checkpoint

and restore in user space (CRIU)10, and remote file synchronization (rsync11). The experimental

setup is shown in Figure 5-7. CRIU is utilized to dump the state of the migrating containers. The

local-disk and the state of the containers are copied by using rsync for its remarkable speed and

efficiency. To migrate a function or an application between EFS nodes with minimal downtime,

the following steps are taken:

1. Local disk-copy: the container base-image is assumed to be available in all edge nodes

to reduce traffic overhead and to keep the total migration time to minimal. Local-disk

synchronization is performed to copy application related files.

9 https://linuxcontainers.org/
10 https://criu.org/Main_Page
11 https://rsync.samba.org/

https://linuxcontainers.org/
https://criu.org/Main_Page
https://rsync.samba.org/

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 77

H2020-761586

2. Iterative pre-copy: all the pages of the container including the running applications are

checkpointed then copied to the destination EFS node while the container continues to run.

Next, pre-copy iterations are performed to checkpoint and copy only the memory pages

that have changed (dirtied) since the last checkpoint.

3. Stop-and-copy: the container gets frozen in this step then a final checkpoint and copy

are performed. The downtime observed by the user occurs during this step.

4. Restore-and-terminate: the container is restored in the destination EFS node and the

frozen container in the source node gets terminated.

FIGURE 5-7: MIGRATION EXPERIMENTAL SET-UP

It is important to note that checkpoint and restore functions of CRIU are computational expensive.

Checkpoint function collects the process tree and resources, freeze the process, then write them to

files. The restore function reads the files, resolves shared resources, fork the process tree then

restore the process resources. Both functions perform I/O operations which are generally slow

especially on rotational block devices such as hard disk drive (HDD). To improve the migration

scheme, we include the following enhancements on the EFS nodes:

• Low-latency computing capabilities: Linux general-purpose kernels fail to provide time

guarantees for time-critical applications [32]. Hence, we incorporated low-latency

computing into the EFS nodes. In addition, we scaled the CPU performance to avoid

latency caused by waking up from idle state.

• Fast storage: HDD uses mechanical mechanism to persistently store data in blocks of 512

byte. As such, I/O operations experience seeking time delays (i.e., the time it takes the

disk head to find the target track). Here, we utilize temporary file system (TMPFS) to

enhance the performance as it allows short-term files to be written and read without

generating disk I/O.

To benchmark container migration, we implemented stop-and-copy (sc) migration scheme

reproducing the results presented in [33] and evaluated its downtime against our proposed pre-

copy (pc) migration scheme. The migration experiments were carried out between two EFS nodes.

In this experiment, we evaluate the downtime during the migration of blank LXC system

containers and application container running both Ubuntu and Alpine Linux releases. Figure 5-7

shows the experimental setup and Table 5-10 provides the hardware and software details used

in this experiment. The interconnection between the source and destination EFS nodes is 1 Gbps.

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 78

H2020-761586

TABLE 5-10: HARDWARE AND SOFTWARE SPECIFICATIONS USED IN THE EXPERIMENTAL SET-UP
 Characteristic Description

E
F
S
 n

o
d

e

H
a

rd
w

a
r

e

Model ProLiant DL160

CPU Intel Xeon 2.10GHz

RAM 124GiB DIMM 2400

Network 2 x I350 Gigabit

S
o

ft
w

a
re

 &
 C

o
n

ta
in

e
rs

 General-purpose kernel 4.4.0-145-generic

Low-latency kernel 4.4.0-145-lowlatency

LXC1 3.0.3

CRIU 3.11

Container (C1) System container (Ubuntu 16.04)

Container (C2) Application container (Ubuntu 16.04)

Container (C3) System container (Alpine 3.7)

Container (C4) Application container (Alpine 3.7)

5.3.1 Results

The obtained results are based on average values of 30 trails for each presented case. Figure

5-8 shows the downtime of stop-and copy (sc) and pre-copy (pc) migration schemes. The left y-

axis represents the observed downtime while the right y-axis shows the size of the accumulative

checkpoint files in megabytes for the respective container type and migration scheme. Since the

rate of dirty pages for the blank containers are minimal, most of the downtime is attributed to

the common steps (i.e., final checkpoint → state copy → restore) of both migration schemes

rather than being dominated by the time taken to copy large in-memory state.

FIGURE 5-8: MIGRATION DOWNTIME COMPARISON BETWEEN STOP-AND-COPY (SC) AND PRE-COPY

(PC) SCHEMES FOR DIFFERENT CONTAINERS

The container state size of every iteration in pre-copy procedure depends on the rate of dirty

pages. For instance, in the case of Ubuntu system container (C1), the downtime due to the

checkpointing process are 1.53 s and 1.17 s for the sc and pc, respectively. The overall average

migration downtime for the two schemes are 2.58 s and 2.05 s, respectively. To highlight the

features of the obtained datasets from the trails, we plot the empirical cumulative distribution

function (eCDF). Figure 5-9 shows the eCDF for migrating a blank Ubuntu 16.04 application

0

2

4

6

8

10

12

0

500

1000

1500

2000

2500

3000

sc(C1) pc(C1) sc(C2) pc(C2) sc(C3) pc(C3) sc(C4) pc(C4)

C
h

e
ck

p
o
in

t
S
iz

e
 (

M
B
)

D
o
w

n
ti
m

e
 (

m
s)

Chkpt Copy Restore sc_chkpt pc_chkpt

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 79

H2020-761586

container (C2) using sc and pc migration schemes. The x-axis represents the downtime in

milliseconds of each of the experiments (total of 30 experiments for each migration scheme)

while the y-axis represents the cumulative percent. For example, the downtime values at the 80th

percentile are 1948 ms and 1565 ms for sc and pc, respectively. Also, the range of the

downtime values for pc is smaller compared to sc which indicates less variation in the case of pc

scheme.

FIGURE 5-9: ECDF OF UBUNTU APPLICATION CONTAINER (C2) MIGRATION

The results clearly show that the sc exhibits higher downtime and variation compared to the

developed pc scheme. As such, the proposed pc migration scheme reduces the downtime by

approximately 21% when compared to the current state-of-the-art.

5.3.2 Conclusions

Provisioning functions and applications at the network edge through lightweight virtualization

technologies proves to be a prominent feature especially for ultra-low latency and reliable

vertical services. Besides the benefit of low latency and resource efficiency, supporting user

mobility from computing prospective is equally important to maintain a continuous service

delivery. To this end, container migration is a key solution to sustaining user quality of

experience. In this section, we showed that functions and applications running in one EFS node can

be relocated by the OCS to another EFS node with minimal downtime. For that, we developed a

pre-copy migration scheme which includes enhancements to EFS nodes namely low-latency

computing and fast storage. The experimental results show 21% downtime reduction compared

to the current state-of-the-art.

5.4 Network assisted D2D

Network assisted D2D requires from the OCS to perform instantiation, termination and/or

healing) of the D2D communication channel. In this section we will describe the experimental

validation of the EFS Manager that is responsible for lifecycle management of the EFS functions

and applications. In order to perform the experimental validation of the EFS Manager as a

reference scenario we will use the fog-assisted robotics use case. Please note that in D2.2 [8], a

similar scenario is evaluated and the results are showing how an EFS Service (Wi-Fi mon in

Section 3.1.3.1) can be used for creating an adaptive driving algorithm to improve the driving

precision robot. For what concerns this document instead, Section 3.1.3.2 gives a detailed

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 80

H2020-761586

explanation of the OCS procedures needed to establish the D2D communication in the referent

use case. Based on this description, we implemented our exemplary scenario on an experimental

testbed in the 5TONIC [34] laboratory. This testbed is used for a step-by-step experimentation

aimed at evaluating the latency reduction of the D2D communication channel.

The set-up in the 5TONIC laboratory is shown in Figure 5-10 and it is composed of two major

components: (i) Orchestration and Control System and (ii) Edge and Fog System. Regarding EFS,

we used a set of EFS resources. One Fog CD for providing Wi-Fi connectivity for communication

between the robots and the EFS Entities. An EFS Function implements the Wi-Fi Access Point

capabilities and it is deployed as an LXD container. In the same Fog CD, we have deployed

another container which serves for the EFS Service Platform and its presented as MQTT broker.

The Robotic application is implemented as various Robot Operating System (ROS) 12 [35]

components distributed across the robots (i.e., Fog CDs) and the edge devices. Table 5-11 lists

the main ROS components used in our experimentation. Second Fog CD holds the robot

intelligence and the localization monitoring service of the robots. They are deployed in a single

virtual machine, while on the robot the ROS components run as native applications.

FIGURE 5-10: EXEMPLARY SCENARIO LEVERAGING NETWORK-ASSISTED D2D

TABLE 5-11: ROBOTIC SYSTEM ROS COMPONENTS

ROS component Description

Robots localization Probabilistic localization for robots moving in 2D [36]. Provides
the indoor localization for both robots (Robot1 and Robot2)
against a known map.

Experiment App ROS application that executes the experiment drive sends
commands to Robot1.

Kobuki follower ROS application that follows a robot on a known map while
trying to keep constant distance between the robots.

Map server ROS node that provides map data as ROS service [37].

12 The Robot Operating System (ROS) is a widely spread framework for writing robot software. It is a
collection of tools, libraries, and conventions for creating complex and robust robotics applications.

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 81

H2020-761586

LiDAR streaming ROS package that provides support for 2D Laser Scanner [38].

Odometry sensors ROS node that provides robot specific Odometry data [40].

Kobuki driver ROS wrapper for the Kobuki driver [39].

The Orchestration and Control System implemented for the experimentation comprises of custom

EFS Manager and VIM. The EFS Manager is implemented as a container in the first Fog CD and

follows the work-flow described in Section 3.1.3.2 in the same time for the VIM component we

have employed fog05 [4], which embodies all the required OCS principles.

In order to validate the benefits and performance of the network assisted D2D, we have

designed and compared two experimental scenarios illustrated in Figure 5-11 and Figure 5-12.

In the first experimental scenario (see Figure 5-11), all the robot ROS components are in charge

of (i) reading sensors data (e.g., odometry, laser), (ii) send the data to the Robot Intelligence and

(iii) execute driving instructions received from the Robot Intelligence. On the other hand, the

received data in the Robot intelligence is used to perform indoor localization on a known map

and to execute the experiment process. The ROS component – Experiment app – navigates the

first robot throughout the known map and the ROS component – Kobuki follower – navigates the

second robot by following the driving path of the first one while maintaining a constant distance.

FIGURE 5-11: FULLY CENTRALIZED ROBOTICS

CONTROL

FIGURE 5-12: NETWORK-ASSISTED D2D

ROBOTICS CONTROL

In the second scenario (see Figure 5-12) we have a D2D communication between the two robots

that is established with the help of the EFS Manager. The distribution of the ROS components in

the Robotic system is slightly different. The Robot Intelligence now hosts only the Experiment app.

The robots, in addition to the existing ROS components they also host their own probabilistic

localization system. This means that each robot is aware of his own position against a known

map. Furthermore, the Kobuki follower ROS node is now placed in the second robot.

Consequently, the coordinates of the first robot are now consumed via the D2D communication

channel. This data is used by the Kobuki follower node in order to navigate the second robot.

Both scenarios consist of the robots driving in a closed and square hallway. The starting positions

of the robots is in the beginning of the hallway. Both robots are placed one behind the other with

approximate distance between the robots of 0.3 meters. Then, the first robot starts the

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 82

H2020-761586

experiment drive with a constant speed of 0.2 m/s. The second robot follows the first robot

trying to keep a constant distance of 0.65 meters.

5.4.1 Results

The publish-consume mechanism for exchanging data between the different ROS components is

based on TCP. This means that any interference on the Wi-Fi channel between the robots and the

Robot intelligence will produce a retransmission at TCP level, thus introducing an undesired delay

and/or packet loss in the close-loop mechanism. Additional delays and/or packet loss in the

delivering of the odometry and laser sensor data can result in a significant mismatch of the

robots estimated 2D position in the Robot Intelligence. Similarly, additional delays in the

delivering of the movement instructions can degrade the smoothness and precision of the driving.

For this reason, we carry out 10 experiment runs using the fully centralized robotic control. Each

run consists of the Robot Intelligence driving the robots on a straight line for 15 meters. The

starting position of the robots is approximately 7 meters away from Wi-Fi access point. Next,

the robots accelerate from the starting position to the target velocity (0.2 m/s) and drives for 15

meters. At the end of the driving, the robot stops close to 22 m from the Wi-Fi access point. The

Wi-Fi information obtained via the Wi-Fi mon application (see Section 3.1.3.1), was recorded in

the Robot Intelligence, while on the robot itself we measured the received navigation commands

delay.

FIGURE 5-13: WI-FI CHANNEL AND DELAY CHARACTERIZATION FOR FOG-ASSISTED ROBOTICS

Figure 5-13 characterizes the quality of the Wi-Fi channel covering our experimental area. With

respect to the measurements available via the Wi-Fi mon service, the Tx Retries presents the

probability density function of the downlink frames retransmissions. The Tx Errors shows the PDF

of the failed transmissions, Tx Success line shows the PDF of all the downlink frames successfully

transmitted (from the virtual AP to the robots) and TCP delay presents the ROS driving

commands downstream delay. From Figure 5-13 it can be seen that for lower Wi-Fi signal level

(below -71 dBm), the probability of having a failed transmission increase. This probability

becomes higher than the probability of successful transmission at signal level lower than -77 dBm.

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 83

H2020-761586

TCP delay measurements confirm this with values as high as hundreds of milliseconds. As a result,

we were able to notice certain imprecision in the distance between the two robots. This

imprecision was increasing as the robots were moving away from the virtual AP. For signal level

below -80dBm (the last 2 meters of the drive) it is very hard to have a successful transmission.

This resulted in non-smooth and bouncy movements on both robots.

TABLE 5-12: STATISTICAL CHARACTERISTIC OF FOG-ASSISTED ROBOTICS DOWNSTREAM DELAY (S)

Scenario Min Max Mean Median Std Dev.

Centralized 0.001 0.226 0.006 0.002 0.011

D2D 0.001 0.124 0.007 0.003 0.010

Table 5-12 presents the statistical analysis of the downstream delay measured in the robots. The

results show that there is no significant difference some of the statistical parameters, such as the

average. This is reasonable since we are using Wi-Fi as radio access technology for both

experimental scenarios. However, environmental changes (e.g., physical obstacles, like walls and

floors) other external interferences can cause peaks in the delay, slow network speed and poor

signal level in the centralized scenario. Therefore, the network assisted D2D communications helps

at mitigating such scenarios. Based on this observation, we decided to simulate an interfered Wi-

Fi channel by introducing artificial delay. With the centralized robotic control (see Figure 5-11)

we performed 3 sets of measurements, each containing 10 runs. For the first set of measurements

we (i) didn’t introduce any artificial delay (0 ms), then we introduced (ii) 100 ms and (iii) 300 ms

of delay. With the network assisted D2D robotics control (see Figure 5-12) we performed 1 set

of measurements containing 10 experiment runs. All the robotics system components are

synchronized and share the same time reference for accurate measurements. Throughout the

duration of the experiments, we recorded Euclidean distance between the robots in the Robot

Intelligence and in the robots.

