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Abstract  

This deliverable provides the final release of the 5G-CORAL Edge and Fog Computing System 
(EFS) architecture and design. The deliverable extends the initial EFS design [1] as follows: (1) 
describing the EFS workflows and the EFS data models; (2) extending the analysis of EFS messaging 
protocols to incorporate Zenoh and RESTful publish/subscribe messaging; (3) verifying the 
feasibility of EFS reference design through implementation and experimentation of seven different 
use cases and (4) a study on EFS resource monitoring.   
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Executive Summary  
One of the key targets of 5G-CORAL is to provide the ultra-low latency requirements.  Especially, 
when the end users with smart devices desire a high-quality service. In order to achieve this 
ambitious target, 5G-CORAL system utilize the distributed Edge and Fog Computing System (EFS) 
which has networking, computing, and storage capabilities closer to the end users. In this 
deliverable, the final version of an integrated and virtualized networking and computing solution 
adopting virtualized functions, user and third-party applications, and context-aware services are 
blended together on top of EFS.  In this work, we outline the main features of final release of the 
5G-CORAL EFS architecture and design.  In the final EFS, the services for collection, aggregation, 
and publishing, use of radio and network context information applications, and virtualized functions 
are pointed out. Also, refined EFS applications using EFS services from multiple Radio Access 
Technologies (RAT) and the transport and core networks are developed to improve network KPIs 
and user QoE.  In Summary, this deliverable addresses the following aspects of the 5G-CORAL 
EFS: the refined EFS design, EFS service platform and messaging, the refined EFS design for the 
5G-CORAL use-cases and the EFS monitoring. The following highlights the main achievements in 
this deliverable:  

• Data models for the EFS APIs. In particular, a refined description of EFS internal and 
external interfaces (E1-E4). Also, E2 interface provides the connectivity enabling 
distributing and sharing service data between EFS functions and EFS applications via EFS 
service platform. 

• A MQTT-based reference design of EFS service platform is presented. 
• A study of Zenoh, NATS, DDS, MQTT and Kafka messaging. The results show that Zenoh 

and NATS outperform other protocols. These two are recommended to consider if high 
performance is needed.  

• EFS workflows for service discovery and integration especially when a service of a 
deployed application/function is utilised by another application/function. 

• EFS implementations for the 5G-CORAL use cases. The performance is evaluated in each 
use case by experiments. The experiment results show the benefits of adopting the 5G-
CORAL design in service delivery, computation offload, and bandwidth reduction and 
improve multi-RAT support. Also, the association between the EFS and OCS is investigated 
for the use cases.  

• EFS heterogeneous resource monitoring in the context of 5G-CORAL is also addressed. An 
open-source tool is used to preform resource monitoring which fits into the EFS design.  

• EFS service platform data storage engine design using distributed databases that are 
consistency, availability and partition tolerance. 
 

Future work is anticipated to focus more extensive study for a large-scale EFS deployment 
integrating multiple use cases running on the same EFS, which is closer to real business deployment. 
Another future direction can be the possibility to incorporate the capabilities of machine learning, 
AI techniques and big data handling into EFS, as well as the interactions and extensions with Cloud. 
This would require a further extension of the EFS design and make the EFS more intelligent and 
optimized.  
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1 Introduction  
In contrast to previous mobile communication technologies, 5G promises to support a variety of 
emerging applications including Mixed (Augmented/Virtual) Reality (AR/VR), Cloud Robotics, 
Connected Vehicles and several Internet-of-Things (IoT) use cases; some of which require very low 
end-to-end latency (~0.1-20 milliseconds). This ultra-low latency requirement is extremely 
challenging to deliver through a purely centralized architecture. 

5G-CORAL addresses the ultra-low latency requirement by leveraging the concept of “intelligent 
edge” to provide networking, computing, and storage capabilities closer to the end users. This is 
realized through an integrated and virtualized networking and computing solution where 
virtualized functions, context-aware services, and user and third-party applications are blended 
together to offer enhanced connectivity and better quality of experience. The 5G-CORAL system 
constitutes two major building blocks, namely (i) the Edge and Fog Computing System (EFS) 
subsuming all the edge and fog computing substrates offered as a shared hosting environment for 
virtualized functions, services, and applications; and (ii) the Orchestration and Control System 
(OCS) responsible for managing and controlling the EFS, including its interworking with other (non-
EFS) domains (e.g., transport and core networks, distant clouds, etc.).  

The first deliverable of WP2 [1] provided the initial design of the 5G-CORAL EFS and addressed 
the following aspects: i) the EFS requirements; ii) the EFS architecture including internal and external 
interfaces; iii) a comprehensive survey, analysis and selection of the EFS Service platform 
messaging/communication protocols; and iv) a baseline EFS design for the 5G-CORAL use cases.  

This second deliverable provides a refinement of the 5G-CORAL EFS design by addressing the 
gaps identified in [1] as follows: (1) Describing the EFS workflows and the EFS data models; (2) 
Extending the analysis of EFS messaging protocols to incorporate Zenoh and RESTful 
publish/subscribe messaging; (3) Verifying the feasibility of EFS reference design through 
implementation and experimentation of seven different use cases and (4) a study on EFS resource 
monitoring. The rest of the deliverable is structured as follows: 

Section 2 presents an evolution of the 5G-CORAL EFS design that was initially presented in [1] 
particularly addressing, the EFS workflows and the EFS data models. 

Section 3 presents a refinement of the survey and the analysis of the EFS messaging/communication 
protocols. The refined analysis extends the study in [1] by incorporating Zenoh and RESTful 
publish/subscribe as potential EFS messaging protocols.  

Section 4 presents the refined EFS design and implementation for each of the 5G-CORAL use 
cases, namely: Robotics, Virtual Reality, Augmented Reality, Multi-RAT IoT, Connected Cars, High-
speed Train, and SD-WAN. The refined design addresses the following aspects, per use case, 
namely: (1) Decomposition of the use case(s) into their constituent EFS entities and their respective 
interworking(s); (2) Functional validation and experimental verification; (3) Conclusions and future 
directions. 

Section 5 presents a study of EFS resource monitoring and highlights the following key aspects: 
analysis of state-of-the-art (SoA) monitoring framework, mapping the monitoring approaches to 
5G-CORAL and EFS design. 

Finally, in Section 6, a conclusion is presented summarizing the findings of this deliverable, as well 
as setting the prospects for future directions. 
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2 Refined EFS Design  
This section presents an evolution of the 5G-CORAL EFS design that was initially presented in [1] 
particularly addressing, the EFS workflows and the EFS data models. First, we provide an overview 
of the 5G-CORAL EFS components and the corresponding interfaces in section 2.1. Second, we 
present the EFS E2 interface and data models in section 2.2. Finally, we present a description of 
the EFS workflows in section 2.3.         

2.1 Overview of 5G-CORAL architecture and EFS components 

 
FIGURE 2-1: 5G-CORAL SYSTEM ARCHITECTURE 

Figure 2-1 presents the 5G-CORAL system architecture [42] composed of the following two sub-
systems, namely.   

• Edge and Fog Computing System (EFS): an EFS is a logical system subsuming Edge and 
Fog resources that belong to a single administrative domain. An EFS provides a service 
platform, functions and applications on top of the available resources and may interact 
with other domains’ EFSs.  

• Orchestration and Control System (OCS): an OCS is a logical system responsible for 
composing, controlling, managing, orchestrating and federating one or more EFS(s). An 
OCS comprises Virtualisation Infrastructure Managers (VIMs), EFS managers, and EFS 
orchestrators. An OCS may interact with other domains’ OCSs. 

The EFS constitutes the following components [1]. 

• EFS Virtualization Infrastructure (EFS-VI): The EFS virtualization infrastructure (EFS-VI) is 
the totality of the hardware and software components that build up the environment in 
which EFS entities (i.e. EFS applications, EFS functions and EFS service platform) are 
deployed, managed and executed. The EFS-VI is geographically distributed across 
several locations and composed of Fog nodes and Edge nodes. 
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• EFS entities, namely: EFS applications, EFS functions, the EFS service platform and their 
respective entity managers. An EFS entity is comprised by at least one atomic entity. An 
atomic entity is an unpartitionable computing task executed in the EFS.  

o EFS Function: A software entity comprised of at least one atomic entity deployed 
in EFS for networking infrastructure. 

o EFS Application: A software entity comprised of at least one atomic entity 
deployed in EFS for end users and third parties.  

o EFS Entity Managers: Analogous to the ETSI NFV element managers, the EFS 
entity managers are responsible for FCAPS management of the EFS service 
platform, Functions and Applications. This includes configuration management, 
fault management, Security management, accounting and collecting performance 
measurement results. 

o The EFS Service Platform: A logical data exchange platform constituting: (1) 
Data storage to keep the collected information from applications/functions and 
edge/fog resources. (2) Messaging/communication protocols to gather/provide 
information from/to applications/functions and edge/fog resources. 

2.1.1 EFS internal and external interfaces  

Table 2-1summarizes the EFS interfaces according to Figure 2-1. There are two categories of EFS 
interfaces namely internal and external interfaces. The former handles the message exchanges 
within the EFS while the later communicates with the non-EFS entities such as the OCS, the Operation 
Support System/Business Support System (OSS/BSS) and the Non-EFS 
applications/functions/resources. WP2’s refinement of the EFS design focused on the internal EFS 
interfaces, namely: E1, E2, E3 and E4.           

TABLE 2-1: EFS INTERFACES 

ID 
ETSI 

NFV/MEC 
ref. point 

Description 

E1 ETSI NFV: 
Nf-Vn 

This is the reference point between the EFS virtualisation infrastructure (EFS-VI) and 
the EFS entities, i.e. EFS applications, EFS functions, the EFS service platform and 
their respective entity managers.  

E2 ETSI MEC: 
Mp1 

This is the reference point between the EFS service platform and the following: EFS 
applications, EFS functions, EFS virtualisation infrastructure and the OCS.  

E3 ETSI MEC: 
Mm5 

This is the reference point between the EFS Service platform and the EFS Service 
platform entity manager.  

E4 ETSI MEC: 
Mm5 

This is the reference point between the EFS application/EFS functions and their 
respective entity managers.  

O1 ETSI NFV: 
Nf-Vi 

This is the reference point between the Virtual Infrastructure Manager (VIM) and 
the EFS virtualisation infrastructure (EFS-VI).  

O5 ETSI NFV: 
Ve-Vnfm-
Vnfm 

This is the reference point between EFS functions or applications and the EFS Service 
Platform Manager. 

O6 ETSI NFV: 
Ve-Vnfm-
em 

This is the reference point between the entity managers of functions, applications 
and EFS service platform and the EFS Service Platform Manager.  

T1 ETSI MEC: 
Mm2 

This is the reference point between the EFS service platform entity manger and the 
Operation Support System/Business Support System (OSS/BSS).   

T3 None This is the reference point between the EFS virtualisation infrastructure (EFS-VI) and 
the Operation Support System/Business Support System (OSS/BSS). ETSI NFV has 
an interface between NFVI and OSS/BSS, however, this interface is not named and 
is classified under “other references”  
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ID 
ETSI 

NFV/MEC 
ref. point 

Description 

T8 None This is the refence point between the EFS service platform and the Non-EFS 
applications, functions and resources. There is no equivalent interface both in ETSI 
NFV and ETSI MEC.  

F1 ETSI MEC: 
Mp3 

This is the reference point between the EFS service platform and other EFS Service 
platform(s). 

 

The E1 interface is tightly coupled to the virtualization technologies adopted by the EFS 
Virtualization Infrastructure (EFS-VI), i.e. either docker, LXD/LXC containers, KVM virtual machines, 
etc. A detailed description of the E2 interface is provided in section 2.2. The E3 and E4 interfaces 
are implementation-specific interfaces between the EFS service platform and its entity manager, 
and the EFS application/functions and their entity managers, respectively. The role of these entity 
managers includes providing life cycle management for their respective entities by interacting with 
the OCS over the O6 interface and carry out other configuration tasks required for execution on 
the EFS platform, such as, network configuration and providing internal configuration files. The 
entity managers are deployed together with their respective entities by the OCS. 

The EFS entity managers interact with the OCS over the O6 interface ([5], Figure 2-1) which has 
similarities with the NFV Ve-Vnfm-em interface [6]. The latter interface has two non-mandatory 
services to be provided by the entity managers: 

• Virtual Network Functions (VNF) indicator: a subscription and retrieval service for indicator 
values that provide information about VNF behaviour (i.e., EFS entity behaviour). 

• Life-cycle management coordination: a service supporting coordination of life-cycle 
management functions for VNF instances and their components (i.e., EFS entities and their 
atomic entities). Possible operations are: CreateSnapshot, RevertToSnapshot and 
ChangeCurrentVnfPackage. 

Furthermore, the interface has five services to be provided by the OCS (and used by the entity 
managers): life-cycle management, performance management, fault management, policy 
management and snapshot package management. 

2.2 EFS E2 interface and data models  
Figure 2-2 illustrates the EFS service platform interface “E2”. It is the reference point between the 
EFS service platform and a number of different entities of the architecture, including the EFS 
applications and functions, as well as the OCS. As the EFS is compliant with ETSI MEC [2], we adopt 
the corresponding ETSI MEC interface “Mp1” [3][4] as the basis for the EFS E2 interface (REST API 
to the left in Figure 2-2). The EFS service platform also provides an MQTT publish/subscribe 
message bus as the main mechanism for connecting the EFS entities (to the right in the Figure 2-2). 
In ETSI MEC terminology, this is a platform-provided transport, meaning that the communication 
relies on the platform for delivering messages, as opposed to direct communication between client 
and service. In the rest of this section, we describe how the “Mp1” is used and extended by the 
EFS. 

A newly deployed EFS application or function needs a way to discover the EFS service platform 
and through that discovery understand how to connect to the E2 service interface. This discovery 
procedure is described in Deliverable D3.1, Section 4.3 [5]. Different methods can be used 
depending on the network infrastructure. One possible method is to use DNS-SD, where a service 
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record for the EFS is created in DNS together with a default DNS domain configured via DHCP (or 
equivalent), or alternatively via mDNS. 

 

 

FIGURE 2-2: OVERVIEW OF THE E2 SERVICE INTERFACE OF THE EFS 

 

ETSI MEC Mp1 is a REST-based API that includes functionality for registering and finding services. 
Alternatively, an EFS implementation can map the Mp1 REST interface to the MQTT pub/sub 
message bus, and thus only use MQTT as the transport for the E2 interface. In this case, discovery 
of the EFS service platform is equivalent to discovery of the MQTT broker. The methods for creating 
and updating a service resource and retrieving information about a service resource are listed in 
Table 2-2[4]. The root of the REST resource URI is “{apiRoot}/mp1/v1”, where “{apiRoot}” is 
received as part of the platform discovery, as described in the previous subsection. 

TABLE 2-2: METHODS IN ETSI MEC MP1 FOR HANDLING SERVICE RESOURCES AND QUERYING FOR 
TRANSPORTS 

Resource name Resource URI HTTP method Meaning 

A list of meService /services GET Retrieve information about a list of 
meService resources 

POST Create a meService resource 

Individual meServices /services/{serviceId} GET Retrieve information about a 
meService resource 

PUT Update the information about a 
meService resource 

Transports /transports GET Retrieve information about available 
transports 
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The main data structure used by these methods is the “ServiceInfo” resource which describes the 
properties of a particular service. Table 2-3 lists the attributes of ServiceInfo with comments on 
how they are used in the EFS. 

 

TABLE 2-3: SERVICE INFO DATA STRUCTURE – FIRST FOUR COLUMNS FROM GS MEC 011 

Attribute name Data type Cardinality Description EFS use 

serInstanceId String 0..1 Identifier of the service instance 
assigned by the MEPM/mobile 
edge platform. Shall be absent 
in POST requests, and present 
otherwise. 

The EFS platform 
assigns UUIDs 
(version 4 – random) 
for this attribute. 

serName String 1 The name of the service. This is 
how the service producing 
mobile edge application 
identifies the service instance it 
produces 

Name of the EFS 
service. This is also 
part of the MQTT 
topic prefix. 

serCategory CategoryRef 0..1 A Category reference […] In EFS, the category 
is used to name the 
EFS application or 
function the service is 
part of. 

Version String 0..1 The version of the service. Service version, also 
used to form the topic 
prefix. 

transportId String 0..1 Identifier of the platform-
provided transport to be used 
by the service. [...] 

Normally “MQTT”, 
referring to the EFS-
provided MQTT 
transport 

transportInfo TransporInfo 0..1 Information regarding the 
transport used by the service. 
[…] 

Not normally used by 
the EFS 

Serializer SerializerTypes 1 Indicate the supported 
serialization format of the 
service. 

Normally “JSON” 

 

Information about the MQTT message bus transport provided by the EFS platform can be retrieved 
by EFS applications/functions using the E2 interface with the GET method on the /transports 
resource (see Table 2-1). This method returns a list with a TransportInfo data structure as presented 
in Table 2-4. 
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TABLE 2-4: TRANSPORTINFO RESOURCE DESCRIBING THE PLATFORM-PROVIDED MQTT TRANSPORT 

Attribute name Data type Cardinality Description Value for EFS-provided 
MQTT transport 

Id String 1 The identifier for this 
transport. 

A UUID 

Name String 1 The name of this transport. “EFS service transport” 

Description String 0..1 Human-readable description 
of this transport. 

“EFS platform-provided 
default transport for EFS 
services” 

Type TransportTypes 1 The type of the transport. MB_TOPIC_BASED 

Protocol String 1 The name of the protocol 
used. 

“MQTT” 

Version String 1 The version of the protocol 
used. 

“3.1.1” 

Endpoint EndPointInfo 1 Information about the 
endpoint to access the 
transport. 

Specifies one or more 
MQTT URIs for accessing 
the transport. 

Security SecurityInfo 1 Information about the security 
used by the transport. 

OAuth 2.0 security 
information. 

implSpecificInfo Not specified 0..1 Additional implementation 
specific details of the 
transport. 

This field can be used to 
indicate the supported 
MQTT QoS levels 

 

As mentioned above, EFS services are normally interacted with over the EFS platform-provided 
MQTT message bus. A particular EFS service freely defines the data format of its messages, but it 
is recommended to use JSON as the serialiser. The EFS however imposes a structure for the MQTT 
topics. Similar to URIs in ETSI MEC, the topic prefix to be used by services is defined as: 
{apiRoot}/{apiName}/{apiVersion}/{serInstanceId}, where the fields are defined as follows: 

• {apiRoot} is defined by the TransportInfo for the MQTT transport 

• {apiName} uniquely names the EFS service or group of services using a particular API 
definition – “serName” in the ServiceInfo data structure 

• {apiVersion} is a version identifier for the service – “version” field in ServiceInfo 

• {serInstanceId} is an identifier for the particular instance of the service – “serInstanceId” 
field in ServiceInfo. The rationale for this field is that many instances of a service may run 
in parallel, and clients may select, using topic wildcards in the MQTT subscription, to 
interact with all instances or only certain instances, depending on, for example, the 
performance or location. 
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Several of the 5G-CORAL proof-of-concepts (PoCs) provide EFS services that can be used by other 
applications. Data models (JSON schemas) for the messages of some of these services are provided 
in Appendix 7. 

2.3 EFS workflows  
Figure 2-3 illustrates an example workflow when the OCS deploys an EFS application/function 
within the EFS, and the subsequent steps taken by the entities of the application/function and by 
the EFS service platform. The example assumes that a service of the deployed application/function 
is then used by another application/function. The steps are as follows: 

1. The OCS deploys an EFS application/function. The OCS decides where the virtual 
images/containers with the EFS atomic entities of an EFS application/function should 
execute, and arranges for the images to be deployed. The details of this process is not in 
the scope of this deliverable.  

2. The EFS application/function starts. The EFS atomic entities of the application/function 
starts. They find the EFS service platform interface (EFS E2 interface) using the mechanisms 
outlined in Deliverable 3.1 [5], Section 4.3. 

3. The EFS application/function registers with the EFS service platform. The EFS 
application/function registers its services, if any, with the EFS service platform by creating 
one or more service resources using the EFS E2 interface. In the same process, the transport 
used by the service is specified. 

4. A second EFS application/function finds the EFS service. Another EFS 
application/function finds the services by querying for services using the EFS E2 interface. 
The information received includes a URI or similar where the service can be accessed. 

5. The second EFS application/function carries out its operation. The application/function 
accesses the desired EFS service using the information received from the EFS service 
platform. 

 

FIGURE 2-3: EFS WORKFLOW 
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3 EFS service platform and messaging protocols 
This section refines the survey and the analysis of the EFS messaging/communication protocols 
presented in [1]. The refined analysis extends the study in [1] by incorporating Zenoh and RESTful 
publish/subscribe as potential EFS messaging protocols. First, we provide an overview of the EFS 
service platform in Section 3.1. Then, we present a survey on Zenoh and RESTful publish/subscribe 
messaging protocols in Section 3.2. Finally, we introduce a refined analysis of the EFS 
messaging/communication protocols Section 3.3. 

3.1 EFS service platform 
The EFS service platform is a logical data exchange platform within EFS consisted of (i) data 
storage to keep the collected information from applications/functions and edge/fog resources, 
and (ii) communication protocol to gather/provide information from/to applications/functions 
hosted in edge/fog resources. The role played by the EFS service platform can be deemed as a 
‘middleman’ in charge of storing and distributing the subscribed data of a service to the data 
subscribers, while the service data are published by the data publishers and organized as EFS 
services by the EFS service platform, Figure 3-1. It specifies the protocols and mechanisms for data 
communication, storage and management and serves both EFS and non-EFS functions and 
applications though APIs. The non-EFS functions and applications are hosted outside of EFS, such as 
on the Transport Network and Core network, as well as distant clouds. For example, the Radio 
Access Network (RAN) functions can publish the RAN context information and the platform can 
abstract and organize the information as a RAN context service. The subscribing applications of 
the RAN context service get the context information and use them for their own purposes. For 
example, a load balancing application can avoid using overloaded RATs based on the RAN 
context information. 

