

H2020 5G-Coral Project

Grant No. 761586

D2.1: Initial design of 5G-CORAL Edge
and Fog computing system

Abstract

This deliverable provides the first release of the 5G-CORAL Edge and Fog Computing System

(EFS) architecture and design. It addresses the following aspects of the 5G-CORAL EFS: the EFS

requirements; the EFS architecture including internal and external interfaces; a comprehensive

survey, analysis and selection of the EFS Service platform messaging/communication protocols; and

a baseline EFS design for the 5G-CORAL use cases.

 D2.1 Initial Design of 5G-CORAL Edge and Fog computing system 2

H2020-761586

Document properties

Document number D2.1

Document title D2.1: Initial design of 5G-CORAL Edge and Fog computing
system

Document responsible Simon Duqennoy (SICS)

Document editor Charles Turyagyenda (IDCC)

Editorial team Simon Duqennoy (SICS), Alain Mourad (IDCC), Charles
Turyagyenda (IDCC), Ping- Heng Kuo (IDCC), Giovanni Rigazzi
(IDCC), Chenguang Lu (EAB), Shahzoob Bilal Chundrigar (ITRI),
María Felisa Sedano Ruíz (TELCA), José María Roldán Gil
(TELCA)

Target dissemination level Public

Status of the document Final

Version 1.0

List of contributors

Partner Contributors

ADLINK Gabriele Baldoni

IDCC Charles Turyagyenda, Ping-Heng Kuo, Giovanni Rigazzi

ITRI
Robert Gdowski, Samer Talat, Shahzoob Bilal Chundrigar, Gary Huang,
Ibrahiem Osamah

NCTU Li-Hsing Yen, Hojjat Baghban, Hsu-Tung Chien

TELCA María Felisa Sedano Ruiz, José María Roldán Gil

UC3M Luca Cominardi

SICS Simon Duquennoy, Niklas Wirström

EAB Chenguang Lu, Daniel Cederholm, Miguel Berg

AZCOM Riccardo Ferrari and Alessandro Colazzo

Production properties

Reviewers Alain Mourad, Shahzoob Bilal Chundrigar, Chenguang Lu

Document history

Revision Date Issued by Description

1.0 1 June 2018 SICS D2.1 ready for publication

Disclaimer

This document has been produced in the context of the 5G-Coral Project. The research leading to

these results has received funding from the European Community's H2020 Programme under grant

agreement Nº H2020-761586.

All information in this document is provided “as is" and no guarantee or warranty is given that the

information is fit for any particular purpose. The user thereof uses the information at its sole risk

and liability.

For the avoidance of all doubts, the European Commission has no liability in respect of this

document, which is merely representing the authors view.

 D2.1 Initial Design of 5G-CORAL Edge and Fog computing system 3

H2020-761586

Table of Contents

List of Figures .. 4

List of Tables ... 4

List of Acronyms .. 5

Executive Summary .. 6

1 Introduction ... 7

2 EFS Requirements and Architecture ... 8

2.1 5G-CORAL Refined Architecture .. 8

2.2 EFS Requirements ... 9

2.3 EFS Architecture .. 11

2.3.1 EFS Virtualisation Infrastructure (EFS-VI) .. 12

2.3.2 EFS Entities .. 12

3 EFS service platform and messaging protocols ... 15

3.1 EFS service platform .. 15

3.2 Survey of messaging/communication protocols ... 15

3.2.1 DDS .. 15

3.2.2 MQTT .. 17

3.2.3 AMQP ... 18

3.2.4 Kafka .. 21

3.2.5 NATS ... 23

3.2.6 Confluent .. 24

3.3 Analysis and selection of EFS messaging/communication protocol 25

4 EFS baseline design for 5G-CORAL use-cases ... 27

4.1 Robotics .. 27

4.2 Virtual Reality (VR) .. 28

4.3 Augmented Reality (AR) ... 29

4.4 High-Speed Train ... 32

4.5 IoT multi-RAT Gateway... 34

4.6 Connected Cars .. 36

4.6.1 Safety ... 36

4.6.2 Infotainment ... 37

5 Conclusions and Future Work ... 39

Bibliography.. 40

 D2.1 Initial Design of 5G-CORAL Edge and Fog computing system 4

H2020-761586

List of Figures
Figure 1 5G-CORAL Refined System Architecture .. 9

Figure 2 Publish/Subscribe messaging among EFS entities ... 14

Figure 3 MQTT publication and subscription concept based on Broker ... 17

Figure 4 Message Format of MQTT protocol ... 18

Figure 5 AMQP actors and their relations .. 19

Figure 6 RabbitMQ concept .. 20

Figure 7 EFS entities interconnection for the robotics use case ... 27

Figure 8 EFS Entities Interconnection for the VR Use Case ... 29

Figure 9 EFS Entities Interconnection for the AR Use Case ... 30

Figure 10 EFS Entities Interconnection for the high-speed train Use Case ... 33

Figure 11 EFS Entities Interconnection for the IoT multi-RAT Gateway Use Case 35

Figure 12 EFS entities interconnection for the safety connected car use case. 36

Figure 13 EFS entities interconnection for the infotainment connected car use case. 37

List of Tables
Table 1 Requirements for EFS virtualisation infrastructure (EFS-VI) ... 9

Table 2 Requirements for EFS entities.. 10

Table 3 EFS Interfaces .. 11

Table 4 Comparison between DDS and MQTT ... 26

Table 5 Summary of EFS entities for robotic use case ... 27

Table 6 Summary of EFS entities for VR use case ... 29

Table 7 Summary of EFS entities for AR use case ... 30

Table 8 Summary of EFS entities for High-Speed train use case ... 33

Table 9 Summary of EFS entities for IoT multi-RAT gateway use case ... 35

Table 10 Summary of EFS entities for connected cars use case ... 38

 D2.1 Initial Design of 5G-CORAL Edge and Fog computing system 5

H2020-761586

List of Acronyms

3GPP 3rd Generation Partnership Project

5G-PPP 5G Private Public Partnership

AAA Authentication, Authorization and
Accounting

AMQP Advanced Message Queuing
Protocol

AP Access Point

API Application Programming Interface

APIaaS API as a service

AR Augmented Reality

BLE Bluetooth Low Energy

BSS Business Support System

BSSID Basic Service Set Identifier

CD Computing Devices

CoAP Constrained Application Protocol

CPU Central Processing Unit

D2D Device-to-Device

DAS Direct Attached Storage

DASH Dynamic Adaptive Streaming over
HTTP

DDS Data Distribution Service

DTOA Differential Time of Arrival

EFS Edge and Fog Computing System

EFS-VI EFS Virtualisation Infrastructure

EI Event Information

EPC Evolved Packet Core

ETSI European Telecommunications
Standards Institute

GNSS Global Navigation Satellite System

GUI Graphical User Interface

HTTP HyperText Transfer Protocol

IEEE Institute of Electrical and Electronics
Engineers

IoT Internet of Things

IP Internet Protocol

IR Image Recognition

IQ In-phase and Quadrature
components

IR Image Recognition

ISO International Organization for
Standardization

ISG Industry Specification Group

LAN Local Address Network

LTE Long Term Evolution

MAC Media Access Control

MEC Mobile Edge Computing

MME Mobility Management Entity

MQTT Message Queue Telemetry
Transport

NAS Network Attached Storage

NB-IoT Narrow-Band IoT

NFV Network Functions Virtualisation

OCS Orchestration and Control System

OSS Operation Support System

P2P Peer-to-Peer

PEF Performance Enhancing Function

PHP Hypertext Preprocessor

PNF Physical Network Functions

QoS Quality of Service

RAM Random-Access Memory

RAN Radio Access Network

RAT Radio Access Technologies

REST Representational State Transfer

RSSI Received Signal Strength Indication

RSU Road-Side Unit

RTMP Real-Time Messaging Protocol

SaaS Software as a Service

SASL Simple Authentication and Security
Layer

SC Safety Core

SDR Software-Defined Radio

S-GW Serving Gateway

SSID Service Set IDentifier

STOMP Simple (or Streaming) Text
Oriented Message Protocol

TAU Tracking Area Update

TCP Transmission Control Protocol

TLS Transport Layer Security

TSCH Time-Slotted Channel Hopping

UC Use Case

UDP User Datagram Protocol

UE User Equipment

URL Uniform Resource Locator

vAP Virtual Access Point

VIM Virtualisation Infrastructure
Manager

vMME Virtual MME

VNF Virtual Network Functions

VR Virtual Reality

XMP Extensible Metadata Platform

XMPP Extensible Messaging and Presence
Protocol

D2.1 Initial Design of 5G-CORAL Edge and Fog computing system 6

H2020-761586

Executive Summary
The 5G-CORAL system aims to address the ultra-low latency requirements of emerging 5G

applications by leveraging the concept of “intelligent edge” to provide networking, computing,

and storage capabilities closer to the end users. This is realized through an integrated and

virtualised networking and computing solution where virtualised functions, user and third-party

applications, and context-aware services are blended together to offer enhanced connectivity and

better quality of experience. An integral part of the 5G-CORAL system is the distributed Edge

and Fog Computing System (EFS) that offers a shared hosting environment for virtualised functions,

services and applications.

This deliverable provides the first release of the 5G-CORAL Edge and Fog Computing System

(EFS) architecture and design. The deliverable addresses the following aspects of the 5G-CORAL

EFS: the EFS requirements; the EFS architecture including internal and external interfaces; a survey,

analysis and selection of the EFS Service platform messaging/communication protocols; and a

baseline EFS design for the 5G-CORAL use cases. The following highlights the key achievements in

this deliverable:

• A comprehensive description of the 5G-CORAL Edge and Fog Computing System (EFS)

requirements and architectural design, including: the EFS virtualisation infrastructure (i.e.

physical/virtual compute, storage and networking), the EFS entities (i.e. EFS applications,

EFS functions, EFS service platform and the respective entity managers), the EFS internal

and external interfaces.

• A detailed description of the microservice-based design principle for EFS atomic entities,

i.e. the building blocks of EFS entities.

• A detailed description of the publish/subscribe communication framework between the

EFS service platform and the EFS/non-EFS applications and functions.

• The selection of messaging protocols (DDS and MQTT), as the reference/baseline

messaging protocols for the EFS following an in-depth analysis of state of the art protocols.

• A baseline EFS design for 5G-CORAL use cases, namely: Robotics, Virtual Reality (VR),

Augmented Reality (AR), High-speed Train, IoT Multi-RAT Gateway and Connected Cars.

The baseline design decomposed each use case into the constituent EFS entities and

described their respective interworking(s).

Future work is anticipated to expand and refine these results by filling gaps identified, such as:

the design of the EFS service platform data storage engine, a study of RESTful publish/subscribe

messaging, a refined description of EFS internal and external interfaces, EFS workflows for

resource/service discovery and integration, data models for the EFS APIs and EFS implementation.

D2.1 Initial Design of 5G-CORAL Edge and Fog computing system 7

H2020-761586

1 Introduction
In contrast to previous mobile communication technologies, 5G promises to support a variety of

emerging applications including Mixed (Augmented/Virtual) Reality (AR/VR), Cloud Robotics,

Connected Vehicles and several Internet-of-Things (IoT) use cases. As the technical requirements of

these 5G applications materialize [18], it is evident that certain applications will require very low

end-to-end latency (~0.1-20 milliseconds). This ultra-low latency requirement is extremely

challenging and stressing for the network to deliver through a purely centralized architecture.

