

H2020 5G-Coral Project
Grant No. 761586

D2.2: Refined design of 5G-CORAL
edge and fog computing system and

future directions

Abstract

This deliverable provides the final release of the 5G-CORAL Edge and Fog Computing System
(EFS) architecture and design. The deliverable extends the initial EFS design [1] as follows: (1)
describing the EFS workflows and the EFS data models; (2) extending the analysis of EFS messaging
protocols to incorporate Zenoh and RESTful publish/subscribe messaging; (3) verifying the
feasibility of EFS reference design through implementation and experimentation of seven different
use cases and (4) a study on EFS resource monitoring.

 D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions 2

H2020-761586

Document properties
Document number D2.2
Document title D2.2: Refined design of 5G-CORAL edge and fog computing

system and future directions

Document responsible Industrial Technology Research Institute (ITRI)
Document editor Samer Talat (ITRI)
Editorial team Alain Mourad (IDCC), Charles Turyagyenda (IDCC), Chenguang

Lu (EAB), Samer Talat (ITRI), Ibrahiem Osamah (ITRI)
Target dissemination level Public
Status of the document Final
Version 1.0

List of contributors

Partner Contributors
ADLINK Gabriele Baldoni
IDCC Charles Turyagyenda, Giovanni Rigazzi
ITRI Samer Talat, Ibrahiem Osamah, Gary Huang
NCTU Hsu-Tung Chien

TELCA Aitor Zabala Orive
SICS Bengt Ahlgren, Saptarshi Hazra
EAB Chenguang Lu
AZCOM Riccardo Ferrari, Giacomo Parmeggiani

Production properties
Reviewers Antonio De La Oliva, Alain Mourad, Samer Talat, Chenguang

Lu, Ibrahiem Osamah

Document history
Revision Date Issued by Description
1.0 1 June 2019 ITRI D2.2 ready for publication

Disclaimer
This document has been produced in the context of the 5G-Coral Project. The research leading to
these results has received funding from the European Community's H2020 Programme under grant
agreement Nº H2020-761586.

All information in this document is provided “as is" and no guarantee or warranty is given that the
information is fit for any particular purpose. The user thereof uses the information at its sole risk
and liability.

For the avoidance of all doubts, the European Commission has no liability in respect of this
document, which is merely representing the authors view.

 D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions 3

H2020-761586

Table of Contents
List of Figures .. 5

List of Tables ... 6

List of Acronyms ... 7

Executive Summary ... 8

1 Introduction .. 9

2 Refined EFS Design .. 10

2.1 Overview of 5G-CORAL architecture and EFS components ... 10

2.1.1 EFS internal and external interfaces ... 11

2.2 EFS E2 interface and data models ... 12

2.3 EFS workflows ... 16

3 EFS service platform and messaging protocols .. 17

3.1 EFS service platform .. 17

3.2 Extended survey of EFS messaging/communication protocols .. 18

3.2.1 Zenoh ... 18

3.2.2 RESTful publish/subscribe messaging ... 19

3.3 Refined analysis of EFS messaging/communication protocols .. 20

4 Refined EFS design for 5G-CORAL use-cases .. 23

4.1 Robotics ... 23

4.1.1 Refined EFS design and functional validation ... 23

4.1.2 Use-case specific implementations and experimental verification 25

4.1.3 Conclusions and future directions ... 31

4.2 Virtual Reality (VR) .. 31

4.2.1 Refined EFS design and functional validation ... 32

4.2.2 Use-case specific implementations and experimental verification 33

4.2.3 Conclusions and future directions ... 37

4.3 Augmented Reality (AR) ... 38

4.3.1 Refined EFS design and functional validation ... 39

4.3.2 Use-case specific implementations and experimental verification 40

4.3.3 Conclusions and future directions ... 41

4.4 Multi-RAT IoT ... 42

4.4.1 Refined EFS design and functional validation ... 42

4.4.2 Use-case specific implementations and experimental verification 44

4.4.3 Conclusions and future directions ... 53

4.5 Connected Car ... 54

4.5.1 Refined EFS design and functional validation ... 55

 D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions 4

H2020-761586

4.5.2 Use-case specific implementations and experimental verification 56

4.5.3 Conclusions and future directions ... 57

4.6 SD-WAN ... 57

4.6.1 Refined EFS design and functional validation ... 58

4.6.2 Use-case specific implementations and experimental verification 58

4.6.3 Conclusions and future directions ... 59

4.7 High-Speed Train .. 60

4.7.1 Refined EFS design and functional validation ... 60

4.7.2 Use-case specific implementations and experimental verification 62

4.7.3 Conclusions and future directions ... 62

5 5G-CORAL EFS Monitoring .. 64

5.1 Overview of 5G-CORAL Monitoring ... 64

5.2 Prometheus as EFS monitoring platform .. 65

5.3 EFS monitoring experimentation with Prometheus ... 69

5.3.1 Experiment I: EFS resource as virtual machine .. 70

5.3.2 Experiment II: EFS resource as a real physical fog node device 72

6 Conclusions and Future Work ... 76

Bibliography ... 79

7 Appendix: PoC service data models .. 81

7.1 Connected cars ... 81

7.1.1 CAM – Cooperative Awareness Message ... 81

7.1.2 DENM – Decentralised Environmental Notification Message 85

7.1.3 OBU Configuration parameters ... 87

7.2 Edge robotics .. 89

7.3 IBeacon .. 90

8 Appendix: Survey and analysis of SoA monitoring frameworks. ... 91

8.1 Host Monitoring .. 91

8.2 Virtual Machines Monitoring: Prometheus Node Exporter ... 92

8.3 Containers Monitoring ... 94

8.3.1 Docker Monitoring .. 94

8.3.2 LXD Monitoring .. 96

8.3.3 LXC Monitoring .. 96

9 Appendix: Zenoh and NATS comparison ... 98

9.1 Kafka Brokered Performance ... 98

9.2 Apache Kafka .. 99

9.3 EFS service platform data storage engine .. 100

 D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions 5

H2020-761586

List of Figures
Figure 2-1: 5G-CORAL system architecture ... 10
Figure 2-2: overview of the E2 service interface of the EFS ... 13
Figure 2-3: EFS workflow ... 16
Figure 3-1: publish/subscribe messaging among EFS entities .. 18
Figure 3-2: kafka REST proxy architecture [43] ... 19
Figure 3-3: Experimental setup .. 20
Figure 3-4: Throughput over payload size ... 21
Figure 3-5: Messages per second over payload size .. 21
Figure 4-1: Fog-assisted robotics in the shopping mall .. 23
Figure 4-2: EFS entities interconnection for the robotics use case .. 24
Figure 4-3: Robotics logical system .. 26
Figure 4-4: Floor plan and robot route ... 27
Figure 4-5: adaptive speed control algorithm .. 28
Figure 4-6: Speed, acceleration, and driving time ... 30
Figure 4-7: EFS entities interconnection for the VR use case ... 32
Figure 4-8: VR end-to-end physical implementation building blocks .. 34
Figure 4-9: GPU load, power consumption and memory usage on the cloud data centre. 37
Figure 4-10: ECDF of the downlink data rate ... 37
Figure 4-11: AR live navigation in shopping mall ... 39
Figure 4-12: AR navigation efs design ... 39
Figure 4-13: Distributed AR – execution flow (native application) ... 41
Figure 4-14: Distributed AR – execution flow (lxd container) .. 41
Figure 4-15: Illustration of refined EFS design for Multi-RAT IoT use case .. 42
Figure 4-16: CDF of RTT for ping measurements with different transport protocols 45
Figure 4-17: State transition for echo handling .. 46
Figure 4-18: NB-IoT slot structure ... 47
Figure 4-19: Measured fronthaul throughput without compression ... 48
Figure 4-20: Downlink block diagram (a) without compression and (b) with compression 48
Figure 4-21: Measured fronthaul throughput with compression ... 49
Figure 4-22: Multi-channel receiver implementation .. 49
Figure 4-23: Multi-channel transmitter implementation ... 49
Figure 4-24: Breakdown of radio transmission. .. 50
Figure 4-25: Flowchart for our method for a single input port - output port combination 51
Figure 4-26: Structure of each transmission ... 51
Figure 4-27: Experimental setup ... 52
Figure 4-28: CDF of RTT for ping measurements with 56 bytes payload ... 52
Figure 4-29: CDF of RTT for ping measurements with different payload sizes 53
Figure 4-30: Connected cars scenario ... 54
Figure 4-31: EFS Element in connected car use case .. 55
Figure 4-32: EFS elements in SD-WAN ... 58
Figure 4-33: High-speed train EFS design ... 60
Figure 4-34: Enhanced inter-MME procedure flowchart ... 61
Figure 4-35: High-speed train emulation results ... 62
Figure 5-1: EFS Monitoring Mapping to 5G-CORAL Architecture ... 65
Figure 5-2: Prometheus architecture .. 66
Figure 5-3: cAdvisor dashboard .. 67
Figure 5-4: Prometheus configuration (prometheus.yml) .. 68
Figure 5-5: grafana Dashboard example ... 69

 D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions 6

H2020-761586

Figure 5-6: Prometheus and 5G-CORAL .. 69
Figure 5-7: Fog node as virtual machine Experiment ... 70
Figure 5-8: CPU % of time spent in usr(User) and sys(System) spaces ... 71
Figure 5-9: RAM consumption ... 71
Figure 5-10: bandwidth consumption in lxdbr0 interface ... 72
Figure 5-11: Qotom mini PC ... 72
Figure 5-12: CPU usage for usr, sys and iowait ... 73
Figure 5-13: RAM usage .. 74
Figure 5-14: Snapshot of disk usage before and after the experiment .. 74
Figure 5-15: bandwidth Measurement IN ALL interfaces of the physical fog node 75
Figure 8-1: docker stat output .. 95
Figure 8-2: LXD API consumption with python .. 96
Figure 8-3: LXC monitoring exporter ... 97
Figure 9-1: Latency vs messages on RESTful protocols .. 98
Figure 9-2: Messages per seconds vs threads on Apache Kafka .. 99
Figure 9-3: Main measurements about Apache Kafka .. 99
Figure 9-4: Mbps vs payload on Apache Kafka ... 100
Figure 9-5: Messages per seconds vs payload on Apache Kafka ... 100

List of Tables
Table 2-1: EFS interfaces ... 11
Table 2-2: Methods in ETSI MEC Mp1 for handling service resources and querying for transports
 .. 13
Table 2-3: service info data structure – first four columns from GS MEC 011 14
Table 2-4: Transportinfo Resource Describing the Platform-Provided MQTT Transport 15
Table 3-1: Pub/Sub Messaging Protocols Results ... 20
Table 4-1: Summary of EFS entities for robotic use case .. 24
Table 4-2: Summary of EFS entities for VR use case .. 32
Table 4-3: System parameters ... 36
Table 4-4: Summary of EFS entities for IoT Multi-RAT use case ... 43
Table 4-5: Rx packet detection experimental results .. 46
Table 4-6: WIFI and LTE latency measurements (avg. over 2500) ... 56
Table 4-7: latency measurements .. 59
Table 5-1: All Metrics cAdvisor can expose to Prometheus .. 67
Table 7-1: OBU configuration parameter .. 87
Table 8-1: Prometheus collectors for Linux ... 92
Table 8-2: Prometheus collectors for windows .. 93
Table 8-3: Docker inspect low-level container image properties .. 94
Table 8-4: Docker inspect low-level container instance properties ... 94
Table 8-5: Docker stats data and metric fields .. 95
Table 9-1: Zenoh and NATS comparison .. 98

 D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions 7

H2020-761586

List of Acronyms
3GPP 3rd Generation Partnership Project
AMQP Advanced Message Queuing

Protocol
AP Access Point
API Application Programming Interface
AR Augmented Reality
ARP Allocation and Retention Priority
CBOR Concise Binary Object

Representation
CD Computing Devices
CPU Central Processing Unit
C-V2X Cellular Vehicle-to-everything
DASH Dynamic Adaptive Streaming over

HTTP
DDS Data Distribution Service
DSRC Dedicated Short Range

Communications
EFS Edge and Fog Computing System
EFS-VI EFS Virtualisation Infrastructure
EPC Evolved Packet Core
ETSI European Telecommunications

Standards Institute
FoV Field of View
GNSS Global Navigation Satellite System
HTTP HyperText Transfer Protocol
IEEE Institute of Electrical and Electronics

Engineers
IoT Internet of Things
IP Internet Protocol
IR Image Recognition
IQ In-phase and Quadrature

components
LTE Long Term Evolution
MAC Media Access Control

MEC Mobile Edge Computing
MME Mobility Management Entity
MQTT Message Queue Telemetry

Transport
NB-IoT Narrow-Band IoT
NFV Network Functions Virtualisation
OCS Orchestration and Control System
OSS Operation Support System
P2P Peer-to-Peer
PHP Hypertext Preprocessor
QCI QoS Class Indicator
QoS Quality of Service
RAM Random-Access Memory
RAN Radio Access Network
RAT Radio Access Technologies
REST Representational State Transfer
RSSI Received Signal Strength Indication
RSU Road-Side Unit
RTMP Real-Time Messaging Protocol
SDR Software-Defined Radio
SSID Service Set Identifier
TCP Transmission Control Protocol
UDP User Datagram Protocol
UE User Equipment
URL Uniform Resource Locator
vAP Virtual Access Point
VIM Virtualisation Infrastructure

Manager
vMME Virtual Mobility Management Entity
VNF Virtual Network Functions
VR Virtual Reality
XMPP Extensible Messaging and Presence

Protocol

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

Executive Summary
One of the key targets of 5G-CORAL is to provide the ultra-low latency requirements. Especially,
when the end users with smart devices desire a high-quality service. In order to achieve this
ambitious target, 5G-CORAL system utilize the distributed Edge and Fog Computing System (EFS)
which has networking, computing, and storage capabilities closer to the end users. In this
deliverable, the final version of an integrated and virtualized networking and computing solution
adopting virtualized functions, user and third-party applications, and context-aware services are
blended together on top of EFS. In this work, we outline the main features of final release of the
5G-CORAL EFS architecture and design. In the final EFS, the services for collection, aggregation,
and publishing, use of radio and network context information applications, and virtualized functions
are pointed out. Also, refined EFS applications using EFS services from multiple Radio Access
Technologies (RAT) and the transport and core networks are developed to improve network KPIs
and user QoE. In Summary, this deliverable addresses the following aspects of the 5G-CORAL
EFS: the refined EFS design, EFS service platform and messaging, the refined EFS design for the
5G-CORAL use-cases and the EFS monitoring. The following highlights the main achievements in
this deliverable:

• Data models for the EFS APIs. In particular, a refined description of EFS internal and
external interfaces (E1-E4). Also, E2 interface provides the connectivity enabling
distributing and sharing service data between EFS functions and EFS applications via EFS
service platform.

• A MQTT-based reference design of EFS service platform is presented.
• A study of Zenoh, NATS, DDS, MQTT and Kafka messaging. The results show that Zenoh

and NATS outperform other protocols. These two are recommended to consider if high
performance is needed.

• EFS workflows for service discovery and integration especially when a service of a
deployed application/function is utilised by another application/function.

• EFS implementations for the 5G-CORAL use cases. The performance is evaluated in each
use case by experiments. The experiment results show the benefits of adopting the 5G-
CORAL design in service delivery, computation offload, and bandwidth reduction and
improve multi-RAT support. Also, the association between the EFS and OCS is investigated
for the use cases.

• EFS heterogeneous resource monitoring in the context of 5G-CORAL is also addressed. An
open-source tool is used to preform resource monitoring which fits into the EFS design.

• EFS service platform data storage engine design using distributed databases that are
consistency, availability and partition tolerance.

Future work is anticipated to focus more extensive study for a large-scale EFS deployment
integrating multiple use cases running on the same EFS, which is closer to real business deployment.
Another future direction can be the possibility to incorporate the capabilities of machine learning,
AI techniques and big data handling into EFS, as well as the interactions and extensions with Cloud.
This would require a further extension of the EFS design and make the EFS more intelligent and
optimized.

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

1 Introduction
In contrast to previous mobile communication technologies, 5G promises to support a variety of
emerging applications including Mixed (Augmented/Virtual) Reality (AR/VR), Cloud Robotics,
Connected Vehicles and several Internet-of-Things (IoT) use cases; some of which require very low
end-to-end latency (~0.1-20 milliseconds). This ultra-low latency requirement is extremely
challenging to deliver through a purely centralized architecture.

5G-CORAL addresses the ultra-low latency requirement by leveraging the concept of “intelligent
edge” to provide networking, computing, and storage capabilities closer to the end users. This is
realized through an integrated and virtualized networking and computing solution where
virtualized functions, context-aware services, and user and third-party applications are blended
together to offer enhanced connectivity and better quality of experience. The 5G-CORAL system
constitutes two major building blocks, namely (i) the Edge and Fog Computing System (EFS)
subsuming all the edge and fog computing substrates offered as a shared hosting environment for
virtualized functions, services, and applications; and (ii) the Orchestration and Control System
(OCS) responsible for managing and controlling the EFS, including its interworking with other (non-
EFS) domains (e.g., transport and core networks, distant clouds, etc.).

The first deliverable of WP2 [1] provided the initial design of the 5G-CORAL EFS and addressed
the following aspects: i) the EFS requirements; ii) the EFS architecture including internal and external
interfaces; iii) a comprehensive survey, analysis and selection of the EFS Service platform
messaging/communication protocols; and iv) a baseline EFS design for the 5G-CORAL use cases.

This second deliverable provides a refinement of the 5G-CORAL EFS design by addressing the
gaps identified in [1] as follows: (1) Describing the EFS workflows and the EFS data models; (2)
Extending the analysis of EFS messaging protocols to incorporate Zenoh and RESTful
publish/subscribe messaging; (3) Verifying the feasibility of EFS reference design through
implementation and experimentation of seven different use cases and (4) a study on EFS resource
monitoring. The rest of the deliverable is structured as follows:

Section 2 presents an evolution of the 5G-CORAL EFS design that was initially presented in [1]
particularly addressing, the EFS workflows and the EFS data models.

Section 3 presents a refinement of the survey and the analysis of the EFS messaging/communication
protocols. The refined analysis extends the study in [1] by incorporating Zenoh and RESTful
publish/subscribe as potential EFS messaging protocols.

Section 4 presents the refined EFS design and implementation for each of the 5G-CORAL use
cases, namely: Robotics, Virtual Reality, Augmented Reality, Multi-RAT IoT, Connected Cars, High-
speed Train, and SD-WAN. The refined design addresses the following aspects, per use case,
namely: (1) Decomposition of the use case(s) into their constituent EFS entities and their respective
interworking(s); (2) Functional validation and experimental verification; (3) Conclusions and future
directions.

Section 5 presents a study of EFS resource monitoring and highlights the following key aspects:
analysis of state-of-the-art (SoA) monitoring framework, mapping the monitoring approaches to
5G-CORAL and EFS design.

Finally, in Section 6, a conclusion is presented summarizing the findings of this deliverable, as well
as setting the prospects for future directions.

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

2 Refined EFS Design
This section presents an evolution of the 5G-CORAL EFS design that was initially presented in [1]
particularly addressing, the EFS workflows and the EFS data models. First, we provide an overview
of the 5G-CORAL EFS components and the corresponding interfaces in section 2.1. Second, we
present the EFS E2 interface and data models in section 2.2. Finally, we present a description of
the EFS workflows in section 2.3.

2.1 Overview of 5G-CORAL architecture and EFS components

FIGURE 2-1: 5G-CORAL SYSTEM ARCHITECTURE

Figure 2-1 presents the 5G-CORAL system architecture [42] composed of the following two sub-
systems, namely.

• Edge and Fog Computing System (EFS): an EFS is a logical system subsuming Edge and
Fog resources that belong to a single administrative domain. An EFS provides a service
platform, functions and applications on top of the available resources and may interact
with other domains’ EFSs.

• Orchestration and Control System (OCS): an OCS is a logical system responsible for
composing, controlling, managing, orchestrating and federating one or more EFS(s). An
OCS comprises Virtualisation Infrastructure Managers (VIMs), EFS managers, and EFS
orchestrators. An OCS may interact with other domains’ OCSs.

The EFS constitutes the following components [1].

• EFS Virtualization Infrastructure (EFS-VI): The EFS virtualization infrastructure (EFS-VI) is
the totality of the hardware and software components that build up the environment in
which EFS entities (i.e. EFS applications, EFS functions and EFS service platform) are
deployed, managed and executed. The EFS-VI is geographically distributed across
several locations and composed of Fog nodes and Edge nodes.

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

• EFS entities, namely: EFS applications, EFS functions, the EFS service platform and their
respective entity managers. An EFS entity is comprised by at least one atomic entity. An
atomic entity is an unpartitionable computing task executed in the EFS.

o EFS Function: A software entity comprised of at least one atomic entity deployed
in EFS for networking infrastructure.

o EFS Application: A software entity comprised of at least one atomic entity
deployed in EFS for end users and third parties.

o EFS Entity Managers: Analogous to the ETSI NFV element managers, the EFS
entity managers are responsible for FCAPS management of the EFS service
platform, Functions and Applications. This includes configuration management,
fault management, Security management, accounting and collecting performance
measurement results.

o The EFS Service Platform: A logical data exchange platform constituting: (1)
Data storage to keep the collected information from applications/functions and
edge/fog resources. (2) Messaging/communication protocols to gather/provide
information from/to applications/functions and edge/fog resources.

2.1.1 EFS internal and external interfaces

Table 2-1summarizes the EFS interfaces according to Figure 2-1. There are two categories of EFS
interfaces namely internal and external interfaces. The former handles the message exchanges
within the EFS while the later communicates with the non-EFS entities such as the OCS, the Operation
Support System/Business Support System (OSS/BSS) and the Non-EFS
applications/functions/resources. WP2’s refinement of the EFS design focused on the internal EFS
interfaces, namely: E1, E2, E3 and E4.

TABLE 2-1: EFS INTERFACES

ID
ETSI

NFV/MEC
ref. point

Description

E1 ETSI NFV:
Nf-Vn

This is the reference point between the EFS virtualisation infrastructure (EFS-VI) and
the EFS entities, i.e. EFS applications, EFS functions, the EFS service platform and
their respective entity managers.

E2 ETSI MEC:
Mp1

This is the reference point between the EFS service platform and the following: EFS
applications, EFS functions, EFS virtualisation infrastructure and the OCS.

E3 ETSI MEC:
Mm5

This is the reference point between the EFS Service platform and the EFS Service
platform entity manager.

E4 ETSI MEC:
Mm5

This is the reference point between the EFS application/EFS functions and their
respective entity managers.

O1 ETSI NFV:
Nf-Vi

This is the reference point between the Virtual Infrastructure Manager (VIM) and
the EFS virtualisation infrastructure (EFS-VI).

O5 ETSI NFV:
Ve-Vnfm-
Vnfm

This is the reference point between EFS functions or applications and the EFS Service
Platform Manager.

O6 ETSI NFV:
Ve-Vnfm-
em

This is the reference point between the entity managers of functions, applications
and EFS service platform and the EFS Service Platform Manager.