The EFS service platform collects data from EFS Applications/Functions and publish the collected 
data to EFS Applications/Functions that consume data. In order to push data to the targeted 
entities, the messaging protocol is a key ingredient of the EFS Service Platform design. Instead of 
devising new message protocols, WP2 has examined and analyzed several existing messaging 
protocols, as detailed in [1]. Sections 3.2 and 3.3 extend this analysis to incorporate Zenoh and 
RESTful publish/subscribe messaging.   
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FIGURE 3-1: PUBLISH/SUBSCRIBE MESSAGING AMONG EFS ENTITIES 

3.2 Extended survey of EFS messaging/communication protocols 
In [1] WP2 studied the following messaging/communication protocols: DDS, MQTT, AMQP, 
Extensible Messaging and Presence Protocol (XMPP), Kafka, NATS, and Confluent. In light of the 
adoption of RESTful APIs, by 3GPP service-based architecture (SBA) 5G Core network, WP2 
investigated the feasibility of RESTful publish/subscribe as a potential messaging/communication 
protocol for the EFS. Additionally, Zenoh was also considered in accordance with the OCS 
experimental framework in WP3.  

3.2.1 Zenoh  

Zenoh’s [17] goal is to bring data-centric abstractions and connectivity to devices that are 
constrained with respect to the node resources, such as compute, storage, power, and the 
networking. Zenoh applications coordinate by autonomously and asynchronously writing and 
reading data into a data space while being decoupled in time and space. The abstraction of a 
time decoupled data-space is essential in supporting applications that can have sleep cycles and 
specifically in decoupling the availability of data with the availability of the application that wrote 
it. Zenoh relies on resources to identify the information to be exchanged between readers and 
writers, and on resource properties to specify the properties of exchanged data. A Zenoh resource 
is a closed description for a set, if the cardinality of the set is one we call it a trivial resource. A 
Zenoh resource is described by means of a URI [17] which may only include path expansions. 

The data read and written by Zenoh applications is associated with one or more resources 
identified by a URI, that may contain ‘?’, ‘*’ and ‘**’ wildcards. ‘?’ matches exactly a single 
character excluding the path separator, ‘*’ matches any number of characters excluding the path 
separator, and ‘**’ matches any number of characters including the path separator. 
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Zenoh Pub/Sub mechanism provides peer-to-peer, client-to-broker and broker-to-broker 
communication. It provides a scalable routing mechanism for many-to-many communication with 
different levels of reliabilities. The protocol is designed to be lightweight in both computational 
and networking overheads. It can leverage both connection-oriented transports as well as 
connection less packet-based transport, which implies that it can run on top of L3 or L2 networks.  

Detailed benchmarking of Zenoh against other well-known Pub/Sub protocols is provided in section 
3.3 while a comparison between Zenoh and NATS is provided in Appendix 9.  

3.2.2 RESTful publish/subscribe messaging 

WP2 investigated a variant of Kafka, namely Kafka REST as an example of RESTful 
publish/subscribe messaging protocols. Kafka in its native version is not RESTful, however, a Kafka 
REST Proxy (Figure 3-2) provides a RESTful interface to a Kafka cluster [19] [20]. This makes it 
easy to: produce and consume messages; view the state of the cluster; and perform administrative 
actions without using the native Kafka protocol or clients. Some use cases that could benefit from 
this configuration include reporting data to Kafka from any frontend application built in any 
language and ingesting messages into a stream processing framework that doesn't yet support 
Kafka. 

 

FIGURE 3-2: KAFKA REST PROXY ARCHITECTURE [43] 

Kafka uses a pooling system for its notifications and a Transmission Control Protocol (TCP) 
connection is not maintained. In each request a TCP/HTTP connection is established. When a request 
is responded to, the session finalizes. If a connection needs to be established by consumer or 
producer, Kafka REST Proxy could be substituted by a proxy with WebSocket [21].  
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3.3 Refined analysis of EFS messaging/communication protocols 
WP2 conducted an experimental performance evaluation of: NATS, DDS, MQTT, Zenoh and Kafka 
REST. The objective of the experiment was to compare the performance of the messaging protocols 
in terms of throughput and messages transmitted per seconds; analyzed over varying payload 
sizes. 

The experimental setup, constituted a single compute node, running Ubuntu 16.04, Intel 
i7@4.0GHz and 32GB of RAM (Figure 3-3). For each protocol, the test was repeated with 1 
million messages for each payload size.  All the protocols were tested in brokered deployment, 
meaning that there was a client publishing to a broker and a client subscribing to the broker. All 
the results were taken from the subscriber side while the QoS used for all protocols was the 
standard best effort QoS. Table 3-1presents the raw values recorded during the experimentation. 

 

 

FIGURE 3-3: EXPERIMENTAL SETUP 

 

TABLE 3-1: PUB/SUB MESSAGING PROTOCOLS RESULTS 
  Zenoh NATS DDS (Cyclone) MQTT Kafka REST [40] 

Payld. msgps Mbps msgps Mbps msgps Mbps msgps Mbps msgps Mbp
s 

8 9048065 579 3625473 232 1313241 84 37552,82 2 9156 55 

16 10704897 1370 3468433 443 1316622 168 37035,48 4 8784 63 

32 10199553 2611 3451773 883 1248549 319 37035,48 9 8499 69 

64 8379649 4290 3265401 1671, 1191086 609 37035,48 18 7231 72 

128 5757057 5895 2944434 3015 1044868 1069 35195,55 36 6557 78 

256 3564289 7299 2466174 5050 839787 1719 39238,76 80 5578 85 

512 2063265 8451 1810187 7414 619562 2537 41087,68 168 5116 98 

1024 1071489 8777 1276843 10459 352754 2889 36364,3 297 4976 110 

2048 505801 8287 727003 11911 186471 3055 28218,86 462 4001 117 

4096 265037 8684 352835 11561 96194 3152 18043,11 591 3759 123 

8192 134767 8832 185106 12131 54913 3598 7859,93 515 3222 134 

16384 70067 9183 88435 11591 30019 3934 4239,57 555 2765 152 
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Figure 3-4 presents the throughput comparison among: Zenoh, NATS, Eclipse Cyclone DDS, Eclipse 
Mosquitto for MQTT and Kafk REST. It was observed that Zenoh exhibited the best throughput 
performance at small payload sizes. It was also observed that the best usage of multithreading 
occurs at higher payload sizes where NATS exhibited the best throughput performance. At high 
payload sizes; DDS, MQTT and Kafka REST all had a throughput performance less than half of 
NATS and Zenoh. 

 

FIGURE 3-4: THROUGHPUT OVER PAYLOAD SIZE 

Figure 3-5: presents the messages transmitted per second comparison among: Zenoh, NATS, DDS, 
MQTT and Kafka REST.  

 

FIGURE 3-5: MESSAGES PER SECOND OVER PAYLOAD SIZE 
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As expected, increasing the payload size reduces the number of messages transmitted per second 
for each protocol. It was observed that for small payload sizes, Zenoh transmitted the largest 
number of messages per second; this is due to Zenoh’s wire efficiency, i.e. very low overhead. The 
performance of all the protocols is comparable for payload sizes greater than 1024 bytes. 

The analysis highlights the fact that new Pub/Sub protocols, for example NATS and Zenoh, are 
designed to have high performance both in terms of throughput and messages transmitted per 
seconds. However, presently support for these new protocols is fairly limited by the number of 
client libraries available in the public domain.  

While in [1], WP2 adopted DDS and MQTT as the reference/baseline messaging protocols for 
the EFS, this analysis reveals that enhancements to the EFS could benefit from adopting new 
Pub/Sub protocols, e.g. NATS and Zenoh.  

  

 

  



D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions 

H2020-761586 

                                                                                                                                  

4 Refined EFS design for 5G-CORAL use-cases 
This section presents the refined EFS design for each of the 5G-CORAL use cases, namely: Robotics 
(Section 4.1), Virtual Reality (Section 4.2), Augmented Reality (Section 4.3), Multi-RAT IoT (Section 
4.4), Connected Cars (Section 4.5), High-speed Train (Section 4.6), and SD-WAN (Section 4.7). 
The refined design addresses the following aspects, per use case, namely: (1) Decomposition of 
the use case(s) into their constituent EFS entities and their respective interworking(s); (2) Functional 
validation and experimental verification; (3) Conclusions and future directions. 

4.1 Robotics  
The Fog-assisted Robotics (FIGURE 4-1) use case comprises of two different scenarios, both 
envisioned in a Shopping Mall scenario. The first scenario envisions the robots cleaning common 
areas of the shopping mall. The second scenario, instead, envisions the delivery of goods by a 
group of robots working synchronously. In both scenarios, robots are connected via Wi-Fi and move 
in the Shopping Mall to accomplish the different tasks. To that end, the robots require constant Wi-
Fi coverage wherever they go. The Wi-Fi connectivity is provided by a virtual Access Point in the 
form of an EFS Function. This function allows the robots to communicate with their control engine, 
which is deployed in the form of EFS Application. In the second scenario (delivery of goods) we 
also establish a low-latency Device-to-Device communication in order to maintain better 
coordination between the robots (e.g., moving in formation). The D2D connectivity is delivered as 
Wi-Fi P2P in the form of an EFS Function. These EFS Functions and EFS Application are bundled 
together in a single EFS Stack for the complete deployment and lifecycle management of the Fog-
assisted Robotics services. 

 

FIGURE 4-1: FOG-ASSISTED ROBOTICS IN THE SHOPPING MALL 

4.1.1 Refined EFS design and functional validation 

In this use case, the focus is on the delivery of goods by a group of robots working synchronously. 
Data related to the stock level of each shop is collected and analysed at the EFS and is used to 
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determine which good needs to be delivered to which shop. Some items may be too large for one 
robot alone and would require the synchronized operation of two or more robots to carry it. Thanks 
to the vicinity of the brain to the robots, it is hence possible to achieve tight coordination between 
the robots. 

In the EFS, the location service of the robots is consumed by a robot intelligence application in the 
EFS, so it can calculate the route that the robots should take to arrive at the point of delivery. Note 
that the location of the robot can be evaluated via different means. For instance, LiDAR could be 
used by the robot to figure out its own location, and such location can be published to the EFS 
service platform for other applications/functions to consume. The robot intelligence application 
instructs the movement of the robot via wireless connectivity, the protocol functionalities of which 
are also hosted in the EFS. It is worth noting that, the EFS computing tasks for this use case, such as 
robot intelligence, service platform, and radio connectivity functions, can be migrated among 
different EFS resources (e.g. Fog CDs) along the route. The placement of the EFS computing tasks 
is transparently handled by the OCS. The EFS entities involved in the robotics use case, as well as 
their interconnection, is illustrated in Figure 4-2. Table 4-1presents a description of the robotics use 
case EFS entities depicted in Figure 4-2. 

 

FIGURE 4-2: EFS ENTITIES INTERCONNECTION FOR THE ROBOTICS USE CASE 

 

TABLE 4-1: SUMMARY OF EFS ENTITIES FOR ROBOTIC USE CASE 

EFS Entity  Description  
Robot Intelligence App EFS application in charge of controlling and guiding the robot 

towards the point of delivery. This application provides the robot 
intelligence which is located inside the EFS platform.   
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The application computes the optimum path for a robot to reach the 
point of delivery. It consumes data provided by the User Equipment 
(UE) location service and Wi-Fi information service.  

Virtual Wi-Fi Access Point EFS function enabling infrastructure-to-robot communication which is 
essential for robot navigation. Commands to control the robot are 
sent over Wi-Fi connections managed by virtual APs, which allows 
seamless Wi-Fi connectivity for a roaming Wi-Fi client and avoids 
connection disruptions. This function is also employed to help robots 
establish Bluetooth D2D communication for accurate movement 
synchronization.   

Wi-Fi Information service  EFS service which provides Wi-Fi network information for each 
connected client (e.g., a robot) data regarding: the signal level; 
transmission and reception bit rates; number of retransmission and 
packet losses at data link level; and number of successfully 
transmitted/received bytes and packets. 

UE location EFS service which provides the UE position consumed by the robot 
intelligence application to perform the route computation. Robot 
location can be obtained through different techniques, such as 
employing LiDAR or iBeacons technology.    

 

4.1.2 Use-case specific implementations and experimental verification 

Figure 4-3, presents the implemented Edge/Fog robotics system that comprises two separates but 
interacting subsystems, i.e. the robotic system (shown in blue) and the EFS (shown in red).   

The robotic system was implemented using the most widespread robotic framework, i.e. Robot 
Operating System (ROS) [22], which provides a meta-operating environment for developing and 
testing multi-vendor robotics software. In ROS, each software component is called ROS node.  ROS 
also provides a publish-subscribe messaging framework (i.e. TCPROS) via a specific node, namely 
the ROS master node. By connecting to the ROS master, ROS nodes can register and locate each 
other. Once registered, nodes can exchange data via configurable topics in a peer-to-peer 
fashion. The robotics subsystem was implemented as various ROS components distributed across 
the robot and the EFS. The robot was equipped with motored-wheels and odometry sensors 
(Odometry is the use of data from motion sensors to estimate changes in position over time. E.g., 
motor encoders). ROS components running on the robots are essentially drivers that are in charge 
of: reading data from the sensors (e.g., odometry); sending the readings to the EFS; and executing 
the driving instructions received from the robot intelligence application. The robot intelligence 
application acts as a ROS master and it is also in charge of driving the robot based on the 
available information. The communication between the robot and the robot intelligence crosses 
over a Wi-Fi link and the wired network connecting to the EFS. A wireless information service is 
available locally at the EFS and is consumed by the robot intelligence application.   

The implemented wireless information service provides Wi-Fi context regarding the clients 
connected to the system. The Wi-Fi network information service provides for each connected client 
(e.g., a robot) data regarding: the signal level; transmission and reception bit rates; number of 
retransmission and packet losses at data link level; and number of successfully 
transmitted/received bytes and packets. Additionally, the following link layer configuration(s) is 
provided: wireless channel; beacon interval; preamble and slot time (i.e., short/long); QoS support; 
and authorization/authentication status. The Wi-Fi information is published in JSON format to an 
MQTT-based EFS service platform.   
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FIGURE 4-3: ROBOTICS LOGICAL SYSTEM 

Experimental Setup 

To evaluate the Fog-assisted robotics scenario, we built an experimental1 environment in the 
5TONIC laboratory comprising all the components shown in Figure 4-3. The goal of the experiment 
was to show how the Fog/Edge controlled robotics paradigm improves current Cloud robotics 
techniques. For the mobile robot, we used the ROS-compatible Kobuki robotics platform. The 
mobile robot maximum speed was 0.75 m/s, while its minimum speed was 0.1 m/s. The sampling 
frequency for reading the odometry sensor data from the robot’s wheels was 16.6 Hz (i.e., 
odometry sensor data is refreshed every 60 ms). When driving at full speed (0.75 m/s), the robot 
covers a distance of 4.5 cm in 60 ms. This results in a precision of 4.5 cm in the robot driving at full 
speed since odometry sensor data cannot be updated with a frequency higher than 16.6 Hz. In 
the case of minimum speed (0.1 ms), the precision is 0.6 cm. It is worth highlighting that the sampling 
frequency value is limited by our robot’s hardware. Different robotics platforms may offer higher 
sampling frequency and consequently better precision. The mobile robot is controlled in a closed 
loop by the robot intelligence application. The closed loop starts with the robot intelligence (running 
in the EFS) sending movement commands to the motor drivers (running on the robot) using ROS 
messages, published to a specific topic devoted to movement commands. The movement command 
consists of a tuple (speed, distance), where the speed parameter represents the velocity that the 
robot should maintain while driving, and the distance parameter represents the distance that should 
be reached upon receiving the movement command. Therefore, the distance parameter represents 
the movement granularity instead of the final driving destination. Upon receiving a movement 
parameter through the wireless link, the motor driver initiates the movement in the robot’s wheels. 
The movement is uninterrupted for a length equal to the received distance parameter with constant 
velocity equal to the received speed parameter. The loop is then closed by the robot continuously 
sending-back the odometry sensor data to the robot intelligence application in the EFS. The robot 
intelligence analyses and combines the odometry data together with the Wi-Fi context information 
to generate a new (speed, distance) tuple, which will serve as input to the next turn of the closed 
loop. 

All iterations of the experiment were performed in a closed and straight hallway (3m wide, 30m 
long) at 5TONIC laboratory (Figure 4-4). Each experiment consisted of the robot intelligence 
driving the robot on a straight line for 15m. The starting position of the robot was placed in the 
middle of the hallway approximately 7 meters away from the Wi-Fi AP having a thin office wall 
(approximately 15 cm) separating the two. Then, the robot accelerates from the starting position 
                                                
1 It is worth noting that the experimental setup considered in WP2 employs a single robot (i.e. adaptive robot control algorithm 
leveraging Wi-Fi information service) while the experimental setup considered in WP3 employs two robots (i.e. OCS triggering a 
network assisted D2D connection to reduce the latency of control messages between the robots) [41].  
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to the target velocity (e.g., min, max, etc.) and it drives in accordance with the closed-loop 
mechanism. After having travelled for 15 m, the robot stops. During the driving, an additional 
thicker wall (approximately 25 − 30 cm) separates the robot from the Wi-Fi AP. At the end of the 
driving, the robot is approximately 22 m away from the Wi-Fi AP. 

 

FIGURE 4-4: FLOOR PLAN AND ROBOT ROUTE 

The experiment also designed and implemented a control algorithm (Figure 4-5) which is able to 
adapt the robot driving speed based on the Wi-Fi information service. The aim of the algorithm 
was to obtain a displacement accuracy similar to the one obtained while driving at the lowest 
speed, while reaching the target destination faster. Through this algorithm we showcased the 
benefits of consuming context information to control the robot, nonetheless, we acknowledge that 
more advanced and optimal algorithms than the one proposed can be eventually be designed. 
On the one hand, during the experiment, we collected the information of the Wi-Fi signal every 
10 ms. We observed that the Wi-Fi signal level presents significant oscillations in case of averaging 
it over a short time window (e.g., 50 ms). That is, two subsequent average measurements may 
report considerably different Wi-Fi signal levels. On the other hand, if we take a longer time 
window (e.g., 500 ms), the oscillations between subsequent average measurements were 
substantially reduced and the Wi-Fi signal varied in a smoother way. Based on this finding, the 
control algorithm used the Wi-Fi signal level obtained by averaging it over a fixed time frame. 
Given the robot’s speed bound between 0.1 m/s and 0.75 m/s, a time frame of 500 ms was 
considered. The computed Wi-Fi signal was then combined with the robot’s odometry sensor data 
for adapting the robot’s speed. Figure 4-5 shows the pseudo-code of the control algorithm. The 
robot intelligence, extracts in real-time the current signal level from the Wi-Fi EFS information 
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service, stores it in a circular buffer and computes the moving average of the Wi-Fi signal level. 
For each movement command, the adaptive speed and the adaptive distance are re-calculated. 
We observed that packet retransmissions and failures start increasing for signal values below -71 
dBm, hitting their maximum between -79 and -81 dBm. Based on this observation, the control 
algorithm adapts the driving robot’s speed to the maximum (0.75 m/s) for an average Wi-Fi signal 
level higher than -71 dBm or to the minimum (0.1 m/s) for an average Wi-Fi signal level equal or 
lower than -81 dBm. Between -71 dBm and -81 dBm, the control algorithm linearly adapts the 
robot’s speed to the Wi-Fi signal level (e.g., 0.425 m/s with -76 dBm). 

 

FIGURE 4-5: ADAPTIVE SPEED CONTROL ALGORITHM 

Experimental Results 

This section evaluates the adaptive speed control algorithm and compares it with scenarios not 
making use of any context information. The following three scenarios are evaluated. 

• The robot drives at minimum speed (0.1 m/s). 
• The robot drives at maximum speed (0.75 m/s). 
• The robot uses our control algorithm to drive at adaptive speed. 

We performed 10 experiments for each scenario (minimum speed, maximum speed, adaptive 
speed). In addition to the Wi-Fi information we recorded the odometry sensor data directly in the 
robot itself. This is because the data from the odometry sensors is not timestamped and sending it 
over the Wi-Fi channel would not be suitable for measuring the speed and acceleration 
experienced by the robot (due to risk of transmission failures over Wi-Fi). The measured data was 
aggregated and analysed to produce the results on Figure 4-6. Figure 4-6 has four different 
graphs; on each graph the x-axis is the distance travelled during the experiment, from the start (0 
m) to the end (15 m). The first subgraph from the top presents the Wi-Fi signal level (y-axis on the 
left) and the transmission errors over the robot driving path (y-axis on the right). It was noticed 
that there is a significant decay on the Wi-Fi signal quality in the last 5 meters of the driving path 
reflected by an exponential increase of the transmission errors. The remaining three graphs of 
Figure 4-6 present, for each evaluated scenario: the speed, the acceleration and the driving time 
as measured via the odometry sensor data. Despite the acceleration and the speed having 
different units (m/s and m/s2, respectively), they share the same y-axis on the left since they 
present the same range of values. The y-axis on the right represents the elapsed driving time since 
the start of the experiment run.  