5G-CORAL addresses the ultra-low latency requirement by leveraging the concept of “intelligent

edge” to provide networking, computing, and storage capabilities closer to the end users. This is

realized through an integrated and virtualised networking and computing solution where

virtualised functions, context-aware services, and user and third-party applications are blended

together to offer enhanced connectivity and better quality of experience. The 5G-CORAL system

constitutes two major building blocks, namely (i) the Edge and Fog Computing System (EFS)

subsuming all the edge and fog computing substrates offered as a shared hosting environment for

virtualised functions, services, and applications; and (ii) the Orchestration and Control System

(OCS) responsible for managing and controlling the EFS, including its interworking with other (non-

EFS) domains (e.g., transport and core networks, distant clouds, etc.).

Against this backdrop, the objective of this deliverable is to provide the first release of the 5G-

CORAL EFS architecture and design developed over the first nine-month period of the project. The

deliverable addresses several aspects of the 5G-CORAL EFS, namely: the EFS requirements; the

EFS architecture including internal and external interfaces; a comprehensive survey, analysis and

selection of the EFS Service platform messaging/communication protocols; and a baseline EFS

design for the 5G-CORAL use cases. The deliverable is structured as follows.

Section 2 presents a description of the 5G-CORAL EFS architecture and requirements highlighting

the following key aspects: the overall 5G-CORAL system architecture, the EFS virtualisation

infrastructure requirements and the EFS entities’ requirements, the EFS architectural design and the

corresponding EFS internal and external interfaces.

Section 3 describes the EFS service platform and presents a comprehensive survey, analysis and

selection of messaging/communication protocols suitable for the EFS Service platform. The

protocols studied include: DDS, MQTT, AMQP, RabbitMQ, XMPP, Kafka, NATS, and Confluent.

Section 4 presents the EFS baseline design for 5G-CORAL use cases, namely: Robotics, Virtual

Reality (VR), Augmented Reality (AR), High-speed Train, IoT Multi-RAT Gateway and Connected

Cars. The baseline design decomposes each use case into the constituent EFS entities and describes

their respective interworking(s).

Finally, in Section 5, a conclusion is presented to summarize the findings of this deliverable, as well

as setting the prospects for future work.

D2.1 Initial Design of 5G-CORAL Edge and Fog computing system 8

H2020-761586

2 EFS Requirements and Architecture

2.1 5G-CORAL Refined Architecture

The 5G-CORAL architecture was specified in 5G-CORAL deliverable D1.1 [1]Error! Reference s

ource not found.. It is based on the ETSI MEC and ETSI NFV frameworks and composed of the

following two sub-systems:

• Edge and Fog Computing System (EFS): an EFS is a logical system subsuming Edge and

Fog resources that belong to a single administrative domain. An EFS provides a service

platform, functions and applications on top of the available resources and may interact

with other EFS domains.

• Orchestration and Control System (OCS): an OCS is a logical system in charge of

composing, controlling, managing, orchestrating and federating one or more EFS(s). An

OCS comprises Virtualisation Infrastructure Managers (VIMs), EFS managers, and EFS

orchestrators. An OCS may interact with other OCS domains.

The EFS incorporates a mix of physical and virtualised resources available in the fog and edge

tiers. As described in D1.1 [1]Error! Reference source not found., the main differences between a

n edge resource and a fog resource lie in their i) computing capabilities (a fog resource is more

limited than an edge resource), ii) mobility (a fog resource may be mobile whereas an edge

resource is assumed stationary), and iii) availability (a fog resource may have intermittent

availability compared to an edge resource which is always available). These differences influence

design aspects such as dominance of wireless communication, battery support and low resource

extensibility for the fog resource as compared to an edge resource.

The EFS is a logical system composed of functions/applications and a service platform. An atomic

entity is an unpartitionable computing task executed in the EFS. An EFS function is defined as a

software entity comprised by at least one atomic entity deployed in EFS for network infrastructure.

An EFS application is defined however as a software entity comprised by at least one atomic entity

deployed in EFS for end users and third parties.

The EFS Service Platform is a logical data exchange platform constituting of:

• Data storage to keep the collected information from applications/functions and edge/fog

resources.

• Messaging/communication protocols to gather/provide information from/to

applications/functions and edge/fog resources.

EFS applications, functions, and Service Platform are also referred to as EFS entities. Figure 1

shows the refined 5G-CORAL architecture developed in collaboration between WP2 and WP3.

The main changes for the EFS subsystem architecture compared to the initial version presented in

D1.1 [1] are the following:

• NFVI has been renamed as EFS-VI as to encompass the capability of the EFS Virtualisation
Infrastructure to also host applications and service platform;

• The Element Managers in the EFS have been renamed as Entity Managers to reflect the
definition of EFS application, function, and Service Platform. Nevertheless, the Entity
Managers play the same role of ETSI NFV Element Managers as initially stated;

• T8 interface has been extended as to also support non-EFS Resources;

• O5 and O6 interfaces connect also the EFS App/Func Manager to the corresponding EFS
application/function Entity Manager;

• VNF Descriptor has been changed to Entity Descriptor to cover EFS application, EFS
function, and EFS Service Platform Descriptor.

D2.1 Initial Design of 5G-CORAL Edge and Fog computing system 9

H2020-761586

FIGURE 1 5G-CORAL REFINED SYSTEM ARCHITECTURE

2.2 EFS Requirements

This section presents an overview of the EFS requirements derived from the 5G-CORAL system

requirements presented in D1.1 [1]. The EFS requirements are grouped into two categories, namely

1) requirements pertaining to the EFS virtualisation infrastructure (EFS-VI) and 2) requirements

pertaining to the EFS entities, i.e. EFS applications, EFS functions and EFS service platform. Table 1

and Table 2 present the mapping of EFS requirements against the system-level requirements

defined in D1.1 [1].

TABLE 1 REQUIREMENTS FOR EFS VIRTUALISATION INFRASTRUCTURE (EFS-VI)

ID Requirement System-level
requirement

EI-01 The EFS-VI shall support various categories of EFS resources, e.g.
Fog and Edge resources.

FT-01

EI-02 The EFS-VI shall support the abstraction and virtualisation of the
EFS resources.

FT-02

EI-03 The EFS-VI compute1, storage and network nodes shall incorporate
one or more Ethernet network ports for interconnection with other
devices, e.g. Physical Network functions (PNFs).

FT-05, FT-08

EI-04 The EFS-VI network node northbound links (i.e. towards the VIM)
shall incorporate a variety of Multi-RAT links including Ethernet
ports based on industry standards.

FT-05, NF-08

EI-05 The EFS-VI network node east/west ports should exist for each
additional compute/storage/network node.

FT-05, FT-08

1 Compute, Storage and Network nodes are defined as EFS-VI nodes that provide compute, storage
networking functions, respectively, to the NFVI.

OCS

EFS App/
Func

Manager

EFS

Third-
party(ies)

EFS-VI

Computing
Hardware

Storage
Hardware

Network
Hardware

Virtualisation Layer

Virtual
Computing Virtual Storage Virtual

Network

EFS Function

Virtualisation
Infrastructure

Manager (VIM)

Operation Support System / Business Support System

Third-party(ies)
Proxy

Other
EFS

Service
Platform

EFS
Resource

Orch.

Other
OCS(s)

EFS Interface

OCS Interface

Federation Interface

OSS/Third-party Interface

O1 ~= Nf-Vi

O2 ~= Vi-Vnfm

O4 ~= Or-Vi

E1 ~= Nf-Vn

F1 ~= Mp3

T1 ~= Mm2 T2 ~= Os-Ma-nfvo

T5 ~= Mm9

T3

T4 ~= Mm8

T6 ~= Mx1/2
Stack, Entity, and

Infrastructure
Description

E4

O5 == Ve-Vnfm-vnf

EFS Application

F2 ~= Or-Or

Entity
Manager

E4

Entity
Manager

E2 ~= Mp1

E3 ~= Mm5

O6 == Ve-Vnfm-em

EFS Service Platform Entity Manager

EFS Service Platform

E2 ~= Mp1
T8

Non-EFS
App(s)/Func(s)/

Resources

E2 ~= Mp1

EFS Stack
Orch.

Om1

Oo1

EFS
Service

Platform
Manager

O3 ~= Or-Vnfm

E2 ~= Mp1

D2.1 Initial Design of 5G-CORAL Edge and Fog computing system 10

H2020-761586

EI-06 The EFS-VI compute/storage/network nodes may support
east/west Multi-RAT links

FT-05, FT-08

EI-08 The EFS-VI compute, storage and network nodes should be able to
physically be interconnected with the minimum hops in order to
cope with latency.

FT-05, FT-08,
NF-04

EI-09 The EFS-VI compute nodes shall incorporate support of host
platforms e.g., virtual machines or containers.

FT-02

EI-10 The EFS-VI compute nodes shall incorporate minimum hardware
requirements to run the virtualised hosts.

FT-02

EI-11 The EFS-VI shall support occasional addition and removal of EFS
resources that maybe mobile and volatile.

FT-03, FT-09,
FT-10

EI-12 The EFS-VI shall support localization of EFS resources. FT-11

EI-13 The EFS-VI shall support synchronization across the EFS resources
that maybe distributed or co-located.

FT-12

TABLE 2 REQUIREMENTS FOR EFS ENTITIES

ID Requirement System-level
requirement

EE-01 Support for discovery of EFS entities, i.e. EFS applications, EFS
functions and the EFS service platform.

FT-03, FT-07,
FT-13, NF-02

EE-02 EFS entities shall expose APIs through which other EFS and Non-
EFS entities may communicate.

FT-04, FT-07,
FT-11, FT-12,
FT-15, NF-01,
NF-03, NF-05,
NF-06, NF-08,
NF-12, NF-13

EE-03 Support for placement, instantiation, migration, monitoring,
configuration and termination of EFS entities.

FT-06

EE-04 Support for synchronization across the distributed EFS entities. FT-11

EE-05 Support the subscription, authentication, registration, and
admission to EFS entities from both inside and outside of the EFS.

FT-04, FT-07,
NF-12

EE-06 Support for the independent deployment of EFS entities, i.e. the
deployment of any EFS entity does not depend on the existence of
other EFS entities.

FT-07, NF-05,
NF-11

EE-07 Support for multiple technologies in the software stack of EFS
entities, i.e. the use of different programing languages within each
EFS application, EFS function and the EFS service platform.

FT-07, NF-05

EE-08 Support for decoupling of the implementation logic of EFS entities
from APIs exposed by the EFS entities.

FT-07, NF-05,
NF-12

EE-09 Support for loose coupling among the EFS atomic entities that make
up the EFS entities. Loose coupling among atomic entities facilitates
refactoring, upgrading and deleting modules without unnecessarily
affecting other parts of the EFS entity.

FT-07, NF-05,
NF-10, NF-12

EE-10 Support for scaling of EFS entities. NF-11

EE-11 Support for isolation of EFS entities. NF-05

EE-12 Support for integration of 3rd party EFS and Non-EFS entities. FT-05, FT-08,
NF-11

EE-13 Support for multiple RATs via EFS functions. FT-08

EE-14 Support for the extraction and distribution of context information
from RATs using the EFS service platform.