FIGURE 5-14: EXPERIMENTAL CDF OF DISTANCE BETWEEN THE TWO ROBOTS

The obtained data from all the experiments is analysed and aggregated to generate the results

presented in Figure 5-14. In overall, Figure 5-14 presents the Cumulative Density Functions (CDF)

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 84

H2020-761586

for each set of measurements. From left to right, first the results regarding the network-assisted

robotics control are presented. In this plot we measure the Euclidean distance in the second robot.

The second, third and fourth plot reports the results for the centralized robotics control. In order

to obtain these three plots, we measure the Euclidean distance in the Robot Intelligence.

TABLE 5-13: STATISTICAL CHARACTERISTICS OF THE DISTANCE (M) BETWEEN THE TWO ROBOTS

Scenario Artificial Delay Min Max Mean Median Std Dev.

Centralized 0 ms 0.473 4.522 0.687 0.699 0.081

100 ms 0.470 4.517 0.695 0.703 0.065

300 ms 0.443 4.504 0.718 0.721 0.079

D2D 0 ms 0.474 4.517 0.677 0.683 0.130

The most significant statistical properties of the measured Euclidean distance between the robots

is reported in Table 5-13. It is worth mentioning that in our tests we have robots making turns.

Since we are measuring the straight-line distance, this leads to shorter distances in our

measurement set. In addition to that, artificial delay is added on top of the already existing Wi-

Fi delay between the robots and the robot intelligence (i.e., 6-7 ms). Statistical values of the Wi-

Fi delay between the robots and the robot intelligence with good network strength, little noise

and no congestion are presented in Table 5-12. Starting by analysing the first experimental

scenario, we can see that the centralized robotics control measurements provide the most precise

maintaining of distance with respect to artificially delayed (with 100 ms and 300 ms artificial

delay). This is natural since as we are increasing the delay, the mismatch of the estimated 2D

positions of the robots increases. Therefore, we have slower reaction time and increased

imprecision in the Robot intelligence. Regarding the network assisted D2D robotics control, we

can see how significant improvement regarding the distance is achieved. In the reported

measurements (i.e., D2D with Centralized robotics control, D2D with 100 ms artificially delayed

Centralized robotics control, and D2D with 300 ms artificially delayed Centralized robotics

control) we can observe that by using the D2D communication channel we can arrive closest to

our target distance of 0.65 m during the experimental drive. It is worth highlighting that these

results do not consider variable artificial delay nor packet loss.

5.4.2 Conclusions

In this section the EFS Manager has been experimentally validated by implementation of the

Network assisted D2D feature. Moreover, we showed how to exploit the context information that

is available in the edge by making it accessible to the EFS Manager through EFS Services. The

experiments demonstrated how the EFS Services can be also beneficial for the OCS itself. The

context information consumed by the OCS can be used to perform instantiation, termination

and/or healing of EFS applications and function. Results show that D2D connection can be used

for maintaining better coordination (e.g., moving in formation) between robots. Furthermore, in

cases when there is increased delay on the Wi-Fi channel due to interferences, the low-latency

robot-to-robot communication can help to optimize the robotics systems operations and achieve

better precision.

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 85

H2020-761586

6 Lessons learnt
Here, we present the lessons learnt throughout the design, refinement and experimental

validation of the 5G-CORAL OCS. Specifically, we focus on the benefits of using the distributed

key-value store, on the impact of volatile and resource-constrained devices, on the choice of

container-based virtualization and federation, and on the ability of the OCS to operate and

reconfigure multi-RAT setups.

Lesson 1: Distributed key-value store enables distributed OCS state information and
facilitates OCS deployment in low-end and mobile devices

The 5G-CORAL OCS adopts a novel key-value store concept, which delivers data sharing across

different technologies and networks, along the cloud-to-thing continuum. Differently from

traditional key-value stores, in 5G-CORAL data are globally accessible and local replication is

not required. Furthermore, we assessed the advantages of adopting a distributed VIM, capable

of managing resources hosted by heterogeneous nodes, particularly by resource-constrained and

mobile nodes. Differently from a centralized VIM, the distributed VIM ensures more flexibility

and agility in monitoring, tracking and provisioning resources sitting on different logical layers,

namely, cloud, edge, fog and terminals. Moreover, to overcome issues generated by the resource

volatility, we introduced the storage decomposition in actual and desired storage, such that

service instantiation/termination, polling and any other lifecycle operations can be successfully

carried out even when devices are out of coverage or connectivity is disrupted. In turn, this allows

the OCS to instantiate and terminate EFS applications, having an accurate visibility of the

resources available and taking into account their volatility.

Lesson 2: The introduction of the EFS stack information model allows capturing key
information of the edge and fog environment to perform an accurate placement

In 5G-CORAL, the EFS Stack allows to harmonize and extend the ETSI MEC and ETSI NFV

information model by collecting information describing the edge and fog environment, such as

I/O devices, network interfaces and location constraints. Such information model also includes the

orchestration level and facilitates the application development, since the developer is no longer

compelled to specify the target infrastructure immediately after the onboarding. The EFS

Resource Orchestrator is ultimately the entity responsible for determining the resources fitting the

requirements, based on placement algorithms capable of even capturing the volatility of fog

entities.

Lesson 3: Deploying services over volatile low-cost resources comes at the cost of increased
lifetime expenses

In Section 2.4.3, we discussed placement algorithms for the EFS Stack in scenarios consisting of

volatile resources. Our conclusion was that introducing volatile resources in the EFS infrastructure

significantly increases the total cost of ownership of the EFS Stack. In other words, the adoption

of volatile resources in the 5G-CORAL platform makes a negative impact on the OPEX.

Nevertheless, as demonstrated throughout the project, the pooling of such resources brings in a

wealth of benefits, including a significant reduction in CAPEX due to their re-utilization and

sharing. Moreover, flexible and agile service deployment/maintenance and faster federation

may only rely on resources provisioned by fog nodes in the proximity (e.g., due to hardware or

location requirements) for certain applications and services. Therefore, we point out that the

usage of edge resources is preferable in specific circumstances, e.g., when high resource volatility

makes the service lifecycle too hard to manage, thus severely impacting on OPEX KPIs set by

service providers and network operators. For instance, operational costs may significantly rise in

situations where services are produced by entities running on mobile resources, such as connected

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 86

H2020-761586

cars with resources on board. The continuous mobility may lead to connection drops and

disruptions among the consumers of those services. As a result, we advocate that the service

producer is better to be located on the edge resources from an OPEX perspective. On the

contrary, in a shopping mall setting, fog resources are more persistent due to the limited space,

thus ensuring good availability in a certain time frame and location.

Lesson 4: Container-based virtualization solutions ensure faster EFS deployment and
migration

As pointed out in Section 5.1, the total deployment time for a single EFS App is heavily

influenced by the VIM choice. Container-based virtualization approaches result in faster

deployment with respect to traditional VM hypervisor solutions, such as KVM, due to the

overhead generated by the separate kernel and the time spent during the boot process. In

particular, we note that Docker can ensure the fastest deployment performance as long as an

image is already available on the compute nodes, whereas LXD may be more suitable in

scenarios where connectivity and storage resources are limited. Furthermore, containers are also

employed to enable fast migration of an EFS resource between two nodes, thus ensuring minimal

downtime and high QoS.

Lesson 5: Federation can help operators significantly reduce deployment and operational
costs

In Section 5.2, we assessed how federation can significantly reduce the time spent to load a web

application thanks to the ability of placing the web application container closer to the end user.

In turn, federation can be considered a key feature of the OCS for optimizing function and

application deployment and efficiently placing containers into convenient locations, such as in

proximity of the users requesting the EFS service. By contrast, a single EFS infrastructure may

introduce deployment limitations due to the lack of resources and reduced user accessibility, with

consequent negative impact on CAPEX and OPEX. Moreover, in Section 4 we pointed out that

administrative domains close to each other are more incline to take part in the federation

process, assuming the adoption of a trusted cooperative peer-to-peer model. Finally, we proved

that federation always increases the profits of the members involved and instability can be

prevented by encouraging all the participants to share the total profit.

Lesson 6: Agile deployment and reconfiguration of RATs and multiple communication
channels can be delivered by the OCS

In 5G-CORAL, RATs are handled as EFS functions and can be rapidly instantiated, terminated

and migrated. As an example, robots can benefit from Wi-Fi coverage through virtual APs

deployed by the OCS, or low-latency D2D connectivity can be reliably provided for robots that

needs to be coordinated. This is possible thanks to the context information available at the edge,

which is delivered to the EFS manager by means of EFS services. As we demonstrated in Section

5.4, the ability of deploying multi-RAT solutions is mission-critical in robotics use cases, as robots

need to be able to exploit short-range D2D connectivity to navigate and maintain coordination

with high accuracy, particularly in high-interference conditions. In such scenario, the 5G-CORAL

OCS can quickly react and reconfigure the network connections by relying on the information

stored in the EFS.

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 87

H2020-761586

7 Conclusions and future directions
This second WP3 deliverable concludes the 5G-CORAL work on the design and validation of an

Orchestration and Control System (OCS) for edge and fog environments. Summarising the

technical work of WP3, the first deliverable D3.1 [6] identified the opportunities and

requirements for a joint edge and fog orchestration system. These led to the early design of the

OCS architecture, components and interfaces. The focus of D3.1 [6] was on the bottom part of

the OCS components, namely VIM and EFS Entity Descriptor, so as to enable the support of

heterogeneous and dynamic resources, dynamic migration, monitoring, and third-parties

interaction on the OCS. Moreover, it proposed a solution for resource discovery and integration

across multiple access technologies, such as IEEE 802.11, 3GPP, Bluetooth/ZigBee, and Ethernet.

Finally, D3.1 [6] introduced the concept of resource federation and three federation models.

Departing from those findings, this second deliverable elevated the focus from the VIM up to the

Orchestrator. Based on the gaps identified in the state-of-the-art (see Section 2.2) for distributed

edge and fog environments, this deliverable first proposed in Section 2.3 an approach based on

a distributed key-value store for implementing a distributed VIM and EFS Stack and Resource

Orchestrator. By doing so, the distributed nature of edge and fog environments is also taken into

consideration for the OCS and not only for the EFS. An open-source implementation of the

distributed VIM and EFS-SO/ EFS-RO has been made available on GitHub under the name of

fog05 [4] and f0rce [5], respectively. Next, a placement algorithm suitable for volatile

environment has been presented in Section 2.4 showing the impact of pricing at edge and fog

tiers on the lifetime of EFS Stacks. An analysis of the 5G-CORAL use cases has been then

performed in Section 3.1 on the expected OCS procedures to tackle volatile and mobile

environments, resulting in a novel container-based migration mechanism (see Section 3.2) with a

reduced downtime compared to existing state-of-the-art. A resource federation mechanism has

been proposed in Section 4.1 and evaluated analytically showing the impact of pricing and

agreements between different domains in Section 4.2 and 4.3. An experimental validation and

evaluation of the OCS has been finally reported in Section 5 highlighting the impact of the

virtualization technologies and the benefits of using EFS Services on the overall management

system. Section 6 summarised the lessons learnt.

For what concerns future directions, we can conclude that the 5G-CORAL OCS mainly positioned

itself as an end-to-end Infrastructure-as-a-Service (IaaS) spanning across fog, edge, and cloud

tiers. This means that the OCS user is able to use the EFS-SO to dereference various low-level

details of underlying network infrastructure like physical computing resources, location, scaling,

migration, etc. This concept is very much aligned with the infrastructure-centric and API-centric

concepts of ETSI MEC and ETSI NFV. In the last couple of years, few initiatives were started

building on top of ETSI MEV and ETSI NFV in order to allow to customers to develop, run, and

manage applications and services without the complexity of building and maintaining the

infrastructure typically associated with the delivery of the functions, applications, and services.

Specifically, ETSI Experiential Networked Intelligence (ENI) [41] and the ETSI Zero touch network

& Service Management (ZSM) [42] aim at closely integrating automation and intelligence

mechanisms with the OSS/BSS of the customers (i.e., not only with the OSS/BSS of the

infrastructure provider), thus natively supporting the customers’ requirements, both operational

and business-wise. By integrating such concept in the OCS, a paradigm shift is then envisioned:

evolving from a distributed IaaS paradigm towards a distributed Platform-as-a-Service (PaaS)

allows to provide the necessary support and data exposure to the clients, which can ultimately

take advantage of the edge and fog benefits without dealing with its underlying complexity.

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 88

H2020-761586

8 References
[1] M. McBride, D. Kutscher, E. Schooler and C.J. Bernardos, “Overview of Edge Data

Discovery,” IETF, draft-mcbride-edge-data-discovery-overview-01, March 2019.

[2] G. Papadopoulos, P. Thubert, F. Theoleyre and CJ. Bernardos, “SPAWN use cases,” IETF,

draft-bernardos-spawn-use-cases-00, March 2019.

[3] C.J. Bernardos and A. Mourad, “Autonomic setup of fog monitoring agents,” IETF, draft-

bernardos-anima-fog-monitoring-00, March 2019.

[4] fog05 project, “fog05: end-to-end compute, storage and networking virtualisation,”

Eclipse foundation. [Online]. Available: https://github.com/eclipse/fog05 [Accessed 22

May 2019].

[5] fog05 project. “f0rce: fog orchestration engine,” Eclipse foundation. [Online]. Available:

https://github.com/eclipse/fog05/tree/f0rce [Accessed 22 May 2019].

[6] 5G-CORAL project, “Deliverable D3.1; Initial design of 5G-CORAL orchestration and

control system,” May 2018. [Online]. Available: http://5g-coral.eu/wp-

content/uploads/2018/06/D3.19802.pdf [Accessed 22 May 2019].

[7] 5G-CORAL project, “Deliverable D2.1; Initial design of 5G-CORAL Edge and Fog

computing system,” May 2018. [Online]. Available: http://5g-coral.eu/wp-

content/uploads/2018/06/D2.19803.pdf [Accessed 22 May 2019].

[8] 5G-CORAL project, “Deliverable D2.2; Refined design of 5G-CORAL edge and fog

computing system and future directions,” May 2019.

[9] A. Corsaro, E. Boasson and O. Hecart, “zenoh: The zero network overhead protocol,” July

2018. [Online]. Available: http://zenoh.io/download/pdf/zenoh.pdf [Accessed 23 May

2019].

[10] ETSI, “Network Functions Virtualisation (NFV); Management and Orchestration; Network

Service Templates Specification,” European Telecommunications Standards Institute, GS

NFV-IFA 014, October 2016.

[11] T. Berners-Lee, R. Fielding and L. Masinter “Uniform Resource Identifier (URI): Generic

Syntax,” IETF, RFC 3986, January 2005.

[12] Robusto, C. (1957). The Cosine-Haversine Formula. The American Mathematical

Monthly, 64(1), 38-40. DOI: https://doi.org/10.2307/2309088.