In the minimum speed experiment, the robot speed was set constant to 0.1 m/s from the start to 
the end. Similarly, the acceleration presents a constant value in the order of few cm/s2. Driving at 
such low speed results in a smooth run that is not affected by the degradation of the Wi-Fi channel 
in the last segment of the path, since the slowness of the movement allows more time to recover 
from possible transmission errors and further retransmissions. As a drawback, the robot requires 
approximately 160 seconds to complete each experiment run.  
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As expected, the maximum speed experiment is the one requiring less time (approximately 27 
seconds). The impact of the decreasing Wi-Fi signal quality can be seen in the acceleration curve 
(notably in the last 5 meters of the path) where the acceleration fluctuates due to increased packet 
delay and consequently a delayed reaction, resulting in a stop-drive effect of frequent braking 
and spurring acceleration to full-speed. As a consequence, to the effect of the stop-drive 
behaviour, the driving direction is deviating from the straight driving path. 

Finally, the bottom graph shows the motion behaviour for the experiment using the proposed 
adaptive speed control algorithm. A first observation is that the acceleration and deceleration in 
this case was smoother. At start, the robot accelerates to full speed, since the received signal level 
is in the safe zone above -71 dBm. After crossing the -71dBm threshold, the robot speed was 
linearly reduced following the decrease of the Wi-Fi signal strength, reaching the end of the path 
driving at minimum velocity. Regarding the driving time, the robot reaches the finish line 
approximately 10 seconds later than in the maximum speed experiment. Nonetheless, it is still 
approximately 120 seconds faster than the minimum speed experiment while performing a smooth 
ride. 

As concluding remarks, the results show that there was a trade-off between speed and smooth 
movement of the robot. By adapting the velocity of the robot with information on the quality of 
the Wi-Fi channel, the robot was able to move with maximum speed where the Wi-Fi signal channel 
was good and smoothly lowered the speed in the areas of weak Wi-Fi signal coverage, thus 
cancelling any stop-drive effect. 
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FIGURE 4-6: SPEED, ACCELERATION, AND DRIVING TIME 
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4.1.3 Conclusions and future directions 

This use case highlights the opportunities offered by Edge/Fog computing. One of the key 
differentiating features of Edge/Fog computing is the possibility for applications running at the 
Edge to consume context information, e.g., about the network. This can be used to optimize the 
robotics systems operations in ways otherwise impossible in the Cloud robotics framework. We 
have designed an Edge/Fog assisted robotics system blending together the Robot Operating 
System (ROS) that offers a common development framework for robotics applications and the 5G-
CORAL EFS platform.  

We performed a set of experiments to characterize the relation between the robot control delay 
and the Wi-Fi signal strength. The resulting characterization was used as a baseline for designing, 
implementing and experimentally evaluating a control algorithm that consumes context information 
about the Wi-Fi signal and adapts the robot’s speed for a smoother driving. Our experimental 
results showed that adapting the robot’s speed based on the Wi-Fi signal provided by the EFS 
information service can effectively produce a smoother driving at high speeds. This improvement 
allows the robot to operate faster compared to the case of ignoring the context information from 
the network. 

The following future work is therefore expected: enhancement of the robotics connectivity from 
Wi-Fi to 5G along with the corresponding 5G radio network information service; designing of 
more advanced control algorithms and extending the robotic use case to consider drones. 

4.2 Virtual Reality (VR)  
Augmented Reality (AR), Virtual Reality (VR) and Mixed Reality (MR) have become prominent 
technologies within the wide spectrum of video applications available in different markets such as 
cinema, gaming, education, healthcare, sports and advertisement. While VR offers an immersive 
virtual user experience and AR augments a real or virtual environment by adding elements for 
interaction with the user, MR provides a reality-virtuality continuum consisting of different 
combinations and variations of real and virtual objects co-existing in the same environment. For 
instance, a 360º video streaming service can be thought of as an MR application, since users can 
panoramically watch a real video scene by seamlessly adapting the Field of View (FoV) or 
viewport, i.e., the fraction of omnidirectional view of the scene, as the viewing orientation changes. 

The 360º video streaming service is classified as an enhanced Mobile Broad-Band (eMBB) service 
due to the significantly high bandwidth and constant data rate requirements. For instance, 
considering High Efficiency Video Coding (HEVC) compression, a live video service with 60 frames-
per-second and 8K resolution requires 361 Mbps in order to ensure smooth content play.  

This use case showcases the viewport adaptive 360º video streaming technology delivered over 
the 5G-CORAL solution2 (EFS and OCS). The viewport adaptive streaming technology reduces the 
bandwidth required to deliver 360° video while preserving the user’s quality of experience, by 
leveraging the user’s viewing orientation, i.e. the portion of the 360° video being watched by the 
user is delivered in high quality resolution while the rest is delivered in low quality resolution. 

The 5G-CORAL solution decomposes the End-to-End (E2E) viewport adaptive 360° video streaming 
service into microservices hosted on the appropriate Edge/Fog device based on their 
computational requirements.  Additionally, the 5G-CORAL solution offers seamless orchestration 

                                                
2 The 5G-CORAL solution targets a holistic Edge/Fog solution with particular focus on integrating 
the constrained mobile and volatile Edge/Fog devices that are mostly present in the RAN.  
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and control of the E2E viewport adaptive 360° video streaming service across three tiers of 
computing nodes (Low, medium and high ends). The benefits of the 5G-CORAL solution include:   

• Enhanced flexibility in deploying and managing heterogeneous resources in multi-tier 
system architecture 

• Zero-touch configuration and instantiation of the VR end-to-end service through the 
distributed orchestration and control delivered by the OCS 

• Energy-efficient deployment solutions by offloading resource-demanding computing tasks 
from terminals   

4.2.1 Refined EFS design and functional validation  

The EFS entities involved in the VR use case, as well as their interconnection, are illustrated in Figure 
4-7. Table 4-2 presents a description of EFS entities depicted in D2.1[1]. 

 

 

FIGURE 4-7: EFS ENTITIES INTERCONNECTION FOR THE VR USE CASE 

TABLE 4-2: SUMMARY OF EFS ENTITIES FOR VR USE CASE 

EFS Entity  Description  
Real-Time Messaging Protocol (RTMP) 
acquisition 

EFS application responsible for performing the 
RTMP acquisition enabling persistent connections 
and low-latency communications. It consumes 
data provided by the camera and sends the 
output data stream to the tile encoding 
application.  

Tile encoding EFS application to perform the tiled 360 video 
encoding. It processes the data stream coming 
from the RTMP acquisition application and 
provides the DASH segmentation module with the 
tiled encoded data stream.  

DASH segmentation EFS application in charge of segmenting the data 
stream encoded by the tile encoding application 
through DASH, which is consumed by the DASH 
client application 
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DASH client EFS application to reassemble DASH segments 
sent by the DASH segmentation application. The 
output data is then sent to the decoding 
application. This application also uses the UE 
orientation information provided by the UE 
orientation service, which provides the user’s view 
angle.  

Decoding  EFS application performing the decoding of tiled 
video streams sent by the DASH client. The 
decoded video stream is then delivered to the 
composition EFS application.   

Composition EFS application responsible for re-composing 
tiled video streams into 360 video frame at the 
client side. This component receives tiled video 
streams decoded by the decoding EFS function.  

UE orientation EFS function responsible for selecting which tile 
has to be sent to the UE based on the orientation 
information provided by the orientation client. 
The selected tile is communicated to the DASH 
client.  

 

4.2.2 Use-case specific implementations and experimental verification 

Figure 4-7 and Figure 4-8, present the logical and physical implementation of the VR E2E viewport 
adaptive 360° video streaming using the distributed edge and fog computing platform developed 
in 5G-CORAL. We consider the viewport adaptation technique based on adaptive tile-encoding 
streaming, where the 360º video is partitioned in small tiles, which are independently encoded 
and transmitted according to the viewing orientation, and then stitched together to recompose the 
360° frame. To compensate for the extra computational complexity needed to continuously adapt 
the video stream quality, we spread the computing tasks across three different tiers, namely, fog, 
edge and cloud, according to their respective computational and latency requirements. The novel 
contributions can be outlined as follows: 

• Different computing processes, including DASH coding/decoding and video frame 
composition, are distributed across three different tiers, i.e., cloud, edge and fog, thus 
increasing system scalability and reducing the latency.  

• Specific GPU-intensive tasks are offloaded from the client. This results in a reduced 
terminal complexity as well as improved interoperability, as some of the protocols and 
video codecs employed may not be supported by legacy devices. 

• A novel orchestration and control framework, i.e., 5G-CORAL OCS, is adopted, which 
enables management, monitoring and orchestration of diverse resources spanning across 
the three computing tiers, thus facilitating the deployment, operation and lifecycle 
maintenance of the 360° video streaming service.   

The End-to-End 360º video streaming service consists of four major entities, namely: video source, 
EFS, OCS, and User Equipment (UE). In the following, we describe their respective roles and the 
information exchanged between the interfaces.  

• Video source: two or more 360º cameras, each capturing separate event(s) happening in 
different area(s) of the interest, stream live video content to a cloud data centre, that 
represents the EFS entry point. This is implemented by connecting the cameras to a 
streaming engine, e.g. Wowza Streaming Engine[23], and establishing a Real Time 
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Multimedia Protocol (RTMP) live or Real Time Streaming Protocol (RTSP) stream session, 
that ensures a TCP-based persistent connection and low-latency communication.   

• EFS: built upon three different compute tiers, i.e. cloud data centre, hosting powerful 
processing units and located on cloud provider premises; edge server, located closer to 
the end user equipment (UE) and providing limited compute capabilities; and fog 
computing devices (CD), resource-constrained devices operating in the UE proximity. The 
EFS hosts all the essential functions, applications and services to deliver the live video 
stream.  

o After RTMP acquisition, the tile-encoding app running on the data centre performs 
tile-based High-Efficiency Video Coding (HEVC) encoding, thus partitioning each 
video frame into three tiles (3 x 1 uniform tiling), each capturing a 120º viewing 
angle, which are encoded at either high or low-quality resolution.  

o Next, the DASH segmentation app packetizes the bitstream data into multiple 
chunks, i.e., DASH segments, which are requested by the DASH client running on 
the edge server. Furthermore, the decoding and composition app decodes the 
tiled video streams and composes the 360º video frame for the UE, respectively.  

o A key EFS component of our solution is the fog CDs deployed whose main task is 
to gather the UE viewing orientation and convey it, via HTTP REST API, to the DASH 
client hosted at the edge server. The DASH client utilises the UE viewing orientation 
to determine the portion of the 360º video that must be delivered at high quality. 

o The DASH client is able to quickly recompose the video frame by decoding the 
correct tiles, depending on the orientation information sent by the fog CDs. It is 
worth noting that all the EFS software processes are implemented as native 
applications. 

• UE: the user terminal consists of three components, namely, a media player, a camera 
selector and the orientation client. The first two elements are managed by the user, 
whereas the latter runs in the background and forwards information on the user orientation 
to the orientation service located on the fog CD. 

 
 

 
FIGURE 4-8: VR END-TO-END PHYSICAL IMPLEMENTATION BUILDING BLOCKS 

Figure 4-8 presents the physical implementation that consists of a multi-tier computing, storage and 
networking platform capable of conveying multimedia traffic generated by two or more Insta360 
Pro cameras to fixed and mobile clients. Each component is equipped with a Gigabit Ethernet 
network adapter and is connected to the network layer represented by a Gigabit Ethernet switch, 
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whereas the phone terminal is connected to a Wi-Fi IEEE 802.11ac access point.  The tasks 
performed by each layer are listed at the bottom of Figure 4-8. The top layer hosts the 
orchestration component, which deploys and manages all the entities running the Fog05 agent. This 
is achieved by using a laptop, raspberry pi, or any computer equipped with a screen and running 
the Fog05 agent, in order for the operator to execute scripts and verify the successful function 
onboarding.  

As previously described, the 360º live video streaming is initiated by the cameras connected to 
Wowza Streaming Engine hosted by the cloud data centre. To trigger the RTMP session, a computer 
laptop running the Fog05 agent is also plugged to the camera, thus allowing automatic session 
instantiation and termination. The Insta360 Pro camera is equipped with 6 fisheye lenses and can 
perform real-time stitching of 4K video sequences. Next, the data centre handles the tile-based 
HEVC encoding by leveraging computing resources provided by the Nvidia Quadro P5000 GPU. 
Our data centre consists of a Dell Precision Tower 7810 equipped with an Intel Xeon E5-2670 v4 
2.30 GHz CPU, 64 GB RAM and 1 TB HDD storage. In addition, this machine runs a DASH server 
compliant with the latest MPEG immersive Omnidirectional Media Format (OMAF) standard.  

The DASH segments are then received by the edge machine represented by a Dell Alienware 17 
laptop equipped with an Intel Core i7-8750H CPU, 16 GB RAM, 128 GB SSD and an Nvidia 
GeForce GTX 1080 graphic card, able to execute complex tasks such as tile decoding and video 
frame composition. Furthermore, the edge server exploits the orientation information supplied by 
the fog node. To this end, we use an Nvidia Jetson TX2 development board, consisting of a Jetson 
TX2 module, which embeds a powerful GPU and two ARM CPUs. It is worth pointing out that 
although this platform features a high-performance 256-CUDA core graphic processor, we solely 
rely on the available CPU power, as the user orientation tracking doesn’t require hardware 
acceleration.  

The orientation service computes in real-time the video stream tiles that must be encoded in high 
definition by processing the orientation info, i.e., yaw, roll and pitch, periodically reported by the 
terminals according to the orientation report rate system parameter. Also, a count-down timer is 
associated with each reported tile: the timer can be configured by setting the orientation decay 
period system parameter and is periodically decremented and reset whenever a new matching 
orientation is reported.  

Finally, the edge server transmits the optimized DASH video stream to the clients. Specifically, we 
consider two types of video terminals, i.e., a Samsung S9+ Android-based mobile phone and an 
Oculus Rift VR headset connected to a computer laptop. Additionally, we developed an Android 
application and an Oculus Rift application both of which feature a user media player capable of 
reporting the orientation info as well as selecting one of the video streams according to the user 
choice. 

Experimental Setup  
The following experiment was conducted by running a 5-Minute pre-recorded 360 video sequence 
stored on the data centre that feeds the Wowza streaming engine. The results were generated by 
executing the same experiment for 10 repetitions and by recording the metrics every second. A 
summary of the system parameters employed is presented in Table 4-3. The experiment only 
considered a stationary phone terminal and randomly changed its orientation in each repetition. 
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TABLE 4-3: SYSTEM PARAMETERS 

System Parameter  Value 
Video Resolution 4K (3840x2160) 

Video Bitrate 15 Mbps 
Video Frame Rate 30 fps 

Orientation Report Rate 10 Hz 
Orientation Decay Period 250 ms 

 

To show the impact of the video processing load on the data centre, we retrieved the GPU load, 
the GPU power consumption and the memory usage by using the GPU-Z tool that supports NVIDIA 
video cards. The GPU-Z tool measures the following three metrics.  

• The first metric gives an estimation of how active the GPU is in a given interval. 
• The second metric indicates the power in Watts consumed by the GPU, 
• The third metric reports the memory used.  

During the experiment we recorded all the GPU-Z metrics for three different configurations, 
namely: idle, i.e., the video streaming service is inactive; split mode, where all the computing tasks, 
except for the orientation service running on the fog CD, are distributed between the data center 
and the edge server; no split mode, where all the tasks are executed by the data center.  
Additionally, we obtained the bandwidth consumed in downlink by the terminal. Moreover, we 
considered three different streaming modes in order to highlight the benefits of the adaptive tile 
encoding strategy. The information on the bandwidth is obtained by using a network monitoring 
tool called Wireshark, which allows to monitor the bandwidth consumed by distinct applications on 
the same machine.  

Experimental Results 

Figure 4-9 shows the GPU load, power consumption and memory used by the cloud data centre 
measured through GPU-Z. As expected, the GPU computing load distribution between the data 
centre and the edge server results approximately in a 7% reduction of the GPU load, which 
translates into more processing capacity available for other services running in the data centre. 
Furthermore, the split mode leads to a small reduction of the power consumed by the data centre. 
Specifically, up to 2 Watts can be saved by offloading some GPU processing onto the edge 
server. This also means that most of data centre power is spent executing the tile encoding and the 
DASH segmentation together with the Wowza streaming engine. Finally, it is worth pointing out 
that our approach helps to reduce the data centre memory occupancy, with a memory saving equal 
to 600 MB in comparison with the no split mode. 

The Empirical CDF of the downlink data rate observed at terminal side is shown in Figure 4-10. 
We note that the adaptive tile-encoding requires roughly a bandwidth equal to 21 Mbps, whereas 
a non-optimized approach encoding all the tiles with maximum quality leads to a bandwidth 
consumption equal to 31 Mbps, thus to a 33% increment. Obviously, this is due to the larger size 
of the DASH segment requested by the local edge server, which results in a higher bandwidth 
consumption over the link between the remote edge server and the client. Also, by employing a 
fully low-quality encoding, the required data rate decreases to only 2 Mbps, though the QoE is 
heavily affected by the lack of high-quality tile being watched by the user.  
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FIGURE 4-9: GPU LOAD, POWER CONSUMPTION AND MEMORY USAGE ON THE CLOUD DATA 
CENTRE. 

 
FIGURE 4-10: ECDF OF THE DOWNLINK DATA RATE 

 

4.2.3 Conclusions and future directions 

The 5G-CORAL solution decomposes the end-to-end 360º video streaming service into micro-
services which are then distributed across three computing tiers, namely cloud, edge, and fog, in 
order of proximity to the end user client. The solution uses an adaptive viewport technique whereby 
only the field of view capturing the end user client orientation is delivered in high quality whereas 
the rest of the 360º scene is delivered in low quality, yielding good bandwidth saving. In addition, 
all the three compute tiers, composed of heterogeneous computing resources, are orchestrated and 
controlled using a unified orchestration and control system (OCS) based on Fog05. 

Performance evaluation has been conducted using physical testbed using real hardware 
equipment. The evaluation/experimentation measured metrics such as the GPU load, power 
consumption, memory usage, downlink and uplink data rates. These measurements clearly 
demonstrated the benefits of the proposed solution compared to a conventional approach where 
the 360º video streaming service is executed out of the Cloud. 

Measurement results show that our approach can alleviate the footprint of the 360º video delivery 
service on a cloud data centre by reducing the GPU load, the consumed power and the memory 
usage. Furthermore, we evaluated the bandwidth needed in uplink and downlink by the edge 



D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions 

H2020-761586 

                                                                                                                                  

server to deliver the video content and compared the adaptive tile-encoding approach with two 
non-optimized solutions, where the all the tiles are encoded at low or high quality. In particular, 
we observed a bandwidth reduction equal to 33% and 5%, respectively in downlink and uplink, 
when the adaptive tile-encoding is employed with respect to the full high-quality approach. 

While the measurements reported considered only a single user scenario, it is anticipated that with 
our distributed solution more significant bandwidth saving gains can be achieved especially in 
dense environments where several users share the same field of view. This is thanks to the potential 
of aggregation across multiple users with same orientation angles.  

The performance evaluation with multiple users is planned for future work. Furthermore, as a next 
step, we plan on carrying the 360º video streaming out of cameras on-board moving devices, such 
as robots or drones, using 5G wireless connectivity to the fog and edge tiers. This will help obtain 
more insights on the latency measures and the deployment topology in these mobile scenarios. 

4.3 Augmented Reality (AR)  
Augmented Reality (AR) is a powerful technology which brings new quality to the way we perceive 
the surrounding world. The goal is to understand the video stream recorded by the camera of the 
user device and add digital content (image or animation) on top of it in order to augment the 
video end user is observing (e.g. from the phone’s screen). In 5G-CORAL, we are aiming at 
providing a continuous indoor AR navigation experience for the clients at the shopping mall. The 
objective is to augment the user recorded video frames with a navigation arrow similar to the 
popular car navigation application. The user will see a guiding line grounded in the real world 
image displayed on his screen so that it will remind a real object, a pointer, to the desired 
destination as depicted in Figure 4-11. Moreover, user will be able to see shop promotions on their 
screen whenever he/she passes by the store. These special offer will enhance the shopping 
experience for the mall’s client. It is important to highlight that utilization of multi-RAT architecture 
is very vital to enhance AR performance. Indeed, the utilization of different RAT information will 
reduce the end-to-end latency and provide a better user experience for the AR user.  Where, the 
utilization of different RAT can help in collecting the context information to determine approximate 
user location. Then, an image recognition (IR) will require much smaller database size for estimating 
accurate user location. In addition, the processing time of AR computing will be reduced 
dramatically due to less image processing with smaller database.  
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FIGURE 4-11: AR LIVE NAVIGATION IN SHOPPING MALL 

 

4.3.1 Refined EFS design and functional validation  

Functions, services, and applications comprising on AR Navigation use case and the way they are 
interconnected is depicted in Figure 4-12. The IR Application processes input video frames sent by 
the UE and location data via iBeacon Localization Data, Service, and communicates with the IR 
Localization Data Service. After the IR processing, the application can determine in which zone of 
the shopping mall a given UE is located.  

 

FIGURE 4-12: AR NAVIGATION EFS DESIGN 

Three EFS service entities have been designed in the AR Navigation use case. The RNIS service 
exposes the received signal strength of a user towards an Access Point (i.e., Virtual AP Function). 
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The IR Localization Data Service consumes an output of the Image Recognition (IR) application and 
provides information about which area of the shopping mall where the UE is located. The iBeacon 
Localization Data Service conveys iBeacon ID and signal strength with respect to the UE receiving 
the beacon signal. This service can estimate the approximate location of the UE based on the 
vicinity of the UE to the iBeacon with assumption of iBeacon location known. The iBeacon localization 
data is provided by the UE and consumed by the Image Recognition application and the Location 
Estimation function. 