FT-07, FT-08,

EE-14 Support for localization of EFS entities. FT-11

D2.1 Initial Design of 5G-CORAL Edge and Fog computing system 11

H2020-761586

2.3 EFS Architecture

This section presents the EFS design philosophy addressing: (i) the virtualisation infrastructure, (ii)

the EFS entities hosted therein and (iii) the interconnecting logical interfaces. The EFS design

leverages virtualisation technologies that decouple the EFS entities from the underlying EFS

resources, i.e. compute, storage and network. Some of the benefits derived from virtualisation

include: resource consolidation, isolation, faster provisioning, disaster discovery, dynamic load

balancing, faster development and test environment, reduced hardware vendor lock-in, improved

system reliability, and security. While the EFS architectural design is compliant with ETSI MEC and

ETSI NFV frameworks, the EFS provides two notable extensions:

1. First, the EFS virtualisation infrastructure (EFS-VI) extends the ETSI Network Functions

Virtualisation (ETSI- NFV) 0 reference architecture to incorporate mobile and volatile

resources that have different levels of availability, mobility, storage, computing,

networking and power capabilities.

2. Second, the EFS entities extend the ETSI-NFV network functions to include EFS applications

and an EFS service platform.

Table 3 presents an overview of the EFS internal and external interfaces (also illustrated in Figure

1).

TABLE 3 EFS INTERFACES

ID
ETSI

NFV/MEC
ref. point

Description

E1 ETSI NFV:
Nf-Vn

This is the reference point between the EFS virtualisation infrastructure (EFS-
VI) and the EFS entities, i.e. EFS applications, EFS functions, the EFS service
platform and their respective entity managers.

E2 ETSI MEC:
Mp1

This is the reference point between the EFS service platform and the
following: EFS applications, EFS functions, EFS virtualisation infrastructure
and the OCS.

E3 ETSI MEC:
Mm5

This is the reference point between the EFS Service platform and the EFS
Service platform entity manager.

E4 ETSI MEC:
Mm5

This is the reference point between the EFS application/EFS functions and
their respective entity managers.

O1 ETSI NFV:
Nf-Vi

This is the reference point between the Virtual Infrastructure Manager (VIM)
and the EFS virtualisation infrastructure (EFS-VI).

O5 ETSI NFV:
Ve-Vnfm-
Vnfm

This is the reference point between EFS functions or applications and the
EFS Service Platform Manager.

O6 ETSI NFV:
Ve-Vnfm-
em

This is the reference point between the entity managers of functions,
applications and EFS service platform and the EFS Service Platform
Manager.

T1 ETSI MEC:
Mm2

This is the reference point between the EFS service platform entity manger
and the Operation Support System/Business Support System (OSS/BSS).

T3 None This is the reference point between the EFS virtualisation infrastructure (EFS-
VI) and the Operation Support System/Business Support System
(OSS/BSS). ETSI NFV has an interface between NFVI and OSS/BSS,
however, this interface is not named and is classified under “other
references”

T8 None This is the refence point between the EFS service platform and the Non-EFS
applications, functions and resources. There is no equivalent interface both
in ETSI NFV and ETSI MEC.

D2.1 Initial Design of 5G-CORAL Edge and Fog computing system 12

H2020-761586

ID
ETSI

NFV/MEC
ref. point

Description

F1 ETSI MEC:
Mp3

This is the reference point between the EFS service platform and other EFS
Service platform(s).

2.3.1 EFS Virtualisation Infrastructure (EFS-VI)

The EFS virtualisation infrastructure (EFS-VI) is the totality of the hardware and software

components that build up the environment in which EFS entities (i.e. EFS applications, EFS functions

and EFS service platform) are deployed, managed and executed. The EFS-VI is geographically

distributed across several locations and composed of Fog nodes and Edge nodes. Table 1, presents

the requirements for the EFS-VI that are largely adopted from the NFV Infrastructure (NFVI)

requirements of [3]. To fulfil the EFS-VI requirements, the EFS-VI is designed to comprise three

domains (i.e. compute, storage, and network) and a virtualisation layer.

• Compute domain: provides the processing capability and comprises both virtual and

physical compute resources. The EFS compute domain consists of: inexpensive compute

nodes placed very close to the end user (i.e. Fog nodes); and high-end servers that

normally reside in Edge data centers. D1.1 [1] provides a detailed classification of Edge

and Fog computing devices.

• Storage domain: responsible for storing, porting and extracting data files and objects.

Storage resources can either be virtual or physical; and may be classified as either shared

network attach storage (NAS) or direct attached storage (DAS). The EFS-VI storage

domain primarily refers to shared network attach storage (NAS).

• Network domain: responsible for moving data between the storage domain and the

compute domain. Network resources can either be virtual or physical constituting: network

interface cards (wired and wireless), switches and routers.

• Virtualisation layer: abstracts the hardware resources and decouples the EFS entities from

the underlying hardware/resource i.e. hardware/resource abstraction. Additionally, the

virtualisation layer is responsible for enabling the EFS entities to utilize the virtualised

infrastructure. The EFS-VI design considers both hypervisor-based and container-based

virtualisation:

o Hypervisor-based virtualisation: software-based emulation of hardware

resources such as: compute, storage and network. Therefore, it is possible for the

host to emulate other types of devices, CPU architectures and operating systems.

o Container-based virtualisation: utilizes kernel features to create an isolated

environment for processes. In contrast to hypervisor-based virtualisation,

containers do not get their own virtualised hardware but use the hardware of the

host system. Therefore, software running in containers does directly communicate

with the host kernel and must be able to run on the operating system and CPU

architecture the host is running on.

2.3.2 EFS Entities

The EFS entities comprise EFS applications, EFS functions, the EFS service platform and their

respective entity managers. An EFS entity is comprised by at least one atomic entity. An atomic

entity is an unpartitionable computing task executed in the EFS.

The EFS entities are designed following the microservice-based [19] design paradigm as opposed

to monolithic software design principles, i.e. the EFS atomic entities are independent of the

microservices. Software programs designed using the monolithic design principles are

characterised as being self-contained with tightly coupled software modules/components.

D2.1 Initial Design of 5G-CORAL Edge and Fog computing system 13

H2020-761586

Consequently, updates to any software module/component necessitate re-writing and re-

deploying the entire software program.

The microservice-based design, adopted by 5G-CORAL, structures the EFS entities as a collection

of loosely coupled autonomous software modules working together, i.e., the EFS atomic entities that

make up the EFS applications, EFS functions and the EFS service platform are implemented as

microservices. Each microservice is a separate entity with no dependency on other microservices.

These microservices implement the logic of the EFS atomic entities and interact with each other and

communicate via network calls to enforce separation and avoid tight coupling. The network calls

may be implemented using either a request/response model or a publish/subscribe model.

Consequently, each EFS atomic entity exposes an application programming interface (API2) for

other EFS atomic entities to communicate in collaborative way.

The benefits of a microservice- based EFS design include:

• A single EFS entity (i.e. EFS application, EFS function and the EFS service platform) can be
deployed independently of the rest of the system. This allows to deploy some of the EFS
entities at the edge or fog while keeping others at distinct locations.

• Microservices permit the use of different technologies (e.g. programming languages) inside
each EFS atomic entity; additionally, the software stack within each EFS atomic entity can
be freely replaced while keeping the API towards the other EFS atomic entities the same.

• Adapting existing EFS entities (i.e. EFS application, EFS function and the EFS service
platform) does not require refactoring of the whole EFS entity.

• Microservices permit scaling of only those EFS entities (i.e. EFS application, EFS function
and the EFS service platform) that need scaling while keeping the rest untouched.

• Microservices provide better fault isolation, i.e. if one EFS entity or EFS atomic entity fails,
the others continue to function.

• With microservices, it is easy to integrate with 3rd party EFS entities (i.e. EFS application,
EFS function and the EFS service platform).

• Microservice-based EFS atomic entities and EFS entities can easily be implemented using
containers or virtual machines.

• Microservice-based design of EFS atomic entities inherently provides isolation of the
individual EFS atomic entities thus simplifying the security-related design.

In 5G-CORAL, we take the same design principle of microservices to design the EFS atomic entities.

Additionally, because of the distributed nature of the 5G-CORAL EFS and the mobility and

volatility of EFS resources, the EFS entities’ API design adopted publish/subscribe messaging as the

communication mechanism among the EFS applications, EFS functions, and the EFS service platform,

as depicted in Figure 2. The benefits of the “publish/subscribe” EFS service platform include:

• Loose coupling: Publishers are loosely coupled to subscribers, and don’t need to know

about their existence or physical location.

• System topology agnostic: Both publishers and subscribers focus on the topic and can be

ignorant of the underlying system topology.

• Robustness: Each publisher and subscriber can continue to operate normally regardless of

the other unlike the traditional client–server paradigm; where the client cannot post

messages to the server while the server process is not running, nor can the server receive

messages unless the client is running. This quality is particularly relevant to out-of-coverage

or offline scenarios where the EFS service platform may retain some data regarding

mobility and volatility.

2 An Application Programming Interface (API) is defined as the means by which one software

program provides access of its data or processes to another software program(s).

D2.1 Initial Design of 5G-CORAL Edge and Fog computing system 14

H2020-761586

• Highly suited for ubiquitous computing and distributed embedded systems, i.e. Fog and

Edge environments.

• Adaptability: Can be varied to suit different environments, e.g. error-prone environments

as opposed to the cloud/edge only data centres where the environment is very well

controlled

The EFS service platform provides the API framework through which both EFS and non-EFS

applications and functions can publish and subscribe to various services e.g. localisation service,

radio network information service (RNIS), etc. EFS and non-EFS applications and functions may

publish and/or subscribe to one or more topics, maintained by EFS service(s). The EFS service

platform performs Authentication, Authorisation and Accounting (AAA) of EFS and non-EFS

applications and functions that publish and/or subscribe to the EFS service(s). The EFS service

platform also maintains a service registry to track all of the services consumed by the applications

and functions. Each EFS service is essentially an API with multiple topics that authorised

applications/functions can publish to and/or subscribe to receive notifications from. Therefore, the

EFS service platform is an API as a service (APIaaS), a subset of Software as a Service (SaaS).

FIGURE 2 PUBLISH/SUBSCRIBE MESSAGING AMONG EFS ENTITIES

EFS Service Platform

Topic #1
.
.
.
.
.
.
.

Topic #N

EFS Service #1

EFS Functions and
Applications

Subscribe

Deliver

Authorized non-
EFS Applications,

Functions and
Resources

Subscribe

Deliver

Topic #1
.
.
.
.
.
.
.

Topic #N

EFS Service #M

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Publish

Publish

EFS Functions and
Applications

Subscribe

Deliver

Authorized non-
EFS Applications,

Functions and
Resources

Subscribe

Deliver

EFS Functions and
Applications

Authorized non-
EFS Applications,

Functions and
Resources

D2.1 Initial Design of 5G-CORAL Edge and Fog computing system 15

H2020-761586

3 EFS service platform and messaging protocols

3.1 EFS service platform

5G-CORAL aims to deliver a multi-RATs convergence mechanism based on information sharing. By

allowing different RATs to share their context information, potentially coordination among multiple

RATs can be carried out for purposes of performance enhancement. In addition to RATs

convergence, such an information sharing framework can be further generalized for the

applications and functions running in EFS to obtain and exploit the knowledge on the status of each

other, so these entities can be configured in a more judicious manner. Essentially, the functions and

applications can share a global view comprising other entities co-existing in the same EFS, so the

user experience can improve via tighter coordination in the network side. All these objectives can

be realized with EFS Service platform, which is the anchor entity of great importance that defines

the EFS solution in 5G-CORAL.