[13] Texas Instruments, “OMAP Wireless Connectivity NLCP WiFi Direct Configuration Scripts,”

[Online]. Available: http://processors.wiki.ti.com/index.php/OMAP_Wireless_Connectivity

NLCP_WiFi_Direct_Configuration_Scripts [Accessed 22 May 2019].

[14] Constantine P. Sapuntzakis, Ramesh Chandra, Ben Pfaff, Jim Chow, Monica S. Lam, and

Mendel Rosenblum, “Optimizing the migration of virtual computers,” SIGOPS Oper. Syst.

Rev. 36, SI (December 2002), 377-390.

[15] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and A. Warfield.

2005. Live migration of virtual machines. In Proceedings of the 2nd conference on

Symposium on Networked Systems Design & Implementation - Volume 2 (NSDI'05), Vol. 2.

USENIX Association, Berkeley, CA, USA, 273-286.

[16] Michael R. Hines, Umesh Deshpande, and Kartik Gopalan. 2009. Post-copy live migration

of virtual machines. SIGOPS Oper. Syst. Rev. 43, 3 (July 2009), 14-26. DOI:

https://doi.org/10.1145/1618525.1618528.

[17] Violeta Medina and Juan Manuel García. 2014. A survey of migration mechanisms of

virtual machines. ACM Comput. Surv. 46, 3, Article 30 (January 2014), 33 pages. DOI:

https://dx.doi.org/10.1145/2492705.

[18] J. Nider and M. Rapoport. 2016. Cross-ISA Container Migration. In Proceedings of the 9th

ACM International on Systems and Storage Conference (SYSTOR '16). ACM, New York,

NY, USA, Article 24, 1 pages. DOI: https://doi.org/10.1145/2928275.2933275.

https://github.com/eclipse/fog05
https://github.com/eclipse/fog05/tree/f0rce
http://5g-coral.eu/wp-content/uploads/2018/06/D3.19802.pdf
http://5g-coral.eu/wp-content/uploads/2018/06/D3.19802.pdf
http://5g-coral.eu/wp-content/uploads/2018/06/D2.19803.pdf
http://5g-coral.eu/wp-content/uploads/2018/06/D2.19803.pdf
http://zenoh.io/download/pdf/zenoh.pdf
https://doi.org/10.2307/2309088
http://processors.wiki.ti.com/index.php/OMAP_Wireless_Connectivity%20NLCP_WiFi_Direct_Configuration_Scripts
http://processors.wiki.ti.com/index.php/OMAP_Wireless_Connectivity%20NLCP_WiFi_Direct_Configuration_Scripts
https://doi.org/10.1145/1618525.1618528
https://dx.doi.org/10.1145/2492705
https://doi.org/10.1145/2928275.2933275

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 89

H2020-761586

[19] A. Machen, S. Wang, K. K. Leung, B. J. Ko and T. Salonidis, “Live Service Migration in

Mobile Edge Clouds,” in IEEE Wireless Communications, vol. 25, no. 1, pp. 140-147,

February 2018. DOI: https://doi.org/10.1109/MWC.2017.1700011.

[20] R. Morabito, I. Farris, A. Iera and T. Taleb, “Evaluating Performance of Containerized IoT

Services for Clustered Devices at the Network Edge,” IEEE Internet of Things Journal, vol. 4,

no. 4, pp. 1019-1030, Aug. 2017. DOI: https://doi.org/10.1109/JIOT.2017.2714638.

[21] 5G-Coral Project, “Deliverable D1.2; 5G-CORAL business perspectives,” August 2018.

[Online]. Available: http://5g-coral.eu/wp-content/uploads/2018/09/D1.2-

final12828.pdf [Accessed 22 May 2019].

[22] Shapley, L. (1953) “A Value for n-Person Games,” In: Kuhn, H. and Tucker, A., Eds.,

Contributions to the Theory of Games II, Princeton University Press, Princeton, 307-317.

[23] Owen, G. (1975), Multilinear extensions and the banzhaf value. Naval Research Logistics,

22: 741-750. DOI: https://doi.org/10.1002/nav.3800220409.

[24] Tuomas Sandholm et al. “Coalition structure generation with worst case guarantees”. In:

Artificial Intelligence (July 1999), pp. 209–238.

[25] R. Yu et al., "Cooperative Resource Management in Cloud-Enabled Vehicular Networks,"

in IEEE Transactions on Industrial Electronics, vol. 62, no. 12, pp. 7938-7951, Dec. 2015.

DOI: https://doi.org/10.1109/TIE.2015.2481792.

[26] L. Mashayekhy and D. Grosu, “A Merge-and-Split Mechanism for Dynamic Virtual

Organization Formation in Grids,” in IEEE Transactions on Parallel and Distributed Systems,

vol. 25, no. 3, pp. 540-549, March 2014. DOI: https://doi.org/10.1109/TPDS.2013.93.

[27] L. Mashayekhy, M. M. Nejad and D. Grosu, “Cloud Federations in the Sky: Formation

Game and Mechanism,” in IEEE Transactions on Cloud Computing, vol. 3, no. 1, pp. 14-27,

1 Jan.-March 2015. DOI: https://doi.org/10.1109/TCC.2014.2338323.

[28] Manlove D.F., Sng C.T.S. (2006) Popular Matchings in the Capacitated House

Allocation Problem. In: Azar Y., Erlebach T. (eds) Algorithms – ESA 2006. ESA 2006.

Lecture Notes in Computer Science, vol 4168. Springer, Berlin, Heidelberg.

[29] Abdulkadiroğlu, Atila, and Tayfun Sönmez. 2003. “School Choice: A Mechanism Design

Approach.” American Economic Review, 93 (3): 729-747.

[30] D. Gale & L. S. Shapley (1962) College Admissions and the Stability of Marriage, The

American Mathematical Monthly, 69:1, 9-15, DOI: https://doi.org/10.1080/

00029890.1962.11989827.

[31] Kelso, Alexander S, Jr & Crawford, Vincent P, 1982. “Job Matching, Coalition Formation,

and Gross Substitutes,” Econometrica, Econometric Society, vol. 50(6), pages 1483-1504,

November.

[32] Scordino, C. and Lipari, G. Linux and real-time: Current approaches and future

opportunities. In IEEE Internafional Congress ANIPLA. 2006.

[33] A. Machen, S. Wang, K. K. Leung, B. J. Ko and T. Salonidis, “Live Service Migration in

Mobile Edge Clouds,” in IEEE Wireless Communications, vol. 25, no. 1, pp. 140-147,

February 2018. DOI: https://doi.org/10.1109/MWC.2017.1700011.

[34] 5TONIC, “Open-research and innovation laboratory for 5G technologies.” [Online].

Available: https://www.5tonic.org/ [Accessed 22 May 2019].

[35] Robot Operating System, “Project documentation.” [Online]. Available: http://wiki.ros.org/

[Accessed 22 May 2019].

[36] Robot Operating System, “AMCL Documentation.” [Online]. Available:

http://wiki.ros.org/amcl [Accessed 22 May 2019].

[37] Robot Operating System, “Map server Documentation.” [Online]. Available:

http://wiki.ros.org/map_server [Accessed 22 May 2019].

[38] Robot Operatin System, “rplidar Documentation.” [Online]. Available:

http://wiki.ros.org/rplidar [Accessed 22 May 2019].

https://doi.org/10.1109/MWC.2017.1700011
https://doi.org/10.1109/JIOT.2017.2714638
http://5g-coral.eu/wp-content/uploads/2018/09/D1.2-final12828.pdf
http://5g-coral.eu/wp-content/uploads/2018/09/D1.2-final12828.pdf
https://doi.org/10.1002/nav.3800220409
https://doi.org/10.1109/TIE.2015.2481792
https://doi.org/10.1109/TPDS.2013.93
https://doi.org/10.1109/TCC.2014.2338323
https://doi.org/10.1080/%2000029890.1962.11989827
https://doi.org/10.1080/%2000029890.1962.11989827
https://ideas.repec.org/a/ecm/emetrp/v50y1982i6p1483-1504.html
https://ideas.repec.org/a/ecm/emetrp/v50y1982i6p1483-1504.html
https://ideas.repec.org/s/ecm/emetrp.html
https://doi.org/10.1109/MWC.2017.1700011
https://www.5tonic.org/
http://wiki.ros.org/
http://wiki.ros.org/amcl
http://wiki.ros.org/map_server
http://wiki.ros.org/rplidar

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 90

H2020-761586

[39] Robot Operating System, “Kobuki nodelet Documentation.” [Online]. Available:

http://wiki.ros.org/kobuki_node [Accessed 22 May 2019].

[40] Robot Operating System, “Kobuki Odometry Documentation.” [Online]. Available:

http://wiki.ros.org/navigation/Tutorials/RobotSetup/Odom [Accessed 27 May 2019].

[41] ETSI, “Experiential Networked Intelligence (ENI); Terminology for Main Concepts in ENI,”

European Telecommunications Standards Institute, GR ENI 004 v1.1.1, June 2018.

[42] ETSI, “Zero touch network and Service Management (ZSM); Proof of Concept Framework,”

European Telecommunications Standards Institute, GS ZSM 006 v1.1.1, May 2015.

[43] L. Cominardi, L. M. Contreras, C. J. Bernardos and I. Berberana, “Understanding QoS

Applicability in 5G Transport Networks,” 2018 IEEE International Symposium on

Broadband Multimedia Systems and Broadcasting (BMSB), Valencia, 2018, pp. 1-5. DOI:

https://doi.org/10.1109/BMSB.2018.8436847.

[44] J. Martín-Pérez, L. Cominardi, C. J. Bernardos, A. de la Oliva and A. Azcorra, “Modeling

Mobile Edge Computing Deployments for Low Latency Multimedia Services,” in IEEE

Transactions on Broadcasting. DOI: https://doi.org/10.1109/TBC.2019.2901406.

[45] ETSI, “OpenSource MANO,” European Telecommunications Standards Institute. [Online].

Available: https://osm.etsi.org/ [Accessed 22 May 2019].

[46] Open Baton project, “Open Baton - An extensible and customizable NFV MANO-

compliant framework.” [Online]. Available: https://openbaton.github.io/ [Accessed 22

May 2019].

[47] Open Baton project, “Open Baton official documentation.” [Online]. Available:

https://openbaton-docs.readthedocs.io/en/stable/ [Accessed 22 May 2019].

[48] ETSI, “Network Functions Virtualisation (NFV); Management and Orchestration,” European

Telecommunications Standards Institute, GS NFV-MAN 001, December 2014.

[49] ONAP project, “ONAP: Open network automation platform,” The Linux Foundation

projects. [Online]. Available: https://www.onap.org/ [Accessed 22 May 2019].

[50] Cloudify Platform Ltd, “Cloudify official documentation.” [Online]. Available:

https://docs.cloudify.co/4.5.0/ [Accessed 22 May 2019].

[51] OPNFV project, “Open Platform for NFV (OPNFV),” The Linux Foundation projects.

[Online]. Available: https://www.opnfv.org/ [Accessed 22 May 2019].

[52] OPNFV project, “Project proposal: Orchestra,” The Linux Foundation projects. [Online].

Available: https://wiki.opnfv.org/display/PROJ/Orchestra [Accessed 22 May 2019].

[53] ARIA TOSCA project, “ARIA TOSCA Orchestration Engine,” Apache Software Foundation.

[Online]. Available: http://ariatosca.incubator.apache.org/ [Accessed 23 May 2019].

[54] Kubernetes, “Production-Grade Container Orchestration,” The Linux Foundation projects.

[Online]. Available: https://kubernetes.io/ [Accessed 23 May 2019].

http://wiki.ros.org/kobuki_node
http://wiki.ros.org/navigation/Tutorials/RobotSetup/Odom
https://doi.org/10.1109/BMSB.2018.8436847
https://doi.org/10.1109/TBC.2019.2901406
https://osm.etsi.org/
https://openbaton.github.io/
https://openbaton-docs.readthedocs.io/en/stable/
https://www.onap.org/
https://docs.cloudify.co/4.5.0/
https://www.opnfv.org/
https://wiki.opnfv.org/display/PROJ/Orchestra
http://ariatosca.incubator.apache.org/
https://kubernetes.io/

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 91

H2020-761586

9 Appendix: Analysis of existing orchestrators
This appendix provides an overview of existing orchestrators of reference and, for each of them,

it provides a summary and a gap analysis against the OCS requirements as defined in D3.1 [6].

9.1 Open Source MANO (OSM)

ETSI OSM is an operator-led ETSI [45] community that aims at delivering a production-quality

open source Management and Orchestration (MANO) stack aligned with ETSI NFV Information

Models capable of meeting the requirements of production NFV networks. Figure 9-1 illustrates

the OSM architecture and highlights the OSM interaction with VIM and Virtual Network Function

(VNF) components. Specifically, OSM interacts with the VIM for deploying the VNFs and

configuring the Virtual Links (VLs) interconnecting them. In order for OSM to work, it is required

that (i) each VIM has an API endpoint reachable from OSM and (ii) each VIM provides a

management network for configuring the IP addresses of the VNFs. The VIM-provided

management network should be reachable from OSM.

FIGURE 9-1: OSM COMPONENTS13

OSM runs in a single server or VM and it requires a minimum of 2 CPUs, 8 GB RAM, 20GB disk

and a single interface with Internet access. However, OSM recommends 2 CPUs, 16 GB RAM,

40GB disk and a single interface with Internet access. Moreover, OSM requires Ubuntu 16.0414

(64-bit variant required) as base image. In the following, Table 9-1 and Table 9-2 report the

existing and missing OSM capabilities suitable for the 5G-CORAL OCS.

TABLE 9-1: EXISTING OSM CAPABILITIES SUITABLE FOR 5G-CORAL OCS

Capability Description

Extensible VIM support OSM interact with the VIMs via plugins. Additional plugins can be
provided to support new VIMs.

NSD and VNFD validation OSM provide validation of descriptors during the on-boarding.

Day0 and Day1
configurations

OSM leverages on cloud-init for day0 configuration and Juju for
day1 configurations.

Monitoring OSM provides a Prometheus server for VNF monitoring.

Complex lifecycle
operation support

By using Juju is possible to have advanced lifecycle operations
(e.g., reconfiguration).

13 Source: https://osm.etsi.org/wikipub/index.php/OSM_Release_FIVE
14 http://releases.ubuntu.com/16.04/

https://osm.etsi.org/wikipub/index.php/OSM_Release_FIVE
http://releases.ubuntu.com/16.04/

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 92

H2020-761586

TABLE 9-2: MISSING OSM CAPABILITIES REQUIRED FOR 5G-CORAL OCS

Capability Description

Federation Federation between different OSM deployments is
not possible. However, OSM can federate resources
from different datacenters.

Dynamic Resources Discovery OSM is able to manage resources provided by
multiple VIMs which in turn need to support resource
discovery.

Dynamic Migration Support Migration of VNFs is not currently supported in OSM.

Finally, Table 9-3 and Table 9-4 present the gap analysis of OSM against the functional and

non-functional OCS requirements.