Three EFS function entities have been specified in the AR Navigation use case. Virtual access point 
(vAP) is a network function that was designed to provide customized WiFi access service to a 
specific client. When the client moves, its assigned vAP moves along. Therefore, from the client 
perspective, it will still be connected to the same AP, yet in fact, it is connected to the same vAP 
but different physical AP. Localization estimation function estimates relative UE location (e.g. X, Y, 
Z coordinates) in the indoor environment. It combines location information from multiple localization 
sources including iBeacon localization data service, Image Recognition application, Phone’s 
gyroscope data and possibly any other location information from other source 
(applications/functions). The Job dispatcher function dispatches the image recognition tasks among 
multiple computing substrates in order to balance the load among the fog nodes which are part of 
this application.  

4.3.2 Use-case specific implementations and experimental verification 

The environment described in the AR Navigation use case drastically decreases the need for the 
video frame to travel from user’s phone all the way to the remote data centre. Fog Computing 
Devices (CD) host by shopping mall’s Wi-Fi access points are deployed to which places proximate 
to the end user. Networked Fog nodes can offload computing capability of the remote data centre. 
The application finds a connection to the Image Recognition application (EFS application) deployed 
on the Fog CDs distributed around the shopping mall. Each Fog CD is coupled with a Wi-Fi access 
point controlled by the OCS. While iBeacon is used to broadcast messages, which help to infer the 
location of the mobile phone, the Wi-Fi AP allows for basic connectivity of the UE with the rest of 
the network. 

Figure 4-13 and Figure 4-14 show the experimental environments with native AR application and 
AR container (LXD), both of them are using TX2 as FogCDs, respectively, in which execution flow 
and latency monitored during the experiment trials are showed. According to the experimental 
results in the environment with native AR application, the connection establishment latency, 
measured by Timers 1, 2 and 3, is 278ms. The experimental Connection establishment result in the 
environment with AR container is 316ms, which is similar to the result of native AR application.  
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FIGURE 4-13: DISTRIBUTED AR – EXECUTION FLOW (NATIVE APPLICATION) 

 

FIGURE 4-14: DISTRIBUTED AR – EXECUTION FLOW (LXD CONTAINER) 

 

4.3.3 Conclusions and future directions 

In an infrastructure supporting user mobility such as shopping mall use case, fog computing 
architecture has been adopted to realize AR navigation application where the communication 
delay is significantly reduced on such architecture. The experimental result shows us a proof-of-
concept that the edge and fog computing architecture is possible to meet the requirements of AR 
navigation application. However, to make a considerable amount of shopping users satisfied 
simultaneously, the future direction in this use case is to design and develop a distributed computing 
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mechanism which is able to organize Fog CDs in proximity in a cooperative way so as to tackle 
and response timely bursts of AR navigation requests.  

4.4 Multi-RAT IoT  
In this 5G-CORAL use case, the main idea is to investigate the possibility to have one radio network 
infrastructure (instead of parallel network deployments) to serve multiple IoT RATs. The IoT 
baseband and upper layer functions are centralized and cloudified to an Edge Cloud environment. 
The main benefits are increasing network flexibility, reducing network cost, and increasing system 
scalability and future proofing. 

4.4.1 Refined EFS design and functional validation  

In this project, we provide a basic reference design of the Multi-RAT IoT use case to showcase the 
feasibility of implementing the three key EFS elements, i.e. EFS function, EFS service and EFS 
application, as briefly explained below, illustrated in Figure 4-15 and summarized in Table 4-4 
in some more details.  

• EFS function: IoT communication stack functions for various IoT RATs are implemented as 
software that can run on the Edge and they are virtualized as Docker containers, which 
are orchestrated using Kubernetes for life-cycle management, scaling, load balancing etc. 

• EFS service: MQTT is used as an example of EFS platform design. In-phase and 
Quadrature components (IQ) service is published from the IoT communications to a MQTT 
broker. 

• EFS application: As an example, the interference analyzer application subscribes to IQ 
services from a MQTT broker and uses the subscribed IQ samples for interference analysis. 

 

 
FIGURE 4-15: ILLUSTRATION OF REFINED EFS DESIGN FOR MULTI-RAT IOT USE CASE 
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TABLE 4-4: SUMMARY OF EFS ENTITIES FOR IOT MULTI-RAT USE CASE 

EFS Entity  Description  
IoT communication stacks These are the EFS functions that implement various IoT 

communication stacks for different RATs, e.g. IEEE 802.15.4, LoRa, 
NB-IoT. Basically, the communication stack function softwarises and 
virtualize the communication protocol (including lower layers like 
L1/L2 and higher layers like L3) implementation on EFS. For user 
data, in uplink, each communication stack function demodulates the 
IQ samples received from radio heads. In downlink, it modulates the 
user data to IQ samples and send to radio head where the IQ 
samples are converted to radio signals and sent to the air interface. 

MQTT clients and brokers Use MQTT as the EFS service platform, as agreed in the consortium, 
mainly due to its simplicity and software maturity.  In this use case, 
each IoT communication stack function is connected to a MQTT client 
to publish its services to other EFS functions or applications which 
subscribed the services. The MQTT brokers handles the data 
pub/sub mechanism following the MQTT protocol. 

IQ service This is an EFS service developed in this project. Basically, upon 
requests, radio head listens to its air interface and send IQ samples 
to the communication stack functions. The communication stack 
functions do some pre-processing and then send the IQ data via 
their MQTT client.  

Interference analyzer This is an EFS application developed in this project. Interference is 
a key problem in wireless communication. The current approach with 
transceivers embedded in access points can’t give a good picture 
about interferences due to its limited processing resources in 
hardware. The purpose of this application is to provide a tool on 
the Edge which can utilize the Edge resources to analyse the 
interference situation and thus construct a more accurate picture 
based on interference statistics obtained from the IQ service data 
subscribed with MQTT. 

 

The methodology for functional validation is to develop a PoC testbed being developed in both 
WP2 and WP4 in this project and perform functional and performance tests. At this time when 
writing this deliverable, the IoT communication stack functions supporting IEEE 802.15.4, LoRa and 
NB-IoT have been passed basic functional tests in lab environment. In addition, the functionality of 
IEEE 802.15.4 and NB-IoT implementations have been successfully demonstrated in two public 
events of EUCNC 2018 and ICT 2018, as well as in the midterm reviews in Taiwan and Vienna. 
The following list the functions that have been tested.  

(1) IEEE 802.15.4: full-stack implementation supporting 3 frequency channels from PHY layer 
to application layer with bi-directional communications between the softwarised 
communication stack function in the Edge and commercial IoT devices (i.e. Zolertia firefly).  

(2) LoRa: PHY and MAC layer implementation with bi-directional communications between the 
softwarised communication stack function in the Edge and commercial IoT devices (i.e. 
Pycom FiPy) 

(3) NB-IoT: downlink PHY (NPSS, NPSCH) implementation with simplified upper layer 
implementation which supports sending signals and messages from the softwarised 
communication stack function in the Edge and a self-developed SDR-based NB-IoT 
receiver. 

In this use case, the main research and development work is on the softwarization of the IoT 
communication stacks of multiple RATs. Other EFS elements of EFS service platform and EFS 
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applications are dependent to the IoT communication stack functions. They are more part of the 
testbed integration work in WP4. So, the functional tests on these parts will be done in the 
integration phase in WP4. 

4.4.2 Use-case specific implementations and experimental verification 

In the following, some key aspects and more details regarding the EFS design and implementation 
for the Multi-RAT IoT use case are presented. The performances of different aspects are evaluated 
and verified by experimental results with the developed PoC testbed. 

4.4.2.1 RH-Edge interface 

The interface between radio heads and the Edge needs to be efficiently designed to avoid 
overloading the transport network in between, as well as minimizing the latency. The following 
presents how we address this aspect and more details about our implementations to improve the 
interface efficiency. Although some aspects mainly consider two RATs of IEEE 802.15.4 and NB-IoT 
for PoC, the insights learned can be extended to other RATs.  

In this use case, the physical layer processing is done at the Edge and the Radiohead is responsible 
for the configuration and management of the Software Defined Radio (SDR).  The SDR converts 
the radio channel information into digital streams of In-Phase and Quadrature samples. These 
samples need to be transported to and from the Edge for the receive and transmit data flow 
chains respectively. 

As the physical layer of different RATs are virtualized and the physical instantiation is determined 
by the OCS, the RH-Edge Interface should be a logical interface.  Internet Protocol (IP) provides a 
mature and diverse collection of transport protocols over logical interfaces and hence is chosen for 
this use-case.  The protocol specifications of the RATs define timing constraints for the transactions 
between the gateway and other nodes. In order to satisfy these requirements, the transport of 
samples over the RH-Edge interface should have low-latency. The throughput requirements of the 
transport protocol are determined by the type and the number of RAT instances using a single 
interface. For example, a single 802.15.4 instance requires a data rate of approximately 128 
Mbps (note that this can be further compressed, as to be discussed later on about fronthaul 
compression regarding NB-IoT implementation. For example, the bit rate can be compressed by 4 
times by using a more efficient data format.).   

Considering these requirements, the base implementation used ZeroMQ as the transport protocol. 
ZeroMQ uses TCP for the transport of samples over the RH-Edge interface. TCP provides reliability 
with guaranteed delivery of packets with flow-control and error correction mechanisms. But these 
methods increase the transport overhead resulting in higher latency. Considering the wide adoption 
of User Datagram Protocol (UDP) as the transport protocol for video and audio streaming 
applications which have similar transport requirements as our use case, we developed a UDP-
based transport as the default RH-Edge transport.  The UDP based source and sink blocks for the 
GNU Radio are implemented which allow us to transport GNU Radio specific metadata along with 
the data payload. This helps in communicating status and control flags between the Radiohead 
and Edge dataflow chains. 

Experimental results 

To test the performance of difference transports between the edge and Radiohead components, 
we set up a testbed with two Intel Hades Canyon NUCs running the edge and radio head 
flowgraphs. The two NUCs are connected by a 1 Gbps Ethernet link. The radio head is connected 
to the USRP for communicating with a Zolertia Firefly node. The radio head uses the Squelch filter 
for RX packet filtering. We use ping command over a TUN interface for benchmarking the round-
trip times. The UDP data payload size was set to 8192 bytes for a single packet. 
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Figure 4-16 shows the use of UDP in the RH-Edge results in much lower round-trip times as 
compared to TCP. The UDP based transport has higher packet loss which can be attributed to lack 
of reliability mechanisms in the UDP transport protocol. We also observe that the use of echo 
filtering on the TCP transport helps improve the round-trip times. This is because, without echo 
filtering, the MAC ACK mechanisms can be triggered by the echo messages, resulting in MAC 
retransmissions and hence longer round-trip times. 

 

FIGURE 4-16: CDF OF RTT FOR PING MEASUREMENTS WITH DIFFERENT TRANSPORT PROTOCOLS  

 

Rx Packet detection is a general problem with any packetized wireless protocol. We present our 
802.15.4 implementation for an example. However, Tx echo handling is USRP specific problem.  

The SDR continuously streams radio samples to the Radiohead. Most of these radio samples do not 
correspond to 802.15.4 packets and hence do not add any value to the IoT gateway located at 
the Edge. The transfer of these samples results in wastage of network and compute resources. We 
need to detect which samples correspond to 802.15.4 packets at the radio head and only stream 
the relevant samples to the Edge. 

We evaluated three different filters for this purpose. The first iteration was done using a moving 
average RSSI filter which was followed by exponential moving average squelch filter. Finally, we 
implemented a preamble filter which correlates the incoming sample stream with the sample 
sequence for the IEEE 802.15.4 preamble. All these filters are threshold based gated filter. If the 
output of the filter for the incoming filter is above the threshold, then the samples are forwarded 
to the Edge using the RH-Edge interface otherwise they are dropped. 

In order to compare the performance of the filters, an experiment was designed.  Since the 
objective of the filter is to correctly filter out the unnecessary samples while forwarding the correct 
samples, the data size of the output samples and the number of packets detected from those data 
files were chosen as the output metrics for this experiment. A Zolertia firefly was programmed to 
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send 802.15.4 packets at regular intervals of 8 seconds.  A USRP was used as the receiver which 
fed the three filters running simultaneously. The output of these filters was saved to files and 
decoded using the 802.15.4 PHY module in GNU Radio. The decoded packets were parsed using 
Wireshark. The size of the output file is reported as Data Size, while the number of packets 
decoded correctly by Wireshark is shown as Packets Detected in Table 4-5. This test was carried 
out in a controlled office environment with low traffic on the radio channel reducing the chances of 
over the air collision. 

TABLE 4-5: RX PACKET DETECTION EXPERIMENTAL RESULTS 

Filter Data Size Packets Sent/ Packets 
Detected 

RSSI 10.9 GB 41/41 

Squelch 2.9 GB 41/41 

Preamble Detector 307 MB 41/41 

Our results show that the preamble detector is the best filter among the three as it was able to 
correctly decode all the packets while reducing the data size transferred by 97% and 89% in 
comparison to the RSSI filter and Squelch filter respectively. Both the RSSI and Squelch filter works 
on the input power of the incoming samples. So, they are generic and any relative power signal 
will be forwarded. On the other hand, the preamble detector is designed for only 802.15.4 
packets and is not dependent solely on the input power hence it helps in better filter performance.	

Due to poor isolation of the TX and RX channels on the USRP, the transmitted signals are loop 
backed and received by the receive chain.  This results in unnecessary data sent from the radio 
head to the edge and further computation at the edge. Since there is no solution found in the 
literature, we come up with our method of ensuring half duplex operation, as illustrated in Figure 
4-17. Initially the receiver is turned on (state S0). When the transmission burst starts we turn off 
the receiver (move to state S1). Since there is a certain delay from the transmission delay between 
the GNU Radio and the USRP operations, we need to take that into account when we are gating 
the receiver. On receiving the end of the burst, we wait for a certain time (in our case 700 µs) 
before turning on the receiver. 

 
FIGURE 4-17: STATE TRANSITION FOR ECHO HANDLING 

NB-IoT is designed to be compatible with LTE frame structure and maximize the reuse of LTE 
transceiver functionalities. Such a design facilitates the in-band and guard-band deployment in the 
LTE band [24]. In this work, we focus on downlink (specially NPSS and NPDSCH) to showcase one 
implementation example as one RAT in the Multi-RAT IoT use case.  
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As presented before, the key idea of this use case is to centralize baseband processing to the 
Edge. It is beneficial to reduce the fronthaul (FH) data sent between radio heads and the Edge. 
The required FH data rate can be expressed as 

𝑅 = 𝑓$𝑏 

where 𝑓$ is the sampling rate of IQ sample and 𝑏 is the number of bits per complex IQ sample. 

The bandwidth of a NB-IoT signal is 180 kHz which comprises of 12 subcarriers with subcarrier 
spacing of 15 kHz to be compatible to LTE implementation. According Nyquist theory, the minimum 
sample rate required for a complex baseband is the bandwidth. In practice, the sample rate should 
be set moderately higher than the bandwidth, to remove the aliasing effect and relax the anti-
aliasing filter design. For NB-IoT, 240 Ksps seems a good choice, which can be generated by a 
16-point FFT. 

However, in NB-IoT, each slot of 0.5ms comprising of 7 OFDM symbols has two cyclic-prefix (CP) 
lengths. The CP on the first symbol in each slot is 5.2 us long while the CP on the following six 
symbols is 4.7 us long, as illustrated in Figure 4-18. To have an integer number of samples of these 
two CPs, the minimum sample rate is 1.92 Msps, which is 8 times higher than 240 Ksps. With 1.92 
Msps, the first CP is 10 samples long while the second CP is 9 samples long. In addition, it requires 
128-point FFT which requires much more complexity than 16-point FFT with 240 Ksps. 

 

FIGURE 4-18: NB-IOT SLOT STRUCTURE 

Figure 4-19 shows the measurement results with sample rate of 1.92 Mbps. At the USB interface, 
the number of bits per IQ sample is 32 bits, i.e. 16-bit fixed point format for each I/Q sample. At 
the Edge-RH interface, the number of bits per IQ sample is 64 bits, i.e. 32-bit floating point format 
for each I/Q sample used in GNU Radio. The measurement verifies that the required FH bit rate 
is quite high (~125 Mbps) for one NB-IoT cell. It should be also note that the USB-interface bit rate 
is only half of that of the Edge-Radio interface because of more bits are used to represent IQ 
samples in GNU Radio. When we aggregate many cells to the edge, this would require a large 
bandwidth on the FH network and thus increase the cost. Therefore, there is a need to reduce FH 
bit rate. In this project, we refer to this as FH compression. 

Symbol 0CP Symbol 1CP Symbol 2CP Symbol 6CP...

5.2us 66.67us 4.7us 66.67us

1 slot (0.5ms)



D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions 

H2020-761586 

                                                                                                                                  

 

FIGURE 4-19: MEASURED FRONTHAUL THROUGHPUT WITHOUT COMPRESSION 

As discussed above, the current implementation is highly over-sampled. This indicates that FH can 
be largely compressed by reducing the sample rate. For example, FH bit rate can be reduced by 
8 times by reducing the sample rate from 1.92 Msps to 240 Ksps. To achieve this, we take the 
functional split principle [25] and move the function for adding CP to radio head, as illustrated in 
Figure 4-20 (b). In this way, the sample rate of the samples going through FH is reduced to 240 
Ksps comparing to the case without compression of 1.92 Msps. We implemented the compression 
in our testbed. As shown in Figure 4-21, the measurement results show that the bit rate is reduced 
to about 16 Mbps. It verifies 8 times compression due to implement 8 times sample rate reduction. 

In theory, the fronthaul can be further compressed by reducing the number of bits per IQ sample. 
Having 64 bits per IQ sample is redundant obviously. After all, the original data format used in 
USRP is only 32 bits per IQ sample. Based on our experience and expertise in the FH area, it is 
feasible to compress it down to 16 bits. Combining both functional split and efficient data format, 
the FH bit rate per NB-IoT signal can be compressed to 4Mbps, which is reasonably low to fronthaul 
many cells between radio heads and the Edge. 

 

FIGURE 4-20: DOWNLINK BLOCK DIAGRAM (a) WITHOUT COMPRESSION AND (b) WITH 
COMPRESSION 
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FIGURE 4-21: MEASURED FRONTHAUL THROUGHPUT WITH COMPRESSION 

4.4.2.2 Multi-channel design 

Massive IoT use cases require high network capacity and availability to provide reliable 
connections to a dense collection of sensor nodes. In order to address these demands, we propose 
a multi-channel IoT Gateway that is able to communicate over multiple radio channels, ensuring 
nodes operating on different radio channels can be part of the same network. This increases the 
capacity of the network as well as its availability. Since in our use case, the encoding and decoding 
of radio technologies are done in software, this approach can be extended to multiple radio 
technologies on multiple radio channels using a single antenna. 

As a proof of concept, we designed a three-channel IEEE 802.15.4 gateway. The SDR samples 
three adjacent radio channels. These wideband radio samples are segmented into samples for 
individual radio channels using a polyphase channelizer for the receive chain. For the transmit 
chain, the samples from individual channels are coalesced to form the wideband signal which is 
transmitted using the USRP. Our 802.15.4 setup for a single channel described in D4.1[26] can 
then be used for the individual transmit and receive chains for each channel.  Figure 4-22 and 
Figure 4-23 show the block diagram of the multi-channel transmitter and receiver implementation.   

 

 

 FIGURE 4-22: MULTI-CHANNEL RECEIVER IMPLEMENTATION 

 

FIGURE 4-23: MULTI-CHANNEL TRANSMITTER IMPLEMENTATION 

Our 802.15.4 TX generates bursts of IQ samples corresponding to 802.15.4 packets. The 
polyphase synthesizer is designed as a synchronous block in GNU Radio, in order to have proper 
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matrix dimensions for the IFFT operations. This implies that the polyphase synthesizer will consume 
the same number of samples on all input ports. So, if the length of the IQ samples coming from 
different 802.15.4 TX processes is different, then only the smallest message will get transmitted 
together with the same number of samples from the other messages. The remaining samples have 
to wait for samples to be available on the port with the smallest message size. The radio 
transmission for these messages has been illustrated in Figure 4-24, where there is a short 
discontinuity of the transmitted signal. The receiver on the Zolertia Firefly will see this discontinuous 
signal as a corrupted packet. 

 

FIGURE 4-24: BREAKDOWN OF RADIO TRANSMISSION. 

In order to alleviate this problem, we tested different approaches. We tried to make all the MAC 
packets of the same size by appending zeros after the CRC. The zeros get modulated as well by 
the PHY and result in corrupted packets on the Firefly because the RF driver on the Firefly processes 
received packet based on the length of the reception, instead of using the actual length field in 
the packet. Another approach is to send zeros on the ports that do not have data to output. If the 
802.15.4 TX ports produce the packet data slower than the consumption rate, zeros are going to 
be inserted between the samples of the same packet. This results in having the radio transmission 
breakdown problem in the middle of the packet. This is always going to be the case with the split 
case as the data rate for the UDP/TCP varies.  