Basically, the EFS service platform is a logical data exchange platform within EFS consisted of (i)

data storage to keep the collected information from applications/functions and edge/fog

resources, and (ii) communication protocol to gather/provide information from/to

applications/functions hosted in edge/fog resources. The role played by the EFS service platform

can be deemed as a ‘middleman’ in charge of storing and distributing the subscribed data of a

service to the data subscribers, while the service data are published by the data publishers and

organized as EFS services by the EFS service platform. It specifies the protocols and mechanisms

for data communication, storage and management and serves both EFS and non-EFS functions and

applications though APIs. The non-EFS functions and applications are hosted outside of EFS, such as

on the Transport Network and Core network, as well as distant clouds. For example, the RAN

functions can publish the RAN context information and the platform can abstract and organize the

information as a RAN context service. The subscribing applications of the RAN context service get

the context information and use them for their own purposes. For example, a load balancing

application can avoid using overloaded RATs based on the RAN context information.

The EFS service platform collects data from EFS Applications/Functions and publish the collected

data to EFS Applications/Functions that consume data. In order to push data to the targeted

entities, the messaging protocol is a key ingredient of the EFS Service Platform design. Instead of

devising new message protocols, WP2 has examined and analysed several existing messaging

protocols, as detailed in the section 3.2. Section 3.2 presents an analysis of potential EFS

messaging/communication protocols. The analysis was conducted by undertaking a comprehensive

survey of existing messaging/communication protocols and assessing their feasibility to fulfill the

EFS messaging requirements. The analysis also presents a selection of reference

messaging/communication protocol(s) for the EFS in section 3.3.

3.2 Survey of messaging/communication protocols

The protocols that were studied by 5G-CORAL WP2 include: DDS, MQTT, AMQP, RabbitMQ,

XMPP, Kafka, NATS, and Confluent. It is worth noting that WP2 also surveyed enterprise

platform(s) such as Solace, however, the scope of this deliverable will be focused on open-source

protocols.

3.2.1 DDS

The OMG Data Distribution Service (DDS) is a standardized set of APIs, behaviour and protocols

for building real-time distributed applications. The programming model of DDS is an eventually-

consistent shared data space, but it also gives direct access to the underlying publish-subscribe

messaging system. It originated from the defence and aerospace industry but is now also one of

D2.1 Initial Design of 5G-CORAL Edge and Fog computing system 16

H2020-761586

the leading protocols for enabling the Internet of Things. There are many independent

implementations.

The mapping to UDP/IP is standardized, but other protocols can (and are) supported as well.

Various vendors currently providing their own mapping to TCP/IP, and there are also

implementations that map it to shared memory transports or allow operating over layer-2 Ethernet

without an IP stack.

3.2.1.1 Architecture of DDS

A DDS-based network is a dynamically discovered abstract “Global Data

Space or Domain” that “DomainParticipants” interact with. Typically, these DomainParticipants

correspond one-to-one to application processes. The Domain is partitioned into named Topics,

where each Topic has a type, a QoS and a key, a designated subset of the type that is used to

distinguish different instances of the topic.

DomainParticipants gain access to this data space by creating “DataReaders” and “DataWriters”.

The former give read access to the data of a specific Topic — hence creating one is often called

“taking a subscription”; and the latter allow the application to update data of a specific Topic in

the data space.

The QoS govern many different aspects of the behavior with the most important one being whether

or not data once written is retained for future subscriptions. The other key QoS allows further

partitioning of the data space based on tagging data with abstract partitions, which are arbitrary

names and/or wildcards, that are taken into account in the publish-subscribe mechanism. Beyond

these, many details are covered, such as: reliability, the size of the history to retain, whether

updates to an instance may be dropped if a more recent value is available, rate limiting, content

filtering, etc.

3.2.1.2 Security

The DDS Security standard defines a fine-grained mechanism for securing the data. The basic

model is that only authorized DomainParticipants may interact with the data space, with optional

access control at the level of DataReaders and DataWriters. The encryption and authentication of

data is done application-to-application, so that there is no need to trust the middleware.

DDS implementations that support operating over TCP/IP also offer the possibility of securing these

connections with TLS. Applications therefore have the option of using the more deeply integrated

but less common DDS Security or to use completely standard internet technology for providing

secure communications.

3.2.1.3 System requirements

The type of systems supported by different DDS implementations varies considerably, but in

general ranges from high-end microcontrollers with real-time operating systems (e.g., ARM Cortex-

M4 with FreeRTOS) to many-core workstations running Linux or Windows. Network overhead tends

to be significantly lower than most other middleware, thanks to the use of UDP, efficient encodings

and multicast.

Language support varies from vendor to vendor, but typically covers mainstream programming

languages, such as C, C++, Java and C#, Python and JavaScript. There also exist bindings for

Haskell, Lua, Matlab, and several others, some as officially supported language bindings, some as

community projects.

D2.1 Initial Design of 5G-CORAL Edge and Fog computing system 17

H2020-761586

3.2.2 MQTT

MQTT (Message Queue Telemetry Transport) has been identified as an enabling connectivity

protocol for IoT (Internet of Things) scenarios involving telemetry devices with low computing power

and limited battery. Thanks to the extremely lightweight protocol of MQTT, low power consumption

and traffic overhead over transport can be anticipated when it is used. MQTT is an ISO standard

(ISO/IEC PRF 20922) publish-subscribe-based messaging protocol operating above TCP/IP

protocol. Its extended version, namely MQTT-SN, has been specified in 2013 to support operation

with UDP, ZigBee and other transport protocols.

3.2.2.1 Architecture of MQTT

An MQTT-protocol-based network comprises two types of entities, namely MQTT Broker (or Server)

and MQTT Client. The MQTT broker is responsible for managing subscription of clients and their

connections, as well as delivering messages from a publisher to its corresponding subscribers. It

receives identification, e.g. IP address and device identifier, and topics from a MQTT client, by

which the broker can make a routing table to address the MQTT client. The MQTT broker receives

messages from publishers and multicasts them to subscribers that are interested in the same topics.

A secure connection between the broker and a client can be established with TLS security method.

A MQTT client can be either a subscriber or a publisher for a topic. As a subscriber, the client

subscribes topics via the MQTT broker, which may multicast messages associated to its subscribed

topics. On the other hand, the client transmits messages of one or more topics to the MQTT broker

when it is acting as a publisher. Note that an MQTT broker can play the roles of publisher and

subscriber at the same time. The broker-based publication and subscription concept is illustrated

in Figure 3.

FIGURE 3 MQTT PUBLICATION AND SUBSCRIPTION CONCEPT BASED ON BROKER

The MQTT messages can be classified into two types, namely a command message or a data

message. The two types of messages are distinguished by the control header field in the message

format. The control messages may include connection establishment message, (un)subscribe

message, ACK message, and so on. A data message, on the other hand, includes a list of topic

names in a header field with a variable length, along with the data payload. Both topic name and

data payload are encoded by UTF-8. The maximum length of topic name and data payload is

32,767 characters and 256 Mbytes respectively. Figure 4 shows the message format of MQTT.

D2.1 Initial Design of 5G-CORAL Edge and Fog computing system 18

H2020-761586

FIGURE 4 MESSAGE FORMAT OF MQTT PROTOCOL

3.2.2.2 MQTT Characteristics

As mentioned above, MQTT is a lightweight messaging protocol comprising MQTT client and server.

For instance, paho mqtt-client library and mosquito mqtt-server application only require 100kbytes

and 300kbytes respectively. Header overhead is as small as 1~10 bytes. Regarding

computational complexity, the CPU usage is negligible at the client side, and not so heavy at the

server side. For example, only 50% of the computing power of the CPU (Intel Core 2 Duo CPU

E8400 3.00GHz) is needed by a MQTT server to serve more than 60,000 clients.

The MQTT Broker shall provide stable and reliable connectivity. This is achieved with three levels

of QoS on logical connection between MQTT client and server. The lowest QoS level does not

require acknowledgement and delete message immediately after sending and, hence, successful

reception of a message cannot be guaranteed. Meanwhile, acknowledgement is needed for the

highest QoS level, and the message can only be deleted from the buffer after a release message

is received. Additionally, broker can retain a message in cases of instantaneous connection loss via

re-transmission.

The trust of connection for MQTT protocol can be handled through authentication and TLS-based

security. A MQTT broker assesses whether a connection is allowed or not with the client ID,

username/password, and the client certificate. TLS-based security algorithm is employed to

encrypt the pipe over the connection.

In general, MQTT protocol is a mature technology, which has libraries supporting most of the

prevalent programming languages including Actionscript, Bash, C / C++, Clojure, Dart, Delphi,

Erlang, Elixir, Go, Haskell, Java, Javascript / Node.js, LotusScript, Lua, .NET, Objective-C, OCaml,

Perl, PHP, Python, REXX, Prolog, Ruby, Qt, Shell Script, Smalltalk, Swift, and Tcl.

3.2.3 AMQP

AMQP is an open standard dated back to 2003. It is a message-oriented middleware which

defines wire protocol to ensure interoperability despite the vendor specific implementation. It

supports:

• Queuing – allows to establish a message broker between producer and consumer of the

message.

• Filtering – a broker can route messages to appropriate queue (consumer) basing on routing

key.

• Reliability levels – various reliability guarantees supported: at-most-once, at-least-once

and exactly-once.

• Security – TLS (Transport Layer Security) and SASL (Simple Authentication and Security

Layer.

D2.1 Initial Design of 5G-CORAL Edge and Fog computing system 19

H2020-761586

3.2.3.1 Architecture

The specification of AMQP is divided into five documents: Types, Transport, Messaging,

Transactions, Security. All constitute a base for reliable, secure exchange of messages between

two parties.

3.2.3.1.1 Types

AMQP [4] defines basic data representation types which can be incorporated into the AMQP

message. Data type definition allow interoperable exchange of messages between AMQP clients

developed by different companies. In addition, data types can be annotated with information

relevant to correctly interpret the data sent between parties. Type specification also defines how

untyped stream of data can be interpreted by receiving entity. To this purpose AMQP introduces

a constructor which defines how to interpret untyped values and eventually transform it into typed

ones. Constructor, by means of embedded descriptor, indicates how to produce domain specific

type out of primitive typed values sent over the wire.

3.2.3.1.2 Transport

Transport specification defines basic actors and their relationships within AMQP [5]. It recognizes

a node as a basic AMQP actor. Nodes are named entities responsible for the safe storage and/or

delivery of messages. Examples of nodes are: producer, consumer, queue. Nodes exist within

a container. Each container may hold many nodes. Examples of containers are: client, broker.

Connection allow communication between containers and consists of a full-duplex, reliably ordered

sequence of frames. A frame is the unit of work carried on the wire. An AMQP connection is divided

into a negotiated number of independent unidirectional channels. An AMQP session correlates two

unidirectional channels to form a bidirectional, sequential conversation between two containers.

AMQP actors and their relations are depicted in Figure 5.

FIGURE 5 AMQP ACTORS AND THEIR RELATIONS

3.2.3.1.3 Messaging

The messaging layer relies heavily on concepts defined in Types and Transport documents [6]. It

defines, among others, message format (including headers, footers and properties of the message)

and delivery states for messages traveling between nodes. AMQP provides a guarantee that

messages are not altered along their end-to-end path. This feature is important since AMQP

supports P2P deployment where messages are disseminated by means of middle nodes. In such

environment immutability of the message becomes highly desired. For this purpose, AMQP

introduces bare message which describes message provided by the sender, which may not be

changed on the route, and annotated message which includes bare message but also information

provided by the messaging infrastructure.

D2.1 Initial Design of 5G-CORAL Edge and Fog computing system 20

H2020-761586

3.2.3.1.4 Transactions

Transactions document defines the requirements for transactional messaging which allows a

coordinated outcome of many independent transfers [7]. Transactional messaging requires

existence of two actors: transactional resource and transactional controller. Both are containers which

communicate over a control link leading a transactional resource to perform a transactional work.