TABLE 9-3: 5G-CORAL OCS FUNCTIONAL REQUIREMENTS AND OSM SUPPORT

Functional Requirement Consideration

Support of harvesting computing capabilities
from low-end resources

This is a VIM requirement. OSM supports
different VIMs15 via plugins.

Support of harvesting computing capabilities
from mobile resources

This is a VIM requirement. See above.

Support of discovery, configuration,
monitoring, allocation, etc. of relevant
hardware capabilities (e.g., wireless
interfaces, GPIO, GPU, SR-IOV, etc.)

Relevant hardware capabilities need to be
exposed by the VIMs. Then, the allocation
based on this requirement is available via
Enhanced Platform Awareness (EPA).

Support of integration including at runtime of
heterogeneous resources in terms of
software and hardware capabilities (e.g.,
different CPU arch, hypervisors, etc.)

OSM is able to manage heterogenous
resources as long as they are managed by
different VIMs.

Support of federation including at runtime of
OCS components

OSM is able to federate only resources coming
from different datacentres under his control.
No federation is possible between different
OSM instances.

Support of the interworking with resources
external to the OCS (e.g., cloud-to-thing
continuum)

OSM is able to manage Physical Network
Functions (PNF) which can be not under the
OCS control.

TABLE 9-4: 5G-CORAL OCS NON-FUNCTIONAL REQUIREMENTS AND OSM SUPPORT

Non-Functional Requirement Consideration

Support of deployment of OCS on low end
devices (e.g., battery-limited, form-factor,
resource constrained, etc.)

OSM is deployed as a set of Docker
containers. It has high computing and
networking requirements making impossible to
deploy OSM on low end devices.

Support of deployment of OCS on mobile
devices (e.g., car, robot, train, etc.)

As above, OSM needs persistent connection
with VIMs and VNFs.

Availability and self-healing mechanisms in
error-prone environments

If Juju is used as VNFM then self-healing is
possible.

Support of large deployments in terms of
number of resources and geographic areas

OSM is designed to manage resources across
datacentres.

Support of plugins for extensibility OSM supports only plugins for the VIM.
Particularly, it is possible to implement
connectors to VIMs.

Capability to adapt to workload changes by
provisioning and de-provisioning resources
in an automated manner

OSM currently does not support elasticity.

15 https://osm.etsi.org/wikipub/index.php/VIMs

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 93

H2020-761586

Support of multiple tenants participating and
co-existing in the same environment

OSM supports multiple tenants.

9.2 Open Baton

Open Baton [46] is an Open Source Network Function Virtualization Orchestrator (NFVO)

released in 2015 in partnership between Fraunhofer FOKUS Institute and the Technical University

of Berlin, allowing the user to create a Network Function Virtualization (NFV) environment based

on ETSI NFV MANO specifications [48]. The ultimate goal of the project is to facilitate the

integration between cloud infrastructure providers and virtual network function providers in an

NFV framework. To this end, Open Baton adopts the ETSI NFV data model to build network

services and virtual network descriptors, enabling interoperability and supporting extensibility,

thanks to its message bus architecture.

FIGURE 9-2: OVERVIEW OF THE OPEN BATON ARCHITECTURE16

Figure 9-2 illustrates the key components of the Open Baton architecture [47], which are

summarised in the following:

• NFVO (Network Function Virtualisation Orchestrator), designed and implemented

following the ETSI MANO specifications;

• Generic VNFM (Virtual Network Function Manager) and EMS (Element Management

System), managing VNFs lifecycle based on the descriptors.

• The Generic VNFM provides a Juju VNFM adapter to deploy Juju charms or Open Baton

VNFM packages in addition to an autoscaling engine, used for automatic runtime

management of scaling operations of the VNFs;

• A monitoring plugin integrating Zabbix as monitoring system;

• An event engine based on pub/sub mechanism to dispatch lifecycle events execution;

• A set of libraries (in Java, Go and Python), used to build a bespoke VNFM;

• A driver-based mechanism for compatibility with various VIMs;

16 Source: https://openbaton.github.io/documentation/

https://openbaton.github.io/documentation/

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 94

H2020-761586

• A fault management system, used for automatic runtime management of faults which may

occur at any level;

• A network slicing engine, used to ensure a specific QoS level for a network slice;

It is also worth pointing out that Open Baton integrates with OpenStack, representing the main

VIM implementation. To sum up, Open Baton is primarily designed to extend basic orchestration

towards network function management, including a generic VNFM and EMS, and interoperable

with other VNFMs. Finally, three main mechanisms are available to extend the environment:

1. Via plugins based on Remote Procedure Calls (RPCs);

2. Via VNFM plugins, through Advanced Message Queuing Protocol (AMQP) messages and

REST interfaces between NFVO and VNFM;

3. Via events, generated by the NFVO for each lifecycle event.

Finally, Open Baton requires a minimum of 2 CPUs, 2 GB of RAM and 10 GB of storage.

However, it recommends 8 CPUs, 8 GB of RAM and 10 GB of storage. In the following, Table

9-5 and Table 9-6 report the existing and missing OSM capabilities suitable for the 5G-CORAL

OCS.

TABLE 9-5: EXISTING OPEN BATON CAPABILITIES SUITABLE FOR 5G-CORAL OCS

Capability Description

Docker VNFM and VIM
driver

Open Baton can deploy containers on top of a running Docker
engine. The VNFM and VIM are both needed to deploy network
services (NSs) over Docker

Autoscaling engine This module provides an NFV-compliant AutoScaling Engine (ASE).
In addition, the Autoscaling engine uses the plugin mechanism to
allow any convenient Monitoring System.

Fault management
system

This component handles alarms generated by the VIM and executes
actions through the NFVO, thus providing switch-to-standby and
heal functionalities.

Monitoring plugin The plugin mechanism allows Open Baton to conveniently use
multiple monitoring systems. An example of monitoring plugin is
Zabbix.

Pub/sub-based event
engine

The Pub/sub mechanism can be employed to enable interoperation
with multiple external VNFMs.

TABLE 9-6: MISSING OPEN BATON CAPABILITIES SUITABLE FOR 5G-CORAL OCS

Capability Description

Service Federation Not yet supported, yet Open Baton is expected to become a key
enabler to integrate a local testbed with a large federation of 5G
oriented infrastructures. As an example, 5G Berlin will federate
several testbeds, each with a dedicated scope and purpose [1].

Dynamic Resources
Discovery

Open Baton main goal is to extend basic orchestration and no
resource discovery capabilities are provided. This may be
integrated through a specific plugin.

Finally, Table 9-7 and Table 9-8 present the gap analysis of OSM against the functional and

non-functional OCS requirements.

TABLE 9-7: 5G-CORAL OCS FUNCTIONAL REQUIREMENTS AND OPEN BATON SUPPORT

Functional Requirement Consideration

Support of harvesting computing capabilities
from low-end resources

Low-end resources cannot be used to provide
additional computing capabilities.

Support of harvesting computing capabilities
from mobile resources

Mobile resources cannot be used to provide
additional computing capabilities.

Support of discovery, configuration, Support of discovery, configuration, monitoring

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 95

H2020-761586

monitoring, allocation, etc. of relevant
hardware capabilities (e.g., wireless
interfaces, GPIO, GPU, SR-IOV, etc.)

and resource allocation is currently not
available. However, mechanisms to provide
resource discovery are under development.

Support of integration including at runtime of
heterogeneous resources in terms of
software and hardware capabilities (e.g.,
different CPU arch, hypervisors, etc.)

This feature is available in Open Baton. The
framework is fairly extensible through plugin
support and dedicated SDK library.

Support of federation including at runtime of
OCS components

Not available at the moment. Federation
support is under development.

Support of the interworking with resources
external to the OCS (e.g., cloud-to-thing
continuum)

Open Baton enables orchestration of external
resources, as long as the correct plugin is
available.

TABLE 9-8: 5G-CORAL OCS NON-FUNCTIONAL REQUIREMENTS AND OPEN BATON SUPPORT

Non-Functional Requirement Consideration

Support of deployment of OCS on low end
devices (e.g., battery-limited, form-factor,
resource constrained, etc.)

There is no support for deploying OCS on low-
end devices.

Support of deployment of OCS on mobile
devices (e.g., car, robot, train, etc.)

There is no support for deploying OCS on
mobile devices.

Availability and self-healing mechanisms in
error-prone environments

Self-healing capabilities are provided by
Open Baton, through alarms originated from
the VIM and convenient actions carried out by
the NFVO.

Support of large deployments in terms of
number of resources and geographic areas

Open Baton is highly scalable and features an
AutoScaling Engine.

Support of plugins for extensibility Plugins can be used or developed to extend
Open Baton.

Capability to adapt to workload changes by
provisioning and de-provisioning resources
in an automated manner

The AutoScaling Engine supports workload
adaptation through the monitoring system.

Support of multiple tenants participating and
co-existing in the same environment

Multi-tenancy is supported via network slicing.

9.3 ONAP

ONAP [49] provides a platform for real-time and policy driven orchestration and automation of

both physical and virtual network functions, enabling network and cloud provides to rapidly

automate new services in a massive scale (multi-site and multi-VIM support). ONAP provides:

• A design framework that allows service specification with respect to all aspects,

modelling the resources as well as relationship that make up the service, specify the

policies that guide the service behaviour, and specify the analytics and closed-loop

events needed for the elastic management of the service.

• An orchestration and control framework (Service Orchestrator and Controllers) that is

recipe and policy driven, to provide automate instantiation of the service as well as

managing the service in an elastic manner.

• An analytic framework that monitors the service behaviour during the lifecycle of the

service and uses the policies as required to deal with situations that require healing or

scaling of the service in an elastic manner.

The ONAP platform (as show in Figure 9-3) provides a unified framework for policy-driven

service design, implementation, analytics and LCM for large scale workloads and services: it

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 96

H2020-761586

allows to orchestrate both physical and virtual network function enabling operators to leverage

existing network infrastructure.

FIGURE 9-3: ONAP PLATFORM COMPONENTS17

Specifically, ONAP is functionally composed by a Portal, a Design Time Framework, a Runtime

Framework, a Closed-Loop Automation, and Microservices Support. Particularly, the ONAP

platform provides common functions that are necessary to construct specific behaviours. In ONAP

a service is created and defined using the ONAP Design Framework Portal which is a design time

component of the whole platform.

FIGURE 9-4: FUNCTIONAL VIEW OF THE ONAP ARCHITECTURE18

Figure 9-4 provides a simplified functional view of the architecture, in which we have:

• Design Time environment for onboarding service and resource into ONAP and designing

the required services;

17 Source: https://docs.onap.org/en/casablanca/guides/onap-developer/architecture/onap-
architecture.html
18 Source: https://docs.onap.org/en/casablanca/guides/onap-developer/architecture/onap-
architecture.html

https://docs.onap.org/en/casablanca/guides/onap-developer/architecture/onap-architecture.html
https://docs.onap.org/en/casablanca/guides/onap-developer/architecture/onap-architecture.html
https://docs.onap.org/en/casablanca/guides/onap-developer/architecture/onap-architecture.html
https://docs.onap.org/en/casablanca/guides/onap-developer/architecture/onap-architecture.html

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 97

H2020-761586

• External API both northbound and southbound that provides interoperability with multi-

VIM and Cloud providers;

• OOM, that provides the ability to manage cloud-native installation and deployments to

Kubernetes-managed cloud environments;

• Common Services that manage complex and optimized topologies:

o MUSIC allows ONAP to scale to multi-site environment;

o ONAP Optimization Framework provides a declarative, policy-driven approach

for creating and running optimization applications, like Homing/Placement.

• Information Model and framework utilities to harmonize the topology, workflow and

policy models coming from different standards such as ETSI NFV MANO, TM Forum SID,

ONF Core, OASIS TOSCA, IETF and MEF.

The Portal provides access to design, analytics and operational control/administration functions,

via a shared role-based dashboard.

The Design-Time Framework is the development environment that allows the definition and

creation of resources, services and products: it is composed by (i) the SDC that provides tools to

define, simulate and certify system assets as well as the associated policies, (ii) the VNF SDK with

the VVP, which provides the tool to design and validate VNF that can be deployed in the ONAP

platform, (iii) the POLICY component, that deals with the definition of policies, and (iv) the

CLAMP component, used to manage closed control loops, configure it, deploy it and

decommission it, as well as to update the loop with new parameters at runtime.

The Runtime framework executes all the rules and policies distributed by the design and creation

environment. In particular, it is composed by the SO that automates the sequences of activities,

tasks, rules and policies needed for on-demand creation, modification or removal of network,

application or infrastructure services and resources. It provides a high-level orchestration with an

end-to-end view of the infrastructure, network and application. The Controllers (SDNC, APPC,

VF-C) are applications which are coupled with cloud and network services and execute the

configuration, real-time policies and control of the state of distributed components and services.

The VF-C provides an ETSI-compliant NFVO function that is responsible for the lifecycle

management of virtual services and the associated physical server infrastructure. In ONAP, the

modelling supports different standards:

• VNFD based on ETSI NFV IFA011 v2.4.1 with modification to align with the ONAP

requirements;

• VNFD based on TOSCA that is based on ETSI NFV SOL001 v0.6.0;

• VNF Package ETSI SOL004.

ONAP is installed though the ONAP Operation Manager that uses Kubernetes, Docker containers

and Helm installer. In the current version, ONAP requires Kubernetes 1.11.2, Helm 2.9, Kubectl

1.11.2, and Docker 17.03.x. This results in the deployment of 14 Virtual Machines/Containers

and a minimum hardware requirement of 8 CPUs, 16 GB RAM, and 160 GB of storage. Table

9-9 and Table 9-10 report the existing and missing ONAP capabilities suitable for the OCS.

TABLE 9-9: EXISTING ONAP CAPABILITIES SUITABLE FOR 5G-CORAL OCS

Capability Description

NSD onboarding and basic
validation

NSD are verified in design time by the tool in the SDK and
deployed by the runtime framework.

Extensible and highly
customizable NSD format

Based on TOSCA. Open for customization.

Mature workflow execution
engine with cross-

Workflow definition fully programmable at design time.

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 98

H2020-761586

dependencies support

Complex lifecycle operation
support

Heal, scaling and recovery policies can be defined at design
time

Monitoring support Monitoring in embedded in the analytics

Arbitrary VIM support Multi-VIM/Cloud adaptation layer is provided as well as
southbound API, unclear how to implement connection to a new
VIM

Dynamic migration support Managed at runtime by the closed-loop controller

Service Federation Designed to multi-site management, federation may be
possible if we consider multi-site ONAP deployment

TABLE 9-10: MISSING ONAP CAPABILITIES SUITABLE FOR 5G-CORAL OCS

Capability Description

Resources discovery, their
utilisation tracking

Unclear how physical resources can be discovered or
added at runtime. Resources can be defined at design
time and the runtime have to manage them.

Finally, Table 9-11 and Table 9-12 present the gap analysis of ONAP against the functional

and non-functional OCS requirements.

TABLE 9-11: 5G-CORAL OCS FUNCTIONAL REQUIREMENTS AND ONAP SUPPORT

Functional Requirement Consideration

Support of harvesting computing capabilities
from low-end resources

Low-end resources cannot be used to provide
additional computing capabilities.