T1 ETSI MEC:
Mm2

This is the reference point between the EFS service platform entity manger and the
Operation Support System/Business Support System (OSS/BSS).

T3 None This is the reference point between the EFS virtualisation infrastructure (EFS-VI) and
the Operation Support System/Business Support System (OSS/BSS). ETSI NFV has
an interface between NFVI and OSS/BSS, however, this interface is not named and
is classified under “other references”

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

ID
ETSI

NFV/MEC
ref. point

Description

T8 None This is the refence point between the EFS service platform and the Non-EFS
applications, functions and resources. There is no equivalent interface both in ETSI
NFV and ETSI MEC.

F1 ETSI MEC:
Mp3

This is the reference point between the EFS service platform and other EFS Service
platform(s).

The E1 interface is tightly coupled to the virtualization technologies adopted by the EFS
Virtualization Infrastructure (EFS-VI), i.e. either docker, LXD/LXC containers, KVM virtual machines,
etc. A detailed description of the E2 interface is provided in section 2.2. The E3 and E4 interfaces
are implementation-specific interfaces between the EFS service platform and its entity manager,
and the EFS application/functions and their entity managers, respectively. The role of these entity
managers includes providing life cycle management for their respective entities by interacting with
the OCS over the O6 interface and carry out other configuration tasks required for execution on
the EFS platform, such as, network configuration and providing internal configuration files. The
entity managers are deployed together with their respective entities by the OCS.

The EFS entity managers interact with the OCS over the O6 interface ([5], Figure 2-1) which has
similarities with the NFV Ve-Vnfm-em interface [6]. The latter interface has two non-mandatory
services to be provided by the entity managers:

• Virtual Network Functions (VNF) indicator: a subscription and retrieval service for indicator
values that provide information about VNF behaviour (i.e., EFS entity behaviour).

• Life-cycle management coordination: a service supporting coordination of life-cycle
management functions for VNF instances and their components (i.e., EFS entities and their
atomic entities). Possible operations are: CreateSnapshot, RevertToSnapshot and
ChangeCurrentVnfPackage.

Furthermore, the interface has five services to be provided by the OCS (and used by the entity
managers): life-cycle management, performance management, fault management, policy
management and snapshot package management.

2.2 EFS E2 interface and data models
Figure 2-2 illustrates the EFS service platform interface “E2”. It is the reference point between the
EFS service platform and a number of different entities of the architecture, including the EFS
applications and functions, as well as the OCS. As the EFS is compliant with ETSI MEC [2], we adopt
the corresponding ETSI MEC interface “Mp1” [3][4] as the basis for the EFS E2 interface (REST API
to the left in Figure 2-2). The EFS service platform also provides an MQTT publish/subscribe
message bus as the main mechanism for connecting the EFS entities (to the right in the Figure 2-2).
In ETSI MEC terminology, this is a platform-provided transport, meaning that the communication
relies on the platform for delivering messages, as opposed to direct communication between client
and service. In the rest of this section, we describe how the “Mp1” is used and extended by the
EFS.

A newly deployed EFS application or function needs a way to discover the EFS service platform
and through that discovery understand how to connect to the E2 service interface. This discovery
procedure is described in Deliverable D3.1, Section 4.3 [5]. Different methods can be used
depending on the network infrastructure. One possible method is to use DNS-SD, where a service

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

record for the EFS is created in DNS together with a default DNS domain configured via DHCP (or
equivalent), or alternatively via mDNS.

FIGURE 2-2: OVERVIEW OF THE E2 SERVICE INTERFACE OF THE EFS

ETSI MEC Mp1 is a REST-based API that includes functionality for registering and finding services.
Alternatively, an EFS implementation can map the Mp1 REST interface to the MQTT pub/sub
message bus, and thus only use MQTT as the transport for the E2 interface. In this case, discovery
of the EFS service platform is equivalent to discovery of the MQTT broker. The methods for creating
and updating a service resource and retrieving information about a service resource are listed in
Table 2-2[4]. The root of the REST resource URI is “{apiRoot}/mp1/v1”, where “{apiRoot}” is
received as part of the platform discovery, as described in the previous subsection.

TABLE 2-2: METHODS IN ETSI MEC MP1 FOR HANDLING SERVICE RESOURCES AND QUERYING FOR
TRANSPORTS

Resource name Resource URI HTTP method Meaning

A list of meService /services GET Retrieve information about a list of
meService resources

POST Create a meService resource

Individual meServices /services/{serviceId} GET Retrieve information about a
meService resource

PUT Update the information about a
meService resource

Transports /transports GET Retrieve information about available
transports

Service directory

#1

#2

REST API

MQTT broker

Message bus

EFS Application/functionEFS Application/functionEFS Application/functionEFS Application/functionEFS Application/functionEFS Application/function

Platform
interaction:
registration,

service
discovery, etc

Interaction with
app/func-

provided services

EFS Service Platform

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

The main data structure used by these methods is the “ServiceInfo” resource which describes the
properties of a particular service. Table 2-3 lists the attributes of ServiceInfo with comments on
how they are used in the EFS.

TABLE 2-3: SERVICE INFO DATA STRUCTURE – FIRST FOUR COLUMNS FROM GS MEC 011

Attribute name Data type Cardinality Description EFS use

serInstanceId String 0..1 Identifier of the service instance
assigned by the MEPM/mobile
edge platform. Shall be absent
in POST requests, and present
otherwise.

The EFS platform
assigns UUIDs
(version 4 – random)
for this attribute.

serName String 1 The name of the service. This is
how the service producing
mobile edge application
identifies the service instance it
produces

Name of the EFS
service. This is also
part of the MQTT
topic prefix.

serCategory CategoryRef 0..1 A Category reference […] In EFS, the category
is used to name the
EFS application or
function the service is
part of.

Version String 0..1 The version of the service. Service version, also
used to form the topic
prefix.

transportId String 0..1 Identifier of the platform-
provided transport to be used
by the service. [...]

Normally “MQTT”,
referring to the EFS-
provided MQTT
transport

transportInfo TransporInfo 0..1 Information regarding the
transport used by the service.
[…]

Not normally used by
the EFS

Serializer SerializerTypes 1 Indicate the supported
serialization format of the
service.

Normally “JSON”

Information about the MQTT message bus transport provided by the EFS platform can be retrieved
by EFS applications/functions using the E2 interface with the GET method on the /transports
resource (see Table 2-1). This method returns a list with a TransportInfo data structure as presented
in Table 2-4.

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

TABLE 2-4: TRANSPORTINFO RESOURCE DESCRIBING THE PLATFORM-PROVIDED MQTT TRANSPORT

Attribute name Data type Cardinality Description Value for EFS-provided
MQTT transport

Id String 1 The identifier for this
transport.

A UUID

Name String 1 The name of this transport. “EFS service transport”

Description String 0..1 Human-readable description
of this transport.

“EFS platform-provided
default transport for EFS
services”

Type TransportTypes 1 The type of the transport. MB_TOPIC_BASED

Protocol String 1 The name of the protocol
used.

“MQTT”

Version String 1 The version of the protocol
used.

“3.1.1”

Endpoint EndPointInfo 1 Information about the
endpoint to access the
transport.

Specifies one or more
MQTT URIs for accessing
the transport.

Security SecurityInfo 1 Information about the security
used by the transport.

OAuth 2.0 security
information.

implSpecificInfo Not specified 0..1 Additional implementation
specific details of the
transport.

This field can be used to
indicate the supported
MQTT QoS levels

As mentioned above, EFS services are normally interacted with over the EFS platform-provided
MQTT message bus. A particular EFS service freely defines the data format of its messages, but it
is recommended to use JSON as the serialiser. The EFS however imposes a structure for the MQTT
topics. Similar to URIs in ETSI MEC, the topic prefix to be used by services is defined as:
{apiRoot}/{apiName}/{apiVersion}/{serInstanceId}, where the fields are defined as follows:

• {apiRoot} is defined by the TransportInfo for the MQTT transport

• {apiName} uniquely names the EFS service or group of services using a particular API
definition – “serName” in the ServiceInfo data structure

• {apiVersion} is a version identifier for the service – “version” field in ServiceInfo

• {serInstanceId} is an identifier for the particular instance of the service – “serInstanceId”
field in ServiceInfo. The rationale for this field is that many instances of a service may run
in parallel, and clients may select, using topic wildcards in the MQTT subscription, to
interact with all instances or only certain instances, depending on, for example, the
performance or location.

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

Several of the 5G-CORAL proof-of-concepts (PoCs) provide EFS services that can be used by other
applications. Data models (JSON schemas) for the messages of some of these services are provided
in Appendix 7.

2.3 EFS workflows
Figure 2-3 illustrates an example workflow when the OCS deploys an EFS application/function
within the EFS, and the subsequent steps taken by the entities of the application/function and by
the EFS service platform. The example assumes that a service of the deployed application/function
is then used by another application/function. The steps are as follows:

1. The OCS deploys an EFS application/function. The OCS decides where the virtual
images/containers with the EFS atomic entities of an EFS application/function should
execute, and arranges for the images to be deployed. The details of this process is not in
the scope of this deliverable.

2. The EFS application/function starts. The EFS atomic entities of the application/function
starts. They find the EFS service platform interface (EFS E2 interface) using the mechanisms
outlined in Deliverable 3.1 [5], Section 4.3.

3. The EFS application/function registers with the EFS service platform. The EFS
application/function registers its services, if any, with the EFS service platform by creating
one or more service resources using the EFS E2 interface. In the same process, the transport
used by the service is specified.

4. A second EFS application/function finds the EFS service. Another EFS
application/function finds the services by querying for services using the EFS E2 interface.
The information received includes a URI or similar where the service can be accessed.

5. The second EFS application/function carries out its operation. The application/function
accesses the desired EFS service using the information received from the EFS service
platform.

FIGURE 2-3: EFS WORKFLOW

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

3 EFS service platform and messaging protocols
This section refines the survey and the analysis of the EFS messaging/communication protocols
presented in [1]. The refined analysis extends the study in [1] by incorporating Zenoh and RESTful
publish/subscribe as potential EFS messaging protocols. First, we provide an overview of the EFS
service platform in Section 3.1. Then, we present a survey on Zenoh and RESTful publish/subscribe
messaging protocols in Section 3.2. Finally, we introduce a refined analysis of the EFS
messaging/communication protocols Section 3.3.

3.1 EFS service platform
The EFS service platform is a logical data exchange platform within EFS consisted of (i) data
storage to keep the collected information from applications/functions and edge/fog resources,
and (ii) communication protocol to gather/provide information from/to applications/functions
hosted in edge/fog resources. The role played by the EFS service platform can be deemed as a
‘middleman’ in charge of storing and distributing the subscribed data of a service to the data
subscribers, while the service data are published by the data publishers and organized as EFS
services by the EFS service platform, Figure 3-1. It specifies the protocols and mechanisms for data
communication, storage and management and serves both EFS and non-EFS functions and
applications though APIs. The non-EFS functions and applications are hosted outside of EFS, such as
on the Transport Network and Core network, as well as distant clouds. For example, the Radio
Access Network (RAN) functions can publish the RAN context information and the platform can
abstract and organize the information as a RAN context service. The subscribing applications of
the RAN context service get the context information and use them for their own purposes. For
example, a load balancing application can avoid using overloaded RATs based on the RAN
context information.

The EFS service platform collects data from EFS Applications/Functions and publish the collected
data to EFS Applications/Functions that consume data. In order to push data to the targeted
entities, the messaging protocol is a key ingredient of the EFS Service Platform design. Instead of
devising new message protocols, WP2 has examined and analyzed several existing messaging
protocols, as detailed in [1]. Sections 3.2 and 3.3 extend this analysis to incorporate Zenoh and
RESTful publish/subscribe messaging.

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

FIGURE 3-1: PUBLISH/SUBSCRIBE MESSAGING AMONG EFS ENTITIES

3.2 Extended survey of EFS messaging/communication protocols
In [1] WP2 studied the following messaging/communication protocols: DDS, MQTT, AMQP,
Extensible Messaging and Presence Protocol (XMPP), Kafka, NATS, and Confluent. In light of the
adoption of RESTful APIs, by 3GPP service-based architecture (SBA) 5G Core network, WP2
investigated the feasibility of RESTful publish/subscribe as a potential messaging/communication
protocol for the EFS. Additionally, Zenoh was also considered in accordance with the OCS
experimental framework in WP3.

3.2.1 Zenoh

Zenoh’s [17] goal is to bring data-centric abstractions and connectivity to devices that are
constrained with respect to the node resources, such as compute, storage, power, and the
networking. Zenoh applications coordinate by autonomously and asynchronously writing and
reading data into a data space while being decoupled in time and space. The abstraction of a
time decoupled data-space is essential in supporting applications that can have sleep cycles and
specifically in decoupling the availability of data with the availability of the application that wrote
it. Zenoh relies on resources to identify the information to be exchanged between readers and
writers, and on resource properties to specify the properties of exchanged data. A Zenoh resource
is a closed description for a set, if the cardinality of the set is one we call it a trivial resource. A
Zenoh resource is described by means of a URI [17] which may only include path expansions.

The data read and written by Zenoh applications is associated with one or more resources
identified by a URI, that may contain ‘?’, ‘*’ and ‘**’ wildcards. ‘?’ matches exactly a single
character excluding the path separator, ‘*’ matches any number of characters excluding the path
separator, and ‘**’ matches any number of characters including the path separator.

EFS Service Platform

Topic #1
.
.
.
.
.
.
.

Topic #N

EFS Service #1

EFS Functions and
Applications

Subscribe

Deliver

Authorized non-
EFS Applications,

Functions and
Resources

Subscribe

Deliver

Topic #1
.
.
.
.
.
.
.

Topic #N

EFS Service #M

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Publish

Publish

EFS Functions and
Applications

Subscribe

Deliver

Authorized non-
EFS Applications,

Functions and
Resources

Subscribe

Deliver

EFS Functions and
Applications

Authorized non-
EFS Applications,

Functions and
Resources

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

Zenoh Pub/Sub mechanism provides peer-to-peer, client-to-broker and broker-to-broker
communication. It provides a scalable routing mechanism for many-to-many communication with
different levels of reliabilities. The protocol is designed to be lightweight in both computational
and networking overheads. It can leverage both connection-oriented transports as well as
connection less packet-based transport, which implies that it can run on top of L3 or L2 networks.

Detailed benchmarking of Zenoh against other well-known Pub/Sub protocols is provided in section
3.3 while a comparison between Zenoh and NATS is provided in Appendix 9.

3.2.2 RESTful publish/subscribe messaging

WP2 investigated a variant of Kafka, namely Kafka REST as an example of RESTful
publish/subscribe messaging protocols. Kafka in its native version is not RESTful, however, a Kafka
REST Proxy (Figure 3-2) provides a RESTful interface to a Kafka cluster [19] [20]. This makes it
easy to: produce and consume messages; view the state of the cluster; and perform administrative
actions without using the native Kafka protocol or clients. Some use cases that could benefit from
this configuration include reporting data to Kafka from any frontend application built in any
language and ingesting messages into a stream processing framework that doesn't yet support
Kafka.

FIGURE 3-2: KAFKA REST PROXY ARCHITECTURE [43]

Kafka uses a pooling system for its notifications and a Transmission Control Protocol (TCP)
connection is not maintained. In each request a TCP/HTTP connection is established. When a request
is responded to, the session finalizes. If a connection needs to be established by consumer or
producer, Kafka REST Proxy could be substituted by a proxy with WebSocket [21].

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

3.3 Refined analysis of EFS messaging/communication protocols
WP2 conducted an experimental performance evaluation of: NATS, DDS, MQTT, Zenoh and Kafka
REST. The objective of the experiment was to compare the performance of the messaging protocols
in terms of throughput and messages transmitted per seconds; analyzed over varying payload
sizes.

The experimental setup, constituted a single compute node, running Ubuntu 16.04, Intel
i7@4.0GHz and 32GB of RAM (Figure 3-3). For each protocol, the test was repeated with 1
million messages for each payload size. All the protocols were tested in brokered deployment,
meaning that there was a client publishing to a broker and a client subscribing to the broker. All
the results were taken from the subscriber side while the QoS used for all protocols was the
standard best effort QoS. Table 3-1presents the raw values recorded during the experimentation.

FIGURE 3-3: EXPERIMENTAL SETUP

TABLE 3-1: PUB/SUB MESSAGING PROTOCOLS RESULTS
 Zenoh NATS DDS (Cyclone) MQTT Kafka REST [40]

Payld. msgps Mbps msgps Mbps msgps Mbps msgps Mbps msgps Mbp
s

8 9048065 579 3625473 232 1313241 84 37552,82 2 9156 55

16 10704897 1370 3468433 443 1316622 168 37035,48 4 8784 63

32 10199553 2611 3451773 883 1248549 319 37035,48 9 8499 69

64 8379649 4290 3265401 1671, 1191086 609 37035,48 18 7231 72

128 5757057 5895 2944434 3015 1044868 1069 35195,55 36 6557 78

256 3564289 7299 2466174 5050 839787 1719 39238,76 80 5578 85

512 2063265 8451 1810187 7414 619562 2537 41087,68 168 5116 98

1024 1071489 8777 1276843 10459 352754 2889 36364,3 297 4976 110

2048 505801 8287 727003 11911 186471 3055 28218,86 462 4001 117

4096 265037 8684 352835 11561 96194 3152 18043,11 591 3759 123

8192 134767 8832 185106 12131 54913 3598 7859,93 515 3222 134

16384 70067 9183 88435 11591 30019 3934 4239,57 555 2765 152

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

Figure 3-4 presents the throughput comparison among: Zenoh, NATS, Eclipse Cyclone DDS, Eclipse
Mosquitto for MQTT and Kafk REST. It was observed that Zenoh exhibited the best throughput
performance at small payload sizes. It was also observed that the best usage of multithreading
occurs at higher payload sizes where NATS exhibited the best throughput performance. At high
payload sizes; DDS, MQTT and Kafka REST all had a throughput performance less than half of
NATS and Zenoh.

FIGURE 3-4: THROUGHPUT OVER PAYLOAD SIZE

Figure 3-5: presents the messages transmitted per second comparison among: Zenoh, NATS, DDS,
MQTT and Kafka REST.

FIGURE 3-5: MESSAGES PER SECOND OVER PAYLOAD SIZE

0

2000

4000

6000

8000

10000

12000

14000

8 16 32 64 128 256 512 1024 2048 4096 8192 16384

M
bp

s

Payload size

Throughput

Zenoh NATS Cyclone DDS MQTT Kafka

0

2000000

4000000

6000000

8000000

10000000

12000000

8 16 32 64 128 256 512 1024 2048 4096 8192 16384

M
es

sa
ge

s
pe

r
se

co
nd

s

Payload size

Messages

Zenoh NATS Cyclone DDS MQTT Kafka

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

As expected, increasing the payload size reduces the number of messages transmitted per second
for each protocol. It was observed that for small payload sizes, Zenoh transmitted the largest
number of messages per second; this is due to Zenoh’s wire efficiency, i.e. very low overhead. The
performance of all the protocols is comparable for payload sizes greater than 1024 bytes.

The analysis highlights the fact that new Pub/Sub protocols, for example NATS and Zenoh, are
designed to have high performance both in terms of throughput and messages transmitted per
seconds. However, presently support for these new protocols is fairly limited by the number of
client libraries available in the public domain.

While in [1], WP2 adopted DDS and MQTT as the reference/baseline messaging protocols for
the EFS, this analysis reveals that enhancements to the EFS could benefit from adopting new
Pub/Sub protocols, e.g. NATS and Zenoh.

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

4 Refined EFS design for 5G-CORAL use-cases
This section presents the refined EFS design for each of the 5G-CORAL use cases, namely: Robotics
(Section 4.1), Virtual Reality (Section 4.2), Augmented Reality (Section 4.3), Multi-RAT IoT (Section
4.4), Connected Cars (Section 4.5), High-speed Train (Section 4.6), and SD-WAN (Section 4.7).
The refined design addresses the following aspects, per use case, namely: (1) Decomposition of
the use case(s) into their constituent EFS entities and their respective interworking(s); (2) Functional
validation and experimental verification; (3) Conclusions and future directions.

4.1 Robotics
The Fog-assisted Robotics (FIGURE 4-1) use case comprises of two different scenarios, both
envisioned in a Shopping Mall scenario. The first scenario envisions the robots cleaning common
areas of the shopping mall. The second scenario, instead, envisions the delivery of goods by a
group of robots working synchronously. In both scenarios, robots are connected via Wi-Fi and move
in the Shopping Mall to accomplish the different tasks. To that end, the robots require constant Wi-
Fi coverage wherever they go. The Wi-Fi connectivity is provided by a virtual Access Point in the
form of an EFS Function. This function allows the robots to communicate with their control engine,
which is deployed in the form of EFS Application. In the second scenario (delivery of goods) we
also establish a low-latency Device-to-Device communication in order to maintain better
coordination between the robots (e.g., moving in formation). The D2D connectivity is delivered as
Wi-Fi P2P in the form of an EFS Function. These EFS Functions and EFS Application are bundled
together in a single EFS Stack for the complete deployment and lifecycle management of the Fog-
assisted Robotics services.

FIGURE 4-1: FOG-ASSISTED ROBOTICS IN THE SHOPPING MALL

4.1.1 Refined EFS design and functional validation

In this use case, the focus is on the delivery of goods by a group of robots working synchronously.
Data related to the stock level of each shop is collected and analysed at the EFS and is used to

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

determine which good needs to be delivered to which shop. Some items may be too large for one
robot alone and would require the synchronized operation of two or more robots to carry it. Thanks
to the vicinity of the brain to the robots, it is hence possible to achieve tight coordination between
the robots.

In the EFS, the location service of the robots is consumed by a robot intelligence application in the
EFS, so it can calculate the route that the robots should take to arrive at the point of delivery. Note
that the location of the robot can be evaluated via different means. For instance, LiDAR could be
used by the robot to figure out its own location, and such location can be published to the EFS
service platform for other applications/functions to consume. The robot intelligence application
instructs the movement of the robot via wireless connectivity, the protocol functionalities of which
are also hosted in the EFS. It is worth noting that, the EFS computing tasks for this use case, such as
robot intelligence, service platform, and radio connectivity functions, can be migrated among
different EFS resources (e.g. Fog CDs) along the route. The placement of the EFS computing tasks
is transparently handled by the OCS. The EFS entities involved in the robotics use case, as well as
their interconnection, is illustrated in Figure 4-2. Table 4-1presents a description of the robotics use
case EFS entities depicted in Figure 4-2.

FIGURE 4-2: EFS ENTITIES INTERCONNECTION FOR THE ROBOTICS USE CASE

TABLE 4-1: SUMMARY OF EFS ENTITIES FOR ROBOTIC USE CASE

EFS Entity Description
Robot Intelligence App EFS application in charge of controlling and guiding the robot

towards the point of delivery. This application provides the robot
intelligence which is located inside the EFS platform.