Considering the drawbacks of these two methods, we buffer the incoming samples for an 802.15.4 
packet in order to overcome the problem of variable data production rate. Our IEEE 802.15.4 TX 
provides metadata about a sample stream, like the start of a packet and end of a packet using 
GNU Radio tags. We make use of these tags, to properly identify the beginning and end of 
packets. We output samples when a packet is buffered in the internal buffers. If any other ports 
have some packets buffered, then we output zeros on this output port. The flowchart for a single 
port is shown in Figure 4-25. We use a pair of threads to read from the input buffers and write 
to the output buffers respectively in order to increase the data throughput. 
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 FIGURE 4-25: FLOWCHART FOR OUR METHOD FOR A SINGLE INPUT PORT - OUTPUT PORT 
COMBINATION  

In our initial implementation, we used a vector of queues for our internal buffers, which leads to 
data rate problems as each write to this vector exceeds the capacity and a new vector is created 
with the old elements copied to this new vector. This slows down the read and write processes. In 
order to avoid this problem, we used large ring buffers in our implementation. This helps alleviate 
the data rate problem. In order to handle burst traffic, the USRP needs to be sent proper tags for 
managing the transmission process. Otherwise, the USRP will wait for internal buffers to be filled 
up which leads to radio transmission breakdown in case the packet transmission has ended on the 
GNU Radio flowgraph. It is difficult to determine when our burst will end. Hence, we append zeros 
to the end of each transmission and attach the End of Burst tag to the last sample of these zeros 
as illustrated in Figure 4-26. These zeros are appended to the physical layer sample stream which 
can be interpreted as no radio transmission from the USRP. Thus, these zeros do not result in packet 
corruption on the Firefly. 

 
FIGURE 4-26: STRUCTURE OF EACH TRANSMISSION 

We design an experimental setup illustrated in Figure 6.  We have a host computer running our 
IoT Multi-channel gateway process for three channels. The receive and transmit chains are designed 
as shown in Figure 4-22and Figure 4-23 respectively. We use the 802.15.4 channels 24, 25 and 
26 for this experiment. The Zolertia Fireflies are configured as shown in Figure 4-27, with one 
device on each channel. We use the ping command for our measurements. The experimental results 
are presented for 500 ping messages.  
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FIGURE 4-27:  EXPERIMENTAL SETUP 

Figure 4-28 shows the impact of simultaneous ping on multiple channels on the ping results for a 
single channel. The graph also shows the CDF for ping results from our single channel 
Implementation and when using a native Contiki border router. The results show our multi-channel 
implementation has higher round trip times compared to the single channel implementation. We 
hypothesize that this is mainly due to the buffering of all the samples of a packet needed to solve 
the discontinuity of radio transmission and also the extra computation needed for the polyphase 
synthesizer and channelizer. As we increase the number of channels on which we ping 
simultaneously, the reliability decreases. And we see a higher variance in the ping results. We think 
packet corruption requiring multiple retransmission when we transmit on multiple channels in the 
main reason for these variations. 

 
FIGURE 4-28: CDF OF RTT FOR PING MEASUREMENTS WITH 56 BYTES PAYLOAD 
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In Figure 4-29, we see that packet loss increases with increasing ping data payload size. The data 
payload size does not have a significant impact on the round-trip times of the ping data packets. 
As the buffering time for samples from different message sizes would be different but the lack of 
significant differences for these different data payload sizes highlights the main delays in our 
multi-channel implementation as compared to the single channel implementation is mainly occurring 
from the polyphase synthesizer and channelizer. 

 
FIGURE 4-29: CDF OF RTT FOR PING MEASUREMENTS WITH DIFFERENT PAYLOAD SIZES 

To summarize, we are able to communicate with multiple radio nodes on multiple channels using 
this approach. The reliability of our implementation can be improved with particular focus on 
understanding what the main causes of the extra delays are and how to improve the design. Our 
implementation showed variation in the results from different channels. We attribute this mainly to 
how we designed our polyphase filter banks, a closer look at the design of these filters is needed. 

4.4.2.3 IQ service and interference analysis application 

The focus of the EFS implementation for this use case has been on developing the multi-RAT 
communication stack functions, evaluate the design and showcase the feasibility by PoC testbed 
development. The work is still ongoing regarding establishing MQTT-based EFS platform with IQ 
service and the development of the interference analysis application. These are also taken as part 
of the integration work in WP4 where we will integrate the developed EFS elements in one testbed 
together with orchestration features. Therefore, more details regarding this part will be reported 
later in D4.2, the final deliverable of WP4.  

4.4.3 Conclusions and future directions 

In this deliverable for the Multi-RAT IoT use case, we provided a reference EFS design which is fully 
based on the 5G-CORAL architecture and comprised of all three key EFS elements in the design 
example. The design has been functionally tested and verified in lab tests and demonstrated in 
two public demonstration events at EUCNC 2018 and ICT 2018 in Vienna, as well as two internal 
demo events at mid-term reviews in Taipei and Vienna, in November and December 2018, 
respectively.  

Implementation-wise in this deliverable, we have addressed two key issues regarding efficient RH-
Edge interface design and multi-channel transceiver implementation, which are crucial for 
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cloudifying multi-RAT communication stacks. The experimental results prove the feasibility of 
implementing this use case following the 5G-CORAL concept and architecture.  

In 5G-CORAL, we focus on proof of concept studies and prototyping works of cloudifying existing 
IoT stacks, like IEEE 802.15.4, NB-IoT and LoRa. In future works, we plan to dig more into IoT 
protocols, explore the possibilities to relax timing requirements in the protocols, and investigate 
the tradeoff between latency and performance. The idea is in the direction to explore new designs 
of cloud-friendly protocols, instead of being limited by the existing protocol design. This would 
enable to cloudify more RATs into the Edge and thus further reduce the overall IoT network costs 
by resource sharing and increase system flexibility and scalability to address the future challenges 
for serving trillions of IoT devices in the full Digital Society era. 

4.5 Connected Car  
The connected cars use-case aims at proving the advantages offered by the 5G-CORAL 
architecture to improve the road safety. The low latency provided by this platform enables collision 
avoidance algorithms to be really effective. Also, the fact that it is a distributed architecture allows 
for several devices (potentially all the vehicles in the World) to publish their telemetry information 
at a high rate. This is possible only if that data traffic remains geographically confined where the 
car is located, which is also where that data is useful: clearly, a car in a certain city should not be 
receiving telemetry information from a car located in a different city, or even in a different 
neighborhood. 

 

FIGURE 4-30: CONNECTED CARS SCENARIO 

The Figure 4-30 describes the connected cars use case scenario, where the cars can be connected 
via LTE, via WiFi to an RSU or both simultaneously. 
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4.5.1 Refined EFS design and functional validation  

The Figure 4-26 describes the refined EFS designed for the connected cars use case. 

 

FIGURE 4-31: EFS ELEMENT IN CONNECTED CAR USE CASE 

In the connected cars use case, two services are offered on the EFS Service Platform: Telemetry 
service and Warning service. The first one provides some telemetry information from the vehicles, 
such as position and speed. The warning service provides notifications related to road hazards. 
Both services are based on ETSI standards, in particular the ESTI CAM [27] has been adopted for 
the telemetry service message contents, while the ETSI DENM [28] for the warning messages. 

A Road Side Unit (RSU) has been introduced in the design. It provides a secondary RAT access, 
which could be DSRC (Dedicated Short Range Communications), C-V2X (Cellular Vehicle-to-
Everything), etc. For the PoC we decided to use Wi-Fi as a simple way of proving the concept. For 
this reason, a Virtual Wi-Fi access point can be deployed as an EFS Function. 

The EFS applications are the ones consuming and producing the messages that are exchanged over 
the EFS Service Platform. In particular, the On-Board Unit is capable of: 

• Processing the Telemetry messages to warn the user about collision risks (Collision 
Avoidance application) 

• Generating and publishing warnings if a hazardous malfunction is detected (Vehicle 
Breakdown Notification) 

• Warning the user in case of an approaching emergency vehicle (Emergency Vehicle 
Approaching) 

The very same Collision Avoidance application can also be instantiated on the RSU, which 
collects the telemetry information of several vehicles in a certain area and generates warnings 
if necessary. 
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4.5.2 Use-case specific implementations and experimental verification 

The On-Board-Unit runs the EFS application as a Legato Framework (www.legato.io) application 
which allows to access the various sensors and interfaces on the board and, most importantly, keeps 
the applications monitored and sandboxed so that it is possible to start, stop, install and remove 
applications. 

When started, the application on the OBU reads a configuration file where several parameters 
can be configured, such as LTE and WiFi connection parameters, MQTT broker details, sampling 
period of the sensors providing telemetry data and tuning parameters for the application 
algorithms. A full list of the configuration parameters is available in Appendix 7.1.3. 

The application can be divided into two main components. The first one is responsible for 
generating the telemetry messages (CAMs) and publishing them to the EFS service platform. The 
second one takes care of receiving the telemetry messages from the other vehicles nearby and 
does the processing needed to compute if a collision risk is real and, in that case, generate and 
publish a warning (DENMs) message for the position where the car is located. 

In addition to that, a module responsible for generating the warning message according to the 
ETSI ITS standards has been introduced. In other words, the message needs to be periodically re-
transmitted depending on its urgency and it must be terminated if the originating cause has 
disappeared. 

Some management of the warning messages is being done also when the messages are received. 
Since each warning message has a position and an expiry time attached to it, the OBU that receives 
one message needs to determine if the car is within the relevance area of the warning and trigger 
or stop the alarm depending on whether the car enters or leaves such area. Note that this requires 
the OBU to store all the warning messages it received and remove them only if they expire or if a 
termination message is received via the service platform by the vehicle that originated the 
message. 

The telemetry messages, which include the vehicle characteristics (length and width), its speed, its 
location and other details, are generated at a rate which varies between 1Hz and 10Hz 
depending on how much the heading, speed and position of the vehicle have changed since the 
last transmission of a message. In other words, the telemetry message is sent by default every 
second, however the values are monitored ten times as fast and, if there is a big enough change, 
the data it is transmitted right away. This is done to reduce the network load by doing a minimum 
pre-filtering of the data, while keeping a high data-rate when needed. 

For the demonstration we used a JSON encoded message since it is easier to process and debug 
across multiple platforms, however we studied other data encoding protocols, namely CBOR 
(Concise Binary Object Representation) and Protocol Buffers which reduce the payload size 
respectively by 42% and 82%. The reduced payload size results in a reduced latency, as it is 
summarized in table 11. 

TABLE 4-6: WIFI AND LTE LATENCY MEASUREMENTS (AVG. OVER 2500) 

Latency WiFi LTE (in TI LAB) 
1900 
bytes 
(JSON) 

Min: 48.399 ms 
Avg: 52.555 ms 
Max: 94.183 ms 
Stddev: 4.204 ms 

Min: 33.399 ms 
Avg: 48.211 ms 
Max: 122.080 ms 
Stddev: 4.073 ms 

1020 
bytes 
(CBOR) 

Min: 26.137 ms 
Avg:29.045 ms 
Max: 76.766 ms 
Stddev: 4.335 ms 

Min: 31.933 ms 
Avg: 46.648 ms 
Max: 104.751 ms 
Stddev: 6.014 ms 
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346 bytes 
(Protobuf) 

Min:11.542 ms 
Avg:15.347 ms 
Max:57.350 ms 
Stddev: 5.479ms 

Min: 20.309 ms 
Avg: 34.871 ms 
Max: 79.587 ms 
Stddev: 3.757 ms 

 

In this table we collected the minimum, average, maximum latencies and their standard deviations 
for the exchange of telemetry messages over WiFi and LTE. The WiFi measurements where 
performed while being connected to a Virtual AP (EFS Function) running on the RSU; The LTE 
measurement where performed in a 5G-CORAL environment, where the MQTT broker was 
instantiated very close to the eNB. The table shows how the latency varies with the different 
encoding formats. In the PoC we will consider the scenario where the OBU is connected to both 
RATs simultaneously, therefore the resulting latency is equal to the lowest one, with the added 
benefit of an increased reliability. 

4.5.3 Conclusions and future directions 

Mainly three aspects have been identified for the future directions: localization accuracy 
improvement, a more robust V2V RAT and an improvement of the algorithms behind the EFS 
applications. 

The location of the vehicle has currently been determined using a GNSS receiver, which has an 
accuracy of a few meters. While this is fine for proof of concept and for certain applications (e.g. 
emergency vehicle approaching notification), there are several possible improvements. First of all, 
a Kalman Filter can be used to perform sensor fusion between the GNSS position information, the 
vehicle speed (which can be measured from the angular velocity of the wheels) and the 
accelerations in the X, Y and Z axis that can be acquired with an Inertial Measurement Unit (IMU). 
In addition to this, the 5G-CORAL infrastructure can enable data fusion that would not be possible 
without communication between cars. In practice, a LiDAR can be installed on the vehicles and the 
distance between nearby vehicles can be published on the localization EFS service. Again, a 
Kalman filter (or a more advanced Particle Filter) can be used to improve the localization of two 
vehicles by doing data fusion and combining the LiDAR measured distance with the distance 
calculated by knowing the coordinates of the two cars. 

The second element that can be improved is the second RAT available for the communication with 
the RSU. The currently used Wi-Fi can be replaced with a more adequate C-V2X based 
communication, without having to re-design the architecture and logic of the application that 
manages the Multi-RAT aspect of the connected cars use case. 

Finally, the applications can be improved to include more refined collision avoidance algorithms. 
For example, an algorithm able to predict over a certain time span the movement of two cars can 
drastically anticipate the warning of a possible collision to the driver and, as well as reduce the 
number of false alerts. 

4.6 SD-WAN  
The SD-WAN use case aims to leverage SDN and NFV technologies to provide a secure and 
reliable interconnection network within the 5G-CORAL platform to connect the edge, fog and cloud 
and ultimately enable federation. Moreover, SD-WAN functions perform as virtual gateways, 
establishing a virtual connection among them, which transparently connects elements in different 
locations under the same virtual network. In the shopping mall scenario, point of sale (PoS) 
applications are deployed in one of the shopping malls EFS domains. An additional SD-WAN 
function is deployed at another EFS close to the initial shopping mall EFS domain, this EFS domain 
could be owned by a train or bus station company located close to the shopping mall. For this use 
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case we will analyse how federation can be used between these two domains to locate/offload 
precisely functions, and applications close to the end user. In this scenario we will simulate an end 
user moving from one federation consumer domain to a federation provider domain, enabling the 
consumer domain to take control of a fog node at the provider domain by leveraging federation, 
which will use to instantiate a PoS web application to offload traffic from end users connected to 
the provider domain. The use of federation with the combination of the SD-WAN function, allows 
domains to scale outside their own infrastructure.  

4.6.1 Refined EFS design and functional validation  

The main entity deployed in the use case is the SD-WAN function, acting as a virtual gateway. SD-
WAN functions are controlled by two components, the SD-WAN manager and SD-WAN controller, 
integrated into the SD-WAN EFS function manger, work together to establish a secure virtual 
network across SD-WAN functions. Through the SD-WAN function, control and data plane traffic 
flows, allowing the SD-WAN function to selectively separate both planes. In the use case presented 
in 4.6 the data plane is the traffic to and from PoS terminals, which flows though the PoS Web 
App and PoS DB, control pane traffic is composed by OCS interfaces with the EFS, which for this 
scenario will be the communication between the VIM(fog05) and the ESF infrastructure and the 
communication between the SD-WAN function and the SD-WAN EFS Function Manager. 

The next defined function is the Virtual WiFi Access Point, linked to the SD-WAN function in a layer 
2 network basis. It will forward data from the WiFi interface to the SD-WAN function, which will 
route the traffic to the intended destination, which in this use case will be the home/consumer 
domain PoS Application or the Provider domain offloaded PoS Web Application. 

Figure 4-32 shows an example of PoS service composed of two applications: the customer and 
inventory database (PoS DB) and the PoS web application (PoS Web App). While the database 
stays in the consumer domain, the web application can be deployed closer to the end user in the 
federated domain. Both service components are chained together by the SD-WAN function, 
allowing them to communicate over a secure virtual link. 

 

FIGURE 4-32: EFS ELEMENTS IN SD-WAN 

4.6.2 Use-case specific implementations and experimental verification 

This subsection explains the measurements gathered from the experiment setup, were we are 
testing the connectivity between a virtual host (representing the EFS PoS WebApp) and a PoS 
terminal accessing via WIFI both located in in the same EFS domain and leveraging the SD-WAN 
function to provide the connectivity. The experimental setup is composed by one Dell Latitude 
E5550 laptop with 8GB of RAM, Intel i5-5300U CPU and 500 GB of HDD, used to simulate the 
EFS domain. Instantiated on the laptop there is a virtual AP function (LXD container), and a virtual 
machine (KVM) were the SD-WAN function and the EFS PoS WebApp will be instantiated. 
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Additionally, a PoS terminal composed of an additional Dell Latitude E5550 laptop with the same 
characteristics as the one simulating the EFS domain will be sued to execute the validation 
experiment.  

The results provided in Table 4-7 serve as provisional results, which help us to analyse the impact 
of the SD-WAN in the data plane. Table 4-7 represent latency metrics collected using the ping 
tool between both the PoS terminal and the PoS WebApp. For this experiment, one hundred ping 
samples were taken and the period between ping samples is increased from 0.25s to 1s doubling 
the value each time. Additionally, the size of the ping packets is tuned to 56B, 128B, 256B, 512B; 
measuring latency over different packet sizes. Ping results are shown in the default ping tool format 
minimum/average/maximum/standard-deviation. 

TABLE 4-7: LATENCY MEASUREMENTS 

Latency T=0.25s T=0.5s T=1s 
56B 
packet 

7.108/72.124/412.9
09/96.857 ms 

7.410/55.643/374.333/7
3.563 ms 

7.474/61.247/548.430/87
.039 ms 

128B 
packet 

7.449/67.957/562.6
80/93.676 ms 

7.278/50.165/281.554/6
0.898 ms 

6.936/87.566/558.190/10
4.784 ms 

256B 
packet 

6.611/54.922/412.7
21/71.129 ms 

7.392/67.699/743.926/9
9.153 ms 

7.277/72.065/564.883/11
8.195 ms 

512B 
packet 

7.547/43.844/336.8
75/58.958 ms 

7.307/58.636/329.302/6
6.779 ms 

7.562/55.484/319.116/73
.125 ms 

 

Following the latency measurements, the next experiments tries to extract some more fundamental 
network metrics, such as, Jitter, Bandwidth and service deployment time. The results are presented 
below:  

• Jitter (10 seconds test) (UDP): 
o 15.3 Mbytes transferred 
o 12.8 Mbits/sec 
o 7.544ms of jitter 

• Bandwidth (10 seconds test) (TCP): 
o Sender: 13.6 Mbits/sec 
o Receiver: 13.2 Mbits/sec 

• Service deployment time:  
o 12 mins for VM deployment using fog05 
o 3 mins for container deployment using fog05 

Results from the experiments carried out in this section are diverse, indicating us that there could 
be a bottle neck in the scenario. The bottle neck which was identified is that the processor (cpu) 
used during the experiments, which does not have hardware acceleration for cryptographic 
operations. This type of hardware acceleration in CPUs is only present in medium to high end CPUs, 
rarely found in constrained devices. 

4.6.3 Conclusions and future directions 

Based on the results above, after the implementation of the SD-WAN function, the WIFI AP and 
both PoS service application are ready, there will be a second round of measurements in order to 
provide detailed measurements of a fully deployed scenario with two fully functional EFS domains, 
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which will enhance the initial results collection, providing a richer set of metrics from all of the 
functions/applications/services deployed. In this scenario the user will connect to a web application 
instantiated in the provider domain closer to its location, enabling us to extract more metrics from 
the scenario, including access network connection times, offloading function instantiation time, 
impact in the EFS system.  

Regarding the future directions, some of them are listed below: 

• Software automation and deployment.  
• Detection of when the federation should be triggered, e.g., increase of the number of 

users connected to an edge or fog node or even mobility detection, were connection and 
disconnection events to a domain are transmitted through the EFS service platform. 

• Migrate from a static federation model to a dynamic federation model.  

4.7 High-Speed Train 
In LTE networks, MME is the main entity which handles control signaling. It is responsible for initiating 
paging and authentication of the mobile devices. Also, MME retains location information at the 
tracking area level for each user and then selects the appropriate gateway during the initial 
registration process. In inter-MME handover, MME plays a vital part in signalling control in standard 
procedure. In particular, inter-MME handover involves three control stages. The first stage, the 
source eNodeB initiates the handover by sending a request message over the S1-MME reference 
point. In the second stage, the source MME, selects the target MME and configure a messaging 
tunnel over an interface called S10. The S10 is a control interface between MMEs. The last stage 
occurs when MME transfers the configuration message to target eNB over S1 interface. Needless 
to say, the high-speed train use case involved the interaction between MME on-board and on-land 
as described in D2.1in details. Hence, we proposed to adopt the vMME on-board of train in 5G-
CORAL. Notably, the S10 interface will include large amount of control signalling especially when 
hundreds of passenger devices handover simultaneously. Therefore, we also proposed to enhance 
the S10 interface to reduce the signalling between on-bored and on-land EFS node. Where, the 
adopted EFS virtualisation infrastructure has the MME functionality. Also, it is the totality of the 
hardware and software components that build up the environment. 

4.7.1 Refined EFS design and functional validation  

In high-speed train, the adopted EFS has different purpose entities as shown in Fig. 5-23. The first 
EFS entity is video streaming application. This EFS application provide the streaming video for UEs. 
The second entity is EFS functions which consists from two main part:   

 

FIGURE 4-33: HIGH-SPEED TRAIN EFS DESIGN 
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User Classifier function:  The UEs on-board have different QoS requirements. The user classifier 
function classifies the UEs into groups based on context information obtained such as QoS Class 
Indicator (QCI) and allocation and retention priority (ARP) which will be extracted from vMME. The 
user classifier function, where the classifications take place in two steps. In the first step, the user 
classifier extracts context information of UEs and sorts them based on QCI and ARP. Then, it will 
send the groups in descending QoS order queues to the vMME for handover in the second step.  

vMME: With the information provided from user classifier function and train approximate, vMME 
will execute handover of a group of users as train approach. As the train approaching to the train 
station, the vMME transmit important UEs context information ahead of time which will reduce the 
amount of signalling during the handover process itself. In particular, from step 0 to step 3 (see 
Figure 5-24), vMME will forward the relocation UEs information request to target MME which is the 
MME in the core network. Also, vMME will receive the relocation response time in this case. 