Support of harvesting computing capabilities
from mobile resources

Mobile resources cannot be used to provide
additional computing capabilities.

Support of discovery, configuration,
monitoring, allocation, etc. of relevant
hardware capabilities (e.g., wireless
interfaces, GPIO, GPU, SR-IOV, etc.)

Support of discovery, configuration, monitoring
and resource allocation is currently not
available. To investigate how to integrate
resource discovery.

Support of integration including at runtime of
heterogeneous resources in terms of
software and hardware capabilities (e.g.,
different CPU arch, hypervisors, etc.)

Support of heterogeneous resource is
available in ONAP.

Support of federation including at runtime of
OCS components

MUSIC component uses multi-site deployment
as a federation mechanism from an ONAP
point of view.

Support of the interworking with resources
external to the OCS (e.g., cloud-to-thing
continuum)

ONAP can be integrated with 3rd parties VIMs
and Clouds.

TABLE 9-12: 5G-CORAL OCS NON-FUNCTIONAL REQUIREMENTS AND ONAP SUPPORT

Non-Functional Requirement Consideration

Support of deployment of OCS on low end
devices (e.g., battery-limited, form-factor,
resource constrained, etc.)

The high computing requirements make
impossible the deployment of ONAP on low-
end devices.

Support of deployment of OCS on mobile
devices (e.g., car, robot, train, etc.)

The high computing requirements make
impossible the deployment of ONAP on mobile
devices.

Availability and self-healing mechanisms in
error-prone environments

Self-healing capabilities are provided by
ONAP through alarms originated from Closed
Loop monitoring (CLAMP).

Support of large deployments in terms of
number of resources and geographic areas

ONAP is highly scalable and scaling of VNF is
defined at design time in the POLICY
component.

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 99

H2020-761586

Support of plugins for extensibility ONAP supports plugins for different VIMs.

Capability to adapt to workload changes by
provisioning and de-provisioning resources
in an automated manner

The scaling defined in POLICY can support on-
demand adaptation of the service.

Support of multiple tenants participating and
co-existing in the same environment

Multi-tenancy is supported.

9.4 Cloudify

Cloudify [50] is an open-source TOSCA-based cloud orchestration framework, featuring both

commercial and community platform releases, widely used in production. Cloudify enables the

user to model applications and services and automate their entire lifecycle, including deployment

on any cloud or datacentre environment, monitoring all aspects of a deployed application,

detecting issues and failure, manually or automatically remediating such issues, and performing

ongoing maintenance tasks.

FIGURE 9-5: OVERVIEW OF THE CLOUDIFY ARCHITECTURE19

Figure 9-5 illustrates the Cloudify architecture which comprises of the following main components:

• Cloudify Manager: consisting of the Cloudify code and a set of open-source

applications. The Cloudify Manager architecture is designed to support all potential

operational workflows you might require when managing your applications.

• Cloudify Agents: representing entities for executing tasks on application hosts. They

reside inside the application (e.g., VM), listen to task queues and execute tasks when

required. The agents are designed to execute tasks using Cloudify-specific plugins. Note

that Cloudify can run in “agentless” mode, which means that agents can use specific

plugins to manage hosts without the agents being installed on those hosts. It is possible to

specify which server nodes will have agents installed on them in the blueprint.

• Cloudify Console: includes a Cloudify Console that provides the same features as the

CLI, as well as others.

Table 9-13 lists the Cloudify main features while Table 9-14 and Table 9-15 report the existing

and missing Cloudify capabilities suitable for the 5G-CORAL OCS.

19 Source: https://cloudify.co/guide/3.0/overview-architecture.html

https://docs.cloudify.co/4.4.0/working_with/official_plugins/
https://cloudify.co/guide/3.0/overview-architecture.html

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 100

H2020-761586

TABLE 9-13: SUMMARY OF CLOUDIFY FEATURES

Capability Description

Language written Python, JavaScript (for UI).

Network Service Descriptors format TOSCA language.

Workflow engine TOSCA orchestration engine, based on Apache ARIA.

NSDs catalogue Local FS with per-tenant isolation

Available integrations with external
infrastructure providers

OpenStack, Kubernetes, public clouds.

Proxy for the Cloudify REST service
and file server

Nginx.

Cloudify REST service Gunicorn and Flask.

Application model, indexing, logs
and events storage

PostgreSQL.

Log and event messages handler Logstash.

Internal messaging Async via RabbitMQ.

Build-in Monitoring platform Riemann.

Cloudify management worker Celery.

Monitoring sample storage InfluxDB.

Other Southbound Interfaces Any, via custom plugins.

TABLE 9-14: EXISTING CLOUDIFY CAPABILITIES SUITABLE FOR 5G-CORAL OCS

Capability Description

NSD onboarding and basic
validation

During NSD onboarding semantic checks are performed which
ensures that TOSCA blueprint syntactically is correct. However,
low-level dependencies and workflow implementation error
might be checked during execution phase only.

Extensible and highly
customizable NSD format

TOSCA allows to identify custom node types and associate with
these nodes arbitrary metadata.

Mature workflow execution
engine with cross-
dependencies support

TOSCA-based workflow allows to specify several dependency
types among blueprint Nodes, thus forming order of operations
during the workflow execution.

Complex lifecycle operation
support

Additionally, to common operations like create and delete,
Cloudify considers possibility of healing and scaling operations
out of the box.

Monitoring support The Cloudify agents through the Rabbit-MQ messaging platform
are reporting their monitor metrics, events and logs. In the
blueprint you can configure what metrics (CPU Utilization,
Physical Memory, Disk IO, Network IO etc.) you want to be
reported. Cloudify monitoring implementation uses Grafana for
tracking system metrics.

Arbitrary VIM support Custom plugin can be developed for any service deployment.

Dynamic migration support Cloudify can be configured to move VMs from one cloud to
another. Also, with correct modelling of the blueprints you can
migrate your container-based environment.

TABLE 9-15: MISSING CLOUDIFY CAPABILITIES REQUIRED FOR 5G-CORAL OCS

Capability Description

Service Federation Depending on a federation approach selected for 5G-CORAL platform
and appropriate logic, custom developments and extensions will be
required

Resources
discovery,
utilisation tracking

Custom development and extension will be required for dynamic resource
discovery. Cloudify doesn’t track resources availability in the managed
infrastructure and just tries to complete appropriate workflow. However,
constraints and SLA policy checking might be introduced on a plugin layer.

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 101

H2020-761586

Cloudify [50] requires a minimum of 2 CPUs, 4 GB RAM, 5 GB disk and two network interfaces.

However, Cloudify recommends 8 CPUs, 16 GB RAM, 64 GB of storage. Moreover, it requires

Red Hat/CentOS 7.4 to run. In the following, Table 9-16 and Table 9-17 present the gap

analysis of Cloudify against the functional and non-functional OCS requirements.

TABLE 9-16: 5G-CORAL OCS FUNCTIONAL REQUIREMENTS AND CLOUDIFY SUPPORT

Functional Requirement Consideration

Support of harvesting computing capabilities
from low-end resources

The Cloudify agent enables support of
computing capabilities from low-end resources.
Note: There is also the option of “agentless”
mode.

Support of harvesting computing capabilities
from mobile resources

The Cloudify agent enables support of
computing capabilities from mobile resources.
Note: There is also the option of “agentless”
mode.

Support of discovery, configuration,
monitoring, allocation, etc. of relevant
hardware capabilities (e.g., wireless
interfaces, GPIO, GPU, SR-IOV, etc.)

Support of discovery, configuration, monitoring
and resource allocation is currently available.
However, Cloudify doesn’t track resources
availability in the managed infrastructure and
just tries to complete appropriate workflow.

Support of integration including at runtime of
heterogeneous resources in terms of
software and hardware capabilities (e.g.,
different CPU arch, hypervisors, etc.)

Cloudify has highly extensible architecture
through plugin support. This enables runtime
integration of heterogeneous resources in terms
of software and hardware.

Support of federation including at runtime of
OCS components

Not available at the moment. Custom
development and extensions will be required.

Support of the interworking with resources
external to the OCS (e.g., cloud-to-thing
continuum)

Cloudify enables orchestration of external
resources, if the correct plugin is available.

TABLE 9-17: 5G-CORAL OCS NON-FUNCTIONAL REQUIREMENTS AND ONAP SUPPORT

Non-Functional Requirement Consideration

Support of deployment of OCS on low end
devices (e.g., battery-limited, form-factor,
resource constrained, etc.)

Given the high computing requirements it is
impossible to deploy Cloudify on low-end
devices.

Support of deployment of OCS on mobile
devices (e.g., car, robot, train, etc.)

Given the high computing requirements it is
impossible to deploy Cloudify on mobile
devices.

Availability and self-healing mechanisms in
error-prone environments

Self-healing capabilities are provided by
Cloudify. The heal and scale operations are
coming out of the box with Cloudify.

Support of large deployments in terms of
number of resources and geographic areas

Cloudify is highly scalable when TOSCA Auto-
Scaling is enabled.

Support of plugins for extensibility Cloudify natively has a plugin-based
architecture.

Capability to adapt to workload changes by
provisioning and de-provisioning resources
in an automated manner

Since Cloudify does not track resources
availability in the managed infrastructure and
just tries to complete appropriate workflow this
feature is not available currently in Cloudify.

Support of multiple tenants participating and
co-existing in the same environment

Multi-tenancy is supported in the current
version of Cloudify.

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 102

H2020-761586

9.5 OPNFV

OPNFV [51] is a collaborative project supported by the Linux Foundation that brings together

service providers, cloud computing and infrastructure providers, as well as developers and users

who define new platforms, integrate existing open source frameworks and components, and test,

develop and deploy NFV open source projects. The common goal of the service provider

promoting this project is to push the evolution of NFV by building a carrier-grade platform that

focuses on ensuring interoperability, consistency and high performance across multiple open

source components. In this regard, OPNFV continues to integrate with multiple projects and test to

drive technology development. OPNFV not only aims at developing and establishing standards,

but also works closely with various standards organizations such as ETSI's NFV Internet Standards

Organization, IEEE, ONF, etc. to implement the standard NFV reference platform. By integrating

components from upstream projects, the community is able to conduct performance and use case-

based testing on a variety of solutions to ensure the platform’s suitability for NFV use cases.

FIGURE 9-6: OPNFV ARCHITECTURE20

OPNFV also works upstream with other open source communities to bring contributions and

learnings from its work directly to those communities in the form of blueprints, patches, bugs, and

new code. Particularly, OPNFV focuses on building NFV Infrastructure (NFVI) and Virtualized

Infrastructure Management (VIM) by integrating components from upstream projects such as

OpenDaylight, OVN, OpenStack, Kubernetes, Ceph Storage, KVM, Open vSwitch, Linux, DPDK,

FD.io and ODP. OPNFV is able to run on both Intel and ARM commercial and white-box

hardware, support VM, container and bare metal workloads. These capabilities, along with

application programmable interfaces (APIs) to other NFV elements, form the basic infrastructure

required for Virtualized Network Functions (VNF) and MANO components.

OPNFV platform architecture (show in Figure 9-6) can be decomposed into the following basic

building blocks: hardware, software platform, tooling and testing, applications, and MANO.

When OPNFV projects seek orchestration functionalities for their testing scenarios, they usually

20 Source: https://www.opnfv.org/software

https://www.opnfv.org/software

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 103

H2020-761586

emulate or simulate those functionalities executing different procedures and/or requests in

parallel to different components. The Orchestra project [52] aims to integrate Open Baton with

existing OPNFV projects for specific scenarios and use cases. The OPNFV-SFC (Service Function

Chaining) test cases use Tacker as MANO component. Tacker is an official OpenStack project

building a Generic VNF Manager (VNFM) and an NFV Orchestrator (NFVO) to deploy and

operate Network Services and VNFs on an NFVI platform.

FIGURE 9-7: TACKER ARCHITECTURE21

The Tacker architecture is shown in Figure 9-7 and consists of three major components:

1. NFV Catalog: it includes VNF Descriptors, Network Services Descriptors, and VNF

Forwarding Graph Descriptors;

2. VNFM: it performs basic life-cycle of VNF (create/update/delete), enhanced platform-

aware (EPA) placement of high-performance NFV workloads, health monitoring of

deployed VNFs, auto-healing/auto-scaling VNFs based on policies, and easy initial

configuration of VNFs;

3. NFVO: it performs templatized end-to-end Network Service deployment using

decomposed VNFs, VNF placement policy ensuring efficient placement of VNFs, VNFs

connected using an SFC (described in a VNF Forwarding Graph Descriptor), VIM

resource checks and resource allocation, ability to orchestrate VNFs across multiple VIMs

and multiple sites (POPs).

Tacker uses TOSCA for VNF meta-data definition. More specifically, Tacker uses TOSCA NFV

profile schema. For Tacker to work, the system consists of two parts: the tacker system and the

VIM systems. In the following, Table 9-18 and Table 9-19 report the existing and missing

Cloudify capabilities suitable for the 5G-CORAL OCS.

TABLE 9-18: EXISTING OPNFV CAPABILITIES SUITABLE FOR 5G-CORAL OCS

Capability Description

Implementing the standard
NFV reference platform

It can match with various ETSI’s NFV Internet Standards.

21 Source: https://wiki.openstack.org/wiki/Tacker

https://wiki.openstack.org/wiki/Tacker

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 104

H2020-761586

Deploying NFVI and VIM

It is possible to establish through integrating components from
upstream projects such as OpenDaylight, OVN, OpenStack,
Kubernetes, Ceph Storage, KVM, Open vSwitch, Linux, DPDK,
FD.io and ODP.

VIM installation Since the VIM is either OpenStack or Kubernetes, the target
VIM installation involves the setup of either system.

Consistency with hardware
production

OPNFV is can be run on both Intel and ARM production.

VM and container deployment White-box hardware can be used to support VM and
container.

TABLE 9-19: MISSING OPNFV CAPABILITIES REQUIRED FOR 5G-CORAL OCS

Capability Description

Federation It is not supported.

OPNFV requires a minimum of 2 CPUs, 16 GB RAM, 256 GB of storage. However, OPNFV

recommends 8 CPUs, 64 GB RAM, 512 GB of storage. Moreover, it requires Red Hat/CentOS/

Ubuntu to run. Table 9-20 and Table 9-21 present the gap analysis of OPNFV against the

functional and non-functional OCS requirements.

TABLE 9-20: 5G-CORAL OCS FUNCTIONAL REQUIREMENTS AND OPNFV SUPPORT

Functional Requirement Consideration

Support of harvesting computing

capabilities from low-end resources

Resource support depends on the VIM.

Support of harvesting computing

capabilities from mobile resources

Resource support depends on the VIM.

Support of discovery, configuration,

monitoring, allocation, etc. of relevant

hardware capabilities (e.g., wireless

interfaces, GPIO, GPU, SR-IOV, etc.)

Resource support depends on the VIM.

Support of integration including at runtime

of heterogeneous resources in terms of

software and hardware capabilities (e.g.,

different CPU arch, hypervisors, etc.)