Movement
Control

Wi-Fi
Receiver

Location Client
(rplidar)

Virtual Wi-Fi
Access Point

UE Location
Service

Wi-Fi
Information

Service

Robot
Intelligence

Robot

EFS
Applications Functions Services

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

The application computes the optimum path for a robot to reach the
point of delivery. It consumes data provided by the User Equipment
(UE) location service and Wi-Fi information service.

Virtual Wi-Fi Access Point EFS function enabling infrastructure-to-robot communication which is
essential for robot navigation. Commands to control the robot are
sent over Wi-Fi connections managed by virtual APs, which allows
seamless Wi-Fi connectivity for a roaming Wi-Fi client and avoids
connection disruptions. This function is also employed to help robots
establish Bluetooth D2D communication for accurate movement
synchronization.

Wi-Fi Information service EFS service which provides Wi-Fi network information for each
connected client (e.g., a robot) data regarding: the signal level;
transmission and reception bit rates; number of retransmission and
packet losses at data link level; and number of successfully
transmitted/received bytes and packets.

UE location EFS service which provides the UE position consumed by the robot
intelligence application to perform the route computation. Robot
location can be obtained through different techniques, such as
employing LiDAR or iBeacons technology.

4.1.2 Use-case specific implementations and experimental verification

Figure 4-3, presents the implemented Edge/Fog robotics system that comprises two separates but
interacting subsystems, i.e. the robotic system (shown in blue) and the EFS (shown in red).

The robotic system was implemented using the most widespread robotic framework, i.e. Robot
Operating System (ROS) [22], which provides a meta-operating environment for developing and
testing multi-vendor robotics software. In ROS, each software component is called ROS node. ROS
also provides a publish-subscribe messaging framework (i.e. TCPROS) via a specific node, namely
the ROS master node. By connecting to the ROS master, ROS nodes can register and locate each
other. Once registered, nodes can exchange data via configurable topics in a peer-to-peer
fashion. The robotics subsystem was implemented as various ROS components distributed across
the robot and the EFS. The robot was equipped with motored-wheels and odometry sensors
(Odometry is the use of data from motion sensors to estimate changes in position over time. E.g.,
motor encoders). ROS components running on the robots are essentially drivers that are in charge
of: reading data from the sensors (e.g., odometry); sending the readings to the EFS; and executing
the driving instructions received from the robot intelligence application. The robot intelligence
application acts as a ROS master and it is also in charge of driving the robot based on the
available information. The communication between the robot and the robot intelligence crosses
over a Wi-Fi link and the wired network connecting to the EFS. A wireless information service is
available locally at the EFS and is consumed by the robot intelligence application.

The implemented wireless information service provides Wi-Fi context regarding the clients
connected to the system. The Wi-Fi network information service provides for each connected client
(e.g., a robot) data regarding: the signal level; transmission and reception bit rates; number of
retransmission and packet losses at data link level; and number of successfully
transmitted/received bytes and packets. Additionally, the following link layer configuration(s) is
provided: wireless channel; beacon interval; preamble and slot time (i.e., short/long); QoS support;
and authorization/authentication status. The Wi-Fi information is published in JSON format to an
MQTT-based EFS service platform.

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

FIGURE 4-3: ROBOTICS LOGICAL SYSTEM

Experimental Setup

To evaluate the Fog-assisted robotics scenario, we built an experimental1 environment in the
5TONIC laboratory comprising all the components shown in Figure 4-3. The goal of the experiment
was to show how the Fog/Edge controlled robotics paradigm improves current Cloud robotics
techniques. For the mobile robot, we used the ROS-compatible Kobuki robotics platform. The
mobile robot maximum speed was 0.75 m/s, while its minimum speed was 0.1 m/s. The sampling
frequency for reading the odometry sensor data from the robot’s wheels was 16.6 Hz (i.e.,
odometry sensor data is refreshed every 60 ms). When driving at full speed (0.75 m/s), the robot
covers a distance of 4.5 cm in 60 ms. This results in a precision of 4.5 cm in the robot driving at full
speed since odometry sensor data cannot be updated with a frequency higher than 16.6 Hz. In
the case of minimum speed (0.1 ms), the precision is 0.6 cm. It is worth highlighting that the sampling
frequency value is limited by our robot’s hardware. Different robotics platforms may offer higher
sampling frequency and consequently better precision. The mobile robot is controlled in a closed
loop by the robot intelligence application. The closed loop starts with the robot intelligence (running
in the EFS) sending movement commands to the motor drivers (running on the robot) using ROS
messages, published to a specific topic devoted to movement commands. The movement command
consists of a tuple (speed, distance), where the speed parameter represents the velocity that the
robot should maintain while driving, and the distance parameter represents the distance that should
be reached upon receiving the movement command. Therefore, the distance parameter represents
the movement granularity instead of the final driving destination. Upon receiving a movement
parameter through the wireless link, the motor driver initiates the movement in the robot’s wheels.
The movement is uninterrupted for a length equal to the received distance parameter with constant
velocity equal to the received speed parameter. The loop is then closed by the robot continuously
sending-back the odometry sensor data to the robot intelligence application in the EFS. The robot
intelligence analyses and combines the odometry data together with the Wi-Fi context information
to generate a new (speed, distance) tuple, which will serve as input to the next turn of the closed
loop.

All iterations of the experiment were performed in a closed and straight hallway (3m wide, 30m
long) at 5TONIC laboratory (Figure 4-4). Each experiment consisted of the robot intelligence
driving the robot on a straight line for 15m. The starting position of the robot was placed in the
middle of the hallway approximately 7 meters away from the Wi-Fi AP having a thin office wall
(approximately 15 cm) separating the two. Then, the robot accelerates from the starting position

1 It is worth noting that the experimental setup considered in WP2 employs a single robot (i.e. adaptive robot control algorithm
leveraging Wi-Fi information service) while the experimental setup considered in WP3 employs two robots (i.e. OCS triggering a
network assisted D2D connection to reduce the latency of control messages between the robots) [41].

Internet5TONIC network

Virtualization infrastructure

EFS Service
PlatformPublish Wi-Fi infoRobot Intelligence/ Robot

Control App Wi-Fi info

Stream of real-time Wi-Fi
information

Consume Wi-Fi info

Remote control of
the robot

Robot

Robotics system

ROS master

Odometry
sensors

Movement
control

Motors
driver

Wi-Fi
EFS

Edge and Fog Computing System

Stream of robot data

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

to the target velocity (e.g., min, max, etc.) and it drives in accordance with the closed-loop
mechanism. After having travelled for 15 m, the robot stops. During the driving, an additional
thicker wall (approximately 25 − 30 cm) separates the robot from the Wi-Fi AP. At the end of the
driving, the robot is approximately 22 m away from the Wi-Fi AP.

FIGURE 4-4: FLOOR PLAN AND ROBOT ROUTE

The experiment also designed and implemented a control algorithm (Figure 4-5) which is able to
adapt the robot driving speed based on the Wi-Fi information service. The aim of the algorithm
was to obtain a displacement accuracy similar to the one obtained while driving at the lowest
speed, while reaching the target destination faster. Through this algorithm we showcased the
benefits of consuming context information to control the robot, nonetheless, we acknowledge that
more advanced and optimal algorithms than the one proposed can be eventually be designed.
On the one hand, during the experiment, we collected the information of the Wi-Fi signal every
10 ms. We observed that the Wi-Fi signal level presents significant oscillations in case of averaging
it over a short time window (e.g., 50 ms). That is, two subsequent average measurements may
report considerably different Wi-Fi signal levels. On the other hand, if we take a longer time
window (e.g., 500 ms), the oscillations between subsequent average measurements were
substantially reduced and the Wi-Fi signal varied in a smoother way. Based on this finding, the
control algorithm used the Wi-Fi signal level obtained by averaging it over a fixed time frame.
Given the robot’s speed bound between 0.1 m/s and 0.75 m/s, a time frame of 500 ms was
considered. The computed Wi-Fi signal was then combined with the robot’s odometry sensor data
for adapting the robot’s speed. Figure 4-5 shows the pseudo-code of the control algorithm. The
robot intelligence, extracts in real-time the current signal level from the Wi-Fi EFS information

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

service, stores it in a circular buffer and computes the moving average of the Wi-Fi signal level.
For each movement command, the adaptive speed and the adaptive distance are re-calculated.
We observed that packet retransmissions and failures start increasing for signal values below -71
dBm, hitting their maximum between -79 and -81 dBm. Based on this observation, the control
algorithm adapts the driving robot’s speed to the maximum (0.75 m/s) for an average Wi-Fi signal
level higher than -71 dBm or to the minimum (0.1 m/s) for an average Wi-Fi signal level equal or
lower than -81 dBm. Between -71 dBm and -81 dBm, the control algorithm linearly adapts the
robot’s speed to the Wi-Fi signal level (e.g., 0.425 m/s with -76 dBm).

FIGURE 4-5: ADAPTIVE SPEED CONTROL ALGORITHM

Experimental Results

This section evaluates the adaptive speed control algorithm and compares it with scenarios not
making use of any context information. The following three scenarios are evaluated.

• The robot drives at minimum speed (0.1 m/s).
• The robot drives at maximum speed (0.75 m/s).
• The robot uses our control algorithm to drive at adaptive speed.

We performed 10 experiments for each scenario (minimum speed, maximum speed, adaptive
speed). In addition to the Wi-Fi information we recorded the odometry sensor data directly in the
robot itself. This is because the data from the odometry sensors is not timestamped and sending it
over the Wi-Fi channel would not be suitable for measuring the speed and acceleration
experienced by the robot (due to risk of transmission failures over Wi-Fi). The measured data was
aggregated and analysed to produce the results on Figure 4-6. Figure 4-6 has four different
graphs; on each graph the x-axis is the distance travelled during the experiment, from the start (0
m) to the end (15 m). The first subgraph from the top presents the Wi-Fi signal level (y-axis on the
left) and the transmission errors over the robot driving path (y-axis on the right). It was noticed
that there is a significant decay on the Wi-Fi signal quality in the last 5 meters of the driving path
reflected by an exponential increase of the transmission errors. The remaining three graphs of
Figure 4-6 present, for each evaluated scenario: the speed, the acceleration and the driving time
as measured via the odometry sensor data. Despite the acceleration and the speed having
different units (m/s and m/s2, respectively), they share the same y-axis on the left since they
present the same range of values. The y-axis on the right represents the elapsed driving time since
the start of the experiment run.

In the minimum speed experiment, the robot speed was set constant to 0.1 m/s from the start to
the end. Similarly, the acceleration presents a constant value in the order of few cm/s2. Driving at
such low speed results in a smooth run that is not affected by the degradation of the Wi-Fi channel
in the last segment of the path, since the slowness of the movement allows more time to recover
from possible transmission errors and further retransmissions. As a drawback, the robot requires
approximately 160 seconds to complete each experiment run.

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

As expected, the maximum speed experiment is the one requiring less time (approximately 27
seconds). The impact of the decreasing Wi-Fi signal quality can be seen in the acceleration curve
(notably in the last 5 meters of the path) where the acceleration fluctuates due to increased packet
delay and consequently a delayed reaction, resulting in a stop-drive effect of frequent braking
and spurring acceleration to full-speed. As a consequence, to the effect of the stop-drive
behaviour, the driving direction is deviating from the straight driving path.

Finally, the bottom graph shows the motion behaviour for the experiment using the proposed
adaptive speed control algorithm. A first observation is that the acceleration and deceleration in
this case was smoother. At start, the robot accelerates to full speed, since the received signal level
is in the safe zone above -71 dBm. After crossing the -71dBm threshold, the robot speed was
linearly reduced following the decrease of the Wi-Fi signal strength, reaching the end of the path
driving at minimum velocity. Regarding the driving time, the robot reaches the finish line
approximately 10 seconds later than in the maximum speed experiment. Nonetheless, it is still
approximately 120 seconds faster than the minimum speed experiment while performing a smooth
ride.

As concluding remarks, the results show that there was a trade-off between speed and smooth
movement of the robot. By adapting the velocity of the robot with information on the quality of
the Wi-Fi channel, the robot was able to move with maximum speed where the Wi-Fi signal channel
was good and smoothly lowered the speed in the areas of weak Wi-Fi signal coverage, thus
cancelling any stop-drive effect.

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

FIGURE 4-6: SPEED, ACCELERATION, AND DRIVING TIME

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

4.1.3 Conclusions and future directions

This use case highlights the opportunities offered by Edge/Fog computing. One of the key
differentiating features of Edge/Fog computing is the possibility for applications running at the
Edge to consume context information, e.g., about the network. This can be used to optimize the
robotics systems operations in ways otherwise impossible in the Cloud robotics framework. We
have designed an Edge/Fog assisted robotics system blending together the Robot Operating
System (ROS) that offers a common development framework for robotics applications and the 5G-
CORAL EFS platform.

We performed a set of experiments to characterize the relation between the robot control delay
and the Wi-Fi signal strength. The resulting characterization was used as a baseline for designing,
implementing and experimentally evaluating a control algorithm that consumes context information
about the Wi-Fi signal and adapts the robot’s speed for a smoother driving. Our experimental
results showed that adapting the robot’s speed based on the Wi-Fi signal provided by the EFS
information service can effectively produce a smoother driving at high speeds. This improvement
allows the robot to operate faster compared to the case of ignoring the context information from
the network.

The following future work is therefore expected: enhancement of the robotics connectivity from
Wi-Fi to 5G along with the corresponding 5G radio network information service; designing of
more advanced control algorithms and extending the robotic use case to consider drones.

4.2 Virtual Reality (VR)
Augmented Reality (AR), Virtual Reality (VR) and Mixed Reality (MR) have become prominent
technologies within the wide spectrum of video applications available in different markets such as
cinema, gaming, education, healthcare, sports and advertisement. While VR offers an immersive
virtual user experience and AR augments a real or virtual environment by adding elements for
interaction with the user, MR provides a reality-virtuality continuum consisting of different
combinations and variations of real and virtual objects co-existing in the same environment. For
instance, a 360º video streaming service can be thought of as an MR application, since users can
panoramically watch a real video scene by seamlessly adapting the Field of View (FoV) or
viewport, i.e., the fraction of omnidirectional view of the scene, as the viewing orientation changes.

The 360º video streaming service is classified as an enhanced Mobile Broad-Band (eMBB) service
due to the significantly high bandwidth and constant data rate requirements. For instance,
considering High Efficiency Video Coding (HEVC) compression, a live video service with 60 frames-
per-second and 8K resolution requires 361 Mbps in order to ensure smooth content play.

This use case showcases the viewport adaptive 360º video streaming technology delivered over
the 5G-CORAL solution2 (EFS and OCS). The viewport adaptive streaming technology reduces the
bandwidth required to deliver 360° video while preserving the user’s quality of experience, by
leveraging the user’s viewing orientation, i.e. the portion of the 360° video being watched by the
user is delivered in high quality resolution while the rest is delivered in low quality resolution.

The 5G-CORAL solution decomposes the End-to-End (E2E) viewport adaptive 360° video streaming
service into microservices hosted on the appropriate Edge/Fog device based on their
computational requirements. Additionally, the 5G-CORAL solution offers seamless orchestration

2 The 5G-CORAL solution targets a holistic Edge/Fog solution with particular focus on integrating
the constrained mobile and volatile Edge/Fog devices that are mostly present in the RAN.

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

and control of the E2E viewport adaptive 360° video streaming service across three tiers of
computing nodes (Low, medium and high ends). The benefits of the 5G-CORAL solution include:

• Enhanced flexibility in deploying and managing heterogeneous resources in multi-tier
system architecture

• Zero-touch configuration and instantiation of the VR end-to-end service through the
distributed orchestration and control delivered by the OCS

• Energy-efficient deployment solutions by offloading resource-demanding computing tasks
from terminals

4.2.1 Refined EFS design and functional validation

The EFS entities involved in the VR use case, as well as their interconnection, are illustrated in Figure
4-7. Table 4-2 presents a description of EFS entities depicted in D2.1[1].

FIGURE 4-7: EFS ENTITIES INTERCONNECTION FOR THE VR USE CASE

TABLE 4-2: SUMMARY OF EFS ENTITIES FOR VR USE CASE

EFS Entity Description
Real-Time Messaging Protocol (RTMP)
acquisition

EFS application responsible for performing the
RTMP acquisition enabling persistent connections
and low-latency communications. It consumes
data provided by the camera and sends the
output data stream to the tile encoding
application.

Tile encoding EFS application to perform the tiled 360 video
encoding. It processes the data stream coming
from the RTMP acquisition application and
provides the DASH segmentation module with the
tiled encoded data stream.

DASH segmentation EFS application in charge of segmenting the data
stream encoded by the tile encoding application
through DASH, which is consumed by the DASH
client application

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

DASH client EFS application to reassemble DASH segments
sent by the DASH segmentation application. The
output data is then sent to the decoding
application. This application also uses the UE
orientation information provided by the UE
orientation service, which provides the user’s view
angle.

Decoding EFS application performing the decoding of tiled
video streams sent by the DASH client. The
decoded video stream is then delivered to the
composition EFS application.

Composition EFS application responsible for re-composing
tiled video streams into 360 video frame at the
client side. This component receives tiled video
streams decoded by the decoding EFS function.

UE orientation EFS function responsible for selecting which tile
has to be sent to the UE based on the orientation
information provided by the orientation client.
The selected tile is communicated to the DASH
client.

4.2.2 Use-case specific implementations and experimental verification

Figure 4-7 and Figure 4-8, present the logical and physical implementation of the VR E2E viewport
adaptive 360° video streaming using the distributed edge and fog computing platform developed
in 5G-CORAL. We consider the viewport adaptation technique based on adaptive tile-encoding
streaming, where the 360º video is partitioned in small tiles, which are independently encoded
and transmitted according to the viewing orientation, and then stitched together to recompose the
360° frame. To compensate for the extra computational complexity needed to continuously adapt
the video stream quality, we spread the computing tasks across three different tiers, namely, fog,
edge and cloud, according to their respective computational and latency requirements. The novel
contributions can be outlined as follows:

• Different computing processes, including DASH coding/decoding and video frame
composition, are distributed across three different tiers, i.e., cloud, edge and fog, thus
increasing system scalability and reducing the latency.

• Specific GPU-intensive tasks are offloaded from the client. This results in a reduced
terminal complexity as well as improved interoperability, as some of the protocols and
video codecs employed may not be supported by legacy devices.

• A novel orchestration and control framework, i.e., 5G-CORAL OCS, is adopted, which
enables management, monitoring and orchestration of diverse resources spanning across
the three computing tiers, thus facilitating the deployment, operation and lifecycle
maintenance of the 360° video streaming service.

The End-to-End 360º video streaming service consists of four major entities, namely: video source,
EFS, OCS, and User Equipment (UE). In the following, we describe their respective roles and the
information exchanged between the interfaces.

• Video source: two or more 360º cameras, each capturing separate event(s) happening in
different area(s) of the interest, stream live video content to a cloud data centre, that
represents the EFS entry point. This is implemented by connecting the cameras to a
streaming engine, e.g. Wowza Streaming Engine[23], and establishing a Real Time

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

Multimedia Protocol (RTMP) live or Real Time Streaming Protocol (RTSP) stream session,
that ensures a TCP-based persistent connection and low-latency communication.

• EFS: built upon three different compute tiers, i.e. cloud data centre, hosting powerful
processing units and located on cloud provider premises; edge server, located closer to
the end user equipment (UE) and providing limited compute capabilities; and fog
computing devices (CD), resource-constrained devices operating in the UE proximity. The
EFS hosts all the essential functions, applications and services to deliver the live video
stream.

o After RTMP acquisition, the tile-encoding app running on the data centre performs
tile-based High-Efficiency Video Coding (HEVC) encoding, thus partitioning each
video frame into three tiles (3 x 1 uniform tiling), each capturing a 120º viewing
angle, which are encoded at either high or low-quality resolution.

o Next, the DASH segmentation app packetizes the bitstream data into multiple
chunks, i.e., DASH segments, which are requested by the DASH client running on
the edge server. Furthermore, the decoding and composition app decodes the
tiled video streams and composes the 360º video frame for the UE, respectively.

o A key EFS component of our solution is the fog CDs deployed whose main task is
to gather the UE viewing orientation and convey it, via HTTP REST API, to the DASH
client hosted at the edge server. The DASH client utilises the UE viewing orientation
to determine the portion of the 360º video that must be delivered at high quality.

o The DASH client is able to quickly recompose the video frame by decoding the
correct tiles, depending on the orientation information sent by the fog CDs. It is
worth noting that all the EFS software processes are implemented as native
applications.

• UE: the user terminal consists of three components, namely, a media player, a camera
selector and the orientation client. The first two elements are managed by the user,
whereas the latter runs in the background and forwards information on the user orientation
to the orientation service located on the fog CD.

FIGURE 4-8: VR END-TO-END PHYSICAL IMPLEMENTATION BUILDING BLOCKS

Figure 4-8 presents the physical implementation that consists of a multi-tier computing, storage and
networking platform capable of conveying multimedia traffic generated by two or more Insta360
Pro cameras to fixed and mobile clients. Each component is equipped with a Gigabit Ethernet
network adapter and is connected to the network layer represented by a Gigabit Ethernet switch,

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

whereas the phone terminal is connected to a Wi-Fi IEEE 802.11ac access point. The tasks
performed by each layer are listed at the bottom of Figure 4-8. The top layer hosts the
orchestration component, which deploys and manages all the entities running the Fog05 agent. This
is achieved by using a laptop, raspberry pi, or any computer equipped with a screen and running
the Fog05 agent, in order for the operator to execute scripts and verify the successful function
onboarding.

As previously described, the 360º live video streaming is initiated by the cameras connected to
Wowza Streaming Engine hosted by the cloud data centre. To trigger the RTMP session, a computer
laptop running the Fog05 agent is also plugged to the camera, thus allowing automatic session
instantiation and termination. The Insta360 Pro camera is equipped with 6 fisheye lenses and can
perform real-time stitching of 4K video sequences. Next, the data centre handles the tile-based
HEVC encoding by leveraging computing resources provided by the Nvidia Quadro P5000 GPU.
Our data centre consists of a Dell Precision Tower 7810 equipped with an Intel Xeon E5-2670 v4
2.30 GHz CPU, 64 GB RAM and 1 TB HDD storage. In addition, this machine runs a DASH server
compliant with the latest MPEG immersive Omnidirectional Media Format (OMAF) standard.

The DASH segments are then received by the edge machine represented by a Dell Alienware 17
laptop equipped with an Intel Core i7-8750H CPU, 16 GB RAM, 128 GB SSD and an Nvidia
GeForce GTX 1080 graphic card, able to execute complex tasks such as tile decoding and video
frame composition. Furthermore, the edge server exploits the orientation information supplied by
the fog node. To this end, we use an Nvidia Jetson TX2 development board, consisting of a Jetson
TX2 module, which embeds a powerful GPU and two ARM CPUs. It is worth pointing out that
although this platform features a high-performance 256-CUDA core graphic processor, we solely
rely on the available CPU power, as the user orientation tracking doesn’t require hardware
acceleration.