3.2.3.1.5 Security

AMQP enables establishment of a secure link between sender and receiver which tunnels messages

between two parties [8]. Security aspects include authentication and encryption and are arranged

into so called security layers which cover simple or more complex security aspects. Security layers

can be tunneled through one another e.g. security layer tackling authentication problem can be

tunneled through the encryption security layer. Protocols used for the security purposes by AMQP

are TLS and SASL.

3.2.3.2 RabbitMQ – An implementation of AMQP

Developed in 2013 by Pivotal Software, RabbitMQ is an open source messaging broker which is

an implementation of AMQP but also supports other messaging protocols such as MQTT or STOMP.

The server software (broker) is developed in the Erlang programming language. The client

software is available in many popular programing languages.

RabbitMQ provides broker based messaging exchange between parties. Producer Applications

create messages and deliver it to a AMQP server called Broker. Inside the broker the messages

are routed and filtered by Exchange until they arrive to Queues where Consumer Application are

connected and get the messages (see Figure 6).

FIGURE 6 RABBITMQ CONCEPT

3.2.3.3 Characteristics

There is little available resources on the performance of AMQP, however, several metrics can be

inferred from the specification. These are computing resource requirement, network/connectivity,

latency, throughput and refer to RabbitMQ implementation of AMQP:

Computing resource – disk space required for the server is relatively heavy: around 11MB of

installation and additionally 50MB for of free space. For client side, the deployment of 500KB is

enough. 128MB [9] of available memory should be available at all times in case of a server. High

CPU usage was reported for AMQP [10]. With a load of 4000 messages per second, CPU

consumption reaches 80%.

Networking/connectivity - Packet size is limited only to the disk space. The connection is done over

reliable TCP protocol with the support of three QoS levels.

Latency – the performance in terms of the delay depends on particular settings and is in a range

between 0.5ms and 400ms [11]. Therefore, latency can be a concern for particular use cases.

D2.1 Initial Design of 5G-CORAL Edge and Fog computing system 21

H2020-761586

Throughput – Maximum publishing of the RabbitMQ implementation of AMQP were estimated to

~150,000 msg/s [12], while maximum messaging consumption was estimated to be ~65,000

msg/s (few byte message).

3.2.4 Kafka

When Kafka was designed, the purpose was to develop a distributed messaging system to collect

and develop high volumes of log data. Nowadays, Kafka has evolved to a distributed streaming

platform with three key capabilities: publish/subscribe, process and store. It is mainly used to build

two types of applications: real-time streaming data pipelines that reliably get data between

systems or applications, and real-time streaming applications that transform or react to the streams

of data.

3.2.4.1 Architecture

One can identify four basic concepts in Kafka: producer, consumer, topic and broker.

A topic is a category to which records are published. Kafka is usually deployed as a cluster of

brokers. A topic is divided in multiple partitions, and each broker will store one or more of these

partitions. A partition is defined as an ordered, immutable sequence of records that is continually

appended with new ones. The partitions are distributed over the brokers, with each server handling

data and request for a share of the partitions. Each partition is replicated in multiple servers for

fault tolerance. So, each partition has one server acting as leader and handling requests, and

others as followers who can replace the leader if it fails.

The producers publish data to the topics of their choice. They are responsible for choosing which

data to assign to which partition within the topic.

A topic can have many subscribers simultaneously consuming the data that is published. A consumer

will read a selected partition. In addition, it can belong to a consumer group, that will be explained

later. Kafka uses a “pull model” where the consumers retrieve the messages at the rate they can

sustain, instead of a “push model” where the broker forwards the messages.

3.2.4.2 Characteristics

• Simple storage: partitions are implemented as a set of segment files. The broker appends

a new message when it is published. A record stored in Kafka is identified by an offset

within the partition it belongs, what simplifies the storage. For better performance, the

segment files are flushed to disk after a expected number of messages have been

published or certain amount of time has elapsed.

• Efficient transfer: a producer can submit a set of messages in a single send request. Also

a consumer can pull multiple messages at the same time. Moreover Kafka relies on the

underlying filesystem page cache for caching retaining warm cache even when a broker

process is restarted. The performance is better than maintaining an in-memory cache or

other structure. Finally, the network access for consumers is optimized by using the Unix

sendfile API to efficiently deliver bytes in a log segment file from a broker to consumer.

• Stateless broker: The complexity of the broker is reduced by letting the consumer keep

track of the information consumed. Since the broker does not know which messages have

been read, it follows a time policy to delete them, i.e., a message is deleted when a period

of time expires. As a consequence, a consumer can consume records in any order it takes.

It could reset to an older offset to reprocess data or skip ahead to the most recent record.

• Distributed coordination: as commented before, in Kafka some consumers can form a

consumer group to jointly consume topics. It is possible to have many consumer groups

subscribed to the same topic. Thus, each record published to a concrete topic will be

received by one consumer instance within a consumer group. Please note that load-

D2.1 Initial Design of 5G-CORAL Edge and Fog computing system 22

H2020-761586

balancing (many consumers in a consumer group) or broadcast (one consumer per group)

can be achieved with this design. Consumption is implemented such that each subscriber of

a group consumes a share of the total partitions of a topic. Hence consumers within the

group does not have to coordinate to consume the partition, only in the event of load

rebalance (e.g. when a consumer leaves the group). There is not a master node, consumers

coordinate among themselves in a decentralized fashion. Zookeeper helps to achieve it

by detecting the addition and removal of brokers and consumers; triggering a rebalance

process in consumers maintaining the consumption relationship and consumed offset of a

partition. Zookeeper uses four registries to handle different information: the consumer

registry (consumer group of a consumer and topics subscribed); the broker registry (broker

information and topics and partitions stored in the broker); the ownership registry (stores

the partition and the consumer consuming it) and the offset registry (offset of the last

consumed message in a partition). When a consumer starts or a consumer is notified of a

broker or consumer change, a rebalance process start to determine the new subset of

partitions that it will consume within the group. After the partitions are assigned, it will pull

data from them and update the offset registry.

• Guarantees: Messages sent by a producer to a particular topic partition will be appended

in the order they are sent, but there is no guarantee on the order coming from different

partitions. A consumer sees records in the order they are stored in the log. A topic with

replication factor N tolerates N-1 server failures without losing records. At-least-once

delivery. In some cases, a consumer may receive duplicates messages (for instance, a

consumer reads a partition left by a crashed consumer).

• Messaging patterns: Kafka combines publish-subscribe and queuing when using the

consumer groups. With a queue, the consumer group allows you to divide up processing

over a collection of consumers withing the group. With publish subscribe, it allows you to

broadcast to multiple consumer groups.

3.2.4.3 Integrations and clients

Kafka has defined a protocol that defines the available requests and responses and how to use

them to implement a client. It is a binary protocol over TCP. A client might have multiple connections

to different servers, but for a single broker it is ok to maintain just one connection. Ordering of

request is guaranteed in a single TCP connection. When the client request to publish or consume

data, the requests must be sent to the broker serving as a leader of the partition otherwise an

error will be triggered. Any broker can provide metadata in order to know topics, partitions,

leaders etc. and thus the client knows how to proceed. The client has to set the procedure that

wants to follow to select the partition. A client can use both the API to send or fetch data in a

efficiently way sending some messages in a row. Finally, the client has to agree with the server on

the version of protocol used. The client should use the highest commonly supported version, and

indicate it in the messages.

There are many clients already implemented in multiple languages for the Kafka platform. This is

the list published in their web [20]: C, C++, Python, Go, Erlang, .NET, Clojure, Ruby, Node.js, Proxy

(HTTP REST, etc.), Perl, stdin/stdout, PHP, Rust, Storm, Scala DSL, Clojure and Swift. These clients

are maintained by Kafka. In addition, Kafka has a built-in framework called Kafka Connect that

allows writing sources and sinks to generate data into Kafka or extract it to external systems. So,

it makes it simple to define connectors who can collect metrics from the application servers or

deliver data from topics to secondary storage. Connectors are maintained outside the main code

base.

D2.1 Initial Design of 5G-CORAL Edge and Fog computing system 23

H2020-761586

3.2.5 NATS

NATS is defined as a simple, high performance open source messaging system for cloud native

applications, IoT messaging and microservices architectures.

3.2.5.1 Architecture

The architecture of NATS is based on a client-server scheme. Provides a lightweight server

maintained by Apcera. There are many client libraries too, some of them maintained by Apcera

like Go, Node, Ruby, Java, C, C#, and NGINX C.

3.2.5.2 Protocol

NATS provides a simple, text based, publish/subscribe protocol that makes easy to develop clients.

Clients communicate with the server through a regular TCP/IP socket using a small set of protocol

operations.

Messages sent by the server:

• INFO. Sent to client after initial TCP/IP connection.

• MSG. Sent to server to specify connection information.

• +OK. Acknowledges well-formed protocol message in verbose mode.

• -ERR. Indicates a protocol error. May cause client disconnection.

Messages sent by the client:

• CONNECT. Sent to server to specify connection information.

• PUB. Publish a message to a subject, with optional reply subject.

• SUB. Subscribe to a subject.

• UNSUB. Unsubscribe from subject.

Messages sent by both of them:

• PING. Ping keep-alive message.

• PONG. Pong keep-alive response.

3.2.5.3 Characteristics

NATS is designed around the following core features: high performance, always-on and available,

extremely lightweight and small footprint, support for multiple qualities of service, support for

various messaging models and use cases.

Then, we can gather other features:

• Message patterns: pub/sub, queueing and request reply.

• Clustered mode server.

• Auto-pruning of servers. This supports scaling. The server can cut off the connection if the

client is slow or does not respond the ping-pong messages. Even disconnects clients that

send bad protocol messages.

• Multiple quality of services. It is possible to have at-most-once delivery (TCP) or at-least-

once (via NATS Streaming).

• Durable subscriptions. The subscription delivery state is maintained so that durable

subscriptions may pick up where they left (NATS Streaming).

• Event streaming service. Messages may be persisted for later replay (NATS Streaming).

• Last/Initial value caching. Subscription delivery can begin with the most recently published

message for a subscription (NATS Streaming).

D2.1 Initial Design of 5G-CORAL Edge and Fog computing system 24

H2020-761586

NATS Streaming is a separate service for data streaming that provides additional features built

on top of NATS, as seen above. It was added to provide persistence.

3.2.6 Confluent

Confluent Platform is a streaming platform that enables organization and management of data

from many different sources with one reliable, high performance system. Provides not only the

system to transport data but all the tools needed to connect data sources, applications and data

sinks to the platform. Confluent was built by a team that used to work in Kafka before. Confluent

uses Kafka as the platform’s core and it is supposed to add new features to improve Kafka system.

Thus, especially Confluent simplifies connecting data sources to Kafka, building applications with

Kafka, securing, monitoring and managing Kafka.

There is a Confluent Open Source platform available. Any new release of Confluent Platform

includes the latest release of Apache Kafka.

3.2.6.1 Connectors

Confluent and partner vendors offer tested and secure connectors for many popular systems. Kafka

includes a framework called Kafka Connect whose purpose is to make easy to add new systems

to Kafka.

To import or export data from Kafka, Kafka connectors need to be instantiated. They are classified

as sink or source connectors.

 There are available connectors developed and fully supported by Confluent (for instance, Amazon

S3 or JDBC). Then, other connectors have been certified since its vendors have met the criteria

established (for instance, Azure IoT Hub, IBM Data Replication, Kinetica or SAP HANA). Finally,

there are other notable connectors that have been developed utilizing the Kafka Connect

framework (for instance, Apache Ignite, Blockchain, Cassandra, DynamoDB, Github, IBM MQ,

MongoDB, RabbitMQ, NATS, MQTT).