Resource support depends on the VIM.

Support of federation including at runtime

of OCS components

Not supported.

Support of the interworking with resources

external to the OCS (e.g., cloud-to-thing

continuum)

Not supported.

TABLE 9-21: 5G-CORAL OCS NON-FUNCTIONAL REQUIREMENTS AND OPNFV SUPPORT

Non-Functional Requirement Consideration

Support of deployment of OCS on low end

devices (e.g., battery-limited, form-factor,

resource constrained, etc.)

Given the high computing requirements it is

impossible to deploy OPNFV on low-end

devices.

Support of deployment of OCS on mobile

devices (e.g., car, robot, train, etc.)

Given the high computing requirements it is

impossible to deploy OPNFV on mobile devices.

Availability and self-healing mechanisms

in error-prone environments

OPNFV may support self-healing and auto-

scaling via Tacker, especially auto-restart on

failures.

Support of large deployments in terms of

number of resources and geographic areas

Clustering multiple OPNFV and OpenStack

instances may lead to large deployments.

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 105

H2020-761586

Support of plugins for extensibility OPNFV can be extended via plugins.

Capability to adapt to workload changes

by provisioning and de-provisioning

resources in an automated manner

OpenStack provides basic support for load

balancing.

Support of multiple tenants participating

and co-existing in the same environment

Tacker is a multi-tenant aware VNF Manager.

9.6 Apache ARIA TOSCA

ARIA, which stands for Agile Reference Implementation of Automation, is an open source, TOSCA-

based orchestration library, which supports multi-cloud and multi-VIM environments, that can be

used by any organization wanting to integrate TOSCA orchestration capabilities into their

current and future solutions [53]. Its goal is to accelerate adoption of the TOSCA standard for

orchestration with an open governance model by bringing together a large community of

contributors to develop solutions more quickly. ARIA TOSCA is an open, light, CLI-driven library

of orchestration tools that other open projects can consume to easily build TOSCA-based

orchestration solutions. ARIA is now an incubation project at the Apache Software Foundation.

OASIS TOSCA offers a vendor neutral standard for modeling cloud-based applications, while

ARIA is an open implementation of the TOSCA specification, allowing complete visibility and free

use of all its source code22. ARIA offers a library with a programmable interface that allows

embedding ARIA into collaborative projects, to enable organizations looking to incorporate

TOSCA orchestration capabilities into their solutions. Figure 9-8 illustrates the ARIA architecture.

FIGURE 9-8: OVERVIEW OF THE ARIA ARCHITECTURE23

Through ARIA, application vendors will be able to test and run their applications easily, from

blueprint to deployment, without the former hassle of developing the orchestration engine

themselves, simplifying TOSCA certification and validation exponentially. ARIA includes a TOSCA

DSL parser, whose role is to interpret the TOSCA template, create an in-memory graph of the

application and validate template correctness. TOSCA provides a typing system with normative

node types to describe the possible building blocks for constructing a service template, as well as

22 https://github.com/apache/incubator-ariatosca
23 Source: http://ariatosca.incubator.apache.org/about/

https://github.com/apache/incubator-ariatosca
http://ariatosca.incubator.apache.org/about/

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 106

H2020-761586

relationship types to describe possible kinds of relations. Both node and relationship types may

define life-cycle operations to implement the behavior an orchestration engine can invoke when

instantiating a service template. The template files are written in declarative YAML language

using TOSCA normative types. Technology specific types can be introduced via ARIA Plugins

without any modifications of the parser code. ARIA natively supports TOSCA Simple Profile 1.0,

and TOSCA Simple Profile for Network Function Virtualization. TOSCA Templates include a

YAML Topology Template, plugins, workflows, and resources such as scripts and others.

FIGURE 9-9: DECLARATIVE MODEL-DRIVEN ORCHESTRATION24

ARIA Workflows (see Figure 9-9) are automated process algorithms that allow dynamic

interaction with the graph described by the application topology template. ARIA Workflows

describe the flow of the automation by determining when which tasks will be executed. A task

may be an operation, optionally implemented by a plugin, or other actions, including arbitrary

code or scripts. ARIA Workflows can be embedded within the TOSCA Template to be able to

access the graph dynamically. Workflows are implemented as Python code using dedicated APIs

and a framework to access the graph and the runtime context of the application, the context

provides access to the object graph described in the TOSCA template. ARIA comes with a

number of built-in workflows - these are the workflows for install, uninstall, scale and heal. Built-in

workflows are not special in any way: ARIA supports creating custom workflows that use the

same APIs built-in workflows are using.

ARIA Plugins allow extending the TOSCA normative types dynamically by adding new

technology-specific node types and relationship types, without changing the code of the ARIA

TOSCA Parser. The plugins introduce new node types and the implementation that realizes the

logic behind every new node type. The plugin-based types are isolated, allowing to use

different versions of the same plugin in a single blueprint - for example support OpenStack Kilo

and OpenStack Juno in the same template. It also allows combining types of different

technologies - for example OpenStack nodes with VMware, Amazon, or other types such as

Router, Firewall, Kubernetes and others. The work of interacting with IaaS APIs, running scripts,

Configuration Management tools, Monitoring tools and any other tools used when managing

applications is done by the ARIA Plugins. Plugins can be included as part of the application

template package and loaded dynamically. ARIA includes set of plugins that can be used as it is

or as reference for implementing for new plugins. In the following, Table 9-22 and Table 9-23

report the existing and missing ARIA capabilities suitable for the 5G-CORAL OCS.

24 Source: http://ariatosca.incubator.apache.org/about/

http://ariatosca.incubator.apache.org/about/

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 107

H2020-761586

TABLE 9-22: EXISTING APACHE ARIA CAPABILITIES SUITABLE FOR 5G-CORAL OCS

Capability Description

NSD onboarding and
basic validation

During NSD onboarding ARIA performs semantic checks which
ensures that TOSCA blueprint syntactically is correct. However,
low-level dependencies and workflow implementation error might
be checked during execution phase only.

Extensible and highly
customizable NSD format

ARIA provides TOSCA based NSD format which identify custom
node types and associate with these nodes arbitrary metadata.

Mature workflow
execution engine with
cross-dependencies
support

ARIA itself natively supports TOSCA-based workflow which allows
to specify several dependency types among blueprint Nodes, thus
forming order of operations during the workflow execution.

TABLE 9-23: MISSING APACHE ARIA CAPABILITIES REQUIRED FOR 5G-CORAL OCS

Capability Description

Complex lifecycle
operation support

ARIA itself does not support complex lifecycle operation; it
depends on whether or not an OCS implements and supports it.

Monitoring support ARIA itself does not support complex lifecycle operation; it
depends on whether or not an OCS implements and supports it.

Arbitrary VIM support ARIA itself does not support complex lifecycle operation; it
depends on whether or not an OCS implements and supports it.

Dynamic migration
support

ARIA itself does not support complex lifecycle operation; it
depends on whether or not an OCS implements and supports it.

Service Federation ARIA itself does not support complex lifecycle operation; it
depends on whether or not an OCS implements and supports it.

Resources discovery, their
utilisation tracking

ARIA itself does not support complex lifecycle operation; it
depends on whether or not an OCS implements and supports it.

Apache ARIA does not have any recommended requirements per se. However, it requires Python

2.6/2.7 (Python 3 is currently not supported) and it has been tested under Ubuntu 14.04, Ubuntu

16.04, Centos 6.6, Centos 7, Arch Linux, and Windows 10. Finally, Table 9-24 and Table 9-25

present the gap analysis of ONAP against the functional and non-functional OCS requirements.

TABLE 9-24: 5G-CORAL OCS FUNCTIONAL REQUIREMENTS AND APACHE ARIA SUPPORT

Functional Requirement Consideration

Support of harvesting
computing capabilities from
low-end resources

It relies on the tosca specification to specify resource node
for low-end resources and relies on orchestrator being
developed to implement the harvesting function for such
resources. ARIA, playing as an orchestration engine,
provides a way to extend the specification for low-end
resources and provides an API set between operators and
orchestrators to be developed to enable such support.

Support of harvesting
computing capabilities from
mobile resources

It relies on the tosca specification to specify resource node
for mobile resources and relies on orchestrator being
developed to implement the harvesting function for such
resources. ARIA, playing as an orchestration engine,
provides a way to extend the specification for mobile
resources and provides an API set between operators and
orchestrators to be developed to enable such support.

Support of discovery,
configuration, monitoring,
allocation, etc. of relevant
hardware capabilities (e.g.,
wireless interfaces, GPIO, GPU,
SR-IOV, etc.)

To discover, configure, monitor, allocate resource with
various hardware capabilities, it relies on the tosca
specification to specify resource node of such and relies on
orchestrator being developed to implement the functions for
such resources. ARIA, playing as an orchestration engine,
provides a way to extend the specification for resources

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 108

H2020-761586

with various hardware capabilities and provides an API set
between operators and orchestrators to be developed to
enable such support.

Support of integration including
at runtime of heterogeneous
resources in terms of software
and hardware capabilities (e.g.,
different CPU arch, hypervisors,
etc.)

It relies on the tosca specification to specify such
heterogeneous resource node which describes both software
and hardware capabilities and relies on orchestrator being
developed to implement runtime functions for such resources.
ARIA, playing as an orchestration engine, provides a way to
extend the specification for such heterogeneous resources
and provides an API set between operators and
orchestrators to be developed to enable such support.

Support of federation including
at runtime of OCS components

It relies on the orchestrator being developed to support
federation function.

Support of the interworking with
resources external to the OCS
(e.g., cloud-to-thing continuum)

It relies on the orchestrator being developed to support such
interworking function.

TABLE 9-25: 5G-CORAL OCS NON-FUNCTIONAL REQUIREMENTS AND APACHE ARIA SUPPORT

Non-Functional Requirement Consideration

Support of deployment of OCS

on low end devices (e.g.,

battery-limited, form-factor,

resource constrained, etc.)

It relies on the tosca specification to specify resource node

for low end devices and relies on orchestrator being

developed to enable such support.

Support of deployment of OCS

on mobile devices (e.g., car,

robot, train, etc.)

It relies on the tosca specification to specify resource node

for mobile devices and relies on orchestrator being

developed to enable such support.

Availability and self-healing

mechanisms in error-prone

environments

It relies on both the tosca specification and implementation

of orchestrator to enable an OCS operating in error-prone

environments and to provide support of self-healing

mechanisms.

Support of large deployments in

terms of number of resources

and geographic areas

It relies on both the tosca specification and implementation

of orchestrator to support such large deployments

Support of plugins for

extensibility

ARIA, playing as an orchestration engine, allows tosca-

based plugins to extend the specification for newly

designed resources. It still relies implementation of

orchestrator to support plugins for extensibility

Capability to adapt to workload

changes by provisioning and

de-provisioning resources in an

automated manner

It relies on both the tosca specification and implementation

of orchestrator to enable an OCS operating in error-prone

environments and to provide support of self-healing

mechanisms.

Support of multiple tenants

participating and co-existing in

the same environment

It relies on the tosca specification and the orchestrator being

developed to support multiple tenants and co-existence.

9.7 Kubernetes (K8s)

Kubernetes is a portable, extensible open-source platform for managing containerized

workloads and services, that facilitates both declarative configuration and automation [54].

Kubernetes has a number of features. It can be thought of as:

• a container platform;

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 109

H2020-761586

• a microservices platform;

• a portable cloud platform.

Kubernetes provides a container-centric management environment. It orchestrates computing,

networking, and storage infrastructure on behalf of user workloads. This provides much of the

simplicity of Platform as a Service (PaaS) with the flexibility of Infrastructure as a Service (IaaS)

and enables portability across infrastructure providers. With Kubernetes application-specific

workflows can be streamlined to accelerate developer velocity. However, Kubernetes is not a

traditional, all-inclusive PaaS (Platform as a Service) system. Since Kubernetes operates at the

container level rather than at the hardware level, it provides some generally applicable features

common to PaaS offerings, such as deployment, scaling, load balancing, logging, and monitoring.

However, Kubernetes is not monolithic, and these default solutions are optional and pluggable.

Kubernetes provides the building blocks for building developer platforms but preserves user

choice and flexibility where it is important. Additionally, Kubernetes is not a mere orchestration

system. The technical definition of orchestration is execution of a defined workflow: first do A,

then B, then C. In contrast, Kubernetes is comprised of a set of independent, composable control

processes that continuously drive the current state towards the provided desired state.

FIGURE 9-10: KUBERNETES ARCHITECTURE25

Figure 9-10 illustrates the architecture of Kubernetes which consists of at least one master and

multiple compute nodes. The master (see is responsible for exposing the application program

interface (API), scheduling the deployments and managing the overall cluster. Each node runs a

container runtime, such as Docker, along with an agent that communicates with the master. The

node also runs additional components for logging, monitoring, service discovery and optional

add-ons. Nodes are the workhorses of a Kubernetes cluster. They expose computing, networking

and storage resources to applications. Nodes can be virtual machines (VMs) running in a cloud or

bare metal servers running within the data centre. Applications deployed in Kubernetes are

packaged as microservices. These microservices are composed of multiple containers grouped as

pods (see Figure 9-11). Each container is designed to perform only one task. Pods can be

composed of stateless containers or stateful containers. Stateless pods can easily be scaled on-

demand or through dynamic auto-scaling.

Contemporary workloads demand availability at both the infrastructure and application levels.

In clusters at scale, everything is prone to failure, which makes high availability for production

workloads strictly necessary. While most container orchestration engines and PaaS offerings

deliver application availability, Kubernetes is designed to tackle the availability of both

25 Source: https://thenewstack.io/kubernetes-an-overview/

https://thenewstack.io/kubernetes-an-overview/

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 110

H2020-761586

infrastructure and applications. On the application front, Kubernetes ensures high availability by

means of replica sets, replication controllers and pet sets. Operators can declare the minimum

number of pods that need to run at any given point of time. If a container or pod crashes due to

an error, the declarative policy can bring back the deployment to the desired configuration.

Stateful workloads can be configured for high availability through pet sets.

For infrastructure availability, Kubernetes has support for a wide range of storage backends,

coming from distributed file systems such as Network File System (NFS) and GlusterFS26, block

storage devices such as Amazon Elastic Block Store (EBS) and Google Compute Engine persistent

disk, and specialized container storage plugins such as Flocker27. Adding a reliable, available

storage layer to Kubernetes ensures high availability of stateful workloads.

FIGURE 9-11: KUBERNETES NODE ARCHITECTURE28

Through federation, it’s also possible to mix and match clusters running across multiple cloud

providers and on-premises. This brings the hybrid-cloud capabilities to containerized workloads.

Customers can seamlessly move workloads from one deployment target to the other. In the

following, Table 9-26 and Table 9-27 report the existing and missing Kubernetes capabilities

suitable for the 5G-CORAL OCS.

TABLE 9-26: EXISTING K8S CAPABILITIES SUITABLE FOR 5G-CORAL OCS

Capability Description

Auto-scaling K8s support horizontal pod auto-scaling, which automatically
scales the number of pods based on CPU utilization.