The orientation service computes in real-time the video stream tiles that must be encoded in high
definition by processing the orientation info, i.e., yaw, roll and pitch, periodically reported by the
terminals according to the orientation report rate system parameter. Also, a count-down timer is
associated with each reported tile: the timer can be configured by setting the orientation decay
period system parameter and is periodically decremented and reset whenever a new matching
orientation is reported.

Finally, the edge server transmits the optimized DASH video stream to the clients. Specifically, we
consider two types of video terminals, i.e., a Samsung S9+ Android-based mobile phone and an
Oculus Rift VR headset connected to a computer laptop. Additionally, we developed an Android
application and an Oculus Rift application both of which feature a user media player capable of
reporting the orientation info as well as selecting one of the video streams according to the user
choice.

Experimental Setup
The following experiment was conducted by running a 5-Minute pre-recorded 360 video sequence
stored on the data centre that feeds the Wowza streaming engine. The results were generated by
executing the same experiment for 10 repetitions and by recording the metrics every second. A
summary of the system parameters employed is presented in Table 4-3. The experiment only
considered a stationary phone terminal and randomly changed its orientation in each repetition.

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

TABLE 4-3: SYSTEM PARAMETERS

System Parameter Value
Video Resolution 4K (3840x2160)

Video Bitrate 15 Mbps
Video Frame Rate 30 fps

Orientation Report Rate 10 Hz
Orientation Decay Period 250 ms

To show the impact of the video processing load on the data centre, we retrieved the GPU load,
the GPU power consumption and the memory usage by using the GPU-Z tool that supports NVIDIA
video cards. The GPU-Z tool measures the following three metrics.

• The first metric gives an estimation of how active the GPU is in a given interval.
• The second metric indicates the power in Watts consumed by the GPU,
• The third metric reports the memory used.

During the experiment we recorded all the GPU-Z metrics for three different configurations,
namely: idle, i.e., the video streaming service is inactive; split mode, where all the computing tasks,
except for the orientation service running on the fog CD, are distributed between the data center
and the edge server; no split mode, where all the tasks are executed by the data center.
Additionally, we obtained the bandwidth consumed in downlink by the terminal. Moreover, we
considered three different streaming modes in order to highlight the benefits of the adaptive tile
encoding strategy. The information on the bandwidth is obtained by using a network monitoring
tool called Wireshark, which allows to monitor the bandwidth consumed by distinct applications on
the same machine.

Experimental Results

Figure 4-9 shows the GPU load, power consumption and memory used by the cloud data centre
measured through GPU-Z. As expected, the GPU computing load distribution between the data
centre and the edge server results approximately in a 7% reduction of the GPU load, which
translates into more processing capacity available for other services running in the data centre.
Furthermore, the split mode leads to a small reduction of the power consumed by the data centre.
Specifically, up to 2 Watts can be saved by offloading some GPU processing onto the edge
server. This also means that most of data centre power is spent executing the tile encoding and the
DASH segmentation together with the Wowza streaming engine. Finally, it is worth pointing out
that our approach helps to reduce the data centre memory occupancy, with a memory saving equal
to 600 MB in comparison with the no split mode.

The Empirical CDF of the downlink data rate observed at terminal side is shown in Figure 4-10.
We note that the adaptive tile-encoding requires roughly a bandwidth equal to 21 Mbps, whereas
a non-optimized approach encoding all the tiles with maximum quality leads to a bandwidth
consumption equal to 31 Mbps, thus to a 33% increment. Obviously, this is due to the larger size
of the DASH segment requested by the local edge server, which results in a higher bandwidth
consumption over the link between the remote edge server and the client. Also, by employing a
fully low-quality encoding, the required data rate decreases to only 2 Mbps, though the QoE is
heavily affected by the lack of high-quality tile being watched by the user.

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

FIGURE 4-9: GPU LOAD, POWER CONSUMPTION AND MEMORY USAGE ON THE CLOUD DATA
CENTRE.

FIGURE 4-10: ECDF OF THE DOWNLINK DATA RATE

4.2.3 Conclusions and future directions

The 5G-CORAL solution decomposes the end-to-end 360º video streaming service into micro-
services which are then distributed across three computing tiers, namely cloud, edge, and fog, in
order of proximity to the end user client. The solution uses an adaptive viewport technique whereby
only the field of view capturing the end user client orientation is delivered in high quality whereas
the rest of the 360º scene is delivered in low quality, yielding good bandwidth saving. In addition,
all the three compute tiers, composed of heterogeneous computing resources, are orchestrated and
controlled using a unified orchestration and control system (OCS) based on Fog05.

Performance evaluation has been conducted using physical testbed using real hardware
equipment. The evaluation/experimentation measured metrics such as the GPU load, power
consumption, memory usage, downlink and uplink data rates. These measurements clearly
demonstrated the benefits of the proposed solution compared to a conventional approach where
the 360º video streaming service is executed out of the Cloud.

Measurement results show that our approach can alleviate the footprint of the 360º video delivery
service on a cloud data centre by reducing the GPU load, the consumed power and the memory
usage. Furthermore, we evaluated the bandwidth needed in uplink and downlink by the edge

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

server to deliver the video content and compared the adaptive tile-encoding approach with two
non-optimized solutions, where the all the tiles are encoded at low or high quality. In particular,
we observed a bandwidth reduction equal to 33% and 5%, respectively in downlink and uplink,
when the adaptive tile-encoding is employed with respect to the full high-quality approach.

While the measurements reported considered only a single user scenario, it is anticipated that with
our distributed solution more significant bandwidth saving gains can be achieved especially in
dense environments where several users share the same field of view. This is thanks to the potential
of aggregation across multiple users with same orientation angles.

The performance evaluation with multiple users is planned for future work. Furthermore, as a next
step, we plan on carrying the 360º video streaming out of cameras on-board moving devices, such
as robots or drones, using 5G wireless connectivity to the fog and edge tiers. This will help obtain
more insights on the latency measures and the deployment topology in these mobile scenarios.

4.3 Augmented Reality (AR)
Augmented Reality (AR) is a powerful technology which brings new quality to the way we perceive
the surrounding world. The goal is to understand the video stream recorded by the camera of the
user device and add digital content (image or animation) on top of it in order to augment the
video end user is observing (e.g. from the phone’s screen). In 5G-CORAL, we are aiming at
providing a continuous indoor AR navigation experience for the clients at the shopping mall. The
objective is to augment the user recorded video frames with a navigation arrow similar to the
popular car navigation application. The user will see a guiding line grounded in the real world
image displayed on his screen so that it will remind a real object, a pointer, to the desired
destination as depicted in Figure 4-11. Moreover, user will be able to see shop promotions on their
screen whenever he/she passes by the store. These special offer will enhance the shopping
experience for the mall’s client. It is important to highlight that utilization of multi-RAT architecture
is very vital to enhance AR performance. Indeed, the utilization of different RAT information will
reduce the end-to-end latency and provide a better user experience for the AR user. Where, the
utilization of different RAT can help in collecting the context information to determine approximate
user location. Then, an image recognition (IR) will require much smaller database size for estimating
accurate user location. In addition, the processing time of AR computing will be reduced
dramatically due to less image processing with smaller database.

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

FIGURE 4-11: AR LIVE NAVIGATION IN SHOPPING MALL

4.3.1 Refined EFS design and functional validation

Functions, services, and applications comprising on AR Navigation use case and the way they are
interconnected is depicted in Figure 4-12. The IR Application processes input video frames sent by
the UE and location data via iBeacon Localization Data, Service, and communicates with the IR
Localization Data Service. After the IR processing, the application can determine in which zone of
the shopping mall a given UE is located.

FIGURE 4-12: AR NAVIGATION EFS DESIGN

Three EFS service entities have been designed in the AR Navigation use case. The RNIS service
exposes the received signal strength of a user towards an Access Point (i.e., Virtual AP Function).

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

The IR Localization Data Service consumes an output of the Image Recognition (IR) application and
provides information about which area of the shopping mall where the UE is located. The iBeacon
Localization Data Service conveys iBeacon ID and signal strength with respect to the UE receiving
the beacon signal. This service can estimate the approximate location of the UE based on the
vicinity of the UE to the iBeacon with assumption of iBeacon location known. The iBeacon localization
data is provided by the UE and consumed by the Image Recognition application and the Location
Estimation function.

Three EFS function entities have been specified in the AR Navigation use case. Virtual access point
(vAP) is a network function that was designed to provide customized WiFi access service to a
specific client. When the client moves, its assigned vAP moves along. Therefore, from the client
perspective, it will still be connected to the same AP, yet in fact, it is connected to the same vAP
but different physical AP. Localization estimation function estimates relative UE location (e.g. X, Y,
Z coordinates) in the indoor environment. It combines location information from multiple localization
sources including iBeacon localization data service, Image Recognition application, Phone’s
gyroscope data and possibly any other location information from other source
(applications/functions). The Job dispatcher function dispatches the image recognition tasks among
multiple computing substrates in order to balance the load among the fog nodes which are part of
this application.

4.3.2 Use-case specific implementations and experimental verification

The environment described in the AR Navigation use case drastically decreases the need for the
video frame to travel from user’s phone all the way to the remote data centre. Fog Computing
Devices (CD) host by shopping mall’s Wi-Fi access points are deployed to which places proximate
to the end user. Networked Fog nodes can offload computing capability of the remote data centre.
The application finds a connection to the Image Recognition application (EFS application) deployed
on the Fog CDs distributed around the shopping mall. Each Fog CD is coupled with a Wi-Fi access
point controlled by the OCS. While iBeacon is used to broadcast messages, which help to infer the
location of the mobile phone, the Wi-Fi AP allows for basic connectivity of the UE with the rest of
the network.

Figure 4-13 and Figure 4-14 show the experimental environments with native AR application and
AR container (LXD), both of them are using TX2 as FogCDs, respectively, in which execution flow
and latency monitored during the experiment trials are showed. According to the experimental
results in the environment with native AR application, the connection establishment latency,
measured by Timers 1, 2 and 3, is 278ms. The experimental Connection establishment result in the
environment with AR container is 316ms, which is similar to the result of native AR application.

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

FIGURE 4-13: DISTRIBUTED AR – EXECUTION FLOW (NATIVE APPLICATION)

FIGURE 4-14: DISTRIBUTED AR – EXECUTION FLOW (LXD CONTAINER)

4.3.3 Conclusions and future directions

In an infrastructure supporting user mobility such as shopping mall use case, fog computing
architecture has been adopted to realize AR navigation application where the communication
delay is significantly reduced on such architecture. The experimental result shows us a proof-of-
concept that the edge and fog computing architecture is possible to meet the requirements of AR
navigation application. However, to make a considerable amount of shopping users satisfied
simultaneously, the future direction in this use case is to design and develop a distributed computing

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

mechanism which is able to organize Fog CDs in proximity in a cooperative way so as to tackle
and response timely bursts of AR navigation requests.

4.4 Multi-RAT IoT
In this 5G-CORAL use case, the main idea is to investigate the possibility to have one radio network
infrastructure (instead of parallel network deployments) to serve multiple IoT RATs. The IoT
baseband and upper layer functions are centralized and cloudified to an Edge Cloud environment.
The main benefits are increasing network flexibility, reducing network cost, and increasing system
scalability and future proofing.

4.4.1 Refined EFS design and functional validation

In this project, we provide a basic reference design of the Multi-RAT IoT use case to showcase the
feasibility of implementing the three key EFS elements, i.e. EFS function, EFS service and EFS
application, as briefly explained below, illustrated in Figure 4-15 and summarized in Table 4-4
in some more details.

• EFS function: IoT communication stack functions for various IoT RATs are implemented as
software that can run on the Edge and they are virtualized as Docker containers, which
are orchestrated using Kubernetes for life-cycle management, scaling, load balancing etc.

• EFS service: MQTT is used as an example of EFS platform design. In-phase and
Quadrature components (IQ) service is published from the IoT communications to a MQTT
broker.

• EFS application: As an example, the interference analyzer application subscribes to IQ
services from a MQTT broker and uses the subscribed IQ samples for interference analysis.

FIGURE 4-15: ILLUSTRATION OF REFINED EFS DESIGN FOR MULTI-RAT IOT USE CASE

802.15.4
communication

stack

LoRa
communication

stack

NB-IoT
communication

stack

MQTT
client

MQTT
client

MQTT
client

MQTT
Broker

Docker
container 1

Docker
container 2

Docker
container 3

Publish
IQ service

Inteference
Analyzer

Subscribe
IQ service Docker

container 4

EFS platform

EFS function

EFS application

MQTT
client

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

TABLE 4-4: SUMMARY OF EFS ENTITIES FOR IOT MULTI-RAT USE CASE

EFS Entity Description
IoT communication stacks These are the EFS functions that implement various IoT

communication stacks for different RATs, e.g. IEEE 802.15.4, LoRa,
NB-IoT. Basically, the communication stack function softwarises and
virtualize the communication protocol (including lower layers like
L1/L2 and higher layers like L3) implementation on EFS. For user
data, in uplink, each communication stack function demodulates the
IQ samples received from radio heads. In downlink, it modulates the
user data to IQ samples and send to radio head where the IQ
samples are converted to radio signals and sent to the air interface.

MQTT clients and brokers Use MQTT as the EFS service platform, as agreed in the consortium,
mainly due to its simplicity and software maturity. In this use case,
each IoT communication stack function is connected to a MQTT client
to publish its services to other EFS functions or applications which
subscribed the services. The MQTT brokers handles the data
pub/sub mechanism following the MQTT protocol.

IQ service This is an EFS service developed in this project. Basically, upon
requests, radio head listens to its air interface and send IQ samples
to the communication stack functions. The communication stack
functions do some pre-processing and then send the IQ data via
their MQTT client.

Interference analyzer This is an EFS application developed in this project. Interference is
a key problem in wireless communication. The current approach with
transceivers embedded in access points can’t give a good picture
about interferences due to its limited processing resources in
hardware. The purpose of this application is to provide a tool on
the Edge which can utilize the Edge resources to analyse the
interference situation and thus construct a more accurate picture
based on interference statistics obtained from the IQ service data
subscribed with MQTT.

The methodology for functional validation is to develop a PoC testbed being developed in both
WP2 and WP4 in this project and perform functional and performance tests. At this time when
writing this deliverable, the IoT communication stack functions supporting IEEE 802.15.4, LoRa and
NB-IoT have been passed basic functional tests in lab environment. In addition, the functionality of
IEEE 802.15.4 and NB-IoT implementations have been successfully demonstrated in two public
events of EUCNC 2018 and ICT 2018, as well as in the midterm reviews in Taiwan and Vienna.
The following list the functions that have been tested.

(1) IEEE 802.15.4: full-stack implementation supporting 3 frequency channels from PHY layer
to application layer with bi-directional communications between the softwarised
communication stack function in the Edge and commercial IoT devices (i.e. Zolertia firefly).

(2) LoRa: PHY and MAC layer implementation with bi-directional communications between the
softwarised communication stack function in the Edge and commercial IoT devices (i.e.
Pycom FiPy)

(3) NB-IoT: downlink PHY (NPSS, NPSCH) implementation with simplified upper layer
implementation which supports sending signals and messages from the softwarised
communication stack function in the Edge and a self-developed SDR-based NB-IoT
receiver.

In this use case, the main research and development work is on the softwarization of the IoT
communication stacks of multiple RATs. Other EFS elements of EFS service platform and EFS

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

applications are dependent to the IoT communication stack functions. They are more part of the
testbed integration work in WP4. So, the functional tests on these parts will be done in the
integration phase in WP4.

4.4.2 Use-case specific implementations and experimental verification

In the following, some key aspects and more details regarding the EFS design and implementation
for the Multi-RAT IoT use case are presented. The performances of different aspects are evaluated
and verified by experimental results with the developed PoC testbed.

4.4.2.1 RH-Edge interface

The interface between radio heads and the Edge needs to be efficiently designed to avoid
overloading the transport network in between, as well as minimizing the latency. The following
presents how we address this aspect and more details about our implementations to improve the
interface efficiency. Although some aspects mainly consider two RATs of IEEE 802.15.4 and NB-IoT
for PoC, the insights learned can be extended to other RATs.

In this use case, the physical layer processing is done at the Edge and the Radiohead is responsible
for the configuration and management of the Software Defined Radio (SDR). The SDR converts
the radio channel information into digital streams of In-Phase and Quadrature samples. These
samples need to be transported to and from the Edge for the receive and transmit data flow
chains respectively.

As the physical layer of different RATs are virtualized and the physical instantiation is determined
by the OCS, the RH-Edge Interface should be a logical interface. Internet Protocol (IP) provides a
mature and diverse collection of transport protocols over logical interfaces and hence is chosen for
this use-case. The protocol specifications of the RATs define timing constraints for the transactions
between the gateway and other nodes. In order to satisfy these requirements, the transport of
samples over the RH-Edge interface should have low-latency. The throughput requirements of the
transport protocol are determined by the type and the number of RAT instances using a single
interface. For example, a single 802.15.4 instance requires a data rate of approximately 128
Mbps (note that this can be further compressed, as to be discussed later on about fronthaul
compression regarding NB-IoT implementation. For example, the bit rate can be compressed by 4
times by using a more efficient data format.).

Considering these requirements, the base implementation used ZeroMQ as the transport protocol.
ZeroMQ uses TCP for the transport of samples over the RH-Edge interface. TCP provides reliability
with guaranteed delivery of packets with flow-control and error correction mechanisms. But these
methods increase the transport overhead resulting in higher latency. Considering the wide adoption
of User Datagram Protocol (UDP) as the transport protocol for video and audio streaming
applications which have similar transport requirements as our use case, we developed a UDP-
based transport as the default RH-Edge transport. The UDP based source and sink blocks for the
GNU Radio are implemented which allow us to transport GNU Radio specific metadata along with
the data payload. This helps in communicating status and control flags between the Radiohead
and Edge dataflow chains.

Experimental results

To test the performance of difference transports between the edge and Radiohead components,
we set up a testbed with two Intel Hades Canyon NUCs running the edge and radio head
flowgraphs. The two NUCs are connected by a 1 Gbps Ethernet link. The radio head is connected
to the USRP for communicating with a Zolertia Firefly node. The radio head uses the Squelch filter
for RX packet filtering. We use ping command over a TUN interface for benchmarking the round-
trip times. The UDP data payload size was set to 8192 bytes for a single packet.

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

Figure 4-16 shows the use of UDP in the RH-Edge results in much lower round-trip times as
compared to TCP. The UDP based transport has higher packet loss which can be attributed to lack
of reliability mechanisms in the UDP transport protocol. We also observe that the use of echo
filtering on the TCP transport helps improve the round-trip times. This is because, without echo
filtering, the MAC ACK mechanisms can be triggered by the echo messages, resulting in MAC
retransmissions and hence longer round-trip times.

FIGURE 4-16: CDF OF RTT FOR PING MEASUREMENTS WITH DIFFERENT TRANSPORT PROTOCOLS

Rx Packet detection is a general problem with any packetized wireless protocol. We present our
802.15.4 implementation for an example. However, Tx echo handling is USRP specific problem.

The SDR continuously streams radio samples to the Radiohead. Most of these radio samples do not
correspond to 802.15.4 packets and hence do not add any value to the IoT gateway located at
the Edge. The transfer of these samples results in wastage of network and compute resources. We
need to detect which samples correspond to 802.15.4 packets at the radio head and only stream
the relevant samples to the Edge.

We evaluated three different filters for this purpose. The first iteration was done using a moving
average RSSI filter which was followed by exponential moving average squelch filter. Finally, we
implemented a preamble filter which correlates the incoming sample stream with the sample
sequence for the IEEE 802.15.4 preamble. All these filters are threshold based gated filter. If the
output of the filter for the incoming filter is above the threshold, then the samples are forwarded
to the Edge using the RH-Edge interface otherwise they are dropped.

In order to compare the performance of the filters, an experiment was designed. Since the
objective of the filter is to correctly filter out the unnecessary samples while forwarding the correct
samples, the data size of the output samples and the number of packets detected from those data
files were chosen as the output metrics for this experiment. A Zolertia firefly was programmed to

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

send 802.15.4 packets at regular intervals of 8 seconds. A USRP was used as the receiver which
fed the three filters running simultaneously. The output of these filters was saved to files and
decoded using the 802.15.4 PHY module in GNU Radio. The decoded packets were parsed using
Wireshark. The size of the output file is reported as Data Size, while the number of packets
decoded correctly by Wireshark is shown as Packets Detected in Table 4-5. This test was carried
out in a controlled office environment with low traffic on the radio channel reducing the chances of
over the air collision.

TABLE 4-5: RX PACKET DETECTION EXPERIMENTAL RESULTS

Filter Data Size Packets Sent/ Packets
Detected

RSSI 10.9 GB 41/41

Squelch 2.9 GB 41/41

Preamble Detector 307 MB 41/41

Our results show that the preamble detector is the best filter among the three as it was able to
correctly decode all the packets while reducing the data size transferred by 97% and 89% in
comparison to the RSSI filter and Squelch filter respectively. Both the RSSI and Squelch filter works
on the input power of the incoming samples. So, they are generic and any relative power signal
will be forwarded. On the other hand, the preamble detector is designed for only 802.15.4
packets and is not dependent solely on the input power hence it helps in better filter performance.	

Due to poor isolation of the TX and RX channels on the USRP, the transmitted signals are loop
backed and received by the receive chain. This results in unnecessary data sent from the radio
head to the edge and further computation at the edge. Since there is no solution found in the
literature, we come up with our method of ensuring half duplex operation, as illustrated in Figure
4-17. Initially the receiver is turned on (state S0). When the transmission burst starts we turn off
the receiver (move to state S1). Since there is a certain delay from the transmission delay between
the GNU Radio and the USRP operations, we need to take that into account when we are gating
the receiver. On receiving the end of the burst, we wait for a certain time (in our case 700 µs)
before turning on the receiver.

FIGURE 4-17: STATE TRANSITION FOR ECHO HANDLING

NB-IoT is designed to be compatible with LTE frame structure and maximize the reuse of LTE
transceiver functionalities. Such a design facilitates the in-band and guard-band deployment in the
LTE band [24]. In this work, we focus on downlink (specially NPSS and NPDSCH) to showcase one
implementation example as one RAT in the Multi-RAT IoT use case.

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

As presented before, the key idea of this use case is to centralize baseband processing to the
Edge. It is beneficial to reduce the fronthaul (FH) data sent between radio heads and the Edge.
The required FH data rate can be expressed as

𝑅 = 𝑓$𝑏

where 𝑓$ is the sampling rate of IQ sample and 𝑏 is the number of bits per complex IQ sample.

The bandwidth of a NB-IoT signal is 180 kHz which comprises of 12 subcarriers with subcarrier
spacing of 15 kHz to be compatible to LTE implementation. According Nyquist theory, the minimum
sample rate required for a complex baseband is the bandwidth. In practice, the sample rate should
be set moderately higher than the bandwidth, to remove the aliasing effect and relax the anti-
aliasing filter design. For NB-IoT, 240 Ksps seems a good choice, which can be generated by a
16-point FFT.