3.2.6.2 Multi-language support

Confluent Open Source includes clients that allow your Kafka cluster to talk to applications written

in many languages: C/C++, Go, Java, JVM, .NET, Python.

3.2.6.3 Schema registry

In a decoupled system like Confluent, the services that interact must agree on a common format for

messages. This is called schema. In many systems, these formats are ad-hoc. With the current

requirements changes, these formats have to evolve. The Confluent Schema Registry enables safe,

zero downtime evolution of schemas by centralizing the management of schemas written for the

Avro serialization system. Tracks all versions of schemas used for every topic in Kafka and only

allows evolution of schemas according to user-defined compatibility settings.

3.2.6.4 REST Proxy

Confluent provides a RESTful interface to the Kafka interface, making easy to produce and

consume messages, view the state of the cluster (set of topics, mapping of partitions to brokers…)

or perform administrative actions. The REST API provides more freedom to select languages

beyond those for which stable clients exists today. At its core, the REST Proxy wraps the existing

libraries provided with Apache Kafka. Confluent ensures that the REST Proxy uses a compatible

version.

Requests will include embedded data, using vendor specific content types headers to make the

format of the data explicit. Also schemas need to be included in every request to be registered

and validated against the schema registry.

D2.1 Initial Design of 5G-CORAL Edge and Fog computing system 25

H2020-761586

The consumers are stateful, as we know from Kafka, and tied to a Proxy instance. This is a violation

of the REST principles, although Confluent argues that this is the right design since the consumer

group protects the consumers against fails and the added complexity of stateless consumers was

not worth it.

Finally, the REST Proxy is designed to be accessed via any load balancing mechanism while

maintaining consumer support by letting address an individual instance.

Although using the REST proxy provides a simple HTTP-based interface that should be easily

accessible from any language, it adds complexity to the system besides the cost in performance.

3.3 Analysis and selection of EFS messaging/communication protocol

The objective of this survey was to identify the messaging protocols that can be appropriately

used for 5G-CORAL research and platform development. The selection was made by taking

various factors into account. In particular, the completeness and maturity of the technology was

considered. Also, as fog computing resources (the resources pertaining to constrained devices such

as a smartphone) are involved in 5G-CORAL solutions, protocols that require high complexity are

deemed unsuitable. From these perspectives, the hardware requirement of more sophisticated

technologies such as Kafka and Confluent may be too high for certain Fog CDs (for instance, at

least 32 or 64 GB of RAM), in spite of the promising performance they potentially can deliver.

Although AMQP is relatively lightweight, other technologies such as DDS and MQTT are still

superior in terms of hardware requirements.

To this end, we have narrowed the scope down to three candidate protocols, namely DDS, MQTT,

and NATS. These technologies are more complete technologies that are able to deliver better

performance with reasonable hardware such as Fog resources on constrained devices, and, in the

case of DDS and MQTT, more mature.

The NATS system is very similar to Kafka, however NATS broker is really lightweight (the server

files are 6.6MB) and it seems that it has the best throughput capacity while keeping the latency

below 1ms. It could be deployed in the edge or in the fog using constrained devices. For the users

and developers, there are many clients and connectors and even a client protocol to interact with

the server. Thus, developing heterogeneous EFS functions or applications would be easier. To

provide even more flexibility there are three messaging patterns supported hence no additional

constraints to the EFS. It is mostly used for internal communication among services. While the NATS

system has suitable characteristics and some implementations [21], the 5G-CORAL consortium

deferred NATS for future research because none of the partners has practical experience with

NATS.

The low latency performance of DDS (in specific cases, 60µs) makes it very appealing for EFS

implementation. The real time publish/subscribe messaging is completed with persistence features

for fault tolerance and late joiners. The main difference with other messaging systems is that DDS

does not deploy a centralized node or broker to handle the communications. Instead, broadcast is

used. Note that 5G-CORAL partner ADLINK has substantial experiences with DDS and hence able

to provide in-depth technical support when it comes to implementation.

Unlike DDS, MQTT requires a broker to conduct data publish/subscribe. However, the extremely

lightweight makes MQTT a very attractive alternative for EFS. Moreover, 5G-CORAL partner IDCC

has already implemented MQTT to transfer information in the robotic use case, and partner

AZCOM has already implemented MQTT in the connected cars use case.

A comparison between DDS and MQTT can be found in Table 4. Since 5G-CORAL consortium

partners already have experience of implementing DDS and MQTT, and the characteristics of both

technologies are suitable for EFS implementation.

D2.1 Initial Design of 5G-CORAL Edge and Fog computing system 26

H2020-761586

TABLE 4 COMPARISON BETWEEN DDS AND MQTT

Protocol MQTT DDS

Deployment No limitation (LAN, WAN)

DDS routing entity is needed when
deployed in WAN

Client Complexity Light node
Client does not need cache
Broker can handle reliability

Medium node
Reliability is maintained with
sufficient cache

Broker Required Not required (optional)

Latency Medium level latency Low latency (<1ms)

Data Size <256 Mbytes <100 Kbytes

QoS Support 3 QoS levels Support many more QoS levels

Network Overhead Low Medium

Security Managed by the broker Key Sharing among clients

Web Performance Similar to non-web performance Latency increase in Web
Applications

Implementation Plenty of libraries Support Fog O5

It is also worth noting that RESTful APIs have been adopted in the 5G Core network defined by

3GPP. This is a clear indication that RESTful protocols should not be precluded due to potential

alignment with 3GPP framework. Future activities will investigate the feasibility of RESTful

publish/subscribe as a potential messaging/communication protocol for the EFS.

WP2 decided that DDS and MQTT will be adopted as the reference/baseline messaging protocols

for the EFS, based on the suitability of each and existing implementations for each use case. WP2

also designated NATS and RESTful publish/subscribe as messaging protocols that merit further

study.

D2.1 Initial Design of 5G-CORAL Edge and Fog computing system 27

H2020-761586

4 EFS baseline design for 5G-CORAL use-cases

4.1 Robotics

In this use case, the focus is on the cleaning service provided by robot(s) as described in D1.1 [1].

When a dirty area in the shopping mall is detected, a cleaning operation will be triggered, and

a robotic cleaner will be called and guided to the area for the cleaning task execution. In the EFS,

location service of the robot will be consumed by a robot navigation application in the EFS, so it

can work out the route that the robot should take to arrive at the dirty area to be cleaned. Note

that the location of the robot can be evaluated via different means. For instance, iBeacons

deployed in the shopping mall could be used for the robot to figure out its own location, and such

location can be published to the EFS service platform for other applications/functions to consume.

The output of the robot navigation application allows a robot control application in the EFS to

instruct the movement of the robot (via wireless connectivity, the protocol functionalities of which

can be hosted in the EFS too). It is assumed that the robot has on-board sensors and cameras, and

the sensor readings as well as the images captured by the camera can be further analyzed in the

EFS for sake of finer control; this is particularly useful when the robot is already near the area to

be cleaned. It is worth noting that, the EFS computing tasks for this use case, such as robot

navigation, robot application, service platform, and radio connectivity functions, can be migrated

among different EFS resources (e.g. Fog CDs) along the route. The placement of the EFS computing

tasks are transparently handled by the OCS. The EFS entities involved in the robotics use case, as

well as their interconnection, is illustrated in Figure 7. Table 5 presents a description of the robotics

use case EFS entities depicted in Figure 7.

FIGURE 7 EFS ENTITIES INTERCONNECTION FOR THE ROBOTICS USE CASE

TABLE 5 SUMMARY OF EFS ENTITIES FOR ROBOTIC USE CASE

EFS Entity Description
Robot navigation App EFS application computing the best route for a robot to reach the

area to be cleaned. It consumes data provided by the UE location

D2.1 Initial Design of 5G-CORAL Edge and Fog computing system 28

H2020-761586

service and communicates with the robot control application taking
the necessary actions to guide the robot.

Robot Control App EFS application in charge of controlling and guiding the robot
towards the area to be cleaned. This application provides the robot
intelligence which is located inside the EFS platform.

Virtual Wi-Fi Access Point EFS function enabling infrastructure-to-robot communication which is
essential for robot navigation. Commands to control the robot are
sent over Wi-Fi connections managed by virtual APs, which allows
seamless Wi-Fi connectivity for a roaming Wi-Fi client and avoid
connection disruptions. This function is also employed to help robots
establish Bluetooth D2D communication in case accurate movement
synchronization is required.

Sensor/Camera analytics EFS function employed for a finer control of the robot. Sensor
readings and images coming from on-board sensors and cameras,
respectively, are analysed by the EFS platform with the aim of
enhancing the control accuracy in the proximity of the target area.

UE location EFS service which provides the UE geographical position consumed
by the robot navigation application to perform the route
computation. Robot location can be obtained through different
techniques, such as employing iBeacons technology, which allows the
UE to estimate and publish its location into the EFS platform.

4.2 Virtual Reality (VR)

VR has been deemed as one of the important use cases of 5G where both ultra-low latency and

enhanced broadband communications are needed. Through 5G-CORAL solutions, we may show

how VR can be facilitated by the EFS. In particular, we allow the user to expose the information

related to its orientation (e.g., the viewing angle) to the EFS service platform, which can be

consumed by other VR application-related computing tasks, such as decoding, encoding,

composition, and segmentation, that are also hosted in the EFS. Based on the orientation of the UE,

the video content captured by the 360-degree camera can be processed in a more appropriate

manner prior to being played at the UE side. The EFS entities involved in the VR use case, as well

as their interconnection, are illustrated in Figure 8. Table 6 presents a description of the virtual

reality use case EFS entities depicted in Figure 8.

D2.1 Initial Design of 5G-CORAL Edge and Fog computing system 29

H2020-761586

FIGURE 8 EFS ENTITIES INTERCONNECTION FOR THE VR USE CASE

TABLE 6 SUMMARY OF EFS ENTITIES FOR VR USE CASE

EFS Entity Description
RTMP acquisition EFS application responsible for performing the RTMP acquisition

enabling persistent connections and low-latency communications. It
consumes data provided by the camera and sends the output data
stream to the tile encoding application.

Tile encoding EFS application to perform the tiled 360 video encoding. It
processes the data stream coming from the RTMP acquisition
application and provides the DASH segmentation module with the
tiled encoded data stream.

DASH segmentation EFS application in charge of segmenting the data stream encoded
by the tile encoding application through DASH, which is consumed
by the DASH client application

DASH client EFS application to reassemble DASH segments sent by the DASH
segmentation application. The output data is then sent to the
decoding application. This application also uses the UE orientation
information provided by the UE orientation service, which provides
the user’s view angle.

Decoding EFS application performing the decoding of tiled video streams sent
by the DASH client. The decoded video stream is then delivered to
the composition EFS application.

Composition EFS application responsible for re-composing tiled video streams
into 360 video frame at the client side. This component receives tiled
video streams decoded by the decoding EFS function.

UE orientation EFS service responsible for selecting which tile has to be sent to the
UE based on the orientation information provided by the orientation
client. The selected tile is communicated to the DASH client.