Self-healing K8s supports pod health checks to ensure availability.

Federation K8s supports federation for containerized workloads.

TABLE 9-27: MISSING K8S CAPABILITIES REQUIRED FOR 5G-CORAL OCS

Capability Description

Virtual Machine support K8s only supports containers.

VIM support K8s does not interact with any VIM. It’s a “monolithic” architecture.

Networking support K8s focuses on applications and not on network functions. The
networking support is tailored to applications while advanced
networking operations (e.g., mobile network) are not possible.

26 https://docs.gluster.org/en/latest/
27 https://github.com/ClusterHQ/flocker
28 Source: https://thenewstack.io/kubernetes-an-overview/

https://docs.gluster.org/en/latest/
https://github.com/ClusterHQ/flocker
https://thenewstack.io/kubernetes-an-overview/

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 111

H2020-761586

Kubernetes requires a minimum of 2 CPUs and 2 GB of RAM on each K8s node. However, it

recommends one master node with 4 GB of RAM and 2 CPUs and compute node with total of 10

GB and 4 CPUs. Finally, Table 9-28 and Table 9-29 present the gap analysis of Kubernetes

against the functional and non-functional OCS requirements.

TABLE 9-28: 5G-CORAL OCS FUNCTIONAL REQUIREMENTS AND K8S SUPPORT

Functional Requirement Consideration

Support of harvesting computing capabilities
from low-end resources

This is a VIM requirement. K8s adopts a
“monolithic” architecture and cannot integrate
additional VIMs.

Support of harvesting computing capabilities
from mobile resources

This is a VIM requirement. See above.

Support of discovery, configuration,
monitoring, allocation, etc. of relevant
hardware capabilities (e.g., wireless
interfaces, GPIO, GPU, SR-IOV, etc.)

K8s supports Enhanced Platform Awareness
(EPA) for relevant hardware capabilities.

Support of integration including at runtime of
heterogeneous resources in terms of
software and hardware capabilities (e.g.,
different CPU arch, hypervisors, etc.)

K8s only supports Kubernetes compute nodes
as resources.

Support of federation including at runtime of
OCS components

K8s supports the federation of multiple K8s
instances in different locations.

Support of the interworking with resources
external to the OCS (e.g., cloud-to-thing
continuum)

K8s only supports the interworking between
K8s compute nodes.

TABLE 9-29: 5G-CORAL OCS NON-FUNCTIONAL REQUIREMENTS AND K8S SUPPORT

Non-Functional Requirement Consideration

Support of deployment of OCS on low end
devices (e.g., battery-limited, form-factor,
resource constrained, etc.)

Given the medium computing requirements, it is
not possible to deploy K8s on low end devices.

Support of deployment of OCS on mobile
devices (e.g., car, robot, train, etc.)

K8s networking has been designed with
datacentres in mind. Therefore, it does not
support mobile devices.

Availability and self-healing mechanisms in
error-prone environments

K8s supports self-healing mechanisms for pods
and applications.

Support of large deployments in terms of
number of resources and geographic areas

K8s supports large deployments via
federations.

Support of plugins for extensibility K8s supports multiple backends at
infrastructure level. However, it only supports
container-based execution environments.

Capability to adapt to workload changes by
provisioning and de-provisioning resources
in an automated manner

K8s supports the auto-scaling of pods based
on CPU utilization.

Support of multiple tenants participating and
co-existing in the same environment

K8s natively supports multi-tenancy at
application level and at infrastructure level via
federation.

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 112

H2020-761586

10 Appendix: EFS Stack information model
An initial EFS Stack information model was presented in D3.1[6]. One of the differences of the

information model presented in this document compared to what presented in D3.1 [6] is in the

different scope. Particularly, D3.1 [6] focused on the information model between the EFS

Resource Orchestrator (EFS-RO) and the VIM, while this Appendix focuses on the information

model between the users and the EFS-SO. Specifically, Figure 10-1 illustrates the EFS Stack

information model as designed by 5G-CORAL. The figure highlights the relations and concepts

adopted from the reference standards (i.e., ETSI MEC and ETSI NFV) and the additional

information required by 5G-CORAL in order to merge and extend these two frameworks from

the Edge down to the Fog.

FIGURE 10-1: EFS STACK INFORMATION MODEL

The tables reported in the following describe each field and parameter of the EFS Stack

information model. For the sake of similarity, the tables use the same format as used by ETSI NFV

and ETSI MEC for their information models.

10.1 Virtualisation Deployment Unit (VDU)

The VDU information element describes the deployment and operational behaviour of a single

EFS Atomic Entity.

Name Type Cardinality Description

vdu_uuid String 1 Unique identifier for the VDU

vdu_name String 1 Unique name of the VDU

vdu_image Element 1 Image to be used when instantiating this VDU (see
11.1.1)

vdu_command Element 1 Command used to start the VDU, present only if
vdu_hv_type is BARE (see 11.1.2)

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 113

H2020-761586

vdu_computation_
requirements

Element 1 Computation Requirements for this VDU (see
11.1.3)

vdu_configuration Element 1 Configuration script used at start of this VDU
(see 11.1.4)

vdu_interfaces Element 0…N List of virtual interfaces used by this VDU
(see 11.1.5)

vdu_hv_type Enum 1 This of hypervisor needed by this VDU, can be one
of {BARE, LXD, KVM, XEN, Docker}

vdu_internal_
connection_points

Element 0…N Internal Connection points defined by this VDU (see
11.1.6)

vdu_io_ports Element 0…N Specific I/O ports needed by this VDU (see
11.1.7)

vdu_lcm_hooks Element 0–1 Hooks/Script called before each LCM action inside
the VDU (see 11.1.8)

vdu_depends_on List 0…N List of VDUs this VDU depends on (startup
dependency)

10.2 Image

The image information element includes the information related to the EFS Atomic Entity package

(e.g., location, checksum, format) in case of non-native (e.g., containers) packaging.

Name Type Cardinality Description

uri String 1 URI for the Image

checksum String 1 SHA1 checksum to verify the image file

format String 1 Format of the image (e.g., qcow2, RAW, tar.gz)

10.3 Command

The command information element contains the information for executing a native EFS Atomic

Entity.

Name Type Cardinality Description

binary String 1 Path to the binary file (e.g., file:// /bin/myapp)

args List 0…N List of arguments to be passed to the binary

10.4 Computational Requirements

The computation requirements information element includes all the computational and storage

requirements for the EFS Atomic Entity.

Name Type Cardinality Description

cpu_arch String 1 CPU architecture needed by the VDU

cpu_min_freq Float 1 Minimum CPU frequency required

cpu_min_count Int 1 Minimum number of vCPU required

ram_size_mb Int 1 RAM required

storage_size_gb Int 1 Disk size required

gpu_min_count Int 1 Minimum number of GPU required

fpga_min_count Int 1 Minimum number of FPGA required

min_running_
time_minutes

Int 1 Minimum running time in minutes in an hour

max_running_
time_minutes

Int 1 Minimum running time in minutes in an hour

position Element 1 Position requirement for this VDU (see 11.1.9)

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 114

H2020-761586

10.5 Configuration

The configuration information element contains the information related to any eventual

configuration script to be executed by the EFS Atomic Entity during the start-up.

Name Type Cardinality Description

conf_type Enum 1 Configuration script type (CLOUD_INIT, SCRIPT)

script String 1 Configuration Script

10.6 Interface

The interface information element includes the details required for creating the virtual/physical

interfaces required by the EFS Atomic Entity.

Name Type Cardinality Description

name String 1 Name of the virtual interface

is_mgmt Bool 1 True if the interface is a management one

mac_address String 1 MAC address of the interface

internal_cp Reference 0–1 Reference to an internal connection point
connected to this interface

virtual_type Enum 1 Kind of virtualized interface used (VIRTIO,
PARAVIRT, SR_IOV, …)

10.7 Connection Point

The connection point information element allows to interconnect the EFS Atomic Entity with virtual

links (see 11.2).

Name Type Cardinality Description

cp_uuid String 1 Unique UUID for the connection point

vl_id Reference 0–1 Reference to the virtual link the CP is connected

10.8 IO Port

The IO Port information element includes the details required by the EFS Atomic Entity in terms of

hardware IO Ports.

Name Type Cardinality Description

Name String 1 Name of the IO Port

min_io_ports Int 1 Minimum number of IO ports needed

io_type Enum 1 Type of IO ports (I2C, GPIO, BUS, …)

10.9 Life-Cycle Management (LCM) Hooks

The LCM Hooks information element contains the pointers to executables to be run upon LCM

operations (e.g., run, stop, migration, etc.).

Name Type Cardinality Description

on_run String 1 Script called after the VDU is started. This script
is executed after the configuration script (see
11.1.4)

on_stop String 1 Script called before the VDU to be stopped

on_migration _start String 1 Script called before starting a migration

on_migration _ended String 1 Script called upon migration completion

migration_type Enum 1 Specify the kind of migration supported by the
VDU: {LIVE, COLD}

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 115

H2020-761586

10.10 Position

The Position information element expresses location constraints of the EFS Atomic Entity.

Name Type Cardinality Description

lat String 1 Latitude

lon String 1 Longitude

radius Float 1 Radius in meter

10.11 Virtual Link

The Virtual Link information model describes the connectivity type and characteristics.

Name Type Cardinality Description

vl_uuid String 1 Unique UUID for the Virtual Link

name String 1 Name of the virtual link

is_mgmt Bool 1 True if this virtual link is used for management

vl_type Enum 1 Type of the virtual Link: {ELINE, ELAN}

10.12 EFS Entity/EFS Service

This information model describes the EFS Entity as a whole and includes the EFS Services

provided/required by the EFS Entity.

Name Type Cardinality Description

uuid String 1 Unique UUID of the Ent/Svc

name String 1 Unique Name of the Ety/Svc

vendor String 1 Ety/Svc Vendor

soft_version String 1 Version of the software of the Ety/Svc

ocs_version float 1…N List of supported OCS versions by the Ety/Svc

description String 1 Description of the Ety/Svc

vdus Element 1…N VDUs that compose the Ety/Svc (see 11.1)

virtual_links Element 0…N Virtual Links that compose the Ety/Svc (see 11.2)

service_required Element 0…N Service required by the Ety/Svc to run (see
11.3.12)

service_optional Element 0…N Services that are optional for the Ety/Svc (see
11.3.12)

service_produces Element 0…N Services produces by the Ety/Svc (see 11.3.10)

feature_required Element 0…N EFS Features required by the Ety/Svc to run (see
11.3.13)

feature_optional Element 0…N EFS Features optional by the Ety/Svc to run (see
11.3.13)

transport_
dependencies

Element 0…N Transport dependencies for the Ety/Svc (see
11.3.7)

traffic_rules Element 0…N Traffic rules to be created for the Ety/Svc (see
11.3.3)

dns_rules Element 0…N DNS rules to be created for the Ety/Svc (see
11.3.2)

latency Element 1 Latency supported by the Ety/Svc (see 11.3.1)

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 116

H2020-761586

10.12.1 Latency

The Latency information element expresses the latency requirements of the EFS Entity.

Name Type Cardinality Description

type_unit Enum 1 Time unit for the latency

latency Float 1 Max latency supported

10.12.2 DNS Rule

The DNS Rule information element expresses the DNS rules to be configured on the EFS Service

Platform for publishing any eventual EFS Service(s).

Name Type Cardinality Description

dns_rule_id String 1 Unique UUID for the DNS Rule

domain_name String 1 Domain name for this DNS rule

ip_address_type Enum 1 IP Address type for this DNS rule: {IP_V4, IP_V6}

ip_addresses String 1…N IP addresses for this DNS rule

ttl Int 1 TTL in seconds for this DNS rule

10.12.3 Traffic Rule

The Traffic Rule information element describes what kind of traffic should be redirected from the

underlying network infrastructure to the EFS Entity.

Name Type Cardinality Description

traffic_rule_id String 1 Unique UUID for this traffic rule

filter_type Enum 1 Kind of filter: {FLOW, PACKET}

priority Int 1 Priority of this rule

traffic_filter Element 0…N Traffic filter to be applied (see 11.3.4)

action Enum 0…N Action to be taken If traffic matches the filter:
{DROP, FORWARD_DECAPSULATED,
FORWARD_AS_IS, PASSTHOUGH,
DUPLICATE_DECAPSULATED, DUPLICATE_AS_IS}

dst_interface Element 0…1 Destination interfaces for matching traffic (see
11.3.5)

10.12.4 Traffic Filter

The Traffic Rule information element describes the matching rules for redirecting traffic from the

underlying network infrastructure to the EFS Entity.

Name Type Cardinality Description

src_addresses String 0…N Source addresses

dst_addresses String 0…N Destination addresses

src_port Int 0…1 Source port

dst_port Int 0…1 Destination port

protocol String 0…1 Protocol

src_tunnel_address String 0…1 Source address of the tunnel

dst_tunnel_address String 0…1 Destination address of the tunnel

qci Int 0…1 QCI field

dscp Int 0…1 DSPC field

tc Int 0…1 TC field

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 117

H2020-761586

10.12.5 Interface Type

The Interface Type information element describes the type of interface that should be used for

redirecting traffic from the underlying network infrastructure to the EFS Entity.

Name Type Cardinality Description

interface_type Enum 1 Kind of the interface: {MAC, TUNNEL, IP}

tunnel_info Element 1 Type of tunnel (see 11.3.6)

src_mac_address String 1 Source MAC address

dst_mac_address String 1 Destination MAC address

dst_ip_address String 1 Destination IP address

10.12.6 Tunnel Info

The Tunnel Info information element describes the tunnel configuration that should be used for

redirecting traffic from the underlying network infrastructure to the EFS Entity.

Name Type Cardinality Description

tunnel_type Enum 1 Type of tunnel: {GRE, VXLAN, Zenoh, GTP}

tunnel_src_
address

String 1 Tunnel source address

tunnel_dst_
address

String 1 Tunnel destination address

10.12.7 Transport Dependency

The Transport Dependency information element describes the configuration and requirements for

the EFS Service to be consumed/produced by the EFS Entity.

Name Type Cardinality Description

labels String 0…1 Labels needed for this transport

serializers_list Enum 0…1 Serialized to be used for this transport: {JSON, XML,
PROTOBUF3}

transport Element 1 Transport information (see 11.3.8)

10.12.8 Transport Descriptor

The Transport Descriptor information element describes the transport information of the EFS

Service to be consumed/produced by the EFS Entity.

Name Type Cardinality Description

transport_type Enum 1 Kind of the transport: {REST_HTTP,
MB_TOPIC_BASED, MB_ROUTING, MB_PUBSUB,
RPC, RPC_STREAMING, WEBSOCKET}

protocol String 1 Protocol used by this transport

version Float 1 Version of the protocol used by this transport

security Element 1 Security information (see 11.3.9)

10.12.9 Security Info

The Security Info information element includes the authentication tokens to produce/consume the

EFS Service by the EFS Entity.