However, in NB-IoT, each slot of 0.5ms comprising of 7 OFDM symbols has two cyclic-prefix (CP)
lengths. The CP on the first symbol in each slot is 5.2 us long while the CP on the following six
symbols is 4.7 us long, as illustrated in Figure 4-18. To have an integer number of samples of these
two CPs, the minimum sample rate is 1.92 Msps, which is 8 times higher than 240 Ksps. With 1.92
Msps, the first CP is 10 samples long while the second CP is 9 samples long. In addition, it requires
128-point FFT which requires much more complexity than 16-point FFT with 240 Ksps.

FIGURE 4-18: NB-IOT SLOT STRUCTURE

Figure 4-19 shows the measurement results with sample rate of 1.92 Mbps. At the USB interface,
the number of bits per IQ sample is 32 bits, i.e. 16-bit fixed point format for each I/Q sample. At
the Edge-RH interface, the number of bits per IQ sample is 64 bits, i.e. 32-bit floating point format
for each I/Q sample used in GNU Radio. The measurement verifies that the required FH bit rate
is quite high (~125 Mbps) for one NB-IoT cell. It should be also note that the USB-interface bit rate
is only half of that of the Edge-Radio interface because of more bits are used to represent IQ
samples in GNU Radio. When we aggregate many cells to the edge, this would require a large
bandwidth on the FH network and thus increase the cost. Therefore, there is a need to reduce FH
bit rate. In this project, we refer to this as FH compression.

Symbol 0CP Symbol 1CP Symbol 2CP Symbol 6CP...

5.2us 66.67us 4.7us 66.67us

1 slot (0.5ms)

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

FIGURE 4-19: MEASURED FRONTHAUL THROUGHPUT WITHOUT COMPRESSION

As discussed above, the current implementation is highly over-sampled. This indicates that FH can
be largely compressed by reducing the sample rate. For example, FH bit rate can be reduced by
8 times by reducing the sample rate from 1.92 Msps to 240 Ksps. To achieve this, we take the
functional split principle [25] and move the function for adding CP to radio head, as illustrated in
Figure 4-20 (b). In this way, the sample rate of the samples going through FH is reduced to 240
Ksps comparing to the case without compression of 1.92 Msps. We implemented the compression
in our testbed. As shown in Figure 4-21, the measurement results show that the bit rate is reduced
to about 16 Mbps. It verifies 8 times compression due to implement 8 times sample rate reduction.

In theory, the fronthaul can be further compressed by reducing the number of bits per IQ sample.
Having 64 bits per IQ sample is redundant obviously. After all, the original data format used in
USRP is only 32 bits per IQ sample. Based on our experience and expertise in the FH area, it is
feasible to compress it down to 16 bits. Combining both functional split and efficient data format,
the FH bit rate per NB-IoT signal can be compressed to 4Mbps, which is reasonably low to fronthaul
many cells between radio heads and the Edge.

FIGURE 4-20: DOWNLINK BLOCK DIAGRAM (a) WITHOUT COMPRESSION AND (b) WITH
COMPRESSION

Time (s)

Th
ro

up
ut

 (
M

bp
s)

QAM
Modulation

16-point
IFFT

↑8
Upsampling Add CP BB to RF

conversion
FH

Network

Radio headEdge

QAM
Modulation

128-point
IFFT Add CP BB to RF

conversion
FH

Network

Radio headEdge

(a)

(b)

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

FIGURE 4-21: MEASURED FRONTHAUL THROUGHPUT WITH COMPRESSION

4.4.2.2 Multi-channel design

Massive IoT use cases require high network capacity and availability to provide reliable
connections to a dense collection of sensor nodes. In order to address these demands, we propose
a multi-channel IoT Gateway that is able to communicate over multiple radio channels, ensuring
nodes operating on different radio channels can be part of the same network. This increases the
capacity of the network as well as its availability. Since in our use case, the encoding and decoding
of radio technologies are done in software, this approach can be extended to multiple radio
technologies on multiple radio channels using a single antenna.

As a proof of concept, we designed a three-channel IEEE 802.15.4 gateway. The SDR samples
three adjacent radio channels. These wideband radio samples are segmented into samples for
individual radio channels using a polyphase channelizer for the receive chain. For the transmit
chain, the samples from individual channels are coalesced to form the wideband signal which is
transmitted using the USRP. Our 802.15.4 setup for a single channel described in D4.1[26] can
then be used for the individual transmit and receive chains for each channel. Figure 4-22 and
Figure 4-23 show the block diagram of the multi-channel transmitter and receiver implementation.

 FIGURE 4-22: MULTI-CHANNEL RECEIVER IMPLEMENTATION

FIGURE 4-23: MULTI-CHANNEL TRANSMITTER IMPLEMENTATION

Our 802.15.4 TX generates bursts of IQ samples corresponding to 802.15.4 packets. The
polyphase synthesizer is designed as a synchronous block in GNU Radio, in order to have proper

Time (s)

Th
ro

up
ut

 (
M

bp
s)

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

matrix dimensions for the IFFT operations. This implies that the polyphase synthesizer will consume
the same number of samples on all input ports. So, if the length of the IQ samples coming from
different 802.15.4 TX processes is different, then only the smallest message will get transmitted
together with the same number of samples from the other messages. The remaining samples have
to wait for samples to be available on the port with the smallest message size. The radio
transmission for these messages has been illustrated in Figure 4-24, where there is a short
discontinuity of the transmitted signal. The receiver on the Zolertia Firefly will see this discontinuous
signal as a corrupted packet.

FIGURE 4-24: BREAKDOWN OF RADIO TRANSMISSION.

In order to alleviate this problem, we tested different approaches. We tried to make all the MAC
packets of the same size by appending zeros after the CRC. The zeros get modulated as well by
the PHY and result in corrupted packets on the Firefly because the RF driver on the Firefly processes
received packet based on the length of the reception, instead of using the actual length field in
the packet. Another approach is to send zeros on the ports that do not have data to output. If the
802.15.4 TX ports produce the packet data slower than the consumption rate, zeros are going to
be inserted between the samples of the same packet. This results in having the radio transmission
breakdown problem in the middle of the packet. This is always going to be the case with the split
case as the data rate for the UDP/TCP varies.

Considering the drawbacks of these two methods, we buffer the incoming samples for an 802.15.4
packet in order to overcome the problem of variable data production rate. Our IEEE 802.15.4 TX
provides metadata about a sample stream, like the start of a packet and end of a packet using
GNU Radio tags. We make use of these tags, to properly identify the beginning and end of
packets. We output samples when a packet is buffered in the internal buffers. If any other ports
have some packets buffered, then we output zeros on this output port. The flowchart for a single
port is shown in Figure 4-25. We use a pair of threads to read from the input buffers and write
to the output buffers respectively in order to increase the data throughput.

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

 FIGURE 4-25: FLOWCHART FOR OUR METHOD FOR A SINGLE INPUT PORT - OUTPUT PORT
COMBINATION

In our initial implementation, we used a vector of queues for our internal buffers, which leads to
data rate problems as each write to this vector exceeds the capacity and a new vector is created
with the old elements copied to this new vector. This slows down the read and write processes. In
order to avoid this problem, we used large ring buffers in our implementation. This helps alleviate
the data rate problem. In order to handle burst traffic, the USRP needs to be sent proper tags for
managing the transmission process. Otherwise, the USRP will wait for internal buffers to be filled
up which leads to radio transmission breakdown in case the packet transmission has ended on the
GNU Radio flowgraph. It is difficult to determine when our burst will end. Hence, we append zeros
to the end of each transmission and attach the End of Burst tag to the last sample of these zeros
as illustrated in Figure 4-26. These zeros are appended to the physical layer sample stream which
can be interpreted as no radio transmission from the USRP. Thus, these zeros do not result in packet
corruption on the Firefly.

FIGURE 4-26: STRUCTURE OF EACH TRANSMISSION

We design an experimental setup illustrated in Figure 6. We have a host computer running our
IoT Multi-channel gateway process for three channels. The receive and transmit chains are designed
as shown in Figure 4-22and Figure 4-23 respectively. We use the 802.15.4 channels 24, 25 and
26 for this experiment. The Zolertia Fireflies are configured as shown in Figure 4-27, with one
device on each channel. We use the ping command for our measurements. The experimental results
are presented for 500 ping messages.

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

FIGURE 4-27: EXPERIMENTAL SETUP

Figure 4-28 shows the impact of simultaneous ping on multiple channels on the ping results for a
single channel. The graph also shows the CDF for ping results from our single channel
Implementation and when using a native Contiki border router. The results show our multi-channel
implementation has higher round trip times compared to the single channel implementation. We
hypothesize that this is mainly due to the buffering of all the samples of a packet needed to solve
the discontinuity of radio transmission and also the extra computation needed for the polyphase
synthesizer and channelizer. As we increase the number of channels on which we ping
simultaneously, the reliability decreases. And we see a higher variance in the ping results. We think
packet corruption requiring multiple retransmission when we transmit on multiple channels in the
main reason for these variations.

FIGURE 4-28: CDF OF RTT FOR PING MEASUREMENTS WITH 56 BYTES PAYLOAD

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

In Figure 4-29, we see that packet loss increases with increasing ping data payload size. The data
payload size does not have a significant impact on the round-trip times of the ping data packets.
As the buffering time for samples from different message sizes would be different but the lack of
significant differences for these different data payload sizes highlights the main delays in our
multi-channel implementation as compared to the single channel implementation is mainly occurring
from the polyphase synthesizer and channelizer.

FIGURE 4-29: CDF OF RTT FOR PING MEASUREMENTS WITH DIFFERENT PAYLOAD SIZES

To summarize, we are able to communicate with multiple radio nodes on multiple channels using
this approach. The reliability of our implementation can be improved with particular focus on
understanding what the main causes of the extra delays are and how to improve the design. Our
implementation showed variation in the results from different channels. We attribute this mainly to
how we designed our polyphase filter banks, a closer look at the design of these filters is needed.

4.4.2.3 IQ service and interference analysis application

The focus of the EFS implementation for this use case has been on developing the multi-RAT
communication stack functions, evaluate the design and showcase the feasibility by PoC testbed
development. The work is still ongoing regarding establishing MQTT-based EFS platform with IQ
service and the development of the interference analysis application. These are also taken as part
of the integration work in WP4 where we will integrate the developed EFS elements in one testbed
together with orchestration features. Therefore, more details regarding this part will be reported
later in D4.2, the final deliverable of WP4.

4.4.3 Conclusions and future directions

In this deliverable for the Multi-RAT IoT use case, we provided a reference EFS design which is fully
based on the 5G-CORAL architecture and comprised of all three key EFS elements in the design
example. The design has been functionally tested and verified in lab tests and demonstrated in
two public demonstration events at EUCNC 2018 and ICT 2018 in Vienna, as well as two internal
demo events at mid-term reviews in Taipei and Vienna, in November and December 2018,
respectively.

Implementation-wise in this deliverable, we have addressed two key issues regarding efficient RH-
Edge interface design and multi-channel transceiver implementation, which are crucial for

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

cloudifying multi-RAT communication stacks. The experimental results prove the feasibility of
implementing this use case following the 5G-CORAL concept and architecture.

In 5G-CORAL, we focus on proof of concept studies and prototyping works of cloudifying existing
IoT stacks, like IEEE 802.15.4, NB-IoT and LoRa. In future works, we plan to dig more into IoT
protocols, explore the possibilities to relax timing requirements in the protocols, and investigate
the tradeoff between latency and performance. The idea is in the direction to explore new designs
of cloud-friendly protocols, instead of being limited by the existing protocol design. This would
enable to cloudify more RATs into the Edge and thus further reduce the overall IoT network costs
by resource sharing and increase system flexibility and scalability to address the future challenges
for serving trillions of IoT devices in the full Digital Society era.

4.5 Connected Car
The connected cars use-case aims at proving the advantages offered by the 5G-CORAL
architecture to improve the road safety. The low latency provided by this platform enables collision
avoidance algorithms to be really effective. Also, the fact that it is a distributed architecture allows
for several devices (potentially all the vehicles in the World) to publish their telemetry information
at a high rate. This is possible only if that data traffic remains geographically confined where the
car is located, which is also where that data is useful: clearly, a car in a certain city should not be
receiving telemetry information from a car located in a different city, or even in a different
neighborhood.

FIGURE 4-30: CONNECTED CARS SCENARIO

The Figure 4-30 describes the connected cars use case scenario, where the cars can be connected
via LTE, via WiFi to an RSU or both simultaneously.

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

4.5.1 Refined EFS design and functional validation

The Figure 4-26 describes the refined EFS designed for the connected cars use case.

FIGURE 4-31: EFS ELEMENT IN CONNECTED CAR USE CASE

In the connected cars use case, two services are offered on the EFS Service Platform: Telemetry
service and Warning service. The first one provides some telemetry information from the vehicles,
such as position and speed. The warning service provides notifications related to road hazards.
Both services are based on ETSI standards, in particular the ESTI CAM [27] has been adopted for
the telemetry service message contents, while the ETSI DENM [28] for the warning messages.

A Road Side Unit (RSU) has been introduced in the design. It provides a secondary RAT access,
which could be DSRC (Dedicated Short Range Communications), C-V2X (Cellular Vehicle-to-
Everything), etc. For the PoC we decided to use Wi-Fi as a simple way of proving the concept. For
this reason, a Virtual Wi-Fi access point can be deployed as an EFS Function.

The EFS applications are the ones consuming and producing the messages that are exchanged over
the EFS Service Platform. In particular, the On-Board Unit is capable of:

• Processing the Telemetry messages to warn the user about collision risks (Collision
Avoidance application)

• Generating and publishing warnings if a hazardous malfunction is detected (Vehicle
Breakdown Notification)

• Warning the user in case of an approaching emergency vehicle (Emergency Vehicle
Approaching)

The very same Collision Avoidance application can also be instantiated on the RSU, which
collects the telemetry information of several vehicles in a certain area and generates warnings
if necessary.

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

4.5.2 Use-case specific implementations and experimental verification

The On-Board-Unit runs the EFS application as a Legato Framework (www.legato.io) application
which allows to access the various sensors and interfaces on the board and, most importantly, keeps
the applications monitored and sandboxed so that it is possible to start, stop, install and remove
applications.

When started, the application on the OBU reads a configuration file where several parameters
can be configured, such as LTE and WiFi connection parameters, MQTT broker details, sampling
period of the sensors providing telemetry data and tuning parameters for the application
algorithms. A full list of the configuration parameters is available in Appendix 7.1.3.

The application can be divided into two main components. The first one is responsible for
generating the telemetry messages (CAMs) and publishing them to the EFS service platform. The
second one takes care of receiving the telemetry messages from the other vehicles nearby and
does the processing needed to compute if a collision risk is real and, in that case, generate and
publish a warning (DENMs) message for the position where the car is located.

In addition to that, a module responsible for generating the warning message according to the
ETSI ITS standards has been introduced. In other words, the message needs to be periodically re-
transmitted depending on its urgency and it must be terminated if the originating cause has
disappeared.

Some management of the warning messages is being done also when the messages are received.
Since each warning message has a position and an expiry time attached to it, the OBU that receives
one message needs to determine if the car is within the relevance area of the warning and trigger
or stop the alarm depending on whether the car enters or leaves such area. Note that this requires
the OBU to store all the warning messages it received and remove them only if they expire or if a
termination message is received via the service platform by the vehicle that originated the
message.

The telemetry messages, which include the vehicle characteristics (length and width), its speed, its
location and other details, are generated at a rate which varies between 1Hz and 10Hz
depending on how much the heading, speed and position of the vehicle have changed since the
last transmission of a message. In other words, the telemetry message is sent by default every
second, however the values are monitored ten times as fast and, if there is a big enough change,
the data it is transmitted right away. This is done to reduce the network load by doing a minimum
pre-filtering of the data, while keeping a high data-rate when needed.

For the demonstration we used a JSON encoded message since it is easier to process and debug
across multiple platforms, however we studied other data encoding protocols, namely CBOR
(Concise Binary Object Representation) and Protocol Buffers which reduce the payload size
respectively by 42% and 82%. The reduced payload size results in a reduced latency, as it is
summarized in table 11.

TABLE 4-6: WIFI AND LTE LATENCY MEASUREMENTS (AVG. OVER 2500)

Latency WiFi LTE (in TI LAB)
1900
bytes
(JSON)

Min: 48.399 ms
Avg: 52.555 ms
Max: 94.183 ms
Stddev: 4.204 ms

Min: 33.399 ms
Avg: 48.211 ms
Max: 122.080 ms
Stddev: 4.073 ms

1020
bytes
(CBOR)

Min: 26.137 ms
Avg:29.045 ms
Max: 76.766 ms
Stddev: 4.335 ms

Min: 31.933 ms
Avg: 46.648 ms
Max: 104.751 ms
Stddev: 6.014 ms

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

346 bytes
(Protobuf)

Min:11.542 ms
Avg:15.347 ms
Max:57.350 ms
Stddev: 5.479ms

Min: 20.309 ms
Avg: 34.871 ms
Max: 79.587 ms
Stddev: 3.757 ms

In this table we collected the minimum, average, maximum latencies and their standard deviations
for the exchange of telemetry messages over WiFi and LTE. The WiFi measurements where
performed while being connected to a Virtual AP (EFS Function) running on the RSU; The LTE
measurement where performed in a 5G-CORAL environment, where the MQTT broker was
instantiated very close to the eNB. The table shows how the latency varies with the different
encoding formats. In the PoC we will consider the scenario where the OBU is connected to both
RATs simultaneously, therefore the resulting latency is equal to the lowest one, with the added
benefit of an increased reliability.

4.5.3 Conclusions and future directions

Mainly three aspects have been identified for the future directions: localization accuracy
improvement, a more robust V2V RAT and an improvement of the algorithms behind the EFS
applications.

The location of the vehicle has currently been determined using a GNSS receiver, which has an
accuracy of a few meters. While this is fine for proof of concept and for certain applications (e.g.
emergency vehicle approaching notification), there are several possible improvements. First of all,
a Kalman Filter can be used to perform sensor fusion between the GNSS position information, the
vehicle speed (which can be measured from the angular velocity of the wheels) and the
accelerations in the X, Y and Z axis that can be acquired with an Inertial Measurement Unit (IMU).
In addition to this, the 5G-CORAL infrastructure can enable data fusion that would not be possible
without communication between cars. In practice, a LiDAR can be installed on the vehicles and the
distance between nearby vehicles can be published on the localization EFS service. Again, a
Kalman filter (or a more advanced Particle Filter) can be used to improve the localization of two
vehicles by doing data fusion and combining the LiDAR measured distance with the distance
calculated by knowing the coordinates of the two cars.

The second element that can be improved is the second RAT available for the communication with
the RSU. The currently used Wi-Fi can be replaced with a more adequate C-V2X based
communication, without having to re-design the architecture and logic of the application that
manages the Multi-RAT aspect of the connected cars use case.

Finally, the applications can be improved to include more refined collision avoidance algorithms.
For example, an algorithm able to predict over a certain time span the movement of two cars can
drastically anticipate the warning of a possible collision to the driver and, as well as reduce the
number of false alerts.

4.6 SD-WAN
The SD-WAN use case aims to leverage SDN and NFV technologies to provide a secure and
reliable interconnection network within the 5G-CORAL platform to connect the edge, fog and cloud
and ultimately enable federation. Moreover, SD-WAN functions perform as virtual gateways,
establishing a virtual connection among them, which transparently connects elements in different
locations under the same virtual network. In the shopping mall scenario, point of sale (PoS)
applications are deployed in one of the shopping malls EFS domains. An additional SD-WAN
function is deployed at another EFS close to the initial shopping mall EFS domain, this EFS domain
could be owned by a train or bus station company located close to the shopping mall. For this use

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

case we will analyse how federation can be used between these two domains to locate/offload
precisely functions, and applications close to the end user. In this scenario we will simulate an end
user moving from one federation consumer domain to a federation provider domain, enabling the
consumer domain to take control of a fog node at the provider domain by leveraging federation,
which will use to instantiate a PoS web application to offload traffic from end users connected to
the provider domain. The use of federation with the combination of the SD-WAN function, allows
domains to scale outside their own infrastructure.

4.6.1 Refined EFS design and functional validation

The main entity deployed in the use case is the SD-WAN function, acting as a virtual gateway. SD-
WAN functions are controlled by two components, the SD-WAN manager and SD-WAN controller,
integrated into the SD-WAN EFS function manger, work together to establish a secure virtual
network across SD-WAN functions. Through the SD-WAN function, control and data plane traffic
flows, allowing the SD-WAN function to selectively separate both planes. In the use case presented
in 4.6 the data plane is the traffic to and from PoS terminals, which flows though the PoS Web
App and PoS DB, control pane traffic is composed by OCS interfaces with the EFS, which for this
scenario will be the communication between the VIM(fog05) and the ESF infrastructure and the
communication between the SD-WAN function and the SD-WAN EFS Function Manager.

The next defined function is the Virtual WiFi Access Point, linked to the SD-WAN function in a layer
2 network basis. It will forward data from the WiFi interface to the SD-WAN function, which will
route the traffic to the intended destination, which in this use case will be the home/consumer
domain PoS Application or the Provider domain offloaded PoS Web Application.

Figure 4-32 shows an example of PoS service composed of two applications: the customer and
inventory database (PoS DB) and the PoS web application (PoS Web App). While the database
stays in the consumer domain, the web application can be deployed closer to the end user in the
federated domain. Both service components are chained together by the SD-WAN function,
allowing them to communicate over a secure virtual link.

FIGURE 4-32: EFS ELEMENTS IN SD-WAN

4.6.2 Use-case specific implementations and experimental verification

This subsection explains the measurements gathered from the experiment setup, were we are
testing the connectivity between a virtual host (representing the EFS PoS WebApp) and a PoS
terminal accessing via WIFI both located in in the same EFS domain and leveraging the SD-WAN
function to provide the connectivity. The experimental setup is composed by one Dell Latitude
E5550 laptop with 8GB of RAM, Intel i5-5300U CPU and 500 GB of HDD, used to simulate the
EFS domain. Instantiated on the laptop there is a virtual AP function (LXD container), and a virtual
machine (KVM) were the SD-WAN function and the EFS PoS WebApp will be instantiated.

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

Additionally, a PoS terminal composed of an additional Dell Latitude E5550 laptop with the same
characteristics as the one simulating the EFS domain will be sued to execute the validation
experiment.

The results provided in Table 4-7 serve as provisional results, which help us to analyse the impact
of the SD-WAN in the data plane. Table 4-7 represent latency metrics collected using the ping
tool between both the PoS terminal and the PoS WebApp. For this experiment, one hundred ping
samples were taken and the period between ping samples is increased from 0.25s to 1s doubling
the value each time. Additionally, the size of the ping packets is tuned to 56B, 128B, 256B, 512B;
measuring latency over different packet sizes. Ping results are shown in the default ping tool format
minimum/average/maximum/standard-deviation.