4.3 Augmented Reality (AR)

The goal of the AR Navigation use case is to provide the assistance to the AR Navigation feature

deployed on the UE by nearby Fog CDs running IR processes. The targeted environment for this

Applications Services

UE
Orientation

DASH Client

Decoding

Composition

Encoding

Segmentation

RTMP
Acquisition

Tile Encoding

DASH
Segmentation

VR App:
Media Player

Orientation
Client

UE

EFS

Camera

D2.1 Initial Design of 5G-CORAL Edge and Fog computing system 30

H2020-761586

use case is the shopping mall. Clients of the mall will be equipped with a possibility of using a

smartphone app which will provide indoor navigation as well as merchandise promotions form the

nearby stores. In order, not to burden their phones with heavy processing and not to deplete the

storage of their phones (IR function requires significant disk space), the shopping mall provides an

edge network with deployed Fog CDs in the vicinity of the end-users. Through a tight binding with

Wi-Fi AP, Fog CDs will be easily accessible by the clients’ phones. While Fog CDs host

computationally-heavy IR application and Location Estimation function, WiFi AP functionality will

be fully virtualised to dynamically control connectivity and as a result decrease communication

delay. Functions, services, and applications comprising on AR Navigation use case and the way

they are interconnected is depicted in Figure 9. The AR Navigation App helps the user navigate

inside the shopping mall. The navigation could be communicated to the user via the users’

smartphones, or via screens in the mall which displays guiding information when the user

approaches or passes by. The application could run partially on the end devices, and partially in

the fog or cloud. The AR Navigation app posts iBeacon localization data that is consumed by

Image Recognition (IR) app together with the video frame to be processed. Table 7 presents a

description of the augmented reality use case EFS entities depicted in Figure 9.

FIGURE 9 EFS ENTITIES INTERCONNECTION FOR THE AR USE CASE

TABLE 7 SUMMARY OF EFS ENTITIES FOR AR USE CASE

EFS Entity Description
Image recognition The goal of the Image Recognition (IR) application is to detect objects

in an image. To do so, it runs algorithms comparing the picture against
a well-known set of images residing in its internal database. In the
shopping mall scenario, Image Recognition (IR) processes input video
frames sent by the AR navigation application and iBeacon localization
data, and communicates with the IR localization data service. After the
image recognition process, the application can determine in which zone
of the shopping mall a given UE is located. The zone ID is then published
as IR localization data.

D2.1 Initial Design of 5G-CORAL Edge and Fog computing system 31

H2020-761586

RSSI This EFS service exposes the received signal strength of a user towards
an Access Point. Received signal strength is for the Wi-Fi access points.
The data is reported by the virtual AP.

IR localization data IR localization data is an output of the Image Recognition (IR)
application and conveys information about which area of the shopping
mall the UE is located. The granularity of the mall to zone division
depends on the performance efficiency of the IR application. The zone
ID can be expressed simply as an integer.

iBeacon localization
data

iBeacon localization data includes iBeacon ID and signal strength with
respect to the UE receiving the beacon signal. This service can estimate
the vicinity of the UE to the iBeacon, and when the location of the
iBeacon is known, the approximate location of the UE. The iBeacon
localization data is provided by the UE and consumed by the Image
Recognition application and the Location Estimation function.
iBeacon data helps the Image Recognition (IR) application to decrease
the processing time by selecting only pictures related to the location of
the beacon.

UE location The UE location service describes the position of the UE in the target
environment (e.g. shopping mall). The position has common format (e.g.
X, Y, Z coordinates) so that it can be consumed and reused by EFS
applications and functions. This service is provided by Location
Estimation function.

Virtual AP Virtual access point (vAP) is network function abstraction that was
designed to move the client-AP association decision from the client to
the infrastructure. In the IEEE 802.11 standard, the association process
begins with the discovery phase, where clients actively scan for APs by
generating probe requests. During a scan, APs that respond to the
probe message become candidate for association. At this point, the
association is defined between the client’s MAC address and the BSSID
of the AP. The downside of this procedure is, the infrastructure has no
control over the client association. This results on connectivity
interruption or puts requirements on client devices to mitigate this issue.
With the introduction of vAP, each client will be associated with a vAP,
that consists of four parameters (1) client MAC address, (2) a virtual
AP MAC address, (3) client IP address and (4) the service set identifier
(SSID) to be used in the communication. When the client moves, its
assigned vAP moves along. Therefore, from the client perspective, it
will still be connected to the same AP, yet in fact, it is connected to the
same vAP but different physical AP. The concept of vAP is illustrated
below [17].

Location estimation The goal of the Localization estimation function goal is to estimate

relative UE location in the indoor environment. It combines location
information from multiple localization sources including iBeacon signal
parameters, Image Recognition application, Phone’s gyroscope data

D2.1 Initial Design of 5G-CORAL Edge and Fog computing system 32

H2020-761586

and possibly any other location information from other source
(applications/functions). The output of the function is a common location
description format (e.g. X, Y, Z coordinates) valid for the environment
in focus (e.g. shopping mall). To provide the output, the Location
Estimation function must employ translation techniques for different
localization metrics such as distance from the known iBeacon device or
indoor coordinate estimation based on image recognition techniques
into common location format and then combine results to obtain more
accurate UE location.

4.4 High-Speed Train

The goal of the high-speed train use case is to provide the seamless connection for passengers

especially when they transit from train to the train station. To achieve this goal, EFS devices (such

as Fog CDs) will be deployed onboard and on land, which will reduce the traffic to the backhaul

network. In the high-speed train Use Case, potentially, hundreds of passengers use different

applications, such as AR Navigation or video streaming while they are onboard. Meanwhile, Fog

CDs will collect context information related to passengers, by utilizing services in which the

application type is extracted from onboard applications, while the QoS requirements are

extracted from passenger devices. Then, it will report it to user classifier function which will define

classified groups. Besides, the train approximate service will report to vMME function. If the train

is approaching, then vMME will utilize the classified group to trigger group handover for user from

multi-RAT onboard to multi-RAT on land. This part especially included modification for S1/S10

handover process of vMME deployed on Fog CD, and aggregate part of the S10 handover

procedures from hundreds of UEs into several messages. In addition, the service migration will

occur from onboard unit to on land units. Figure 10 shows the EFS entities involved in the High-

Speed Train Use Case. Table 8 presents a description of the high-speed train use case EFS entities

depicted in Figure 10.

D2.1 Initial Design of 5G-CORAL Edge and Fog computing system 33

H2020-761586

FIGURE 10 EFS ENTITIES INTERCONNECTION FOR THE HIGH-SPEED TRAIN USE CASE

TABLE 8 SUMMARY OF EFS ENTITIES FOR HIGH-SPEED TRAIN USE CASE

EFS Entity Description
Video streaming app EFS application for streaming video from the UEs to the EFS.
AR application EFS application for augmenting user content.
Train approximate The train approximate position service describes the position of the

train on the track of the railway (e.g., Train is near train station co-
located with shopping mall). The approximate position is
determined based on a comparison of physical cell ID (PCID)
mapped in the database with nearby base stations deployed along
the railway, and the current obtained PCID. In case the PCID
obtained is equal to the one near the train station, then this EFS
service will indicate whether the train is near the station or not.
Consequently, the EFS can determine if the train is approaching the
train station and trigger the functions/applications accordingly.

Application type This service collects the various application types of end users. The
data provided by this service can be utilized to classify users into
groups. Application types may include: video streaming, voice call,
web browsing, AR, etc.

QoS requirements The end users on board the train have different QoS requirements
This service collects the various QoS requirements of end users. The
data provided by this service can be utilized to classify users into
groups.

D2.1 Initial Design of 5G-CORAL Edge and Fog computing system 34

H2020-761586

vMME In LTE EPC architecture, Mobility Management Entity (MME) is the
main entity which handles control signaling. MME is responsible for
initiating paging and authentication of the mobile device. Also, MME
retains location information at the tracking area level for each user
and then selects the appropriate gateway during the initial
registration process. MME connects to the eNB through the S1-MME
interface and connects to S-GW through the S11 interface. MME
also plays a vital part in handover signaling. In 5G-CORAL, virtual
MME (vMME) is deployed on the Edge/Fog. It has some of the
functionalities inherited from the MME and additional functionalities
such as:

• Initial Attach procedure

• Detach procedure

• S1-Release

• Service Request

• Tracking Area Update (TAU)

• Handover of a group of users

User classifier The main goal of this EFS function is to classify users based on
context information obtained from multi-RATs (e.g. LTE, Wi-Fi). The
user classifier function utilizes the context information such as data
session, allocated resources and bearer service to classify end users
into several groups. The classification criterion is based on either
end user QoS or application types.

4.5 IoT multi-RAT Gateway

In this use-case, technology-agnostic access points are deployed, offering future-proof IoT

connectivity. The access point acts as a radio front-end, but signal modulation/demodulation as

well as the rest of the communication stack is decoupled and running in the EFS. The AP collects

low-level physical-layer information (IQ samples as well as metadata) and makes it available

through an EFS service. This is fed to the communication stack, performance enhancing functions, as

well as to the localization function, as described in Table 9. Examples of performance enhancement

functions include channel blacklisting and scheduling. Localization will exploit rich, low-level radio

signals. This location data is used by the User Navigation and Object Localization applications.

In addition, the fact that the architecture enables support for multiple RATs, enables the following:

• Serving multi-RATs in one edge infrastructure.

• Providing EFS services of communication metadata, enabling advanced EFS applications.

The service data flow between the EFS functions, services and applications involved in the IoT multi-

RAT gateway are shown in Figure 11.

Note that in this Use-Case, the AP and UE are outside of the EFS: only the communication stack and

additional features (localization, interference mitigation) are in the EFS, but the radio head, and

IoT devices connected to it, are not.

D2.1 Initial Design of 5G-CORAL Edge and Fog computing system 35

H2020-761586

FIGURE 11 EFS ENTITIES INTERCONNECTION FOR THE IOT MULTI-RAT GATEWAY USE CASE

In a nutshell, the communication stack function gathers low-level radio signals (IQ samples) at the

edge. This information is provided as an EFS service, in turn used to provide two functions: (1)

enhancing the performance of the communication stack, and (2) computing location estimates. The

location data is provided as an EFS service, for use by applications such as User Navigation or

Object Localization.

Table 9, presents a description of the IoT Multi-RAT gateway use case EFS entities depicted Figure

11.

TABLE 9 SUMMARY OF EFS ENTITIES FOR IOT MULTI-RAT GATEWAY USE CASE

EFS Entity Description
User navigation EFS application deployed to provide users with navigation inside

the shopping mall. It requires localization input supplied by the
Localization Data service.

Object localization Potentially hundreds of objects such as trash cans or advertisement
boards are deployed in the shopping mall, and need to be
localized automatically. For instance, trashcans can report when
they are full, and boards can be used for targeted ads. This
application relies on the same technology as the End-User
Navigation.

Communication metadata Provides multi-RAT communication metadata for applications. This
consists mostly of low-level radio signals, i.e. IQ samples gathered
from IoT gateways. The data is provided by the IoT communication
stack and used by the IoT performance enhancement and the
localization function.

Localization data This service provides localization data from IQ signals in the multi-
RAT IoT gateway context. The location is in the form of coordinates
or area identifier, for applications such as User Navigation or
Object localization.

Performance enhancement A set of Performance Enhancing Functions (PEFs) IoT communication
technologies, e.g.: IEEE 802.15.4 at both 2.4 Ghz and subGHz, BLE,
NB-IoT. These PEFs rely on low-level signal information (IQ signals
and metadata, available through the EFS service platform) to learn

Applications Services

Performance
Enhancement
Coexistence

Channel Blacklisting

User
Navigation

Location
Estimation

EFS

Object
Localization

Functions

Communication
Metadata
I/Q data

MAC data

Communication
Stack

Network Layers
Data Collection

Localization
Data

D2.1 Initial Design of 5G-CORAL Edge and Fog computing system 36

H2020-761586

about the radio environment and then configure devices for
improved co-existence, throughput, latency, reliability etc.