Name Type Cardinality Description

oauth2_info String 1 OAuth2 Info

grants Enum 0…1 OAuth2 Grant info: {OAUTH2_AUTORIZATION_CODE,
OAUTH2_IMPLICIT_GRANT,
OAUTH2_RESOURCE_OWNER,
OAUTH2_CLIENT_CREDENTIALS}

token_endpoint String 1 OAuth2 Token Issue endpoint

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 118

H2020-761586

10.12.10 Service Descriptor

The Service Descriptor information element includes the details of the EFS Service to be

produced/consumed by the EFS Entity.

Name Type Cardinality Description

ser_name String 1 Name of the service

ser_category Element 1 Category of this service (see 11.3.11)

version float 1 Version of this service

transport_supported Element 1…N Transport supported by this service (see 11.3.7)

10.12.11 Category

The Category information element defines the category of an EFS Service for better grouping in

the EFS Service catalog.

Name Type Cardinality Description

href String 1 Reference to category in the catalog

uuid String 1 Unique UUID for this category

name String 1 Name for this category

version float 1 Version for this category

10.12.12 Service Dependency

The Service Dependency information element identifies the requirements for consuming an EFS

Service from an EFS Entity perspective.

Name Type Cardinality Description

ser_name String 1 Name of the service needed

ser_category Element 1 Category of the service needed (see 11.3.11)

ser_transport_
dependencies

Element 1…N Transport needed for this dependency (see 11.3.7)

10.12.13 Feature Dependency

The Feature Dependency information element identifies the requirements for an EFS Entity in

terms of features that need to be supported by the EFS Service Platform.

Name Type Cardinality Description

feature_name String 1 Name of the needed feature

version Float 1 Version of the needed feature

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 119

H2020-761586

11 Appendix: Simulation settings for placement algorithm
This appendix reports the simulations settings used for evaluating the placement algorithms in

Section 2.4.

11.1 Simulation settings for EFS Stack and pricing

For the sake of testing the performance of the two placement algorithms based on heuristics (see

Section 2.4.3), we consider an EFS Stack composed of 5 EFS Atomic Entities with different sizes

and requirements as highlighted in Table 11-1. The reference values, including the pricing, are

for an eventual deployment on AWS EC2 in the Paris region29.

TABLE 11-1: EFS STACK COMPOSITION AND PRICING

Qty Reference CPU RAM Pricing (AWS Paris) Tier

1 AWS t3.medium 2 4 GB $0.0472 per Hour 1x cloud

2 AWS t3.micro 2 1 GB $0.0118 per Hour 1x cloud, 1x cloud/edge

2 AWS t3.nano 2 0.5 GB $0.0059 per Hour 1x edge/fog, 1x fog

In our scenario we impose one EFS Entity (i.e., t3.medium) to be always deployed on the cloud. A
second EFS Entity (i.e., t3.micro) can be deployed either on the cloud or at the edge. A third EFS
Entity (i.e., t3.micro) is deployed at the edge. A fourth EFS Entity (i.e., t3.nano) can be deployed
either at the edge or in the fog. Finally, a fifth EFS Entity (i.e., t3.nano) needs to be always
deployed in the fog. To encompass the different scales and resource pooling benefits of cloud,
edge and fog we introduce a scaling factor for the pricing. In particular, we assume the price for
a deployment in the fog to be 1.5 times higher compared to the same deployment in the cloud.
Similarly, we assume the price for a deployment in the edge to be 1.2 times higher than the
same deployment in the cloud.

11.2 Simulation settings for infrastructure generation

FIGURE 11-1: REFERENCE 5G TRANSPORT NETWORK ARCHITECTURE [43]

In order to simulate a realistic infrastructure, we consider a reference 5G transport infrastructure

as proposed in [43] and shown in Figure 11-1. The transport architecture comprises three

segments: (i) access, (ii) aggregation, and (iii) core. The access comprises 6 Active Antenna Units

(AAUs) for each node M1 connected via a point-to-point link, and 6 nodes M1 connected in a

ring topology. Thus, each access ring hence connects a total of 36 AAUs. Next, each aggregation

ring comprises 6 M2 nodes, each of which serves as gateway to 4 access rings. Finally, each

aggregation ring is served by two M3 nodes for redundancy reasons, while each M3 node

provides gateway capabilities to 2 aggregation rings. It is worth noticing that the M1 and M2

nodes are configured in a ring topology (access and aggregation rings, respectively) only at

electrical level while at logical level are considered to be connected point-to-point to their

29 https://aws.amazon.com/ec2/instance-types/

M1

Antenna

6x Antennas
per M1 node

6x M1 nodes
per access ring

M2

4x access rings
per M2 node

Access ring Aggregation ring

M3

6x M2 nodes per
aggregation ring

2x aggregation
rings per M3 node

M4

CoreAccess Aggregation

Internet
Core ring

https://aws.amazon.com/ec2/instance-types/

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 120

H2020-761586

corresponding gateways (M2 and M3, respectively). This means that packets are enqueued only

at gateway level and not every time they traverse a node in the ring.

FIGURE 11-2: RANDOMLY GENERATED INFRASTRUCTURE

Starting from the reference transport architecture we randomly generate multiple instances of

the infrastructure following the same method proposed in [44] and based on inhomogeneous

Poisson point processes with hard-core repulsion. Figure 11-2 shows a random realization of the

transport infrastructure. The edge is considered to be a server collocated with a M1 nodes. As an

example of edge server, we consider an Azure Data Box30. Finally, we consider 128 fog nodes

to be collocated with each AAU to encompass for the fog dimension. As an example of fog node,

we consider a Raspberry Pi 3 B+31.

11.3 Simulation settings for infrastructure volatility

To generate the reliability values of the fog nodes and the edge servers, we generate their

volatility (1 − ν(ℎ)) using exponentially distributed random variables. More specifically, the

volatility of an infrastructure node is generated as (1 − ν(ℎ)) ∼ 𝑓({𝐸𝑥𝑝}, λ). Where 𝑓 is a

function that takes the decimal part of a randomly distributed exponential variable and

normalizes it in the interval (μ ⋅ (1 ± 0.1)). In our simulation we vary the volatility of fog nodes

from ((μ𝑓 = 0.1) ⋅ (1 ± 0.1)) up to ((μ𝑓 = 0.5) ⋅ (1 ± 0.1)). Similarly, the volatilities of the

edge nodes vary from ((μ𝑒 = 0.01) ⋅ (1 ± 0.1)) up to ((μ𝑒 = 0.1) ⋅ (1 ± 0.1)). Moreover, we

vary incrementally vary the volatility values in ten steps: from μ𝑓 = 0.1 up to μ𝑓 = 0.5 for the

fog nodes volatility, and from μ𝑒 = 0.01 to μ𝑒 = 0.1 for the edge nodes volatility. Therefore, in

Figure 2-6 (see Section 2.4.4) 100% volatility implies μ𝑓 = 0.5 and μ𝑒 = 0.1.

30 https://azure.microsoft.com/en-us/services/databox/
31 https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/

https://azure.microsoft.com/en-us/services/databox/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/

D3.2 – Refined design of 5G-CORAL orchestration and control system and future directions 121

H2020-761586

12 Appendix: Simulation settings for federation
This appendix reports the simulations settings used for evaluating the federation performance in

Section 4.2 and Section 4.3.

12.1 Simulation settings for federation formation

The following reports the simulation settings leveraged in Section 4.2.4. The performance metrics

include the social welfare and the amount of allocated resource in constructed federation

structures. We used Gaussian distribution to generate the values of 𝐶𝑖, 𝑟𝑖, 𝑐𝑖, and 𝑝𝑖 for each EFS

system 𝑠𝑝𝑖 . Table 12-1 lists the notations for the means and the standard deviations of these

variables with their default values. We used Python library PuLP32 as an integer programming

solver for remote provisioning configuration in each federation. The result of each configuration is

averaged over 50 trials.

TABLE 12-1: SIMULATION PARAMETERS FOR FEDERATION FORMATION

Parameter Description Default value

𝒏 Number of EFS nodes. 10

𝝁𝒌 Mean resource capacity of EFS nodes. 1200

𝝁𝒓 Mean resource demand 1000

𝝈𝒌 Standard deviation of resource capacity of EFS nodes 110

𝝈𝒓 Standard deviation of resource demand 110

𝝁𝒄 Mean unit cost of resource 500

𝝁𝒑 Mean unit price of resource. 1000

𝝈𝒄 Standard deviation of unit cost of resource 110

𝝈𝒑 Standard deviation of unit price of resource 110

𝒑 Cooperation intensity 0.6

12.2 Simulation setting for resource provisioning in federated environments

The following reports the simulation settings leveraged in Section 4.3.6. We randomly placed ten

EFS nodes (numbered from 0 to 9) in a 100 × 100 km2 area. The capacity of each EFS node

was randomly determined with the setting shown in Table 12-2. We varied the number of

requests from 50 to 1000. To generate non-uniform distributions of user requests on EFS nodes,

the identifier of the serving EFS node of each request was set by applying a floor function to a

Gaussian distributed random variable (with mean 5 and standard deviation 2:5) truncated at 0

and 9. We assumed four types of VMs as those offered by Amazon EC2 in US West Region.

Each request was a combination of these flavours with most requests demanded Medium and

Large VMs. Only a few demanded XLarge and 2XLarge ones. About 60% requests had latency

constraints uniformly set in the range from 1 to 100 ms.

TABLE 12-2: SIMULATION PARAMETERS FOR SERVER CAPACITY

Parameter Distribution Mean Standard Deviation

Number of CPU cores Gaussian 50 10

Amount of memory (GB) Gaussian 500 50

Amount of storage (GB) Gaussian 500 100

Other requests did not have latency constraints. When a request was served by the server co-

located with the serving EAP, the latency was assumed 1 ms. The latency for serving a guest

request was 1 ms plus the propagation delay which is proportional to the physical distance

between the request and the serving EFS node.

32 https://pythonhosted.org/PuLP/

https://pythonhosted.org/PuLP/

	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	Executive Summary
	1 Introduction
	2 Refined design of the OCS
	2.1 Overview of 5G-CORAL architecture and OCS components
	2.2 Analysis of existing orchestrators
	2.3 Design of a distributed OCS
	2.3.1 Distributed key-value store
	2.3.2 Distributed VIM
	2.3.3 Distributed EFS Stack and Resource Orchestrator

	2.4 Placement algorithm for volatile environments
	2.4.1 EFS Stack analytical modelling
	2.4.2 EFS Virtualization Infrastructure analytical modelling
	2.4.3 Placement heuristics
	2.4.3.1 Cost greedy heuristic
	2.4.3.2 Fog greedy heuristic

	2.4.4 Performance evaluation
	2.4.5 Conclusions

	3 Live procedures and migration in the OCS
	3.1 OCS live procedures in 5G-CORAL use cases
	3.1.1 Augmented reality navigation
	3.1.1.1 Orchestrated Offload Mechanism of AR Navigation Service

	3.1.2 Virtual Reality
	3.1.2.1 Orchestrated Offload Mechanism of VR Navigation Service

	3.1.3 Fog-assisted robotics
	3.1.3.1 Migration of virtual AP based on Wi-Fi signal level
	3.1.3.2 Low-latency D2D communication based on Localization

	3.1.4 High-Speed Train
	3.1.4.1 EFS application migration from on-board to on-land based on mobile connection

	3.1.5 Software Defined Wide Area Network (SD-WAN)
	3.1.5.1 Traffic balancing switching between LTE and broadband interface

	3.2 Common OCS features overview and container-based migration

	4 Federation and resource provisioning
	4.1 Federation of resources
	4.1.1 Federation roles
	4.1.2 Federation interaction model
	4.1.3 Inter-domain connection (F2 interface)
	4.1.3.1 Advertisement/negotiation phase
	4.1.3.2 Federation instantiation phase
	4.1.3.3 Federation termination phase

	4.1.4 Federation of resources

	4.2 Profit maximization in a federated environment
	4.2.1 Instability in dynamic EFS federation
	4.2.2 Profit allocation: fairness and stability
	4.2.3 Identifying Best Federation Structure
	4.2.4 Profit-Maximizing Resource Provisioning Configuration
	4.2.5 Performance evaluation
	4.2.5.1 Impact of cooperation intensity
	4.2.5.2 Impact of demand-to-supply ratio
	4.2.5.3 Impact of price-to-cost ratio
	4.2.5.4 Conclusions

	4.3 Advanced resource provisioning in federated EFSs
	4.3.1 System model
	4.3.2 Request dispatch by OCS
	4.3.3 Objectives of payment-free request dispatch
	4.3.4 Procedure for payment-free request dispatch
	4.3.4.1 Requirements for a node being qualified
	4.3.4.2 Node’s preference on requests
	4.3.4.3 Request’s preference on nodes

	4.3.5 Payment-Based Request Dispatch
	4.3.5.1 Objectives
	4.3.5.2 EFS’s preference on requests
	4.3.5.3 Request’s preference on nodes

	4.3.6 Performance Evaluation
	4.3.6.1 State-of-the-Art Mechanisms Tested
	4.3.6.2 Results of payment-free request dispatch
	4.3.6.3 Results of payment-based request dispatch
	4.3.6.4 Conclusions

	5 OCS experimental validation
	5.1 Automated deployment
	5.1.1 Results
	5.1.2 Conclusions

	5.2 Federation
	5.2.1 Results
	5.2.2 Conclusions

	5.3 Migration of EFS function and application
	5.3.1 Results
	5.3.2 Conclusions

	5.4 Network assisted D2D
	5.4.1 Results
	5.4.2 Conclusions

	6 Lessons learnt
	7 Conclusions and future directions
	8 References
	9 Appendix: Analysis of existing orchestrators
	9.1 Open Source MANO (OSM)
	9.2 Open Baton
	9.3 ONAP
	9.4 Cloudify
	9.5 OPNFV
	9.6 Apache ARIA TOSCA
	9.7 Kubernetes (K8s)

	10 Appendix: EFS Stack information model
	10.1 Virtualisation Deployment Unit (VDU)
	10.2 Image
	10.3 Command
	10.4 Computational Requirements
	10.5 Configuration
	10.6 Interface
	10.7 Connection Point
	10.8 IO Port
	10.9 Life-Cycle Management (LCM) Hooks
	10.10 Position
	10.11 Virtual Link
	10.12 EFS Entity/EFS Service
	10.12.1 Latency
	10.12.2 DNS Rule
	10.12.3 Traffic Rule
	10.12.4 Traffic Filter
	10.12.5 Interface Type
	10.12.6 Tunnel Info
	10.12.7 Transport Dependency
	10.12.8 Transport Descriptor
	10.12.9 Security Info
	10.12.10 Service Descriptor
	10.12.11 Category
	10.12.12 Service Dependency
	10.12.13 Feature Dependency

	11 Appendix: Simulation settings for placement algorithm
	11.1 Simulation settings for EFS Stack and pricing
	11.2 Simulation settings for infrastructure generation
	11.3 Simulation settings for infrastructure volatility

	12 Appendix: Simulation settings for federation
	12.1 Simulation settings for federation formation
	12.2 Simulation setting for resource provisioning in federated environments