TABLE 4-7: LATENCY MEASUREMENTS

Latency T=0.25s T=0.5s T=1s
56B
packet

7.108/72.124/412.9
09/96.857 ms

7.410/55.643/374.333/7
3.563 ms

7.474/61.247/548.430/87
.039 ms

128B
packet

7.449/67.957/562.6
80/93.676 ms

7.278/50.165/281.554/6
0.898 ms

6.936/87.566/558.190/10
4.784 ms

256B
packet

6.611/54.922/412.7
21/71.129 ms

7.392/67.699/743.926/9
9.153 ms

7.277/72.065/564.883/11
8.195 ms

512B
packet

7.547/43.844/336.8
75/58.958 ms

7.307/58.636/329.302/6
6.779 ms

7.562/55.484/319.116/73
.125 ms

Following the latency measurements, the next experiments tries to extract some more fundamental
network metrics, such as, Jitter, Bandwidth and service deployment time. The results are presented
below:

• Jitter (10 seconds test) (UDP):
o 15.3 Mbytes transferred
o 12.8 Mbits/sec
o 7.544ms of jitter

• Bandwidth (10 seconds test) (TCP):
o Sender: 13.6 Mbits/sec
o Receiver: 13.2 Mbits/sec

• Service deployment time:
o 12 mins for VM deployment using fog05
o 3 mins for container deployment using fog05

Results from the experiments carried out in this section are diverse, indicating us that there could
be a bottle neck in the scenario. The bottle neck which was identified is that the processor (cpu)
used during the experiments, which does not have hardware acceleration for cryptographic
operations. This type of hardware acceleration in CPUs is only present in medium to high end CPUs,
rarely found in constrained devices.

4.6.3 Conclusions and future directions

Based on the results above, after the implementation of the SD-WAN function, the WIFI AP and
both PoS service application are ready, there will be a second round of measurements in order to
provide detailed measurements of a fully deployed scenario with two fully functional EFS domains,

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

which will enhance the initial results collection, providing a richer set of metrics from all of the
functions/applications/services deployed. In this scenario the user will connect to a web application
instantiated in the provider domain closer to its location, enabling us to extract more metrics from
the scenario, including access network connection times, offloading function instantiation time,
impact in the EFS system.

Regarding the future directions, some of them are listed below:

• Software automation and deployment.
• Detection of when the federation should be triggered, e.g., increase of the number of

users connected to an edge or fog node or even mobility detection, were connection and
disconnection events to a domain are transmitted through the EFS service platform.

• Migrate from a static federation model to a dynamic federation model.

4.7 High-Speed Train
In LTE networks, MME is the main entity which handles control signaling. It is responsible for initiating
paging and authentication of the mobile devices. Also, MME retains location information at the
tracking area level for each user and then selects the appropriate gateway during the initial
registration process. In inter-MME handover, MME plays a vital part in signalling control in standard
procedure. In particular, inter-MME handover involves three control stages. The first stage, the
source eNodeB initiates the handover by sending a request message over the S1-MME reference
point. In the second stage, the source MME, selects the target MME and configure a messaging
tunnel over an interface called S10. The S10 is a control interface between MMEs. The last stage
occurs when MME transfers the configuration message to target eNB over S1 interface. Needless
to say, the high-speed train use case involved the interaction between MME on-board and on-land
as described in D2.1in details. Hence, we proposed to adopt the vMME on-board of train in 5G-
CORAL. Notably, the S10 interface will include large amount of control signalling especially when
hundreds of passenger devices handover simultaneously. Therefore, we also proposed to enhance
the S10 interface to reduce the signalling between on-bored and on-land EFS node. Where, the
adopted EFS virtualisation infrastructure has the MME functionality. Also, it is the totality of the
hardware and software components that build up the environment.

4.7.1 Refined EFS design and functional validation

In high-speed train, the adopted EFS has different purpose entities as shown in Fig. 5-23. The first
EFS entity is video streaming application. This EFS application provide the streaming video for UEs.
The second entity is EFS functions which consists from two main part:

FIGURE 4-33: HIGH-SPEED TRAIN EFS DESIGN

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

User Classifier function: The UEs on-board have different QoS requirements. The user classifier
function classifies the UEs into groups based on context information obtained such as QoS Class
Indicator (QCI) and allocation and retention priority (ARP) which will be extracted from vMME. The
user classifier function, where the classifications take place in two steps. In the first step, the user
classifier extracts context information of UEs and sorts them based on QCI and ARP. Then, it will
send the groups in descending QoS order queues to the vMME for handover in the second step.

vMME: With the information provided from user classifier function and train approximate, vMME
will execute handover of a group of users as train approach. As the train approaching to the train
station, the vMME transmit important UEs context information ahead of time which will reduce the
amount of signalling during the handover process itself. In particular, from step 0 to step 3 (see
Figure 5-24), vMME will forward the relocation UEs information request to target MME which is the
MME in the core network. Also, vMME will receive the relocation response time in this case.

The last EFS entity is the train proximity. This block will be handled in the MME of the core network.
The MME monitors several UEs and PCIDs (ID of eNBs), and since the time schedule and the route
path of trains are known, the approximate location of the train can be estimated. Then, it executes
handover triggering functions for UEs moving to specific eNB. In the two-hop architecture, the MME
monitors the CPE on-board. When the train is approaching the station, i.e., the CPE will handover
to the specific eNB near the station, then the MME executes the handover triggering function which
sends a handover trigger signalling to the vMME.

EFS Node can host several applications, functions and services such as video streaming application,
vMME, user classifier function, and train proximity service, respectively. In our experiments, we
used NextEPC framework as baseline for vMME. Then, we modify vMME to fit our proposed scheme
including modification for S10 interface as elaborated earlier.

In the high-speed train, OCS is responsible to handle the service migration as elaborated in details
in D3.2. In our case, the train approximate service and user classifier function will be utilized by
OCS to trigger and classify users into groups. As results, the downtime of users which they are
moving from on-board to on-land will be minimized.

The flowchart of described enhanced MME implementation is described in Fig. 5-24. Obviously,
the steps from 0 to 3 need to be executed ahead of time before handover process is executed in
the legacy system.

FIGURE 4-34: ENHANCED INTER-MME PROCEDURE FLOWCHART

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

4.7.2 Use-case specific implementations and experimental verification

In the emulation environment of high-speed train, first, the MME, small cell and CPE are powered
on. Then, vMME is powered on and connected with HSS in core network. Four emulated UEs connect
to the on-board small cell. At the core network, MME connects to the target eNB (on-land). As train
mobility is emulated, the MME will send handover trigger to vMME to classify the users into groups
based on QoS and ARP. In addition, enhanced inter-MME handover is executed. Finally, we
measure the size of control signal packet, handover latency, and downtime then compare the
legacy system with the proposed schemes measurements as elaborated in following subsections.

4.7.2.1 Experimental verification

Fig. 5-25(a) represents the comparison of the handover improvement with/without the proposed
enhancement for inter-MME. The x-axis represents the enhanced inter-MME (Grouped) and legacy
inter-MME (non-Grouped) while the y-axis represents the inter-MME handover time. Obviously, the
Grouped handover improved the total handover time slightly comparing with non-Grouped inter-
MME handover. In the both cases, the total handover time is large due to two-hop architecture and
the emulation environment set up. In real high-speed train, the average handover time is around
200ms. It is worth mention, the latency reduction is not the target of this work and this prove the
results in Fig. 5-25 (a) did not create any overhead but reduces the total handover time.

Fig. 5-25 (b) represents the comparison of signalling control messages during handover with
Grouped and non-Grouped inter-MME handover. The x-axis represents the forward relocation
request and forward relocation response, respectively. The y-axis represents the average control
message sizes in bytes. In the case of forward relocation request, the Grouped inter-MME scaled
down the average control messages up to 50% per user in comparison to the non-Grouped one.
Also, grouped inter-MME reduces forward relocation response up to 25% per user in comparison
to the non-Grouped one. Notable, this will reduce the signalling to core network significantly in
large scale scenario. At the same time, it will contribute for the application stability at the end user
side.

 FIGURE 4-35: HIGH-SPEED TRAIN EMULATION RESULTS

4.7.3 Conclusions and future directions

In moving infrastructure scenarios such as train network, the proposed two-hop architecture is
adopted to improve on-board user experience by reducing the interaction with on-land base
stations. Furthermore, edge clouds and virtualization technologies can be utilized to bring services
closer to the traveling users. Nevertheless, when large number of users transit from train to station,
a signaling storm and application traffic backhauling become challenges to maintain continuous

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

service. Our experimental results show that the proposed schemes can reduce the control signaling
by 50% when compared to the state-of-the-art.

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

5 5G-CORAL EFS Monitoring
This section presents the monitoring solution adopted in 5G-CORAL to monitor the distributed EFS
resources. First, we provide an overview of 5G-CORAL Monitoring in Section 5.1. Then, we present
Prometheus as EFS monitoring platform in Section 5.2. Finally, we provide Prometheus experimental
measurements in terms of computing, storage and networking resources under different scenarios
in Section 5.3.

5.1 Overview of 5G-CORAL Monitoring
Considering the distributed and heterogenous nature of 5G-CORAL, EFS entities can be
instantiated in multiple forms, such as native host applications, containers or even virtual machines.
This diversity presents some extra challenges on how 5G-CORAL will tackle monitoring, such as
tracking resource utilization from the underlying computing, network, and storage infrastructure or
detecting failures. Introducing a monitoring platform will enable 5G-CORAL OCS to be fed by
valuable monitoring data and improve its placement, scaling and migration algorithms of the
resources located at the EFS. However, the tools which will be used to monitor the EFS, must comply
with the 5G-CORAL requirements.

In the 5G-CORAL architecture, EFS monitoring is envisioned as an EFS Service, which leverages
E2~=Mp1 EFS interfaces to collect valuable information from the underlying EFS Virtual
Infrastructure, EFS applications and Functions, to further expose them to other EFS components
(Functions and/or Applications) and OCS components such as EFS Application/Function manager
and Resource orchestrator. Additionally, in order to feed the EFS Monitoring service, monitoring
agents/probes are additional elements included in 5G-CORAL architecture. These monitoring
agents should ideally have a minimal impact on the EFS resources, i.e. computing, storage and
networking. Figure 5-1depicts how the EFS monitoring service and agents fit into the 5G-CORAL
architecture, including the collection and consumption interfaces from which monitoring data would
flow.

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

FIGURE 5-1: EFS MONITORING MAPPING TO 5G-CORAL ARCHITECTURE

5.2 Prometheus as EFS monitoring platform
This subsection focuses on monitoring tools and platforms. The metrics exposed from the monitoring
tools are detailed in Appendix 8. The different tools described in Appendix 8 cover all kinds of
physical and virtual resources used in 5G-CORAL, ranging from virtual machines to containers
(docker, LXD) and Linux to Windows operating systems.

Prometheus monitoring platform is an open-source metrics-based time series database, designed
for white-box monitoring. It pulls metric data from devices rather than rely on the device to push
the metrics (although, push is also available via a gateway). Scalability is supported by deploying
many Prometheus servers. Additional features which Prometheus supports include the use of a very
simple exposition format, support labels (dimensions/tags) and a single executable. Prometheus
data model aggregates all data metrics as time series streams, which are timestamped values of
a collection of metrics. These are uniquely identified by its metric name and a set of key-value
pairs (labels). Additionally, in case the pull method does not suit the use case requirements
Prometheus has an API available to publish data. Prometheus time series is data is usually identified
by a metric name and a set of labels (<metric name>{<label name>=<label value>,…}) E.g., a
time series with metric name api_http_request_total and labels method="POST" and
handler="/messages" could be written as api_http_request_total{method="POST",
handler="/messages"}.

Prometheus has four client libraries to measure core metrics, namely.

• Counter is cumulative metric that represents a single monotonically increasing counter
whose value can only increase or be reset to zero on restart.

• Gauge represents a single numerical value that can arbitrarily go up and down. For
example: measuring temperature/memory usage.

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

• Histogram samples observations and counts them in configurable bucks. For example:
request duration or response sizes.

• Summary is similar to histogram, samples observations. Provides a total count of
observations and a sum of all observed values. For example: request duration and
response sizes.

Prometheus relies in data scraping, which is the process of importing data from a web service or
API into your own data monitoring, analysis or storage service. By leveraging data scraping
Prometheus defines jobs and instances, which are defined by an endpoint you can scrape. A
collection of instances with the same purpose or endpoint, which could be replicated for scalability
or reliability reasons is called a job. Figure 5-2 represents Prometheus architecture, composed of
three main elements, Service Discovery, Rules & Alerts and Local Storage. The detailed description
of the internal architecture goes beyond the scope of this deliverable. We utilized a Prometheus
integrated component, called cAdvisor. cAdvisor analyses and exposes resource usage and
performance data metrics from running containers to Prometheus time series database. Figure 5-3
shows a screenshot of the dashboard where CPU and memory usages. A full list of the metrics
supported by cAdvisor are given Table 5-1.

FIGURE 5-2: PROMETHEUS ARCHITECTURE

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

FIGURE 5-3: CADVISOR DASHBOARD

Table 5-1: All Metrics cAdvisor can expose to Prometheus

All Metrics cAdvisor is able to export to Prometheus
container_cpu_system_seconds_total container_memory_swap
container_cpu_usage_seconds_total container_memory_usage_bytes
container_cpu_user_seconds_total container_memory_working_set_bytes
container_fs_inodes_free container_network_receive_bytes_total
container_fs_inodes_total container_network_receive_errors_total

container_fs_io_current container_network_receive_packets_dropped_to
tal

container_fs_io_time_seconds_total container_network_receive_packets_total
container_fs_io_time_weighted_seconds_t
otal container_network_transmit_bytes_total

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

container_fs_limit_bytes container_network_transmit_errors_total
container_fs_read_seconds_total container_network_transmit_packets_dropped_t

otal container_fs_reads_merged_total
container_fs_reads_total container_network_transmit_packets_total
container_fs_sector_reads_total container_scrape_error
container_fs_sector_writes_total container_spec_cpu_period
container_fs_usage_bytes container_spec_cpu_shares
container_fs_write_seconds_total container_fs_writes_total
container_fs_writes_merged_total container_last_seen
container_spec_memory_limit_bytes container_memory_cache
container_spec_memory_swap_limit_bytes container_memory_failcnt
container_start_time_seconds container_memory_failures_total container_tasks_state

Prometheus configuration allows the monitoring administrator or external system to specify the
scrapping rules, which should be applied to collect the metrics. Such configuration is expressed in
YAML format, which was designed to serialize data in a human readable way. Prometheus
configuration (prometheus.yml). Figure 5-4 shows an example which specifies scraping rules for
two different jobs, the targets parameter defines the endpoint at which Prometheus should query
in order to retrieve the data. Additionally, scraping sources can be the following: Azure[29],
Consul[30], AWS EC2[31], Openstack[32], GKE[33], Kubernetes[34], Marathon[35], Triton[36].

FIGURE 5-4: PROMETHEUS CONFIGURATION (PROMETHEUS.YML)

Prometheus offers the following instrumentation features:

• Client Libraries: Before you can monitor your services, you need to add instrumentation to
their code via one of the Prometheus client libraries. These implement the
Prometheus metrics types

• Pushing Metrics: Monitor metrics which normally cannot be scrapped.
• Exporters and Integrations: Number of libraries and servers which help in exporting

existing metrics from third-party systems as Prometheus metrics. It can also monitor services
on MQTT broker[11].

Grafana is one of the preferred tools to visualize the data and metrics collected in Prometheus
time series database. Grafana is an open-source platform for data analytics and data
visualization, which is capable of reading data from multiple sources including Prometheus. Figure
5-5, an example of a Grafana dashboard is shown.

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

FIGURE 5-5: GRAFANA DASHBOARD EXAMPLE

5.3 EFS monitoring experimentation with Prometheus
Due to its widespread use both in academia and industry, Prometheus was adopted by 5G-CORAL
as a monitoring solution. WP2 integrated Prometheus into the testbed setup of Figure 5-6, in order
to measure the impact monitoring on the EFS resources. The Prometheus node-exporter provides a
mechanism of exposing hardware and operating system metrics to the Prometheus platform by
pulling data and metrics from the endpoints defined on each device.

FIGURE 5-6: PROMETHEUS AND 5G-CORAL

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

5.3.1 Experiment I: EFS resource as virtual machine

To execute the first experiment, a virtual machine with 2GB of RAM and 25GB of disk memory
was deployed, which represents a virtual EFS resource that could be instantiated at the cloud or
edge. In that virtual machine, a group of seven LXC containers are deployed, six of them were
used to extract monitoring data and metrics while the seventh was used to run the Prometheus
monitoring platform. Additionally, a Grafana instance was run natively in the virtual machine
hosting the LXC containers.

FIGURE 5-7: FOG NODE AS VIRTUAL MACHINE EXPERIMENT

During the experiment, Prometheus collected metrics from each LXC container, by running a node
exporter process within the containers; that gathered and exposed CPU, RAM and bandwidth
metrics. Grafana was used as the analytics and monitoring interface for the collected metrics.
Prometheus was configured to collect metrics at a frequency of 15 seconds, i.e. the default
configuration value.

During the experiment, CPU, RAM and bandwidth metrics of the virtual machine were measured
with mpstat, free and ifstat commands, integrated in a bash script to automate the process. The
experiment started by measuring these metrics without running the node exporter(s), Prometheus
server or the Grafana service stopped. After the first minute, Prometheus, Grafana, and the first
node exporter were instantiated. Then subsequently, every minute a new node exporter process
was started in a new container, until all containers were running one instance of the node exporter.

Figure 5-8 presents the user (USR) and system (SYS) spaces CPU percentage of time spent. From
the results it was noted that the highest peak of CPU consumption was located during the
instantiation process of Prometheus, Grafana and the first container. After the first peak there
were small peaks representing the instantiation of the monitored containers one per minute. Finally,
the lowest blue peaks, in between the medium blue peaks, represent the node exporter sending
the metrics that Prometheus was polling.

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

FIGURE 5-8: CPU % OF TIME SPENT IN USR(USER) AND SYS(SYSTEM) SPACES

Figure 5-9 presents the RAM consumption of the machine during the whole experiment, we noticed
that RAM usage increased smoothly during the experiment; which leads us to interpret that
Prometheus was storing collected data samples in RAM memory. The impact of Prometheus server
and the node exporter(s) was minimal, i.e. RAM consumption increased by 150MB during the whole
experiment.

FIGURE 5-9: RAM CONSUMPTION

Finally, Figure 5-10 presents the bandwidth consumption in KB/s at the aggregation bridge
interface (lxdbr0). From the results we observed six clear peaks with more or less the same height
of 110KB/s. These bandwidth peaks correspond to the metrics extraction procedure of Prometheus
to each of the node-exporters in every container. These results indicate that the impact of this
monitoring system is quite low in terms of bandwidth consumption, as only some few hundreds of
KBs where transferred through the network.

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

FIGURE 5-10: BANDWIDTH CONSUMPTION IN LXDBR0 INTERFACE

5.3.2 Experiment II: EFS resource as a real physical fog node device

This experiment replicated the experiment described in section 5.3.1 while substituting the host
virtual machine physical fog node. Figure 5-11 shows the selected fog node that has the following
specification: OS: Ubuntu Server 16.04 LTS; CPU: Intel(R) Core(TM) i5-6200U CPU @ 2.30GHz;
RAM: 4GB; and Disk: 8GB SSD.

FIGURE 5-11: QOTOM MINI PC

From Figure 5-12, we observed the biggest CPU peak at the start of the experiment, which
represents the deployment and instantiation of the containers, Prometheus server and Grafana.
Additionally, we noticed some more peaks (> 2% CPU User usage) that represent the starting of
the node exporter process, and sequential polling of Prometheus to every deployed container.

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

Furthermore, in Figure 5-12 we present the CPU’s percentage idle time that allows for a better
comparison and contrasting of the impact of Prometheus monitoring on CPU usage. From the results
we observed that CPU utilization was highest during the instantiation phase (~10% of CPU time),
and dropped to less than 5% over the duration of the experiment.

FIGURE 5-12: CPU USAGE FOR USR, SYS AND IOWAIT

Figure 5-13 presents the RAM usage during the experiment. From the results we observed that the
RAM usage was less than 100MB, over the duration of the experiment. The minor fluctuations in
RAM usage were attributed to RAM being consumed and subsequently released during the
experiment.

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

FIGURE 5-13: RAM USAGE

Figure 5-14 shows the results obtained from the disk usage during the experiment. Two snapshots
were taken, one at the start of the experiment and another one at the end. We can see a
consumption of 2% in /dev/sda2 partition, which totals 120MB of disk usage throughout the
experiment.

FIGURE 5-14: SNAPSHOT OF DISK USAGE BEFORE AND AFTER THE EXPERIMENT

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

Finally, we performed bandwidth measurements at all network interfaces of the fog node.
According to Figure 5-15, the highest bandwidth measurement was observed when Grafana,
Prometheus and all monitoring containers were started. During the course of the experiment it was
observed that Prometheus monitoring utilized a bandwidth of approximately 60 Kbps.

FIGURE 5-15: BANDWIDTH MEASUREMENT IN ALL INTERFACES OF THE PHYSICAL FOG NODE

In conclusion the experiments and results presented in section 5.3.1 and section 5.3.2 revealed that
the integration of resource monitoring framework(s), such as Prometheus, into the EFS; had minimal
impact on the EFS resources (compute, storage and networking).

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

6 Conclusions and Future Work
This deliverable, D2.2, is the final deliverable of WP2 with focus on the refined EFS design of 5G-
CORAL, following on the baseline design reported in the first deliverable D2.1.

First, Section 2 and 3 address some key aspects in the EFS architecture and its reference design.
Section 2 mainly addresses the EFS interfaces, data models and the EFS workflow, while Section 3
provides an extensive analysis of EFS service messaging protocols. The main contributions of Section
2 and 3 are listed as follows:

• Provided the definitions of the EFS internal and external interfaces: Ex interfaces (E1-E4)
are the EFS internal interfaces connecting different EFS elements defined in the
architecture. Especially E2 interface provides the connectivity enabling distributing and
sharing service data between EFS functions and EFS applications via EFS service platform.
Ox interfaces (O1, O5 and O6) connect EFS to OCS. Tx interfaces (T1, T3 and T8) connect
EFS to OSS/BSS and non-EFS resources. To maximize the architectural compatibility to ETSI
MEC and ETSI NFV, E2, E3, E4 and T1 interfaces are defined to be compatible with some
reference interfaces defined in ETSI MEC while E1, O1, O5 and O6 are defined to be
compatible with some reference interfaces defined in ETSI NFV. For example, for the E2
interface, we define how the ETSI MEC Mp1 interface is used and extended by the EFS.
The T3 and T8 interfaces are the new interfaces not scoped in ETSI MEC and ETSI NFV.

• Refined the EFS service platform reference design from D2.1: Considering the needs of
5G-CORAL and compatibility to ETSI MEC, we adopted the ETSI MEC approach using both
REST-based API and MQTT brokers. The REST-based API is used for registering and finding
services, while MQTT is used for E2 interface as the transport for EFS services. It should be
noted that MQTT is given as one example for a reference design. Any other systems like
Zenoh, NATS, DDS, etc. can be supported. In addition, data structures associated with EFS
service operations are provided. As examples, we also presented the JSON-based data
models used in some 5G-CORAL PoC testbeds (i.e. connected cars and robotics).