The last EFS entity is the train proximity. This block will be handled in the MME of the core network. 
The MME monitors several UEs and PCIDs (ID of eNBs), and since the time schedule and the route 
path of trains are known, the approximate location of the train can be estimated. Then, it executes 
handover triggering functions for UEs moving to specific eNB. In the two-hop architecture, the MME 
monitors the CPE on-board. When the train is approaching the station, i.e., the CPE will handover 
to the specific eNB near the station, then the MME executes the handover triggering function which 
sends a handover trigger signalling to the vMME. 

EFS Node can host several applications, functions and services such as video streaming application, 
vMME, user classifier function, and train proximity service, respectively. In our experiments, we 
used NextEPC framework as baseline for vMME. Then, we modify vMME to fit our proposed scheme 
including modification for S10 interface as elaborated earlier. 

In the high-speed train, OCS is responsible to handle the service migration as elaborated in details 
in D3.2. In our case, the train approximate service and user classifier function will be utilized by 
OCS to trigger and classify users into groups. As results, the downtime of users which they are 
moving from on-board to on-land will be minimized.                             

The flowchart of described enhanced MME implementation is described in Fig. 5-24. Obviously, 
the steps from 0 to 3 need to be executed ahead of time before handover process is executed in 
the legacy system.  

 

FIGURE 4-34: ENHANCED INTER-MME PROCEDURE FLOWCHART 
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4.7.2 Use-case specific implementations and experimental verification 

In the emulation environment of high-speed train, first, the MME, small cell and CPE are powered 
on. Then, vMME is powered on and connected with HSS in core network. Four emulated UEs connect 
to the on-board small cell. At the core network, MME connects to the target eNB (on-land). As train 
mobility is emulated, the MME will send handover trigger to vMME to classify the users into groups 
based on QoS and ARP. In addition, enhanced inter-MME handover is executed. Finally, we 
measure the size of control signal packet, handover latency, and downtime then compare the 
legacy system with the proposed schemes measurements as elaborated in following subsections. 

4.7.2.1 Experimental verification 

Fig. 5-25(a) represents the comparison of the handover improvement with/without the proposed 
enhancement for inter-MME. The x-axis represents the enhanced inter-MME (Grouped) and legacy 
inter-MME (non-Grouped) while the y-axis represents the inter-MME handover time. Obviously, the 
Grouped handover improved the total handover time slightly comparing with non-Grouped inter-
MME handover. In the both cases, the total handover time is large due to two-hop architecture and 
the emulation environment set up. In real high-speed train, the average handover time is around 
200ms. It is worth mention, the latency reduction is not the target of this work and this prove the 
results in Fig. 5-25 (a) did not create any overhead but reduces the total handover time. 

Fig. 5-25 (b) represents the comparison of signalling control messages during handover with 
Grouped and non-Grouped inter-MME handover. The x-axis represents the forward relocation 
request and forward relocation response, respectively. The y-axis represents the average control 
message sizes in bytes. In the case of forward relocation request, the Grouped inter-MME scaled 
down the average control messages up to 50% per user in comparison to the non-Grouped one. 
Also, grouped inter-MME reduces forward relocation response up to 25% per user in comparison 
to the non-Grouped one. Notable, this will reduce the signalling to core network significantly in 
large scale scenario. At the same time, it will contribute for the application stability at the end user 
side.   

 

   FIGURE 4-35: HIGH-SPEED TRAIN EMULATION RESULTS 

4.7.3 Conclusions and future directions 

In moving infrastructure scenarios such as train network, the proposed two-hop architecture is 
adopted to improve on-board user experience by reducing the interaction with on-land base 
stations. Furthermore, edge clouds and virtualization technologies can be utilized to bring services 
closer to the traveling users. Nevertheless, when large number of users transit from train to station, 
a signaling storm and application traffic backhauling become challenges to maintain continuous 
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service. Our experimental results show that the proposed schemes can reduce the control signaling 
by 50% when compared to the state-of-the-art.  
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5 5G-CORAL EFS Monitoring  
This section presents the monitoring solution adopted in 5G-CORAL to monitor the distributed EFS 
resources. First, we provide an overview of 5G-CORAL Monitoring in Section 5.1. Then, we present 
Prometheus as EFS monitoring platform in Section 5.2. Finally, we provide Prometheus experimental 
measurements in terms of computing, storage and networking resources under different scenarios 
in Section 5.3. 

5.1 Overview of 5G-CORAL Monitoring 
Considering the distributed and heterogenous nature of 5G-CORAL, EFS entities can be 
instantiated in multiple forms, such as native host applications, containers or even virtual machines. 
This diversity presents some extra challenges on how 5G-CORAL will tackle monitoring, such as 
tracking resource utilization from the underlying computing, network, and storage infrastructure or 
detecting failures. Introducing a monitoring platform will enable 5G-CORAL OCS to be fed by 
valuable monitoring data and improve its placement, scaling and migration algorithms of the 
resources located at the EFS. However, the tools which will be used to monitor the EFS, must comply 
with the 5G-CORAL requirements.  

In the 5G-CORAL architecture, EFS monitoring is envisioned as an EFS Service, which leverages 
E2~=Mp1 EFS interfaces to collect valuable information from the underlying EFS Virtual 
Infrastructure, EFS applications and Functions, to further expose them to other EFS components 
(Functions and/or Applications) and OCS components such as EFS Application/Function manager 
and Resource orchestrator. Additionally, in order to feed the EFS Monitoring service, monitoring 
agents/probes are additional elements included in 5G-CORAL architecture. These monitoring 
agents should ideally have a minimal impact on the EFS resources, i.e. computing, storage and 
networking. Figure 5-1depicts how the EFS monitoring service and agents fit into the 5G-CORAL 
architecture, including the collection and consumption interfaces from which monitoring data would 
flow. 
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FIGURE 5-1: EFS MONITORING MAPPING TO 5G-CORAL ARCHITECTURE 

5.2 Prometheus as EFS monitoring platform 
This subsection focuses on monitoring tools and platforms. The metrics exposed from the monitoring 
tools are detailed in Appendix 8. The different tools described in Appendix 8 cover all kinds of 
physical and virtual resources used in 5G-CORAL, ranging from virtual machines to containers 
(docker, LXD) and Linux to Windows operating systems.  

Prometheus monitoring platform is an open-source metrics-based time series database, designed 
for white-box monitoring. It pulls metric data from devices rather than rely on the device to push 
the metrics (although, push is also available via a gateway). Scalability is supported by deploying 
many Prometheus servers. Additional features which Prometheus supports include the use of a very 
simple exposition format, support labels (dimensions/tags) and a single executable.  Prometheus 
data model aggregates all data metrics as time series streams, which are timestamped values of 
a collection of metrics. These are uniquely identified by its metric name and a set of key-value 
pairs (labels). Additionally, in case the pull method does not suit the use case requirements 
Prometheus has an API available to publish data. Prometheus time series is data is usually identified 
by a metric name and a set of labels (<metric name>{<label name>=<label value>,…}) E.g., a 
time series with metric name api_http_request_total and labels method="POST" and 
handler="/messages" could be written as api_http_request_total{method="POST", 
handler="/messages"}. 

Prometheus has four client libraries to measure core metrics, namely.  

• Counter is cumulative metric that represents a single monotonically increasing counter 
whose value can only increase or be reset to zero on restart.  

• Gauge represents a single numerical value that can arbitrarily go up and down. For 
example: measuring temperature/memory usage.  
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• Histogram samples observations and counts them in configurable bucks. For example: 
request duration or response sizes.  

• Summary is similar to histogram, samples observations. Provides a total count of 
observations and a sum of all observed values. For example: request duration and 
response sizes.  

Prometheus relies in data scraping, which is the process of importing data from a web service or 
API into your own data monitoring, analysis or storage service. By leveraging data scraping 
Prometheus defines jobs and instances, which are defined by an endpoint you can scrape. A 
collection of instances with the same purpose or endpoint, which could be replicated for scalability 
or reliability reasons is called a job. Figure 5-2 represents Prometheus architecture, composed of 
three main elements, Service Discovery, Rules & Alerts and Local Storage. The detailed description 
of the internal architecture goes beyond the scope of this deliverable. We utilized a Prometheus 
integrated component, called cAdvisor. cAdvisor analyses and exposes resource usage and 
performance data metrics from running containers to Prometheus time series database.  Figure 5-3 
shows a screenshot of the dashboard where CPU and memory usages. A full list of the metrics 
supported by cAdvisor are given Table 5-1. 

 

 

FIGURE 5-2: PROMETHEUS ARCHITECTURE 
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FIGURE 5-3: CADVISOR DASHBOARD 

 

Table 5-1: All Metrics cAdvisor can expose to Prometheus 

All Metrics cAdvisor is able to export to Prometheus 
container_cpu_system_seconds_total container_memory_swap 
container_cpu_usage_seconds_total container_memory_usage_bytes 
container_cpu_user_seconds_total container_memory_working_set_bytes 
container_fs_inodes_free container_network_receive_bytes_total 
container_fs_inodes_total container_network_receive_errors_total 

container_fs_io_current container_network_receive_packets_dropped_to
tal 

container_fs_io_time_seconds_total container_network_receive_packets_total 
container_fs_io_time_weighted_seconds_t
otal container_network_transmit_bytes_total 
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container_fs_limit_bytes container_network_transmit_errors_total 
container_fs_read_seconds_total container_network_transmit_packets_dropped_t

otal container_fs_reads_merged_total 
container_fs_reads_total container_network_transmit_packets_total 
container_fs_sector_reads_total container_scrape_error 
container_fs_sector_writes_total container_spec_cpu_period 
container_fs_usage_bytes container_spec_cpu_shares 
container_fs_write_seconds_total container_fs_writes_total 
container_fs_writes_merged_total container_last_seen 
container_spec_memory_limit_bytes container_memory_cache 
container_spec_memory_swap_limit_bytes container_memory_failcnt 
container_start_time_seconds container_memory_failures_total container_tasks_state 

 

Prometheus configuration allows the monitoring administrator or external system to specify the 
scrapping rules, which should be applied to collect the metrics. Such configuration is expressed in 
YAML format, which was designed to serialize data in a human readable way. Prometheus 
configuration (prometheus.yml). Figure 5-4 shows an example which specifies scraping rules for 
two different jobs, the targets parameter defines the endpoint at which Prometheus should query 
in order to retrieve the data. Additionally, scraping sources can be the following: Azure[29], 
Consul[30], AWS EC2[31], Openstack[32], GKE[33], Kubernetes[34], Marathon[35], Triton[36]. 

 

FIGURE 5-4: PROMETHEUS CONFIGURATION (PROMETHEUS.YML) 

Prometheus offers the following instrumentation features:  

• Client Libraries: Before you can monitor your services, you need to add instrumentation to 
their code via one of the Prometheus client libraries. These implement the 
Prometheus metrics types 

• Pushing Metrics: Monitor metrics which normally cannot be scrapped. 
• Exporters and Integrations: Number of libraries and servers which help in exporting 

existing metrics from third-party systems as Prometheus metrics. It can also monitor services 
on MQTT broker[11]. 

Grafana is one of the preferred tools to visualize the data and metrics collected in Prometheus 
time series database. Grafana is an open-source platform for data analytics and data 
visualization, which is capable of reading data from multiple sources including Prometheus. Figure 
5-5, an example of a Grafana dashboard is shown. 



D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions 

H2020-761586 

                                                                                                                                  

 

FIGURE 5-5: GRAFANA DASHBOARD EXAMPLE 

5.3 EFS monitoring experimentation with Prometheus  
Due to its widespread use both in academia and industry, Prometheus was adopted by 5G-CORAL 
as a monitoring solution. WP2 integrated Prometheus into the testbed setup of Figure 5-6, in order 
to measure the impact monitoring on the EFS resources. The Prometheus node-exporter provides a 
mechanism of exposing hardware and operating system metrics to the Prometheus platform by 
pulling data and metrics from the endpoints defined on each device.  

 
FIGURE 5-6: PROMETHEUS AND 5G-CORAL 



D2.2 Refined design of 5G-CORAL edge and fog computing system and future directions 

H2020-761586 

                                                                                                                                  

5.3.1 Experiment I: EFS resource as virtual machine 

To execute the first experiment, a virtual machine with 2GB of RAM and 25GB of disk memory 
was deployed, which represents a virtual EFS resource that could be instantiated at the cloud or 
edge.  In that virtual machine, a group of seven LXC containers are deployed, six of them were 
used to extract monitoring data and metrics while the seventh was used to run the Prometheus 
monitoring platform. Additionally, a Grafana instance was run natively in the virtual machine 
hosting the LXC containers.   

 

FIGURE 5-7: FOG NODE AS VIRTUAL MACHINE EXPERIMENT 

During the experiment, Prometheus collected metrics from each LXC container, by running a node 
exporter process within the containers; that gathered and exposed CPU, RAM and bandwidth 
metrics. Grafana was used as the analytics and monitoring interface for the collected metrics. 
Prometheus was configured to collect metrics at a frequency of 15 seconds, i.e. the default 
configuration value.  

During the experiment, CPU, RAM and bandwidth metrics of the virtual machine were measured 
with mpstat, free and ifstat commands, integrated in a bash script to automate the process. The 
experiment started by measuring these metrics without running the node exporter(s), Prometheus 
server or the Grafana service stopped. After the first minute, Prometheus, Grafana, and the first 
node exporter were instantiated. Then subsequently, every minute a new node exporter process 
was started in a new container, until all containers were running one instance of the node exporter.  

Figure 5-8 presents the user (USR) and system (SYS) spaces CPU percentage of time spent. From 
the results it was noted that the highest peak of CPU consumption was located during the 
instantiation process of Prometheus, Grafana and the first container. After the first peak there 
were small peaks representing the instantiation of the monitored containers one per minute. Finally, 
the lowest blue peaks, in between the medium blue peaks, represent the node exporter sending 
the metrics that Prometheus was polling. 
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FIGURE 5-8: CPU % OF TIME SPENT IN USR(USER) AND SYS(SYSTEM) SPACES 

Figure 5-9 presents the RAM consumption of the machine during the whole experiment, we noticed 
that RAM usage increased smoothly during the experiment; which leads us to interpret that 
Prometheus was storing collected data samples in RAM memory. The impact of Prometheus server 
and the node exporter(s) was minimal, i.e. RAM consumption increased by 150MB during the whole 
experiment. 

 

FIGURE 5-9: RAM CONSUMPTION 

Finally, Figure 5-10 presents the bandwidth consumption in KB/s at the aggregation bridge 
interface (lxdbr0). From the results we observed six clear peaks with more or less the same height 
of 110KB/s. These bandwidth peaks correspond to the metrics extraction procedure of Prometheus 
to each of the node-exporters in every container. These results indicate that the impact of this 
monitoring system is quite low in terms of bandwidth consumption, as only some few hundreds of 
KBs where transferred through the network. 
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FIGURE 5-10: BANDWIDTH CONSUMPTION IN LXDBR0 INTERFACE 

5.3.2 Experiment II: EFS resource as a real physical fog node device 

This experiment replicated the experiment described in section 5.3.1 while substituting the host 
virtual machine physical fog node. Figure 5-11 shows the selected fog node that has the following 
specification: OS: Ubuntu Server 16.04 LTS; CPU: Intel(R) Core(TM) i5-6200U CPU @ 2.30GHz; 
RAM: 4GB; and Disk: 8GB SSD. 

 

 

FIGURE 5-11: QOTOM MINI PC 

From Figure 5-12, we observed the biggest CPU peak at the start of the experiment, which 
represents the deployment and instantiation of the containers, Prometheus server and Grafana. 
Additionally, we noticed some more peaks (> 2% CPU User usage) that represent the starting of 
the node exporter process, and sequential polling of Prometheus to every deployed container. 
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Furthermore, in Figure 5-12 we present the CPU’s percentage idle time that allows for a better 
comparison and contrasting of the impact of Prometheus monitoring on CPU usage. From the results 
we observed that CPU utilization was highest during the instantiation phase (~10% of CPU time), 
and dropped to less than 5% over the duration of the experiment.  

 
FIGURE 5-12: CPU USAGE FOR USR, SYS AND IOWAIT 

Figure 5-13 presents the RAM usage during the experiment. From the results we observed that the 
RAM usage was less than 100MB, over the duration of the experiment. The minor fluctuations in 
RAM usage were attributed to RAM being consumed and subsequently released during the 
experiment.  
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FIGURE 5-13: RAM USAGE 

Figure 5-14 shows the results obtained from the disk usage during the experiment. Two snapshots 
were taken, one at the start of the experiment and another one at the end. We can see a 
consumption of 2% in /dev/sda2 partition, which totals 120MB of disk usage throughout the 
experiment. 

 

FIGURE 5-14: SNAPSHOT OF DISK USAGE BEFORE AND AFTER THE EXPERIMENT 
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Finally, we performed bandwidth measurements at all network interfaces of the fog node. 
According to Figure 5-15, the highest bandwidth measurement was observed when Grafana, 
Prometheus and all monitoring containers were started. During the course of the experiment it was 
observed that Prometheus monitoring utilized a bandwidth of approximately 60 Kbps.  

 
FIGURE 5-15: BANDWIDTH MEASUREMENT IN ALL INTERFACES OF THE PHYSICAL FOG NODE 

 

In conclusion the experiments and results presented in section 5.3.1 and section 5.3.2 revealed that 
the integration of resource monitoring framework(s), such as Prometheus, into the EFS; had minimal 
impact on the EFS resources (compute, storage and networking). 
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6 Conclusions and Future Work  
This deliverable, D2.2, is the final deliverable of WP2 with focus on the refined EFS design of 5G-
CORAL, following on the baseline design reported in the first deliverable D2.1. 

First, Section 2 and 3 address some key aspects in the EFS architecture and its reference design. 
Section 2 mainly addresses the EFS interfaces, data models and the EFS workflow, while Section 3 
provides an extensive analysis of EFS service messaging protocols. The main contributions of Section 
2 and 3 are listed as follows: 

• Provided the definitions of the EFS internal and external interfaces: Ex interfaces (E1-E4) 
are the EFS internal interfaces connecting different EFS elements defined in the 
architecture. Especially E2 interface provides the connectivity enabling distributing and 
sharing service data between EFS functions and EFS applications via EFS service platform. 
Ox interfaces (O1, O5 and O6) connect EFS to OCS.  Tx interfaces (T1, T3 and T8) connect 
EFS to OSS/BSS and non-EFS resources. To maximize the architectural compatibility to ETSI 
MEC and ETSI NFV, E2, E3, E4 and T1 interfaces are defined to be compatible with some 
reference interfaces defined in ETSI MEC while E1, O1, O5 and O6 are defined to be 
compatible with some reference interfaces defined in ETSI NFV. For example, for the E2 
interface, we define how the ETSI MEC Mp1 interface is used and extended by the EFS. 
The T3 and T8 interfaces are the new interfaces not scoped in ETSI MEC and ETSI NFV. 

• Refined the EFS service platform reference design from D2.1: Considering the needs of 
5G-CORAL and compatibility to ETSI MEC, we adopted the ETSI MEC approach using both 
REST-based API and MQTT brokers. The REST-based API is used for registering and finding 
services, while MQTT is used for E2 interface as the transport for EFS services. It should be 
noted that MQTT is given as one example for a reference design. Any other systems like 
Zenoh, NATS, DDS, etc. can be supported. In addition, data structures associated with EFS 
service operations are provided. As examples, we also presented the JSON-based data 
models used in some 5G-CORAL PoC testbeds (i.e. connected cars and robotics).  

• Investigated and benchmarked additional EFS service messaging protocols: Extensive 
experimental investigations have been performed to compare different alternatives, 
namely Zenoh, NATS, DDS, MQTT, and Kafka REST. The results showed that Zenoh and 
NATS outperform other protocols. These two are recommended to consider where high 
performance is needed. 

To investigate the feasibility of EFS implementation in real scenarios, verify the EFS reference 
design and showcase the benefits of EFS, PoC prototypes have been implemented for seven 
different use cases. In Section 4, use-case specific implementations are described to verify the EFS 
functionality, and performance is evaluated in each use case through experiments. By adopting 
the 5G-CORAL design, the experiment results showed clearly the benefits in service delivery, 
computation offload, bandwidth reduction, and improved multi-RAT support. The following 
summarizes the implementation insights and findings from each use case:   

• Robotics: This use case focuses on moving the robot control to the network side (locating it 
at the Fog, close to the robots) in the form of EFS applications, which would reduce the 
robot costs and enable the possibility to coordinate multiple robots. The Edge/Fog assisted 
robotics system has been designed blending together the Robot Operating System (ROS) 
that offers a common development framework for robotics applications and the 5G-
CORAL EFS platform. In addition, close-loop control of the robot with low latency bounds 
can be achieved by moving the control along the trajectory of the robot and considering 
the signal level of the wireless network connecting the robot and the infrastructure. The 
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experimental results showed that a smart navigation application leveraging the EFS 
service of Wi-Fi RSSI can smoothen the robot movement at a high speed. 

• Virtual Reality: In this use case, the 5G-CORAL solution decomposes the end-to-end 360º 
video streaming service into micro-services which are then distributed across three 
computing tiers, namely cloud, edge, and fog. All three compute tiers, composed of 
heterogeneous computing resources, are orchestrated and controlled using a unified 
orchestration and control system (OCS) based on Fog05. Experimental results showed that 
our approach can alleviate the footprint of the 360º video delivery service on a cloud 
data centre by reducing the GPU load, the consumed power and the memory usage, as 
well as saving the transport bandwidth by viewport adaptation.  