Communication stack The Multi-RAT communication stack implements the IoT
communication layers (L1, L2 etc.) and related functions (e.g.
management and control functions). Each of them acts as a
virtualised modem for one IoT technology, same as the cloud-RAN
concept (cloudifying the baseband functions). Example IoT
technology under considerations are IEEE 802.15.4 (both non-
beacon-enabled and TSCH), NarrowBand-IoT, and Bluetooth Low-
Energy (BLE), as well as LoRa.

Location estimation Exploits low-level IQ samples for location estimation, particularly,
IQs as well as communication stack metadata available through the
EFS service platform. Potentially leverages phase difference
between multiple antennas at each anchor, and uses DTOA
(differential time of arrival) between different anchors to infer
location. This function publishes its data through the Localization Data
EFS service.

4.6 Connected Cars

This section is focused on the Connected Cars Use Cases, which is composed of safety and

infotainment entities. Safety entities manages functions that warn the driver of external hazards

and internal responses of the vehicle to hazards (e.g. vehicle condition and service reminders,

remote operation, transfer of usage data) and Infotainment entities manages functions involving

the entertainment for the driver and passengers (e.g. smartphone interface, WLAN hotspot, music,

video, internet, social media, mobile office).

4.6.1 Safety

For this application, the solution offers a supported driving after processing context data from the

traffic environment. The driver receives signals and indications to help the driving. The EFS entities

used in the safety application are shown in Figure 12.

FIGURE 12 EFS ENTITIES INTERCONNECTION FOR THE SAFETY CONNECTED CAR USE CASE.

The safety User GUI application provides the user graphic interface for this scenario. It receives

all the data needed to warn the driver. It could also control, for instance, the braking system to

Applications Services

GNSS

Safety
Core

EFS

User GUI

Functions

GNSS
information

Localization
Data

D2.1 Initial Design of 5G-CORAL Edge and Fog computing system 37

H2020-761586

automatically perform safety actions. The application is executed on top of the vehicle software

platform with access to, e.g., a screen of lights panel. Moreover, Safety Core can collect the

position information provided by the surrounding vehicles, through the GNSS Information EFS

Service, and collected by on-board modules. This information can be processed by the application,

which can send alerts regarding the existence of a risk of collision with other vehicles, for instance.

These operations can be done not only at the edge cloud, but also at the vehicle or at the RSU i.e.

on a traffic light. These are all fog nodes, as proposed in 5G CORAL.

The information sent to the User Interface application (GUI) is generated by the Safety Core

application (SC) which coordinates the User GUI applications and GNSS functions that forms this

whole application. It stores context data and generates alarms based on the processed information

to later send actions to the drivers. Event Information service (EI) interconnects the two applications.

EI is used to handle context events. Some information that can be exchanged is event name,

context data, priority and action.

The context information regarding location is received by the service GNSS Information with origin

in the GNSS function. Data from multiple vehicles will be stored. Also, since the Safety Core

application (SC) is a distributed application, Event Information service (EI) will be used to

communicate different instances of the core.

In addition, the context information generated formed by events and location could be the basis

for other future applications, for instance a real-time route generator, where a vehicle navigator

could leverage the information when selecting the best path to arrive the destination. The exchange

and process of the data can be used as inputs for generating a road map and therefore select

the best route.

4.6.2 Infotainment

Infotainment is an EFS Application which aims to enhance the experience and entertainment of the

passengers through multimedia (e.g., 4K videos) and gaming contents especially considering the

slow-moving vehicles (or the parked ones) situation as could be a traffic jam[13], [14]. This EFS

Application collects the position and velocity information from the GNSS Information EFS Service

to understand if there is a traffic jam like condition enabling contents local caching in Road Side

Unit (RSU) or even the vehicles. The infotainment EFS application allows the users to exchange local

cached content leveraging on the 5G-CORAL network, improving the user experience but without

requesting the content from a distant data cloud and so overloading the network backhauling. In

Figure 13 the EFS entities involved in the infotainment application are depicted.

FIGURE 13 EFS ENTITIES INTERCONNECTION FOR THE INFOTAINMENT CONNECTED CAR USE CASE.

Applications Services

GNSSInfotainment

EFS
Functions

GNSS
information

D2.1 Initial Design of 5G-CORAL Edge and Fog computing system 38

H2020-761586

In a traffic jam like condition the vehicle or RSU can start local caching [15], [16] and so as gateway

send information, i.e. video gaming, web browsing and so on, to the other vehicles based on the

information received. This infotainment application has not critical requirements in term of latency,

but requires a large data throughput when it works as gateway since several other vehicles/users

may use the applications simultaneously. The information sent to the user is generated by the

application when a traffic jam like situation happens. The context information regarding location

is received by the service with origin in the GNSS function as described in Table 10.

Table 10, presents a description of the connected car use case EFS entities depicted in Figure 12

and Figure 13.

TABLE 10 SUMMARY OF EFS ENTITIES FOR CONNECTED CARS USE CASE

EFS Entity Description
Safety core EFS application providing road safety warning messages. It

communicates with the Event Service and the GNSS information
service. It can collect location information provided by surrounding
vehicles and generated by on-board modules.

User GUI EFS application providing User Graphical Interface.
Infotainment Infotainment application aims to enhance the experience and

entertainment of the passengers through multimedia (e.g., 4K
videos) and gaming contents. It receives the data from the GNSS
applications and if a traffic jam like situation is recognised. It also
enables multimedia content local caching between RSUs and
vehicles.

Event service EFS service used to handle context events. It exchanges data with
User GUI and Safety Core applications, such as event name, context
data, priority and action.

GNSS information A GNSS device will collect information about the location of a
vehicle. Some of the data that can be gathered is latitude,
longitude, speed or altitude. This data can be used by applications
like infotainment.

GNSS The aim of the Global Navigation Satellite System (GNSS) function
is to process and transform location data received from a satellite
to device in a vehicle. It exposes the data through the EFS
localization service. It requires access to the signals from a GNSS
antenna. The GNSS function can be either installed close to an
antenna or at a different location given it is provided the antenna
data.

D2.1 Initial Design of 5G-CORAL Edge and Fog computing system 39

H2020-761586

5 Conclusions and Future Work
Nine months after the start of the 5G-CORAL project, WP2 has reached a preliminary design of

the Edge and Fog Computing System (EFS) as reported in this deliverable. This initial release

addressed the following aspects of the 5G-CORAL EFS, namely: the EFS requirements; the EFS

architecture including internal and external interfaces; a survey, analysis and selection of the EFS

Service platform messaging/communication protocols; and a baseline EFS design for the 5G-

CORAL use cases.

In section 2, we presented a comprehensive description of the 5G-CORAL Edge and Fog Computing

System (EFS) requirements and architectural design including: the EFS virtualisation infrastructure

(i.e. physical/virtual compute, storage and networking), the EFS entities (i.e. EFS applications, EFS

functions, EFS service platform and the respective entity managers), the EFS internal and external

interfaces. Section 2 also provided a detailed description of the microservices based design

principle for EFS atomic entities, i.e. the building blocks of EFS entities. Finally, section 2, provided

a detailed description of the publish/subscribe communication framework between the EFS service

platform and the EFS/non-EFS applications and functions.

In section 3, we presented an in-depth analysis of state of the art messaging/communication

protocols with the objective of identifying candidate protocols for the 5G-CORAL EFS service

platform. DDS and MQTT will be adopted as the reference/baseline messaging protocols for the

EFS, while NATS and RESTful publish/subscribe were earmarked for further study.

Finally, in section 4 a baseline EFS design for each 5G-CORAL use case was presented, namely:

Robotics, Virtual Reality (VR), Augmented Reality (AR), High-speed Train, IoT Multi-RAT Gateway

and Connected Cars. The baseline design decomposed each use case into the constituent EFS

entities and described their respective interworking(s).

The next deliverable from WP2 (D2.2, due Month 21) will extend the present 5G-CORAL EFS

design to include:

• Association/pairing between the 5G-CORAL EFS and 5G-CORAL OCS.

• The design of the EFS service platform data storage engine.

• A study of NATS and RESTful publish/subscribe messaging.

• A refined description of EFS internal and external interfaces.

• EFS workflows for resource/service discovery and integration.

• Data models for the EFS APIs.

• EFS implementations for the 5G-CORAL use cases.

D2.1 Initial Design of 5G-CORAL Edge and Fog computing system 40

H2020-761586

Bibliography

[1] D1.1 5G CORAL Initial system design, use cases, and requirements. 5G CORAL Project.
[2] ETSI, "Network Functions Virtualisation (NFV); Architectural Framework,” ETSI GS NFV-002

V1.1.1, October 2013.
[3] ETSI, "Network Functions Virtualisation (NFV); NFV Evolution and Ecosystem: Hardware

Interoperability Requirements Specification,” ETSI GS NFV-EVE 007 V3.1.1, March 2017.
[4] http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#toc (last

accessed 2018/05/30)
[5] http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-transport-v1.0-os.html#toc

(last accessed 2018/05/30)
[6] http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#toc

(last accessed 2018/05/30)
[7] http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-transactions-v1.0-os.html#toc

(last accessed 2018/05/30)
[8] http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-security-v1.0-os.html#toc

(last accessed 2018/05/30)
[9] https://www.rabbitmq.com/production-checklist.html (last accessed 2018/05/30)
[10] https://groups.google.com/forum/#!topic/rabbitmq-users/RcSja7QZLtc (last accessed

2018/05/30)
[11] https://bravenewgeek.com/benchmarking-message-queue-latency/ (last accessed

2018/05/30)
[12] https://www.rabbitmq.com/blog/2012/04/25/rabbitmq-performance-measurements-

part-2/ (last accessed 2018/05/30)
[13] EU H2020 5G NORMA, “D2.1: Use cases, scenarios, and requirements”, September 2015
[14] EU H2020 ERTICO, “5G Automotive Vision”, October 2015
[15] Xiaohu Ge, Zipeng Li, Shikuan Li, “5G Software Defined Vehicular Networks”, IEEE

Communications Magazine,July 2017
[16] M. Gregory, J. Gomez-Vilardebo, J. Matamoros and D. Gunduz, “Wireless content caching

for small cell and D2D networks”, IEEE Journal vol. 34, 5, May, 2016.
[17] Y. Grunenberger and F. Rousseau, “Virtual access points for transparent mobility in wireless

LANs,” in IEEE Wireless Communications and Networking Conference (WCNC), 2010, pp. 1–
6.

[18] 3GPP, “Study on Architecture for Next Generation System,” TR 23.799, v0.8.0, September
2016.

[19] Sam Newman, “Building Microservices: Designing Fine-Grained Systems”, first edition,
O’Reilly, February 2015.

[20] https://kafka.apache.org/ (last accessed 2018/05/30)
[21] https://nats.io/ (last accessed 2018/05/30)

http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#toc
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-transport-v1.0-os.html#toc
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#toc
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-transactions-v1.0-os.html#toc
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-security-v1.0-os.html#toc
https://www.rabbitmq.com/production-checklist.html
https://groups.google.com/forum/#!topic/rabbitmq-users/RcSja7QZLtc
https://bravenewgeek.com/benchmarking-message-queue-latency/
https://www.rabbitmq.com/blog/2012/04/25/rabbitmq-performance-measurements-part-2/
https://www.rabbitmq.com/blog/2012/04/25/rabbitmq-performance-measurements-part-2/
https://kafka.apache.org/
https://nats.io/