• Investigated and benchmarked additional EFS service messaging protocols: Extensive
experimental investigations have been performed to compare different alternatives,
namely Zenoh, NATS, DDS, MQTT, and Kafka REST. The results showed that Zenoh and
NATS outperform other protocols. These two are recommended to consider where high
performance is needed.

To investigate the feasibility of EFS implementation in real scenarios, verify the EFS reference
design and showcase the benefits of EFS, PoC prototypes have been implemented for seven
different use cases. In Section 4, use-case specific implementations are described to verify the EFS
functionality, and performance is evaluated in each use case through experiments. By adopting
the 5G-CORAL design, the experiment results showed clearly the benefits in service delivery,
computation offload, bandwidth reduction, and improved multi-RAT support. The following
summarizes the implementation insights and findings from each use case:

• Robotics: This use case focuses on moving the robot control to the network side (locating it
at the Fog, close to the robots) in the form of EFS applications, which would reduce the
robot costs and enable the possibility to coordinate multiple robots. The Edge/Fog assisted
robotics system has been designed blending together the Robot Operating System (ROS)
that offers a common development framework for robotics applications and the 5G-
CORAL EFS platform. In addition, close-loop control of the robot with low latency bounds
can be achieved by moving the control along the trajectory of the robot and considering
the signal level of the wireless network connecting the robot and the infrastructure. The

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

experimental results showed that a smart navigation application leveraging the EFS
service of Wi-Fi RSSI can smoothen the robot movement at a high speed.

• Virtual Reality: In this use case, the 5G-CORAL solution decomposes the end-to-end 360º
video streaming service into micro-services which are then distributed across three
computing tiers, namely cloud, edge, and fog. All three compute tiers, composed of
heterogeneous computing resources, are orchestrated and controlled using a unified
orchestration and control system (OCS) based on Fog05. Experimental results showed that
our approach can alleviate the footprint of the 360º video delivery service on a cloud
data centre by reducing the GPU load, the consumed power and the memory usage, as
well as saving the transport bandwidth by viewport adaptation.

• Augmented Reality: In this use case, EFS architecture has been adopted to realize AR
navigation application where the image recognition application is executed on the fog
nodes on the network side. The processing was distributed dynamically among multiple
fog nodes. iBeacon-based localization was used to reduce the image recognition
processing requirement. The experimental results proved that the edge and fog computing
architecture is possible to meet the requirements of AR-based navigation application, in
terms of latency and processing offload requirements.

• Multi-RAT IoT: The focus of this use case is on cloudifying the IoT communication stacks, like
IEEE 802.15.4, NB-IoT and LoRa, in the EFS. We have addressed two key issues regarding
efficient RH-Edge interface design and multi-channel transceiver implementation, which
are crucial for cloudifying multi-RAT communication stacks. The experimental results
regarding latency and network capacity required for fronthauling with 802.15.4 and NB-
IoT proved the feasibility of implementing this use case following the 5G-CORAL concept
and architecture.

• Connected Car: In this use case, the application is divided into two main components. The
first part is responsible for generating the telemetry messages (CAMs) and publishing them
to the EFS service platform. The second part takes care of receiving the telemetry
messages from the other vehicles nearby and performs the processing needed for collision
detection and, in that case, generate and publish a warning (DENMs) message for the
position where the car is located. Both Wi-Fi and LTE can be used simultaneously. The
experimental results demonstrated achievable low latency figures meeting the
requirements set for this use case.

• SD-WAN: This use case focuses on EFS federation. It analyses how two domains can be
federated to locate/offload functions, and applications close to the end user. The
experimental results showed the feasibility of the proposed EFS federation.

• High-Speed Train: In moving infrastructure scenarios such as train network, the proposed
two-hop architecture is adopted to improve on-board user experience by reducing the
interaction with on-land base stations. Furthermore, the EFS implementation leveraging
edge clouds and virtualization technologies can be utilized to bring services closer to the
traveling users. The experimental results showed that the proposed schemes can reduce
the control signaling by 50% when compared to the state-of-the-art.

Furthermore, EFS resource monitoring is another important topic addressed in Section 5. An open-
source monitoring tool called Prometheus is proposed to fit to the EFS design. Two emulation tests
have been done with virtualized fog nodes and real fog nodes, respectively. The experimental
results showed that the CPU and memory usages are sufficiently low to be used for constrained
devices, i.e. fog nodes.

In WP2, we provided an EFS reference design following the 5G-CORAL architecture defined in
WP1. The design enables the virtualization of EFS functions and applications on EFS resources and
facilitate sharing the context information as EFS services. PoC testbeds for different use cases have

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

been developed and small-scale measurements have been done, which have verified the feasibility
of the EFS design developed in this project. In the future, more EFS related studies and research
works will be performed based on the results achieved in 5G-CORAL. Hereby, we conclude this
deliverable by highlighting two future research directions in particular:

1. Investigation of a large-scale EFS deployment integrating multiple use cases running on
the same EFS, which is closer to real business deployment.

2. Incorporating the capabilities of machine learning, AI techniques and data handling into
the EFS, as well as the interactions and extensions with Cloud. This would require a further
extension of the EFS design and make the EFS more intelligent and optimized.

Last but not least, there are also a lot of possibilities to further improve the implementation of each
use case presented in Section 4 in this deliverable. More details regarding each use case has been
provided in Section 4, respectively.

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

Bibliography

[1] D2.1: Initial design of 5G-CORAL Edge and Fog computing system, 5G CORAL Project, June
2018.

[2] ETSI, “Mobile Edge Computing (MEC); Framework and Reference Architecture,” European
Telecommunications Standards Institute, GS MEC 003, Mar 2016.

[3] ETSI, “Multi-access Edge Computing (MEC); General principles for MEC Service APIs,”
European Telecommunications Standards Institute, GS MEC 009, Jan 2019.

[4] ETSI, “Mobile Edge Computing (MEC); Mobile Edge Platform Application Enablement,”
European Telecommunications Standards Institute, GS MEC 011, Jul 2017.

[5] D3.1: Initial design of 5G-CORAL orchestration and control system, 5G CORAL Project, June
2018.

[6] ETSI GS NFV-IFA 008 V3.2.1, April 2019
[7] https://psutil.readthedocs.io/en/latest/ (last accessed 2019/05/10)
[8] https://github.com/prometheus/node_exporter (last accessed 2019/05/10)
[9] https://docs.docker.com/engine/api/v1.37/#operation/ContainerInspect (last accessed

2019/05/10)
[10] https://docs.docker.com/engine/api/v1.37/#operation/ContainerStats (last accessed

2019/05/10)
[11] https://prometheus.io/docs/instrumenting/exporters/ (last accessed 2019/05/10)
[12] http://cassandra.apache.org/ (last accessed 2019/05/06)
[13] https://cloud.google.com/bigtable/ (last accessed 2019/05/06)
[14] http://druid.io/ (last accessed 2019/05/06)
[15] https://www.mongodb.com/ (last accessed 2019/05/06)
[16] https://www.project-voldemort.com/voldemort/ (last accessed 2019/05/06)
[17] http://zenoh.io/download/pdf/zenoh.pdf (last accessed 2019/05/10)
[18] https://tools.ietf.org/html/rfc3986 (last accessed 2019/05/10)
[19] https://github.com/confluentinc/kafka-rest (last accessed 2019/05/10)
[20] https://docs.confluent.io/current/connect/references/restapi.html (last accessed

2019/05/10)
[21] https://hackernoon.com/supercharging-kafka-enable-realtime-web-streaming-by-adding-

pushpin-fd62a9809d94 (last accessed 2019/05/10)
[22] http://www.ros.org/ (last accessed 2019/05/10)
[23] https://www.wowza.com/products/streaming-engine
[24] O. Liberg, M. Sundberg, E. Wang, J. Bergman and J. Sachs, Cellular Internet of Things:

Technologies, Standards, and Performance, Academic Press, 2018
[25] 3GPP, “Study on new radio access technology; Radio access architecture and interfaces

(Release 14)”, TR 38.801, March 2017.
[26] D4.1 5G-CORAL testbed definition, integration and demonstration plans, 5G CORAL

Project.
[27] ETSI EN 302 637-2 v1.3.1, September 2014
[28] ETSI EN 302 637-3 v1.2.1, September 2014
[29] https://azure.microsoft.com/en-us/
[30] https://www.consul.io/
[31] https://aws.amazon.com/ec2/?nc1=f_ls
[32] https://www.openstack.org/
[33] https://cloud.google.com/container-engine/?hl=es
[34] https://kubernetes.io/
[35] https://mesosphere.github.io/marathon/
[36] https://www.joyent.com/
[37] https://kafka.apache.org/documentation/
[38] https://softwaremill.com/kafka-with-selective-acknowledgments-performance/
[39] https://snapshot.raintank.io/dashboard/snapshot/ZNHUfxvjLWF1tG8KR4vFsHttBZF037o

0?orgId=2

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

[40] https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-
second-three-cheap-machines

[41] D3.2: Refined design of 5G-CORAL orchestration and control system and future directions,
5G CORAL Project, June 2019

[42] D1.1 5G CORAL Initial system design, use cases, and requirements. 5G CORAL Project.
[43] What is the Confluent Platform?: https://docs.confluent.io/1.0/platform.html (last accessed

2019/05/30)
[44] https://softwaremill.com/mqperf/
[45] https://snapshot.raintank.io/dashboard/snapshot/WKBeTn44tM8J71GCJW4KGSfv7bM

ASMLR?orgId=2

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

7 Appendix: PoC service data models
This appendix contains data models specified in JSON schemas for the messages used in the EFS
services provided by some of the PoCs.

7.1 Connected cars
The Connected cars PoC make use of the CAM and DENM messages defined in ETSI EN 302 637-
2 and ETSI EN 302 637-3.

7.1.1 CAM – Cooperative Awareness Message
{
 "$schema": "http://json-schema.org/schema#",
 "id": "jsonschema://it.azcom.RoadSafetyClient.schemas.CAM.json",
 "title": "CAM",
 "description": "CAM JSON representation",
 "version": "1",
 "type": "object",
 "properties": {
 "header": {
 "type": "object",
 "properties": {
 "protocolVersion": {
 "type": "number",
 "enum": [1]
 },
 "messageID": {
 "type": "number",
 "enum": [2],
 "description": "Accept ONLY 2, i.e. CAM"
 },
 "stationID": {
 "type": "number",
 "minimum": 0,
 "maximum": 4294967295
 }
 },
 "required": ["protocolVersion", "messageID", "stationID"]
 },
 "cam": {
 "type": "object",
 "properties": {
 "generationDeltaTime": {
 "type": "number",
 "minimum": 0,
 "maximum": 65535,
 "description": "Time corresponding to the time of the reference position in
the CAM, considered as time of the CAM generation. The value of the DE shall be wrapped
to 65 536. This value shall be set as the remainder of the corresponding value of
TimestampIts divided by 65 536 as below:\ngenerationDeltaTime = TimestampIts mod 65
536\nTimestampIts represents an integer value in milliseconds since 2004-01-
01T00:00:00:000Z as defined in ETSI TS 102 894-2 [2]"
 },
 "camParameters": {
 "type": "object",
 "properties": {
 "basicContainer": {
 "type": "object",
 "properties": {
 "stationType": {
 "type": "number",
 "enum": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15],
 "description":
"0=Unknown\n1=Pedestrian\n2=Cyclist\n3=Moped\n4=Motorcycle\n5=Passenger
car\n6=Bus\n7=Light truck\n8=Heavy truck\n9=Trailer\n10=Special
vehicles\n11=Tram\n15=Road Side Unit"
 },
 "referencePosition": {
 "type": "object",
 "properties": {

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

 "latitude": {
 "type": "number",
 "description": "Unit: 0,1 microdegree\n900000001 if unavailable",
 "minimum": -900000000,
 "maximum": 900000001
 },
 "longitude": {
 "type": "number",
 "description": "Unit: 0,1 microdegree\n1800000001 if unavailable",
 "minimum": -1800000000,
 "maximum": 1800000001
 },
 "positionConfidenceEllipse": {
 "type": "object",
 "properties": {
 "semiMajorConfidence": {
 "type": "number",
 "description": "Unit: 1 centimetre\n4095 if unavailable",
 "minimum": 0,
 "maximum": 4095
 },
 "semiMinorConfidence": {
 "type": "number",
 "description": "Unit: 1 centimetre\n4095 if unavailable",
 "minimum": 0,
 "maximum": 4095
 },
 "semiMajorOrientation": {
 "type": "number",
 "description": "Unit: 0,1 degree\n3601 if unavailable",
 "minimum": 0,
 "maximum": 3601
 }
 }
 },
 "altitude": {
 "type": "object",
 "properties": {
 "altitudeValue": {
 "type": "number",
 "minimum": -100000,
 "maximum": 800001
 },
 "altitudeConfidence": {
 "type": "string",
 "enum": ["alt-000-01", "alt-000-02", "alt-000-05", "alt-000-
10", "alt-000-20", "alt-000-50", "alt-001-00", "alt-002-00", "alt-005-00", "alt-010-00",
"alt-020-00", "alt-050-00", "alt-100-00", "alt-200-00", "outOfRange", "unavailable"]
 }
 }
 }
 },
 "required": ["latitude", "longitude"]
 }
 },
 "required": ["stationType", "referencePosition"]
 },
 "highFrequencyContainer": {
 "type": "object",
 "properties": {
 "basicVehicleContainerHighFrequency": {
 "type": "object",
 "properties": {
 "heading": {
 "type": "object",
 "properties": {
 "headingValue": {
 "type": "number",
 "minimum": 0,
 "maximum": 3601,
 "description": "Unit: 0,1 degree\n3601 if unavailable"
 },
 "headingConfidence": {
 "type": "number",

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

 "minimum": 1,
 "maximum": 127,
 "description": "Unit: 0,1 degree\n126 if out of range\n127 if
unavailable"
 }
 }
 },
 "speed": {
 "type": "object",
 "properties": {
 "speedValue": {
 "type": "number",
 "minimum": 0,
 "maximum": 16383,
 "description": "Unit: 0,01 m/s\n16383 if unavailable"
 },
 "speedConfidence": {
 "type": "number",
 "minimum": 1,
 "maximum": 127,
 "description": "1 cm/s\n126 if out of range\n127 if
unavailable"
 }
 }
 },
 "driveDirection": {
 "type": "string",
 "enum": ["forward", "backward", "unavailable"]
 },
 "vehicleLength": {
 "type": "object",
 "properties": {
 "vehicleLengthValue": {
 "type": "number",
 "minimum": 1,
 "maximum": 1023,
 "description": "0,1 metres\n1023 if unavailable"
 },
 "vehicleLengthConfidenceIndication": {
 "type": "string",
 "enum": ["noTrailerPresent", "trailerPresentWithKnownLength",
"trailerPresentWithUnknownLength", "trailerPresenceIsUnknown", "unavailable"]
 }
 }
 },
 "vehicleWidth": {
 "type": "number",
 "minimum": 1,
 "maximum": 62,
 "description": "0,1 metres\n62 if unavailable"
 },
 "longitudinalAcceleration": {
 "type": "object",
 "properties": {
 "longitudinalAccelerationValue": {
 "type": "number",
 "minimum": -160,
 "maximum": 161,
 "description": "Unit: 0,1 m/s2\n161 if unavailable"
 },
 "longitudinalAccelerationConfidence": {
 "type": "number",
 "minimum": 0,
 "maximum": 102,
 "description": "Unit: 0,1 m/s2\n101 if out of range\n102 if
not available"
 }
 }
 },
 "curvature": {
 "type": "object",
 "properties": {
 "curvatureValue": {
 "type": "number",

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

 "minimum": -30000,
 "maximum": 30001,
 "description": "1 over 30 000 metres\n30001 if unavailable"
 },
 "curvatureConfidence": {
 "type": "string",
 "enum": ["onePerMeter-0-00002", "onePerMeter-0-0001",
"onePerMeter-0-0005", "onePerMeter-0-002", "onePerMeter-0-01", "onePerMeter-0-1",
"outOfRange", "unavailable"]
 }
 }
 },
 "curvatureCalculationMode": {
 "type": "string",
 "enum": ["yawRateUsed", "yawRateNotUsed", "unavailable"]
 },
 "yawRate": {
 "type": "object",
 "properties": {
 "yawRateValue": {
 "type": "number",
 "minimum": -32766,
 "maximum": 32767,
 "description": "0,01 degree per second\n32767 if unavailable"
 },
 "yawRateConfidence": {
 "type": "string",
 "enum": ["degSec-000-01", "degSec-000-05", "degSec-000-10",
"degSec-001-00", "degSec-005-00", "degSec-010-00", "degSec-100-00", "outOfRange",
"unavailable"]
 }
 }
 },
 "lateralAcceleration": {
 "type": "object",
 "properties": {
 "lateralAccelerationValue": {
 "type": "number",
 "minimum": -160,
 "maximum": 161,
 "description": "Unit: 0,1 m/s2\n161 if unavailable"
 },
 "lateralAccelerationConfidence": {
 "type": "number",
 "minimum": 0,
 "maximum": 102,
 "description": "Unit: 0,1 m/s2\n101 if out of range\n102 if
not available"
 }
 }
 },
 "verticalAcceleration": {
 "type": "object",
 "properties": {
 "verticalAccelerationValue": {
 "type": "number",
 "minimum": -160,
 "maximum": 161,
 "description": "Unit: 0,1 m/s2\n161 if unavailable"
 },
 "verticalAccelerationConfidence": {
 "type": "number",
 "minimum": 0,
 "maximum": 102,
 "description": "Unit: 0,1 m/s2\n101 if out of range\n102 if
not available"
 }
 }
 }
 }
 }
 },
 "required": ["basicVehicleContainerHighFrequency"]
 }

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

 },
 "required": ["basicContainer", "highFrequencyContainer"]
 }
 },
 "required": ["generationDeltaTime", "camParameters"]
 }
 },
 "required": ["header", "cam"]
}

7.1.2 DENM – Decentralised Environmental Notification Message
{
 "$schema": "http://json-schema.org/schema#",
 "id": "jsonschema://it.azcom.RoadSafetyClient.schemas.DENM.json",
 "title": "DENM",
 "description": "DENM JSON representation",
 "version": "1",
 "type": "object",
 "properties": {
 "header": {
 "type": "object",
 "properties": {
 "protocolVersion": {
 "type": "number",
 "enum": [1]
 },
 "messageID": {
 "type": "number",
 "enum": [1],
 "description": "Accept ONLY 1, i.e. DENM"
 },
 "stationID": {
 "type": "number",
 "minimum": 0,
 "maximum": 4294967295
 }
 },
 "required": ["protocolVersion", "messageID", "stationID"]
 },
 "denm": {
 "type": "object",
 "properties":{
 "management": {
 "type": "object",
 "properties": {
 "actionID": {
 "type": "object",
 "properties": {
 "originatingStationID": {
 "type": "number",
 "minimum": 0,
 "maximum": 4294967295
 },
 "sequenceNumber": {
 "type": "number",
 "minimum": 0,
 "maximum": 65535
 }
 }
 },
 "detectionTime": {
 "type": "number",
 "minimum": 0,
 "maximum": 4398046511103
 },
 "referenceTime": {
 "type": "number",
 "minimum": 0,
 "maximum": 4398046511103
 },
 "termination": {
 "type": "string",
 "enum": ["isCancellation", "isNegation"]

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

 },
 "eventPosition": {
 "type": "object",
 "properties": {
 "latitude": {
 "type": "number",
 "description": "Unit: 0,1 microdegree\n900000001 if unavailable",
 "minimum": -900000000,
 "maximum": 900000001
 },
 "longitude": {
 "type": "number",
 "description": "Unit: 0,1 microdegree\n1800000001 if unavailable",
 "minimum": -1800000000,
 "maximum": 1800000001
 },
 "positionConfidenceEllipse": {
 "type": "object",
 "properties": {
 "semiMajorConfidence": {
 "type": "number",
 "description": "Unit: 1 centimetre\n4095 if unavailable",
 "minimum": 0,
 "maximum": 4095
 },
 "semiMinorConfidence": {
 "type": "number",
 "description": "Unit: 1 centimetre\n4095 if unavailable",
 "minimum": 0,
 "maximum": 4095
 },
 "semiMajorOrientation": {
 "type": "number",
 "description": "Unit: 0,1 degree\n3601 if unavailable",
 "minimum": 0,
 "maximum": 3601
 }
 }
 },
 "altitude": {
 "type": "object",
 "properties": {
 "altitudeValue": {
 "type": "number",
 "minimum": -100000,
 "maximum": 800001
 },
 "altitudeConfidence": {
 "type": "string",
 "enum": ["alt-000-01", "alt-000-02", "alt-000-05", "alt-000-10",
"alt-000-20", "alt-000-50", "alt-001-00", "alt-002-00", "alt-005-00", "alt-010-00",
"alt-020-00", "alt-050-00", "alt-100-00", "alt-200-00", "outOfRange", "unavailable"]
 }
 }
 }
 }
 },
 "relevanceDistance": {
 "type": "string",
 "enum": ["lessThan50m", "lessThan100m", "lessThan200m", "lessThan500m",
"lessThan1000m", "lessThan5km", "lessThan10km", "over10km"]
 },
 "relevanceTrafficDirection": {
 "type": "string",
 "enum": ["allTrafficDirections", "upstreamTraffic", "downstreamTraffic",
"oppositeTraffic"]
 },
 "validityDuration": {
 "type": "number",
 "description": "Unit: 1 second",
 "minimum": 0,
 "maximum": 86400
 },
 "transmissionInterval": {

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

 "type": "number",
 "description": "Unit: 1 Millisecond",
 "minimum": 0,
 "maximum": 10000
 },
 "stationType": {
 "type": "number",
 "enum": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15],
 "description":
"0=Unknown\n1=Pedestrian\n2=Cyclist\n3=Moped\n4=Motorcycle\n5=Passenger
car\n6=Bus\n7=Light truck\n8=Heavy truck\n9=Trailer\n10=Special
vehicles\n11=Tram\n15=Road Side Unit"
 }
 }
 },
 "situation": {
 "type": "object",
 "properties": {
 "informationQuality": {
 "type": "number",
 "minimum": 0,
 "maximum": 7,
 "description": "0=Unavailable\n1=Lowest\n7=Highest"
 },
 "eventType": {
 "type": "object",
 "properties": {
 "causeCode": {
 "type": "number",
 "enum": [0, 1, 2, 3, 6, 9, 10, 11, 12, 14, 15, 17, 18, 19, 26, 27, 91,
92, 93, 94, 95, 96, 97, 98, 99],
 "description": "0=reserved\n1=traffic
condition\n2=accident\n3=roadworks\n6=Adverse Weather Condition Adhesion\n9=hazardous
Location Surface Condition\n10=hazardous Location Obstacle On The Road\n11=hazardous
Location Animal On The Road\n12=human Presence On The Road\n14=wrong Way
Driving\n15=rescue And Recovery Work In Progress\n17=adverse Weather Condition Extreme
Weather Condition\n18=adverse Weather Condition Visibility\n19=adverse Weather Condition
Precipitation\n26=slow Vehicle\n27=dangerous End Of Queue\n91=vehicle Breakdown\n92=post
Crash\n93=human Problem\n94=stationary Vehicle\n95=emergency Vehicle
Approaching\n96=hazardous Location Dangerous Curve\n97=collision Risk\n98=signal
Violation\n99=dangerous Situation"
 },
 "subCauseCode": {
 "type": "number",
 "minimum": 0,
 "maximum": 255,
 "description": "Type of sub cause of a detected event as defined in
ETSI EN 302 637-3 [i.3]"
 }
 }
 }
 }
 }
 },
 "required": ["management", "situation"]
 }
 },
 "required": ["header", "denm"]
}

7.1.3 OBU Configuration parameters

The connected car PoC defines OBU configuration parameters as shown in Table 7-1.