• Augmented Reality: In this use case, EFS architecture has been adopted to realize AR 
navigation application where the image recognition application is executed on the fog 
nodes on the network side. The processing was distributed dynamically among multiple 
fog nodes. iBeacon-based localization was used to reduce the image recognition 
processing requirement. The experimental results proved that the edge and fog computing 
architecture is possible to meet the requirements of AR-based navigation application, in 
terms of latency and processing offload requirements. 

• Multi-RAT IoT: The focus of this use case is on cloudifying the IoT communication stacks, like 
IEEE 802.15.4, NB-IoT and LoRa, in the EFS. We have addressed two key issues regarding 
efficient RH-Edge interface design and multi-channel transceiver implementation, which 
are crucial for cloudifying multi-RAT communication stacks. The experimental results 
regarding latency and network capacity required for fronthauling with 802.15.4 and NB-
IoT proved the feasibility of implementing this use case following the 5G-CORAL concept 
and architecture. 

• Connected Car: In this use case, the application is divided into two main components. The 
first part is responsible for generating the telemetry messages (CAMs) and publishing them 
to the EFS service platform. The second part takes care of receiving the telemetry 
messages from the other vehicles nearby and performs the processing needed for collision 
detection and, in that case, generate and publish a warning (DENMs) message for the 
position where the car is located. Both Wi-Fi and LTE can be used simultaneously. The 
experimental results demonstrated achievable low latency figures meeting the 
requirements set for this use case. 

• SD-WAN: This use case focuses on EFS federation. It analyses how two domains can be 
federated to locate/offload functions, and applications close to the end user. The 
experimental results showed the feasibility of the proposed EFS federation. 

• High-Speed Train: In moving infrastructure scenarios such as train network, the proposed 
two-hop architecture is adopted to improve on-board user experience by reducing the 
interaction with on-land base stations. Furthermore, the EFS implementation leveraging 
edge clouds and virtualization technologies can be utilized to bring services closer to the 
traveling users. The experimental results showed that the proposed schemes can reduce 
the control signaling by 50% when compared to the state-of-the-art. 

Furthermore, EFS resource monitoring is another important topic addressed in Section 5. An open-
source monitoring tool called Prometheus is proposed to fit to the EFS design. Two emulation tests 
have been done with virtualized fog nodes and real fog nodes, respectively. The experimental 
results showed that the CPU and memory usages are sufficiently low to be used for constrained 
devices, i.e. fog nodes. 

In WP2, we provided an EFS reference design following the 5G-CORAL architecture defined in 
WP1. The design enables the virtualization of EFS functions and applications on EFS resources and 
facilitate sharing the context information as EFS services. PoC testbeds for different use cases have 
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been developed and small-scale measurements have been done, which have verified the feasibility 
of the EFS design developed in this project. In the future, more EFS related studies and research 
works will be performed based on the results achieved in 5G-CORAL. Hereby, we conclude this 
deliverable by highlighting two future research directions in particular: 

1. Investigation of a large-scale EFS deployment integrating multiple use cases running on 
the same EFS, which is closer to real business deployment.  

2. Incorporating the capabilities of machine learning, AI techniques and data handling into 
the EFS, as well as the interactions and extensions with Cloud. This would require a further 
extension of the EFS design and make the EFS more intelligent and optimized.  

Last but not least, there are also a lot of possibilities to further improve the implementation of each 
use case presented in Section 4 in this deliverable. More details regarding each use case has been 
provided in Section 4, respectively. 
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7 Appendix: PoC service data models 
This appendix contains data models specified in JSON schemas for the messages used in the EFS 
services provided by some of the PoCs. 

7.1 Connected cars 
The Connected cars PoC make use of the CAM and DENM messages defined in ETSI EN 302 637-
2 and ETSI EN 302 637-3. 

7.1.1 CAM – Cooperative Awareness Message 
{ 
  "$schema": "http://json-schema.org/schema#", 
  "id": "jsonschema://it.azcom.RoadSafetyClient.schemas.CAM.json", 
  "title": "CAM", 
  "description": "CAM JSON representation", 
  "version": "1", 
  "type": "object", 
  "properties": { 
    "header": { 
      "type": "object", 
      "properties": { 
        "protocolVersion": { 
          "type": "number", 
          "enum": [1] 
        }, 
        "messageID": { 
          "type": "number", 
          "enum": [2], 
          "description": "Accept ONLY 2, i.e. CAM" 
        }, 
        "stationID": { 
          "type": "number", 
          "minimum": 0, 
          "maximum": 4294967295 
        } 
      }, 
      "required": ["protocolVersion", "messageID", "stationID"] 
    }, 
    "cam": { 
      "type": "object", 
      "properties": { 
        "generationDeltaTime": { 
          "type": "number", 
          "minimum": 0, 
          "maximum": 65535, 
          "description": "Time corresponding to the time of the reference position in 
the CAM, considered as time of the CAM generation. The value of the DE shall be wrapped 
to 65 536. This value shall be set as the remainder of the corresponding value of 
TimestampIts divided by 65 536 as below:\ngenerationDeltaTime = TimestampIts mod 65 
536\nTimestampIts represents an integer value in milliseconds since 2004-01-
01T00:00:00:000Z as defined in ETSI TS 102 894-2 [2]" 
        }, 
        "camParameters": { 
          "type": "object", 
          "properties": { 
            "basicContainer": { 
              "type": "object", 
              "properties": { 
                "stationType": { 
                  "type": "number", 
                  "enum": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15], 
                  "description": 
"0=Unknown\n1=Pedestrian\n2=Cyclist\n3=Moped\n4=Motorcycle\n5=Passenger 
car\n6=Bus\n7=Light truck\n8=Heavy truck\n9=Trailer\n10=Special 
vehicles\n11=Tram\n15=Road Side Unit" 
                }, 
                "referencePosition": { 
                  "type": "object", 
                  "properties": { 
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                    "latitude": { 
                      "type": "number", 
                      "description": "Unit: 0,1 microdegree\n900000001 if unavailable", 
                      "minimum": -900000000, 
                      "maximum": 900000001 
                    }, 
                    "longitude": { 
                      "type": "number", 
                      "description": "Unit: 0,1 microdegree\n1800000001 if unavailable", 
                      "minimum": -1800000000, 
                      "maximum": 1800000001 
                    }, 
                    "positionConfidenceEllipse": { 
                      "type": "object", 
                      "properties": { 
                        "semiMajorConfidence": { 
                          "type": "number", 
                          "description": "Unit: 1 centimetre\n4095 if unavailable", 
                          "minimum": 0, 
                          "maximum": 4095 
                        }, 
                        "semiMinorConfidence": { 
                          "type": "number", 
                          "description": "Unit: 1 centimetre\n4095 if unavailable", 
                          "minimum": 0, 
                          "maximum": 4095 
                        }, 
                        "semiMajorOrientation": { 
                          "type": "number", 
                          "description": "Unit: 0,1 degree\n3601 if unavailable", 
                          "minimum": 0, 
                          "maximum": 3601 
                        } 
                      } 
                    }, 
                    "altitude": { 
                      "type": "object", 
                      "properties": { 
                        "altitudeValue": { 
                          "type": "number", 
                          "minimum": -100000, 
                          "maximum": 800001 
                        }, 
                        "altitudeConfidence": { 
                          "type": "string", 
                          "enum": ["alt-000-01", "alt-000-02", "alt-000-05", "alt-000-
10", "alt-000-20", "alt-000-50", "alt-001-00", "alt-002-00", "alt-005-00", "alt-010-00", 
"alt-020-00", "alt-050-00", "alt-100-00", "alt-200-00", "outOfRange", "unavailable"] 
                        } 
                      } 
                    } 
                  }, 
                            "required": ["latitude", "longitude"] 
                } 
              }, 
                        "required": ["stationType", "referencePosition"] 
            }, 
            "highFrequencyContainer": { 
              "type": "object", 
              "properties": { 
                "basicVehicleContainerHighFrequency": { 
                  "type": "object", 
                  "properties": { 
                    "heading": { 
                      "type": "object", 
                      "properties": { 
                        "headingValue": { 
                          "type": "number", 
                          "minimum": 0, 
                          "maximum": 3601, 
                          "description": "Unit: 0,1 degree\n3601 if unavailable" 
                        }, 
                        "headingConfidence": { 
                          "type": "number", 
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                          "minimum": 1, 
                          "maximum": 127, 
                          "description": "Unit: 0,1 degree\n126 if out of range\n127 if 
unavailable" 
                        } 
                      } 
                    }, 
                    "speed": { 
                      "type": "object", 
                      "properties": { 
                        "speedValue": { 
                          "type": "number", 
                          "minimum": 0, 
                          "maximum": 16383, 
                          "description": "Unit: 0,01 m/s\n16383 if unavailable" 
                        }, 
                        "speedConfidence": { 
                          "type": "number", 
                          "minimum": 1, 
                          "maximum": 127, 
                          "description": "1 cm/s\n126 if out of range\n127 if 
unavailable" 
                        } 
                      } 
                    }, 
                    "driveDirection": { 
                      "type": "string", 
                      "enum": ["forward", "backward", "unavailable"] 
                    }, 
                    "vehicleLength": { 
                      "type": "object", 
                      "properties": { 
                        "vehicleLengthValue": { 
                          "type": "number", 
                          "minimum": 1, 
                          "maximum": 1023, 
                          "description": "0,1 metres\n1023 if unavailable" 
                        }, 
                        "vehicleLengthConfidenceIndication": { 
                          "type": "string", 
                          "enum": ["noTrailerPresent", "trailerPresentWithKnownLength", 
"trailerPresentWithUnknownLength", "trailerPresenceIsUnknown", "unavailable"] 
                        } 
                      } 
                    }, 
                    "vehicleWidth": { 
                      "type": "number", 
                      "minimum": 1, 
                      "maximum": 62, 
                      "description": "0,1 metres\n62 if unavailable" 
                    }, 
                    "longitudinalAcceleration": { 
                      "type": "object", 
                      "properties": { 
                        "longitudinalAccelerationValue": { 
                          "type": "number", 
                          "minimum": -160, 
                          "maximum": 161, 
                          "description": "Unit: 0,1 m/s2\n161 if unavailable" 
                        }, 
                        "longitudinalAccelerationConfidence": { 
                          "type": "number", 
                          "minimum": 0, 
                          "maximum": 102, 
                          "description": "Unit: 0,1 m/s2\n101 if out of range\n102 if 
not available" 
                        } 
                      } 
                    }, 
                    "curvature": { 
                      "type": "object", 
                      "properties": { 
                        "curvatureValue": { 
                          "type": "number", 
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                          "minimum": -30000, 
                          "maximum": 30001, 
                          "description": "1 over 30 000 metres\n30001 if unavailable" 
                        }, 
                        "curvatureConfidence": { 
                          "type": "string", 
                          "enum": ["onePerMeter-0-00002", "onePerMeter-0-0001", 
"onePerMeter-0-0005", "onePerMeter-0-002", "onePerMeter-0-01", "onePerMeter-0-1", 
"outOfRange", "unavailable"] 
                        } 
                      } 
                    }, 
                    "curvatureCalculationMode": { 
                      "type": "string", 
                      "enum": ["yawRateUsed", "yawRateNotUsed", "unavailable"] 
                    }, 
                    "yawRate": { 
                      "type": "object", 
                      "properties": { 
                        "yawRateValue": { 
                          "type": "number", 
                          "minimum": -32766, 
                          "maximum": 32767, 
                          "description": "0,01 degree per second\n32767 if unavailable" 
                        }, 
                        "yawRateConfidence": { 
                          "type": "string", 
                          "enum": ["degSec-000-01", "degSec-000-05", "degSec-000-10", 
"degSec-001-00", "degSec-005-00", "degSec-010-00", "degSec-100-00", "outOfRange", 
"unavailable"] 
                        } 
                      } 
                    }, 
                    "lateralAcceleration": { 
                      "type": "object", 
                      "properties": { 
                        "lateralAccelerationValue": { 
                          "type": "number", 
                          "minimum": -160, 
                          "maximum": 161, 
                          "description": "Unit: 0,1 m/s2\n161 if unavailable" 
                        }, 
                        "lateralAccelerationConfidence": { 
                          "type": "number", 
                          "minimum": 0, 
                          "maximum": 102, 
                          "description": "Unit: 0,1 m/s2\n101 if out of range\n102 if 
not available" 
                        } 
                      } 
                    }, 
                    "verticalAcceleration": { 
                      "type": "object", 
                      "properties": { 
                        "verticalAccelerationValue": { 
                          "type": "number", 
                          "minimum": -160, 
                          "maximum": 161, 
                          "description": "Unit: 0,1 m/s2\n161 if unavailable" 
                        }, 
                        "verticalAccelerationConfidence": { 
                          "type": "number", 
                          "minimum": 0, 
                          "maximum": 102, 
                          "description": "Unit: 0,1 m/s2\n101 if out of range\n102 if 
not available" 
                        } 
                      } 
                    } 
                  } 
                } 
              }, 
                        "required": ["basicVehicleContainerHighFrequency"] 
            } 
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          }, 
                    "required": ["basicContainer", "highFrequencyContainer"] 
        } 
      }, 
            "required": ["generationDeltaTime", "camParameters"] 
    } 
  }, 
  "required": ["header", "cam"] 
} 

7.1.2 DENM – Decentralised Environmental Notification Message 
{ 
  "$schema": "http://json-schema.org/schema#", 
  "id": "jsonschema://it.azcom.RoadSafetyClient.schemas.DENM.json", 
  "title": "DENM", 
  "description": "DENM JSON representation", 
  "version": "1", 
  "type": "object", 
  "properties": { 
    "header": { 
      "type": "object", 
      "properties": { 
        "protocolVersion": { 
          "type": "number", 
          "enum": [1] 
        }, 
        "messageID": { 
          "type": "number", 
          "enum": [1], 
          "description": "Accept ONLY 1, i.e. DENM" 
        }, 
        "stationID": { 
          "type": "number", 
          "minimum": 0, 
          "maximum": 4294967295 
        } 
      }, 
      "required": ["protocolVersion", "messageID", "stationID"] 
    }, 
    "denm": { 
      "type": "object", 
      "properties":{ 
        "management": { 
          "type": "object", 
          "properties": { 
            "actionID": { 
              "type": "object", 
              "properties": { 
                "originatingStationID": { 
                  "type": "number", 
                  "minimum": 0, 
                  "maximum": 4294967295 
                }, 
                "sequenceNumber": { 
                  "type": "number", 
                  "minimum": 0, 
                  "maximum": 65535 
                } 
              } 
            }, 
            "detectionTime": { 
              "type": "number", 
              "minimum": 0, 
              "maximum": 4398046511103 
            }, 
            "referenceTime": { 
              "type": "number", 
              "minimum": 0, 
              "maximum": 4398046511103 
            }, 
            "termination": { 
              "type": "string", 
              "enum": ["isCancellation", "isNegation"] 
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            }, 
            "eventPosition": { 
              "type": "object", 
              "properties": { 
                "latitude": { 
                  "type": "number", 
                  "description": "Unit: 0,1 microdegree\n900000001 if unavailable", 
                  "minimum": -900000000, 
                  "maximum": 900000001 
                }, 
                "longitude": { 
                  "type": "number", 
                  "description": "Unit: 0,1 microdegree\n1800000001 if unavailable", 
                  "minimum": -1800000000, 
                  "maximum": 1800000001 
                }, 
                "positionConfidenceEllipse": { 
                  "type": "object", 
                  "properties": { 
                    "semiMajorConfidence": { 
                      "type": "number", 
                      "description": "Unit: 1 centimetre\n4095 if unavailable", 
                      "minimum": 0, 
                      "maximum": 4095 
                    }, 
                    "semiMinorConfidence": { 
                      "type": "number", 
                      "description": "Unit: 1 centimetre\n4095 if unavailable", 
                      "minimum": 0, 
                      "maximum": 4095 
                    }, 
                    "semiMajorOrientation": { 
                      "type": "number", 
                      "description": "Unit: 0,1 degree\n3601 if unavailable", 
                      "minimum": 0, 
                      "maximum": 3601 
                    } 
                  } 
                }, 
                "altitude": { 
                  "type": "object", 
                  "properties": { 
                    "altitudeValue": { 
                      "type": "number", 
                      "minimum": -100000, 
                      "maximum": 800001 
                    }, 
                    "altitudeConfidence": { 
                      "type": "string", 
                      "enum": ["alt-000-01", "alt-000-02", "alt-000-05", "alt-000-10", 
"alt-000-20", "alt-000-50", "alt-001-00", "alt-002-00", "alt-005-00", "alt-010-00", 
"alt-020-00", "alt-050-00", "alt-100-00", "alt-200-00", "outOfRange", "unavailable"] 
                    } 
                  } 
                } 
              } 
            }, 
            "relevanceDistance": { 
              "type": "string", 
              "enum": ["lessThan50m", "lessThan100m", "lessThan200m", "lessThan500m", 
"lessThan1000m", "lessThan5km", "lessThan10km", "over10km"] 
            }, 
            "relevanceTrafficDirection": { 
              "type": "string", 
              "enum": ["allTrafficDirections", "upstreamTraffic", "downstreamTraffic", 
"oppositeTraffic"] 
            }, 
            "validityDuration": { 
              "type": "number", 
              "description": "Unit: 1 second", 
              "minimum": 0, 
              "maximum": 86400 
            }, 
            "transmissionInterval": { 
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              "type": "number", 
              "description": "Unit: 1 Millisecond", 
              "minimum": 0, 
              "maximum": 10000 
            }, 
            "stationType": { 
              "type": "number", 
              "enum": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15], 
              "description": 
"0=Unknown\n1=Pedestrian\n2=Cyclist\n3=Moped\n4=Motorcycle\n5=Passenger 
car\n6=Bus\n7=Light truck\n8=Heavy truck\n9=Trailer\n10=Special 
vehicles\n11=Tram\n15=Road Side Unit" 
            } 
          } 
        }, 
        "situation": { 
          "type": "object", 
          "properties": { 
            "informationQuality": { 
              "type": "number", 
              "minimum": 0, 
              "maximum": 7, 
              "description": "0=Unavailable\n1=Lowest\n7=Highest" 
            }, 
            "eventType": { 
              "type": "object", 
              "properties": { 
                "causeCode": { 
                  "type": "number", 
                  "enum": [0, 1, 2, 3, 6, 9, 10, 11, 12, 14, 15, 17, 18, 19, 26, 27, 91, 
92, 93, 94, 95, 96, 97, 98, 99], 
                  "description": "0=reserved\n1=traffic 
condition\n2=accident\n3=roadworks\n6=Adverse Weather Condition Adhesion\n9=hazardous 
Location Surface Condition\n10=hazardous Location Obstacle On The Road\n11=hazardous 
Location Animal On The Road\n12=human Presence On The Road\n14=wrong Way 
Driving\n15=rescue And Recovery Work In Progress\n17=adverse Weather Condition Extreme 
Weather Condition\n18=adverse Weather Condition Visibility\n19=adverse Weather Condition 
Precipitation\n26=slow Vehicle\n27=dangerous End Of Queue\n91=vehicle Breakdown\n92=post 
Crash\n93=human Problem\n94=stationary Vehicle\n95=emergency Vehicle 
Approaching\n96=hazardous Location Dangerous Curve\n97=collision Risk\n98=signal 
Violation\n99=dangerous Situation" 
                }, 
                "subCauseCode": { 
                  "type": "number", 
                  "minimum": 0, 
                  "maximum": 255, 
                  "description": "Type of sub cause of a detected event as defined in 
ETSI EN 302 637-3 [i.3]" 
                } 
              } 
            } 
          } 
        } 
      }, 
      "required": ["management", "situation"] 
    } 
  }, 
  "required": ["header", "denm"] 
} 
 

7.1.3 OBU Configuration parameters 

The connected car PoC defines OBU configuration parameters as shown in Table 7-1. 