TABLE 7-1: OBU CONFIGURATION PARAMETER

Parameter name Description
require_mobile_data_
connection

0 = No mobile data request is performed
1 = A mobile data connection is performed

wifi_enabled 0 = WiFi is disabled; 1 = WiFi is enabled
wifi_ssid SSID of the WiFi AP to connect to

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

wifi_password Password of the WiFi AP
mqtt_broker_host[] Host of the MQTT Broker
mqtt_broker_port[] Port of the MQTT Broker
mqtt_broker_username[] MQTT Broker username
mqtt_broker_password[] MQTT Broker password

mqtt_broker_use_ssl[] 0 = SSL is not used ; 1 = SSL is used when
connecting to the MQTT Broker

mqtt_broker_cert_file[] Path to the PEM certificate file
mqtt_default_topic_name[] MQTT topic name
mqtt_default_qos[] MQTT QOS
mqtt_keep_alive[] MQTT keep alive
vehicle_length_cm The vehicle length in centimeters
vehicle_width_cm The vehicle width in centimeters

its_station_id
The ITS "stationID" field in the ITS PDU Header
Min: 0, Max: 4294967295
Set to -1 to randomly generate a stationID

its_station_type

The "stationType" field in the ITS PDU Header
0 = unknown
1 = pedestrian
2 = cyclist
3 = moped
4 = motorcycle
5 = passengerCar
6 = bus
7 = lightTruck
8 = heavyTruck
9 = trailer
10= specialVehicles
11= tram
15= roadSideUnit

its_vehicle_length_confidence_indication

The vehicleLengthConfidenceIndication field
inside the ITS VehicleLength
0 = noTrailerPresent
1 = trailerPresentWithKnownLength
2 = trailerPresentWithUnknownLength
3 = trailerPresenceIsUnknown
4 = unavailable

cam_max_generation_period_ms The maximum time between the generation of
two CAM messages (minimum rate)

cam_min_generation_period_ms The minimum time between the generation of
two CAM messages (maximum rate)

bt_enabled

Enable / disable the Bluetooth interface
This interface is used to communicate with a BT
device used as an HMI (such as a tablet)
1 = enabled
0 = disabled

bt_device_name

Set the name of the Bluetooth device. The
following placeholders can be used:
{{its_station_id}} - will be replaced by the
value of the its_station_id configuration
variable.

hmi_http_url Set the URL where to make POST requests with
the HMI JSON RPC data

hmi_http_user_agent User agent used for the HTTP HMI interface

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

hmi_http_request_timeout_s Timeout of the HTTP request

can_enabled

Enable / disable the OBD-II / CAN interface
Note: the CAN interface HAS to be enabled
even if loading OBD-II samples from the test
vector.
1 = enabled
0 = disabled

can_bitrate Bitrate of the CAN BUS
125000 or 500000

can_obdii_identifiers_bit_size

Size in bits of the CAN identifiers for the OBD
The options are the following:
11: 11-bit CAN ID
29: 29-bit CAN ID

can_interface CAN interface to be used for OBDII

can_high_freq_timer_period_ms Acquisition rate of high frequency parameters
from the OBD-II/CAN. e.g. vehicle speed.

can_read_vehicle_speed Set to 1 to enable the reading of the vehicle
speed. 0 otherwise.

can_read_mil_status Set to 1 to enable the detection of the MIL
(Malfunction Indicator Lamp). 0 otherwise.

messages_exchange_e2e_
latency_measurement_enable

Set to 1 to enable the E2E latency
measurement of the message exchange.
This will measure the time elapsed between the
transmission of a message and its reception
back on the same device.
This does not include the application overhead,
with the exception of the data exchanger (e.g.
MQTT client) and a minimum overhead
required to perform the measurement itself.

messages_exchange_e2e_
latency_measurement_logfile

The output file where to store the latency
measurements
The following placeholders can be used:
{{its_station_id}} - will be replaced by the
value of the its_station_id configuration
variable
{{current_timestamp}} - will be replaced by
the value of the current unix timestamp

app_collision_avoidance_enable Set to 1 if you want to enable the collision
avoidance algorithm

app_collision_avoidance_
detection_radius_m

Radius in meters of the threshold for the
collision avoidance.
i.e. if two vehicles come this close, a DENM is
generated

gnss_position_acquisition_rate_ms GNSS position acquisition rate in milliseconds

gnss_minimum_h_accuracy_for_fix Use horizontal accuracy threshold instead of
GNSS fix state.

7.2 Edge robotics
The Edge robotics PoC defines one message for WiFi monitoring as follows.

{
 "$schema": "http://json-schema.org/schema#",

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

 "id": "jsonschema://eu.5g-coral.Robotics.schemas.wifimonitor.json",
 "title": "wifimonitor",
 "description": "5GCORAL Robotics WiFi monitor message",
 "version": "1",
 "type": "object",
 "properties": {
 "host": {
 "type": "string",
 "description": "<node_id> - string? integer? mac address?"
 },
 "timestamp": {
 "type": "number",
 "description": "Absolute time in Unix Epoch time?"
 },
 "station": {
 "type": "string",
 "description": "MAC address of access point (ESSID?)"
 },
 "channel": {
 "type": "integer",
 "description": "WiFi channel number"
 },
 "signal": {
 "type": "number",
 "description": "Signal quality (RSSI?) in dBm"
 },
 "datarate": {
 "type": "number",
 "description": "Connection data rate (Mbps)"
 }
 },
 "required": ["host", "timestamp", "station", "channel", "signal", "datarate"]
}

7.3 IBeacon
The AR PoC uses one message for iBeacon coordinates as follows.

{
 "$schema": "http://json-schema.org/schema#",
 "id": "jsonschema://eu.5g-coral..schemas.ibeacon.json",
 "title": "ibeacon",
 "description": "5GCORAL ibeacon message",
 "version": "1",
 "type": "object",
 "properties": {
 "iBeacon_Addr": {
 "type": "string",
 "description": "MAC address"
 },
 "iBeacon_Region": {
 "type": "string",
 "description": "Region..."
 },
 "iBeacon_LiDAR_Coordinates": {
 "type": "object",
 "properties": {
 "X_Cod": {
 "type": "integer"
 },
 "Y_Cod": {
 "type": "integer"
 },
 "Z_Cod": {
 "type": "integer"
 }
 },
 "description": "LiDAR coordinates...",
 "required": ["X_Cod", "Y_Cod", "Z_Cod"]
 },
 "required": ["iBeacon_Addr", "iBeacon_Region", "iBeacon_LiDAR_Coordinates"]
 }
}

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

8 Appendix: Survey and analysis of SoA monitoring
frameworks.

In this section, we identify and discuss available monitoring tools that will be adopted in 5G-
CORAL. We can classify monitoring in three different categories: host monitoring, virtual machine
monitoring and container monitoring. In the following subsections, we describe each of these
categories in more details.

8.1 Host Monitoring
Python system and process utilities (psutil [7]), is a well-known tool to monitor hosts. It is a cross-
platform library for retrieving information on running processes and system utilization in Python. It
is useful mainly for system monitoring, profiling, limitation of process resources and the
management of running processes. It implements many functionalities offered by UNIX command
line tools such as: ps, top, lsof, netstat, ifconfig, who, df, kill, free, nice, ionice, iostat, iotop, uptime,
pidof, tty, taskset or pmap.

psutil, supports all well-known operating systems, such as Linux, Windows, macOS,
FreeBSD/OpenBSD/NetBSD, Sun Solaris, AIX. Additionally, psutil can retrieve information about
CPU, memory, disks, network, sensors, processes, users or boot time. Below, several examples to
execute this tool in a terminal are shown:

CPU times:

>>> import psutil
>>> psutil.cpu_times()
scputimes(user=17411.7, nice=77.99, system=3797.02, idle=51266.57,
iowait=732.58, irq=0.01, softirq=142.43, steal=0.0, guest=0.0, guest_nice=0.0)

CPU percentage:

>>> import psutil
>>> # blocking
>>> psutil.cpu_percent(interval=1)
2.0
>>> # non-blocking (percentage since last call)
>>> psutil.cpu_percent(interval=None)
2.9
>>> # blocking, per-cpu
>>> psutil.cpu_percent(interval=1, percpu=True)
[2.0, 1.0]

Memory:

>>> import psutil
>>> mem = psutil.virtual_memory()
>>> mem
svmem(total=10367352832, available=6472179712, percent=37.6, used=8186245120,
free=2181107712, active=4748992512, inactive=2758115328, buffers=790724608,
cached=3500347392, shared=787554304, slab=199348224)

Network interfaces:

>>> import psutil
>>> psutil.net_if_addrs()
{'lo': [snicaddr(family=<AddressFamily.AF_INET: 2>, address='127.0.0.1',
netmask='255.0.0.0', broadcast='127.0.0.1', ptp=None),

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

snicaddr(family=<AddressFamily.AF_INET6: 10>, address='::1',
netmask='ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff', broadcast=None, ptp=None),
snicaddr(family=<AddressFamily.AF_LINK: 17>, address='00:00:00:00:00:00',
netmask=None, broadcast='00:00:00:00:00:00', ptp=None)], 'wlan0':
[snicaddr(family=<AddressFamily.AF_INET: 2>, address='192.168.1.3',
netmask='255.255.255.0', broadcast='192.168.1.255', ptp=None),
snicaddr(family=<AddressFamily.AF_INET6: 10>,
address='fe80::c685:8ff:fe45:641%wlan0', netmask='ffff:ffff:ffff:ffff::',
broadcast=None, ptp=None), snicaddr(family=<AddressFamily.AF_LINK: 17>,
address='c4:85:08:45:06:41', netmask=None, broadcast='ff:ff:ff:ff:ff:ff',
ptp=None)]}

8.2 Virtual Machines Monitoring: Prometheus Node Exporter
To monitor a virtual machine, we chose Prometheus system and node exporter tool [8] to export
hardware and OS metrics exposed by *NIX kernels, written in GO with pluggable metric collectors,
supporting collectors for each operating system. Collectors are enabled by providing a --
collector.<name> flag and disabled by providing a --no-collector.<name> flag. Table 8-1,
contains the list of collectors available for Linux operating system, including a short description of
where the statistics are gathered.

TABLE 8-1: PROMETHEUS COLLECTORS FOR LINUX

Collector Description

arp Exposes ARP statistics from /proc/net/arp

bcache Exposes bcache statistics from /sys/fs/bcache/

bonding Exposes the number of configured and active slaves of Linux bonding interfaces.

boottime Exposes system boot time derived from the kern.boottime sysctl.

conntrack Shows conntrack statistics (does nothing if no /proc/sys/net/netfilter/ present).

cpu Exposes CPU statistics

diskstats Exposes disk I/O statistics.

edac Exposes error detection and correction statistics.

entropy Exposes available entropy.

exec Exposes execution statistics.

filefd Exposes file descriptor statistics from /proc/sys/fs/file-nr.

filesystem Exposes filesystem statistics, such as disk space used.

hwmon Expose hardware monitoring and sensor data from /sys/class/hwmon/

infiniband Exposes network statistics specific to InfiniBand and Intel OmniPath
configurations.

ipvs Exposes IPVS status from /proc/net/ip_vs and stats from /proc/net/ip_vs_stats.

loadavg Exposes load average.

mdadm Exposes statistics about devices in /proc/mdstat (does nothing if no
/proc/mdstat present).

meminfo Exposes memory statistics.

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

netclass Exposes network interface info from /sys/class/net/

netdev Exposes network interface statistics such as bytes transferred.

netstat Exposes network statistics from /proc/net/netstat. This is the same information as
netstat -s.

nfs Exposes NFS client statistics from /proc/net/rpc/nfs. This is the same information
as nfsstat -c.

nfsd Exposes NFS kernel server statistics from /proc/net/rpc/nfsd. This is the same
information as nfsstat -s.

sockstat Exposes various statistics from /proc/net/sockstat.

stat Exposes various statistics from /proc/stat. This includes boot time, forks and
interrupts.

textfile Exposes statistics read from local disk. The --collector.textfile.directory flag must
be set.

time Exposes the current system time.

timex Exposes selected adjtimex(2) system call stats.

uname Exposes system information as provided by the uname system call.

vmstat Exposes statistics from /proc/vmstat.

wifi Exposes WiFi device and station statistics.

xfs Exposes XFS runtime statistics.

zfs Exposes ZFS performance statistics.

Prometheus WMI exporter is available for Windows machines, which leverages Windows
Management Instrumentation. Table 8-2: lists the different collectors supported to gather metrics.

TABLE 8-2: PROMETHEUS COLLECTORS FOR WINDOWS

Collector Description

ad Win32_PerfRawData_DirectoryServices_DirectoryServices Active Directory

cpu Win32_PerfRawData_PerfOS_Processor metrics (cpu usage)

cs Win32_ComputerSystem metrics (system properties, num cpus/total memory)

dns Win32_PerfRawData_DNS_DNS metrics (DNS Server)

hyperv Performance counters for Hyper-V hosts

iis Win32_PerfRawData_W3SVC_WebService IIS metrics

logical_disk Win32_PerfRawData_PerfDisk_LogicalDisk metrics (disk I/O)

net Win32_PerfRawData_Tcpip_NetworkInterface metrics (network interface I/O)

msmq Win32_PerfRawData_MSMQ_MSMQQueue metrics (MSMQ/journal count)

mssql various SQL Server Performance Objects metrics

os Win32_OperatingSystem metrics (memory, processes, users)

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

process Win32_PerfRawData_PerfProc_Process metrics (per-process stats)

service Win32_Service metrics (service states)

system Win32_PerfRawData_PerfOS_System metrics (system calls)

tcp Win32_PerfRawData_Tcpip_TCPv4 metrics (tcp connections)

textfile Read prometheus metrics from a text file

vmware Performance counters installed by the Vmware Guest agent

8.3 Containers Monitoring
This subsection analyses how different container platforms expose metrics that can be later
extracted. Docker, LXD and LXC container platforms/technologies will be further analyzed in the
following subsections.

8.3.1 Docker Monitoring

Docker platform is the first section to be analysed. Docker exposes mainly two commands and an
API that additional monitoring metrics.

The first command is docker inspect which exposes low-level information on Docker Objects. Some
of the commands main capabilities can be found in Table 8-3: And Table 8-4:. Docker inspect
command is capable of exposing low-level information from instantiated docker containers and
docker images.

TABLE 8-3: DOCKER INSPECT LOW-LEVEL CONTAINER IMAGE PROPERTIES

Low-level Container
Image properties

Description

D This is the unique identifier of the image.

Parent Represents the link to its parent image identifier. It is very common for
an image to have a defined parent.

Container Represents the container identifier stored in the image metadata. The
container identifier is a temporary container created when the image
was built. Docker will create a container during the image construction
process, and this identifier is stored in the image metadata.

ContainerConfig Represents the temporary container configuration created when the
image is built

DockerVersion Describes the version of Docker used to create the image. This value is
specially useful to check backwards compatibility between Docker
versions.

VirtualSize Describes the container image size reported in bytes.

TABLE 8-4: DOCKER INSPECT LOW-LEVEL CONTAINER INSTANCE PROPERTIES

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

Low-level Container
Instance properties

Description

D Describes the container unique identifier.

State Represents the container state, which can be further described with
multiple status flags and the process id of the container.

Image Describes the image from which this container was instantiated.

NetworkSettings The network environment for the container and therefore for the
application(s) within the image.

LogPath Represents the system path to the container's log file.

RestartCount Value that keeps track of the number of times a container has been
restarted. This value is the key value used when defining a
container's restart policy.

Name Represents the name defined by the user to the container.

Volumes Defines the volume mapping between the host system and the container.

HostConfig Set of configuration parameters which describe how the container will
interact with the host system. These parameters include CPU and
memory limits, networking parameters, and/or device driver paths.

Config Represents the runtime configuration options set when the docker run
command is executed.

The second command is docker stats, which displays live stream resource usage statistics of a set
of containers. The next figure shows an example of the output of the command.

FIGURE 8-1: DOCKER STAT OUTPUT

The data and metrics which can be retrieved by the docker stats command is explained in Table
8-5.

TABLE 8-5: DOCKER STATS DATA AND METRIC FIELDS

Placeholder Description
.Container Container name or ID (user input)

.Name Container name

.ID Container ID

.CPUPerc CPU percentage

.MemUsage Memory usage

.NetIO Network IO

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

.BlockIO Block IO

.MemPerc Memory percentage (Not available on Windows)

.PIDs Number of PIDs (Not available on Windows)

Finally, docker provides and API to interact with the running Docker daemon (called the Docker
Engine API) (as well as SDKs for Go and Python). To inspect a container (docker inspect equivalent)
[9]: GET /containers/{id}json. Also, to retrieve stats [10]: GET /container/{id}/stats

8.3.2 LXD Monitoring

LXD provides monitoring for the containers using a REST API running on the host node (GET
/1.0/containers/<name>/state. This API exposes useful information about and instantiated
container. The information which this API allows to gather is the following:

• Status of the container
• CPU usage (unclear the unit used)
• Disk usage for each mount (in bytes)
• RAM usage [peak, current, spaw, peak swap] (in bytes)
• Network interfaces: addresses, counters, MAC address, MTU, hostname, state, type.
• PID
• Number of processes running in the container.

Figure 8-2 showcases how the LXD API can further be accessed using Python (currently using pylxd
in fog05):

FIGURE 8-2: LXD API CONSUMPTION WITH PYTHON

8.3.3 LXC Monitoring

There are third party exporters and integration tools for LXC. The LXC exporter, located in
https://github.com/SebastianCzoch/lxc-exporter, is able to monitor the following information
described in Figure 8-3.

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

FIGURE 8-3: LXC MONITORING EXPORTER

In addition, LXC default API "lxc info NAME" exposes: total used CPU time; disk usage (for root
device); memory usage (current and peak); swap usage (current and peak); network usage
(bytes/packets sent/received)

Data gathered from LXC default API can easily be polled and sent to Prometheus platform.
However, according to LXC developers, it is quite expensive to extract data from LXC default API
consequently it is not advised to fetch data very often as it could cause additional load in the
system.

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

9 Appendix: Zenoh and NATS comparison
TABLE 9-1: ZENOH AND NATS COMPARISON

Protocol Synch/Async Pub/Sub
reliability

Request
Reply

Load
Balancing

Topic structure APIs

NATS Yes At most
once, at
least once

Yes Queue
subscription
that
balances
over
subscribers

Tree URI bases
with wildcards:

• * single
token
match

• >
multiple
tokent
match
at end
of topic
name

Go,
Nodejs,
Ruby,
Java,
C,
C#

Zenoh Yes Netx-
hop, First-
to-last
broker,
End-to-En

All of this
at most
once

Yes Load
balancing
between
brokers

Tree URI based
with wildcards

• ? single
char

• * single
token

• **
multiple
tokens

Java,
OCaml,
Pyhton,
C

9.1 Kafka Brokered Performance
In Figure 9-1, RabbitMQ’s latency is constant, while ActiveMQ and Kafka are linear. What’s
unclear is the apparent disconnect between their throughput and mean latencies.

FIGURE 9-1: LATENCY VS MESSAGES ON RESTFUL PROTOCOLS

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

9.2 Apache Kafka
With synchronous replication in Figure 9-2 [38], a single-node single-thread achieves about
2391 msgs/s, and the best result is 54494 msgs/s with 25 sending and receiving threads and 6
client sender/receiver nodes.

FIGURE 9-2: MESSAGES PER SECONDS VS THREADS ON APACHE KAFKA

In Figure 9-3 [39], the receive rates are very stable. The 95th percentile of the processing
latency is also a stable 47 ms. Also, the send latencies are around 48 ms.

FIGURE 9-3: MAIN MEASUREMENTS ABOUT APACHE KAFKA

Above 6 nodes adding more client threads doesn't increase performance; that's possibly the most
we can get out of a 3-node Kafka cluster. However, Kafka has a big scalability potential, by

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

adding nodes and increasing the number of partitions. We could also scale up the batches: by
using batches of up to 100, we can achieve 102170 msgs/s with 4 client nodes, and with batches
of up to 1000, a whopping 141250 msgs/s. However, the processing latency then increases to
443 ms.

According to analysis of protocol and comparison with others[40], it has been added two more
main results which are show in Figure 9-4 and Figure 9-5.

FIGURE 9-4: MBPS VS PAYLOAD ON APACHE KAFKA

FIGURE 9-5: MESSAGES PER SECONDS VS PAYLOAD ON APACHE KAFKA

9.3 EFS service platform data storage engine
The EFS service platform provides two main tasks: data storage to collect information from
applications, functions and edge and fog resources; and the communication protocol to provide or
gather this information. First, this subsection outlines options for the EFS service platform data

0

20

40

60

80

100

120

140

160

10 100 1000 10000 100000

M
bp

s

Payload syze (bytes)

Throughput

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10 100 1000 10000 100000

M
es

sa
ge

s
pe

r
se

co
nd

s

Payload size (bytes)

Messages

D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions

H2020-761586

storage engine. Next, it complements the analysis of messaging protocols provided in deliverable
D2.1 [1] with two additional protocols namely Zenoh and RESTful publish-subscribe. This is then
followed with 5G-CORAL final conclusions regarding the messaging protocols of choice.

After having described the characteristics of the EFS platform, where edge and fog devices form
the substrate of the system, the data storage system that suits within the EFS service platform is a
distributed one. In this kind of storage systems, the information is stored in more than one node,
probably having replicas of the information spread over some nodes. One of the most common
distributed databases are non-relational ones. Depending on the implementation of the distributed
database, it may expose from key-value schema to more complex queries.

Regarding the design of this type of storage systems, it is relevant to point out the CAP theorem,
which states that a distributed data store will approve two out of three features, named
consistency, availability and partition tolerance. The last one means that the system will continue
running correctly even when there are isolated network failures. In a distributed system, this is a
key feature. Regarding consistency, all nodes have the same view of the data at the same time.
Finally, availability, aiming to keep the system operational all the time, regardless the state of
any node of the cluster.

Examples of distributed non-relational databases: Apache Cassandra [12]; Bigtable [13]; Druid
[14]; MongoDB [15]; Voldemort [16].