TABLE 7-1: OBU CONFIGURATION PARAMETER 

Parameter name Description 
require_mobile_data_ 
connection 

0 = No mobile data request is performed 
1 = A mobile data connection is performed 

wifi_enabled 0 = WiFi is disabled; 1 = WiFi is enabled 
wifi_ssid SSID of the WiFi AP to connect to 
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wifi_password Password of the WiFi AP 
mqtt_broker_host[] Host of the MQTT Broker 
mqtt_broker_port[] Port of the MQTT Broker 
mqtt_broker_username[] MQTT Broker username 
mqtt_broker_password[] MQTT Broker password 

mqtt_broker_use_ssl[] 0 = SSL is not used ; 1 = SSL is used when 
connecting to the MQTT Broker 

mqtt_broker_cert_file[] Path to the PEM certificate file 
mqtt_default_topic_name[] MQTT topic name 
mqtt_default_qos[] MQTT QOS 
mqtt_keep_alive[] MQTT keep alive 
vehicle_length_cm The vehicle length in centimeters 
vehicle_width_cm The vehicle width in centimeters 

its_station_id 
The ITS "stationID" field in the ITS PDU Header 
Min: 0, Max: 4294967295 
Set to -1 to randomly generate a stationID 

its_station_type 

The "stationType" field in the ITS PDU Header 
0 = unknown 
1 = pedestrian 
2 = cyclist 
3 = moped 
4 = motorcycle 
5 = passengerCar 
6 = bus 
7 = lightTruck 
8 = heavyTruck 
9 = trailer 
10= specialVehicles 
11= tram 
15= roadSideUnit 

its_vehicle_length_confidence_indication 

The vehicleLengthConfidenceIndication field 
inside the ITS VehicleLength 
0 = noTrailerPresent 
1 = trailerPresentWithKnownLength 
2 = trailerPresentWithUnknownLength 
3 = trailerPresenceIsUnknown 
4 = unavailable 

cam_max_generation_period_ms The maximum time between the generation of 
two CAM messages (minimum rate) 

cam_min_generation_period_ms The minimum time between the generation of 
two CAM messages (maximum rate) 

bt_enabled 

Enable / disable the Bluetooth interface 
This interface is used to communicate with a BT 
device used as an HMI (such as a tablet) 
1 = enabled 
0 = disabled 

bt_device_name 

Set the name of the Bluetooth device. The 
following placeholders can be used: 
{{its_station_id}} - will be replaced by the 
value of the its_station_id configuration 
variable. 

hmi_http_url Set the URL where to make POST requests with 
the HMI JSON RPC data 

hmi_http_user_agent User agent used for the HTTP HMI interface 
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hmi_http_request_timeout_s Timeout of the HTTP request 

can_enabled 

Enable / disable the OBD-II / CAN interface 
Note: the CAN interface HAS to be enabled 
even if loading OBD-II samples from the test 
vector. 
1 = enabled 
0 = disabled 

can_bitrate Bitrate of the CAN BUS 
125000 or 500000 

can_obdii_identifiers_bit_size 

Size in bits of the CAN identifiers for the OBD 
The options are the following: 
11: 11-bit CAN ID 
29: 29-bit CAN ID 

can_interface CAN interface to be used for OBDII 

can_high_freq_timer_period_ms Acquisition rate of high frequency parameters 
from the OBD-II/CAN. e.g. vehicle speed. 

can_read_vehicle_speed Set to 1 to enable the reading of the vehicle 
speed. 0 otherwise. 

can_read_mil_status Set to 1 to enable the detection of the MIL 
(Malfunction Indicator Lamp). 0 otherwise. 

messages_exchange_e2e_ 
latency_measurement_enable 

Set to 1 to enable the E2E latency 
measurement of the message exchange. 
This will measure the time elapsed between the 
transmission of a message and its reception 
back on the same device. 
This does not include the application overhead, 
with the exception of the data exchanger (e.g. 
MQTT client) and a minimum overhead 
required to perform the measurement itself. 

messages_exchange_e2e_ 
latency_measurement_logfile 

The output file where to store the latency 
measurements 
The following placeholders can be used: 
{{its_station_id}} - will be replaced by the 
value of the its_station_id configuration 
variable 
{{current_timestamp}} - will be replaced by 
the value of the current unix timestamp 

app_collision_avoidance_enable Set to 1 if you want to enable the collision 
avoidance algorithm 

app_collision_avoidance_ 
detection_radius_m 

Radius in meters of the threshold for the 
collision avoidance. 
i.e. if two vehicles come this close, a DENM is 
generated 

gnss_position_acquisition_rate_ms GNSS position acquisition rate in milliseconds 

gnss_minimum_h_accuracy_for_fix Use horizontal accuracy threshold instead of 
GNSS fix state. 

 

 

7.2 Edge robotics 
The Edge robotics PoC defines one message for WiFi monitoring as follows. 

{ 
    "$schema": "http://json-schema.org/schema#", 
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    "id": "jsonschema://eu.5g-coral.Robotics.schemas.wifimonitor.json", 
    "title": "wifimonitor", 
    "description": "5GCORAL Robotics WiFi monitor message", 
    "version": "1", 
    "type": "object", 
    "properties": { 
        "host": { 
            "type": "string", 
            "description": "<node_id> - string? integer? mac address?" 
        }, 
        "timestamp": { 
            "type": "number", 
            "description": "Absolute time in Unix Epoch time?" 
        }, 
        "station": { 
            "type": "string", 
            "description": "MAC address of access point (ESSID?)" 
        }, 
        "channel": { 
            "type": "integer", 
            "description": "WiFi channel number" 
        }, 
        "signal": { 
            "type": "number", 
            "description": "Signal quality (RSSI?) in dBm" 
        }, 
        "datarate": { 
            "type": "number", 
            "description": "Connection data rate (Mbps)" 
        } 
    }, 
    "required": ["host", "timestamp", "station", "channel", "signal", "datarate"] 
} 

7.3 IBeacon  
The AR PoC uses one message for iBeacon coordinates as follows. 

{ 
    "$schema": "http://json-schema.org/schema#", 
    "id": "jsonschema://eu.5g-coral..schemas.ibeacon.json", 
    "title": "ibeacon", 
    "description": "5GCORAL  ibeacon message", 
    "version": "1", 
    "type": "object", 
    "properties": { 
        "iBeacon_Addr": { 
            "type": "string", 
            "description": "MAC address" 
        }, 
        "iBeacon_Region": { 
            "type": "string", 
            "description": "Region..." 
        }, 
        "iBeacon_LiDAR_Coordinates": { 
            "type": "object", 
            "properties": { 
                "X_Cod": { 
                    "type": "integer" 
                }, 
                "Y_Cod": { 
                    "type": "integer" 
                }, 
                "Z_Cod": { 
                    "type": "integer" 
                } 
            }, 
            "description": "LiDAR coordinates...", 
            "required": ["X_Cod", "Y_Cod", "Z_Cod"] 
        }, 
        "required": ["iBeacon_Addr", "iBeacon_Region", "iBeacon_LiDAR_Coordinates"] 
    } 
} 
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8 Appendix: Survey and analysis of SoA monitoring 
frameworks. 

In this section, we identify and discuss available monitoring tools that will be adopted in 5G-
CORAL.  We can classify monitoring in three different categories: host monitoring, virtual machine 
monitoring and container monitoring. In the following subsections, we describe each of these 
categories in more details. 

8.1 Host Monitoring 
Python system and process utilities (psutil [7]), is a well-known tool to monitor hosts. It is a cross-
platform library for retrieving information on running processes and system utilization in Python. It 
is useful mainly for system monitoring, profiling, limitation of process resources and the 
management of running processes. It implements many functionalities offered by UNIX command 
line tools such as: ps, top, lsof, netstat, ifconfig, who, df, kill, free, nice, ionice, iostat, iotop, uptime, 
pidof, tty, taskset or pmap. 

psutil, supports all well-known operating systems, such as Linux, Windows, macOS, 
FreeBSD/OpenBSD/NetBSD, Sun Solaris, AIX. Additionally, psutil can retrieve information about 
CPU, memory, disks, network, sensors, processes, users or boot time. Below, several examples to 
execute this tool in a terminal are shown: 

CPU times: 

>>> import psutil  
>>> psutil.cpu_times()  
scputimes(user=17411.7, nice=77.99, system=3797.02, idle=51266.57, 
iowait=732.58, irq=0.01, softirq=142.43, steal=0.0, guest=0.0, guest_nice=0.0) 
 
CPU percentage: 

>>> import psutil 
>>> # blocking  
>>> psutil.cpu_percent(interval=1)  
2.0  
>>> # non-blocking (percentage since last call)  
>>> psutil.cpu_percent(interval=None) 
2.9  
>>> # blocking, per-cpu  
>>> psutil.cpu_percent(interval=1, percpu=True)  
[2.0, 1.0] 

 
Memory: 

>>> import psutil  
>>> mem = psutil.virtual_memory()  
>>> mem  
svmem(total=10367352832, available=6472179712, percent=37.6, used=8186245120, 
free=2181107712, active=4748992512, inactive=2758115328, buffers=790724608, 
cached=3500347392, shared=787554304, slab=199348224)  
 
Network interfaces: 

>>> import psutil  
>>> psutil.net_if_addrs()  
{'lo': [snicaddr(family=<AddressFamily.AF_INET: 2>, address='127.0.0.1', 
netmask='255.0.0.0', broadcast='127.0.0.1', ptp=None), 
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snicaddr(family=<AddressFamily.AF_INET6: 10>, address='::1', 
netmask='ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff', broadcast=None, ptp=None), 
snicaddr(family=<AddressFamily.AF_LINK: 17>, address='00:00:00:00:00:00', 
netmask=None, broadcast='00:00:00:00:00:00', ptp=None)], 'wlan0': 
[snicaddr(family=<AddressFamily.AF_INET: 2>, address='192.168.1.3', 
netmask='255.255.255.0', broadcast='192.168.1.255', ptp=None), 
snicaddr(family=<AddressFamily.AF_INET6: 10>, 
address='fe80::c685:8ff:fe45:641%wlan0', netmask='ffff:ffff:ffff:ffff::', 
broadcast=None, ptp=None), snicaddr(family=<AddressFamily.AF_LINK: 17>, 
address='c4:85:08:45:06:41', netmask=None, broadcast='ff:ff:ff:ff:ff:ff', 
ptp=None)]} 
 

8.2 Virtual Machines Monitoring: Prometheus Node Exporter 
To monitor a virtual machine, we chose Prometheus system and node exporter tool [8] to export 
hardware and OS metrics exposed by *NIX kernels, written in GO with pluggable metric collectors, 
supporting collectors for each operating system. Collectors are enabled by providing a --
collector.<name> flag and disabled by providing a --no-collector.<name> flag. Table 8-1, 
contains the list of collectors available for Linux operating system, including a short description of 
where the statistics are gathered. 

TABLE 8-1: PROMETHEUS COLLECTORS FOR LINUX 

Collector Description 

arp Exposes ARP statistics from /proc/net/arp 

bcache Exposes bcache statistics from /sys/fs/bcache/ 

bonding Exposes the number of configured and active slaves of Linux bonding interfaces. 

boottime Exposes system boot time derived from the kern.boottime sysctl. 

conntrack Shows conntrack statistics (does nothing if no /proc/sys/net/netfilter/ present). 

cpu Exposes CPU statistics 

diskstats Exposes disk I/O statistics. 

edac Exposes error detection and correction statistics. 

entropy Exposes available entropy. 

exec Exposes execution statistics. 

filefd Exposes file descriptor statistics from /proc/sys/fs/file-nr. 

filesystem Exposes filesystem statistics, such as disk space used. 

hwmon Expose hardware monitoring and sensor data from /sys/class/hwmon/ 

infiniband Exposes network statistics specific to InfiniBand and Intel OmniPath 
configurations. 

ipvs Exposes IPVS status from /proc/net/ip_vs and stats from /proc/net/ip_vs_stats. 

loadavg Exposes load average. 

mdadm Exposes statistics about devices in /proc/mdstat (does nothing if no 
/proc/mdstat present). 

meminfo Exposes memory statistics. 
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netclass Exposes network interface info from /sys/class/net/ 

netdev Exposes network interface statistics such as bytes transferred. 

netstat Exposes network statistics from /proc/net/netstat. This is the same information as 
netstat -s. 

nfs Exposes NFS client statistics from /proc/net/rpc/nfs. This is the same information 
as nfsstat -c. 

nfsd Exposes NFS kernel server statistics from /proc/net/rpc/nfsd. This is the same 
information as nfsstat -s. 

sockstat Exposes various statistics from /proc/net/sockstat. 

stat Exposes various statistics from /proc/stat. This includes boot time, forks and 
interrupts. 

textfile Exposes statistics read from local disk. The --collector.textfile.directory flag must 
be set. 

time Exposes the current system time. 

timex Exposes selected adjtimex(2) system call stats. 

uname Exposes system information as provided by the uname system call. 

vmstat Exposes statistics from /proc/vmstat. 

wifi Exposes WiFi device and station statistics. 

xfs Exposes XFS runtime statistics. 

zfs Exposes ZFS performance statistics. 

 
Prometheus WMI exporter is available for Windows machines, which leverages Windows 
Management Instrumentation. Table 8-2: lists the different collectors supported to gather metrics.  

TABLE 8-2: PROMETHEUS COLLECTORS FOR WINDOWS 

Collector Description 

ad Win32_PerfRawData_DirectoryServices_DirectoryServices Active Directory 

cpu Win32_PerfRawData_PerfOS_Processor metrics (cpu usage) 

cs Win32_ComputerSystem metrics (system properties, num cpus/total memory) 

dns Win32_PerfRawData_DNS_DNS metrics (DNS Server) 

hyperv Performance counters for Hyper-V hosts 

iis Win32_PerfRawData_W3SVC_WebService IIS metrics 

logical_disk Win32_PerfRawData_PerfDisk_LogicalDisk metrics (disk I/O) 

net Win32_PerfRawData_Tcpip_NetworkInterface metrics (network interface I/O) 

msmq Win32_PerfRawData_MSMQ_MSMQQueue metrics (MSMQ/journal count) 

mssql various SQL Server Performance Objects metrics 

os Win32_OperatingSystem metrics (memory, processes, users) 
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process Win32_PerfRawData_PerfProc_Process metrics (per-process stats) 

service Win32_Service metrics (service states) 

system Win32_PerfRawData_PerfOS_System metrics (system calls) 

tcp Win32_PerfRawData_Tcpip_TCPv4 metrics (tcp connections) 

textfile Read prometheus metrics from a text file 

vmware Performance counters installed by the Vmware Guest agent 

 

8.3 Containers Monitoring  
This subsection analyses how different container platforms expose metrics that can be later 
extracted. Docker, LXD and LXC container platforms/technologies will be further analyzed in the 
following subsections. 

8.3.1 Docker Monitoring 

Docker platform is the first section to be analysed. Docker exposes mainly two commands and an 
API that additional monitoring metrics. 

The first command is docker inspect which exposes low-level information on Docker Objects. Some 
of the commands main capabilities can be found in Table 8-3: And Table 8-4:. Docker inspect 
command is capable of exposing low-level information from instantiated docker containers and 
docker images. 

 

 

TABLE 8-3: DOCKER INSPECT LOW-LEVEL CONTAINER IMAGE PROPERTIES 

Low-level Container 
Image properties 

Description 

D This is the unique identifier of the image. 

Parent Represents the link to its parent image identifier. It is very common for 
an image to have a defined parent. 

Container Represents the container identifier stored in the image metadata. The 
container identifier is a temporary container created when the image 
was built. Docker will create a container during the image construction 
process, and this identifier is stored in the image metadata. 

ContainerConfig Represents the temporary container configuration created when the 
image is built 

DockerVersion Describes the version of Docker used to create the image. This value is 
specially useful to check backwards compatibility between Docker 
versions. 

VirtualSize Describes the container image size reported in bytes. 

 

TABLE 8-4: DOCKER INSPECT LOW-LEVEL CONTAINER INSTANCE PROPERTIES 
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Low-level Container 
Instance properties 

Description 

D Describes the container unique identifier. 

State Represents the container state, which can be further described with 
multiple status flags and the process id of the container. 

Image Describes the image from which this container was instantiated. 

NetworkSettings The network environment for the container and therefore for the 
application(s) within the image. 

LogPath Represents the system path to the container's log file. 

RestartCount Value that keeps track of the number of times a container has been 
restarted. This value is the key value used when defining a 
container's restart policy. 

Name Represents the name defined by the user to the container. 

Volumes Defines the volume mapping between the host system and the container. 

HostConfig Set of configuration parameters which describe how the container will 
interact with the host system. These parameters include CPU and 
memory limits, networking parameters, and/or device driver paths. 

Config Represents the runtime configuration options set when the docker run 
command is executed. 

 

The second command is docker stats, which displays live stream resource usage statistics of a set 
of containers. The next figure shows an example of the output of the command.  

 

 
FIGURE 8-1: DOCKER STAT OUTPUT 

The data and metrics which can be retrieved by the docker stats command is explained in Table 
8-5.  

TABLE 8-5: DOCKER STATS DATA AND METRIC FIELDS 

Placeholder Description 
.Container Container name or ID (user input) 

.Name Container name 

.ID Container ID 

.CPUPerc CPU percentage 

.MemUsage Memory usage 

.NetIO Network IO 
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.BlockIO Block IO 

.MemPerc Memory percentage (Not available on Windows) 

.PIDs Number of PIDs (Not available on Windows) 

 

Finally, docker provides and API to interact with the running Docker daemon (called the Docker 
Engine API) (as well as SDKs for Go and Python). To inspect a container (docker inspect equivalent) 
[9]: GET /containers/{id}json. Also, to retrieve stats [10]: GET /container/{id}/stats  

8.3.2 LXD Monitoring 

LXD provides monitoring for the containers using a REST API running on the host node (GET 
/1.0/containers/<name>/state. This API exposes useful information about and instantiated 
container. The information which this API allows to gather is the following: 

• Status of the container 
• CPU usage (unclear the unit used) 
• Disk usage for each mount (in bytes) 
• RAM usage [peak, current, spaw, peak swap] (in bytes) 
• Network interfaces: addresses, counters, MAC address, MTU, hostname, state, type.  
• PID 
• Number of processes running in the container.  

Figure 8-2 showcases how the LXD API can further be accessed using Python (currently using pylxd 
in fog05): 

 
FIGURE 8-2: LXD API CONSUMPTION WITH PYTHON 

 

8.3.3 LXC Monitoring 

There are third party exporters and integration tools for LXC. The LXC exporter, located in 
https://github.com/SebastianCzoch/lxc-exporter, is able to monitor the following information 
described in Figure 8-3. 
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FIGURE 8-3: LXC MONITORING EXPORTER 

In addition, LXC default API "lxc info NAME" exposes: total used CPU time; disk usage (for root 
device); memory usage (current and peak); swap usage (current and peak); network usage 
(bytes/packets sent/received) 

Data gathered from LXC default API can easily be polled and sent to Prometheus platform. 
However, according to LXC developers, it is quite expensive to extract data from LXC default API 
consequently it is not advised to fetch data very often as it could cause additional load in the 
system. 
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9 Appendix: Zenoh and NATS comparison  
TABLE 9-1: ZENOH AND NATS COMPARISON 

Protocol Synch/Async  Pub/Sub 
reliability 

Request 
Reply 

Load 
Balancing 

Topic structure APIs 

NATS Yes At most 
once, at 
least once 

Yes Queue 
subscription 
that 
balances 
over 
subscribers 

Tree URI bases 
with wildcards: 

• * single 
token 
match 

• > 
multiple 
tokent 
match 
at end 
of topic 
name 

Go, 
Nodejs, 
Ruby, 
Java, 
C, 
C# 

Zenoh Yes Netx-
hop, First-
to-last 
broker, 
End-to-En 
 
All of this 
at most 
once 

Yes Load 
balancing 
between 
brokers 

Tree URI based 
with wildcards 

• ? single 
char 

• * single 
token 

• ** 
multiple 
tokens 

Java, 
OCaml, 
Pyhton, 
C 

 

9.1 Kafka Brokered Performance 
In Figure 9-1, RabbitMQ’s latency is constant, while ActiveMQ and Kafka are linear. What’s 
unclear is the apparent disconnect between their throughput and mean latencies. 

 

FIGURE 9-1: LATENCY VS MESSAGES ON RESTFUL PROTOCOLS 
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9.2 Apache Kafka 
With synchronous replication in Figure 9-2 [38], a single-node single-thread achieves about 
2391 msgs/s, and the best result is 54494 msgs/s with 25 sending and receiving threads and 6 
client sender/receiver nodes. 

 

FIGURE 9-2: MESSAGES PER SECONDS VS THREADS ON APACHE KAFKA 

In Figure 9-3 [39], the receive rates are very stable. The 95th percentile of the processing 
latency is also a stable 47 ms.  Also, the send latencies are around 48 ms. 

 

FIGURE 9-3: MAIN MEASUREMENTS ABOUT APACHE KAFKA 

Above 6 nodes adding more client threads doesn't increase performance; that's possibly the most 
we can get out of a 3-node Kafka cluster. However, Kafka has a big scalability potential, by 
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adding nodes and increasing the number of partitions. We could also scale up the batches: by 
using batches of up to 100, we can achieve 102170 msgs/s with 4 client nodes, and with batches 
of up to 1000, a whopping 141250 msgs/s. However, the processing latency then increases to 
443 ms. 

According to analysis of protocol and comparison with others[40], it has been added two more 
main results which are show in Figure 9-4 and Figure 9-5. 

 

 

FIGURE 9-4: MBPS VS PAYLOAD ON APACHE KAFKA 

 

FIGURE 9-5: MESSAGES PER SECONDS VS PAYLOAD ON APACHE KAFKA 

9.3 EFS service platform data storage engine 
The EFS service platform provides two main tasks: data storage to collect information from 
applications, functions and edge and fog resources; and the communication protocol to provide or 
gather this information. First, this subsection outlines options for the EFS service platform data 
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storage engine. Next, it complements the analysis of messaging protocols provided in deliverable 
D2.1 [1] with two additional protocols namely Zenoh and RESTful publish-subscribe. This is then 
followed with 5G-CORAL final conclusions regarding the messaging protocols of choice.      

After having described the characteristics of the EFS platform, where edge and fog devices form 
the substrate of the system, the data storage system that suits within the EFS service platform is a 
distributed one. In this kind of storage systems, the information is stored in more than one node, 
probably having replicas of the information spread over some nodes. One of the most common 
distributed databases are non-relational ones. Depending on the implementation of the distributed 
database, it may expose from key-value schema to more complex queries.  

Regarding the design of this type of storage systems, it is relevant to point out the CAP theorem, 
which states that a distributed data store will approve two out of three features, named 
consistency, availability and partition tolerance. The last one means that the system will continue 
running correctly even when there are isolated network failures. In a distributed system, this is a 
key feature. Regarding consistency, all nodes have the same view of the data at the same time. 
Finally, availability, aiming to keep the system operational all the time, regardless the state of 
any node of the cluster.   

Examples of distributed non-relational databases: Apache Cassandra [12];  Bigtable [13]; Druid 
[14]; MongoDB [15]; Voldemort [16]. 

 
 


